Sketchy Decisions

Joel A. Tropp
Steele Family Professor of

Applied \& Computational Mathematics

Computing + Mathematical Sciences
California Institute of Technology jtropp@cms.caltech.edu

Collaborators: Volkan Cevher (EPFL), Roarke Horstmeyer (Duke), Olivier Fercoq (Télécom Paris), Madeleine Udell (Cornell), Alp Yurtsever (MIT)

Outline

1:00-1:30 pm. Fourier ptychography and scalable SDP algorithms

1:35-2:20 pm. Nonlinear SDPs via SketchyCGM

2:30-3:15 pm. Standard-form SDPs via SketchyCGAL

Fourier

Ptychography

Microscopy: Field of View / Resolution

Source: Adapted from Zhang et al. 2013.

Fourier Ptychography: Field of View + Resolution

Sources: Zhang et al. 2013; Horstmeyer \& Yang 2014; Ou et al. 2014; Horstmeyer et al. 2015.

Fourier Ptychography: Malaria Example

Source: Yurtsever et al. 2017.

Fourier Ptychography: Schematic

Source: Adapted from Horstmeyer \& Yang 2014.

Fourier Ptychography: Reconstruction

Acquire a family of noisy measurements:

$$
b_{i}=\left|\left\langle\boldsymbol{a}_{i}, \boldsymbol{\psi}\right\rangle\right|^{2}+\xi_{i} \quad \text { for } i=1, \ldots, d
$$

a $\boldsymbol{a}_{i} \in \mathbb{C}^{n}$ are known measurement vectors that model FP system
. $\boldsymbol{\psi} \in \mathbb{C}^{n}$ is the unknown sample transmission function
. $\xi_{i} \in \mathbb{R}$ is unknown noise
Reconstruction via unconstrained optimization:

$$
\underset{\boldsymbol{x} \in \mathbb{C}^{n}}{\operatorname{minimize}} \sum_{i=1}^{d} \operatorname{loss}\left(\left|\left\langle\boldsymbol{a}_{i}, \boldsymbol{x}\right\rangle\right|^{2} ; b_{i}\right)
$$

Assume loss $(\cdot ; b)$ is a convex function
Malaria example: $n=25600$ and $d=185600$

Sources: Zhang et al. 2013; Horstmeyer \& Yang 2014; Horstmeyer et al. 2015.

Fourier Ptychography: Convex Reconstruction

Observe: $|\langle\boldsymbol{a}, \boldsymbol{x}\rangle|^{2}=\boldsymbol{a}^{*}\left(\boldsymbol{x} \boldsymbol{x}^{*}\right) \boldsymbol{a}=\boldsymbol{a}^{*} \boldsymbol{X} \boldsymbol{a}$ where \boldsymbol{X} is rank-one, psd

Le Lift to matrix optimization problem:

$$
\underset{\boldsymbol{X} \in \mathbb{H}_{n}}{\operatorname{minimize}} \sum_{i=1}^{d} \operatorname{loss}\left(\boldsymbol{a}_{i}^{*} \boldsymbol{X} \boldsymbol{a}_{i} ; b_{i}\right) \quad \text { subject to } \quad \operatorname{rank}(\boldsymbol{X})=1 ; \quad \boldsymbol{X} \text { psd }
$$

Replace rank constraint with trace constraint to obtain convex problem:

$$
\underset{\boldsymbol{X} \in \mathbb{H}_{n}}{\operatorname{minimize}} \sum_{i=1}^{d} \operatorname{loss}\left(\boldsymbol{a}_{i}^{*} \boldsymbol{X} \boldsymbol{a}_{i} ; b_{i}\right) \quad \text { subject to } \quad \operatorname{trace}(\boldsymbol{X})=\alpha ; \quad \boldsymbol{X} \text { psd }
$$

Return maximum eigenvector \boldsymbol{x}_{\star} of a solution \boldsymbol{X}_{\star}
(alaria example: Matrix \boldsymbol{X} has $n^{2}=6.55 \cdot 10^{8}$ real dof

Sources: AIM Frames Workshop 2008; Edidin et al. 2009; Chai et al. 2011; Candès et al. 2013; Horstmeyer et al. 2015.

Convexity: Why Bother?

Wirtinger Flow (not convex)

Burer-Monteiro (sort of convex) $\boldsymbol{X}=\boldsymbol{Y} \boldsymbol{Y}^{*}$
images of x phase gradient

Challenge: How to solve the convex ptychography problem at scale?

Sources: Burer \& Monteiro 2003; Candès et al. 2014; Horstmeyer et al. 2015; Yurtsever et al. 2017.

Nonlinear SDP with Optimal Storage

Convex Low-Rank Matrix Optimization

minimize $\quad f(\mathcal{A} \boldsymbol{X})$ subject to $\quad \boldsymbol{X} \in \alpha \boldsymbol{\Delta}_{n}$

A $\mathcal{A}: \mathbb{H}_{n} \rightarrow \mathbb{R}^{d}$ is a real-linear map
$f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex and continuously differentiable
(ans $\boldsymbol{\Delta}_{n}:=\left\{\boldsymbol{X} \in \mathbb{W}_{n}^{+}:\right.$trace $\left.\boldsymbol{X}=1\right\}=$ density matrices
a In many applications,
ca \mathcal{A} extracts d linear measurements of $n \times n$ matrix
$f=\operatorname{loss}(\cdot ; \boldsymbol{b})$ for data $\boldsymbol{b} \in \mathbb{R}^{d}$
se $d \ll n^{2}$
d α modulates rank of solution
Models problems in signal processing, statistics, and machine learning (e.g., convex ptychography)
$\mathbb{H}_{n}=n \times n$ Hermitian matrices; $\mathbb{H}_{n}^{+}=n \times n$ psd matrices

Approximate Solutions

Let \boldsymbol{X}_{\star} be an optimal point of (SDP-nl)
Algorithms produce a feasible point \boldsymbol{X} that is ε-suboptimal:

$$
f(\mathscr{A} \boldsymbol{X})-f\left(\mathcal{A} \boldsymbol{X}_{\star}\right) \leq \varepsilon
$$

Smoothness: Distance to optimal point controls suboptimality:

$$
f(\mathcal{A} \boldsymbol{X})-f\left(\mathcal{A} \boldsymbol{X}_{\star}\right) \leq L\left\|\boldsymbol{X}-\boldsymbol{X}_{\star}\right\|_{*}
$$

Stability: Suboptimality controls distance to (unique) optimum:

$$
f(\mathcal{A} \boldsymbol{X})-f\left(\mathcal{A} \boldsymbol{X}_{\star}\right) \geq \kappa\left\|\boldsymbol{X}-\boldsymbol{X}_{\star}\right\|_{*}
$$

Smoothness + Stability: Suboptimality comparable with distance to optimum
Assume smoothness + stability to simplify guarantees
$\|\cdot\|_{*}=$ Schatten 1-norm = dual of ℓ_{2} operator norm = trace norm

Low-Rank Approximation of a Solution

NP-hard to solve (SDP-nl) $+\operatorname{rank} \boldsymbol{X} \leq r$
Legerdemain: Find a rank- r approximation $\hat{\boldsymbol{X}}$ of a solution to (SDP-nl):

$$
\left\|\hat{\boldsymbol{X}}-\boldsymbol{X}_{\star}\right\|_{*} \leq \mathrm{const} \cdot\left\|\boldsymbol{X}_{\star}-\llbracket \boldsymbol{X}_{\star} \rrbracket_{r}\right\|_{*}
$$

In particular, if $\operatorname{rank}\left(\boldsymbol{X}_{\star}\right) \leq r$, then $\hat{\boldsymbol{X}}=\boldsymbol{X}_{\star}$
Goal: Compute a rank-r approximation $\hat{\boldsymbol{X}}$ to an ε-suboptimal point $\boldsymbol{X}_{\varepsilon}$:

$$
\left\|\hat{\boldsymbol{X}}-\boldsymbol{X}_{\varepsilon}\right\|_{*} \leq \text { const } \cdot\left\|\boldsymbol{X}_{\varepsilon}-\llbracket \boldsymbol{X}_{\varepsilon} \rrbracket_{r}\right\|_{*}
$$

Assume smoothness + stability $+\operatorname{rank}\left(\boldsymbol{X}_{\star}\right) \leq r$
Conclude

$$
\left\|\hat{\boldsymbol{X}}-\boldsymbol{X}_{\star}\right\|_{*}=f(\mathcal{A} \boldsymbol{X})-f\left(\mathcal{A} \boldsymbol{X}_{\star}\right)=\varepsilon
$$

$\llbracket \cdot \|_{r}=$ a best rank- r approximation with respect to $\|\cdot\|_{*}$

Optimal Storage

What kind of storage bounds can we hope for?

Assume black-box implementation of operations with linear map:

$$
\begin{aligned}
\boldsymbol{u} & \mapsto \mathcal{A}\left(\boldsymbol{u} \boldsymbol{u}^{*}\right) & (\boldsymbol{u}, \boldsymbol{z}) & \mapsto\left(\mathcal{A}^{*} z\right) \boldsymbol{u} \\
\mathbb{C}^{n} & \rightarrow \mathbb{R}^{d} & \mathbb{C}^{n} \times \mathbb{R}^{d} & \rightarrow \mathbb{C}^{n}
\end{aligned}
$$

Need $\Theta(n+d)$ storage for output of black-box operations

Need $\Theta(r n)$ storage for rank- r approximation to a solution

Definition. An algorithm for the nonlinear SDP (SDP-nl) has optimal storage if its working storage is $\Theta(d+r n)$ rather than $\Theta\left(n^{2}\right)$.

So Many Algorithms...

ice 1990s: Interior-point methods
Storage cost $\Theta\left(n^{4}\right)$ for Hessian
© 2000s: Convex first-order methods
(Accelerated) proximal gradient, spectral bundle methods, and others
Store matrix variable $\Theta\left(n^{2}\right)$; projection onto constraint set via SVD
© 2008-Present: Storage-efficient convex first-order methods
Conditional gradient method (CGM), entropic mirror descent (EMD), and extensions
Store matrix with rank $O(t n)$; no storage guarantees
ce 2009-Present: Nonconvex heuristics
Burer-Monteiro factorization idea + various nonlinear programming methods
Store low-rank matrix factors $\Theta(r n)$
For Burer-Monteiro, necessary that rank $r=\Omega(\sqrt{d})+$ extra assumptions
Other nonconvex methods frame unrealistic + unverifiable statistical assumptions

[^0]
The Challenge

Some algorithms provably solve the model problem...

Some algorithms have optimal storage guarantees...

SketchyCGM

Geometry of Conditional Gradient

$$
\boldsymbol{H}=\underset{\boldsymbol{Y} \in \boldsymbol{\Delta}_{n}}{\arg \max }\langle\boldsymbol{Y},-\nabla g(\boldsymbol{X})\rangle
$$

$$
\boldsymbol{X}_{+}=(1-\eta) \boldsymbol{X}+\eta \boldsymbol{H}
$$

$$
\begin{aligned}
& \{\boldsymbol{Y}: g(\boldsymbol{Y}) \leq g(\boldsymbol{X})\} \\
& \quad \min _{\boldsymbol{X} \in \boldsymbol{\Delta}_{n}} \boldsymbol{\sigma}(\mathbf{X})
\end{aligned}
$$

$$
\boldsymbol{\Delta}_{n}=\left\{\boldsymbol{X} \in \mathbb{H}_{n}^{+}: \operatorname{trace} \boldsymbol{X}=1\right\}
$$

CGM for the Nonlinear SDP

Input: Problem data

Output: Approximate solution $\boldsymbol{X}_{\text {cgm }} \in \alpha \boldsymbol{\Delta}_{n}$
1 function CGM
$2 \boldsymbol{X} \leftarrow \mathbf{0}_{n \times n} \quad \triangleright$ Initialize matrix variable
$3 \quad$ for $t \leftarrow 0,1,2,3, \ldots$ do
$4 \quad \eta \leftarrow 2 /(t+2) \quad \triangleright$ Step size schedule
$5 \quad \boldsymbol{u} \leftarrow \operatorname{MinEvec}\left(\mathscr{A}^{*}(\nabla f(\mathcal{A} \boldsymbol{X}))\right)$

$$
\boldsymbol{H} \leftarrow-\alpha \boldsymbol{u} \boldsymbol{u}^{*}
$$

$$
\boldsymbol{X} \leftarrow(1-\eta) \boldsymbol{X}+\eta \boldsymbol{H}
$$

return X

Comment: In notation of last slide, $g=f \circ \mathcal{A}$. The gradient $\nabla g=\mathcal{A}^{*} \circ \nabla f \circ \mathcal{A}$.

Convergence of CGM

Fact 1 (CGM: Convergence Rate). Let \boldsymbol{X}_{\star} be an arbitrary solution to the nonlinear SDP (SDP-nl). For each iteration $t \geq 0$, the matrix \boldsymbol{X}_{t} constructed by CGM satisfies

$$
f\left(\mathcal{A} \boldsymbol{X}_{t}\right)-f\left(\mathcal{A} \boldsymbol{X}_{\star}\right) \leq \frac{2 C}{2+t} .
$$

The constant C reflects the curvature of the objective and size of the domain.

CGM behavior depends on curvature of objective
© Objective values converge at rate $O(1 / t)$!
Extension: Computable stopping criterion (omitted)
Extension: Works with very approximate eigenvalue calculations

Randomized Lanczos

Lanczos efficiently minimizes the Rayleigh quotient of $\boldsymbol{M} \in \mathbb{H}_{n}$ over

$$
\operatorname{span}\left\{\boldsymbol{\omega}, \boldsymbol{M} \boldsymbol{\omega}, \boldsymbol{M}^{2} \boldsymbol{\omega}, \ldots, \boldsymbol{M}^{q} \boldsymbol{\omega}\right\}
$$

© Uses q matrix-vector products with \boldsymbol{M}
Can be implemented with storage $\Theta(n)$!
Randomization: Draw test vector $\boldsymbol{\omega} \sim \operatorname{NORMAL}\left(\mathbf{0}, \mathbf{I}_{n}\right)$
Fact 2 (Randomized Lanczos). Fix $\boldsymbol{M} \in \mathbb{H}_{n}$. For $\varepsilon \in(0,1]$ and $\delta \in(0,0.5]$, randomized Lanczos returns a unit vector $\boldsymbol{u} \in \mathbb{C}^{n}$ with

$$
\boldsymbol{u}^{*} \boldsymbol{M} \boldsymbol{u} \leq \lambda_{\min }(\boldsymbol{M})+\frac{1}{8} \varepsilon\|\boldsymbol{M}\| \quad \text { with probability } \geq 1-2 \delta
$$

whenever $q \geq \frac{1}{2}+\varepsilon^{-1 / 2} \log \left(n / \delta^{2}\right)$.

Outcome: Implement CGM via RandLanczos with $q_{t}=O\left(t^{1 / 2} \log n\right)$

Sources: Kuczyński \& Woźniakowski 1992; Arora et al. 2005; Tropp 2017-2021; Jaggi 2013; Yurtsever et al. 2017-2021;

Crisis / Opportunity

Crisis:

CGM needs many iterations to converge to a near-low-rank solution
The numerical rank of the CGM iterates can increase without bound
© CGM requires high + unpredictable storage

Opportunity:

Modify CGM to work with optimal storage!
Drive the CGM iteration with small "state" variable $\boldsymbol{z}=\mathcal{A} \boldsymbol{X}$
Use primitives to access linear map \mathcal{A}
Maintain small randomized sketch of primal matrix variable \boldsymbol{X}
After iteration terminates, reconstruct matrix variable \boldsymbol{X} from sketch

CGM for the Nonlinear SDP

Input: Problem data

Output: Approximate solution $\boldsymbol{X}_{\text {cgm }} \in \alpha \boldsymbol{\Delta}_{n}$
1 function CGM
$2 \boldsymbol{X} \leftarrow \mathbf{0}_{n \times n} \quad \triangleright$ Initialize matrix variable
$3 \quad$ for $t \leftarrow 0,1,2,3, \ldots$ do
$4 \quad \eta \leftarrow 2 /(t+2) \quad \triangleright$ Step size schedule
$5 \quad \boldsymbol{u} \leftarrow \operatorname{MinEvec}\left(\mathcal{A}^{*}(\nabla f(\mathcal{A} \boldsymbol{X}))\right)$

$$
\boldsymbol{H} \leftarrow-\alpha \boldsymbol{u} \boldsymbol{u}^{*}
$$

\triangleright Eigenvector computation
\triangleright Form update direction

$$
\boldsymbol{X} \leftarrow(1-\eta) \boldsymbol{X}+\eta \boldsymbol{H}
$$

7 $\quad \boldsymbol{X} \leftarrow(1-\eta) \boldsymbol{X}+\eta \boldsymbol{H}$
return X

State Formulation of CGM

Input: Problem data

Output: Approximate solution state $\boldsymbol{z}_{\mathrm{cgm}}=\mathcal{A} \boldsymbol{X}_{\mathrm{cgm}} \in \mathbb{R}^{d}$
1 function StateCGM
$2 \boldsymbol{z} \leftarrow \mathbf{0}_{d} \quad \triangleright$ Initialize state variable
$3 \quad$ for $t \leftarrow 0,1,2,3, \ldots$ do
$4 \quad \eta \leftarrow 2 /(t+2)$
$5 \quad \boldsymbol{u} \leftarrow \operatorname{AppMinEvec}\left(\mathscr{A}^{*}(\nabla f(\boldsymbol{z}))\right) \quad \triangleright$ RandLanczos via \mathscr{A}^{*} primitive
6 $\boldsymbol{h} \leftarrow \mathcal{A}\left(-\alpha \boldsymbol{u} \boldsymbol{u}^{*}\right) \quad \triangleright$ State update via \mathcal{A} primitive
$7 \quad \boldsymbol{z} \leftarrow(1-\eta) \boldsymbol{z}+\eta \boldsymbol{h}$
\triangleright Linear update to state variable
8 return z

Benefit: Only uses storage $\Theta(n+d)$!
Problem: Where do we get $\boldsymbol{X}_{\text {cgm }}$?

Sketching the Decision Variable

Idea: Maintain small sketch of primal variable X !
Fix target rank r of solution, and draw Gaussian dimension reduction map

$$
\boldsymbol{\Omega} \in \mathbb{C}^{n \times k} \quad \text { where } k=2 r
$$

Sketch takes the form

$$
\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\Omega} \in \mathbb{C}^{n \times k}
$$

Can perform linear update $\boldsymbol{X} \leftarrow(1-\eta) \boldsymbol{X}+\eta \boldsymbol{H}$ by operating on sketch:

$$
\left.\boldsymbol{Y} \leftarrow(1-\eta) \boldsymbol{Y}+\eta \boldsymbol{H} \boldsymbol{\Omega} \quad \text { (Recall: } \boldsymbol{H}=\boldsymbol{u} u^{*}\right)
$$

Can compute provably good rank- r approximation $\hat{\boldsymbol{X}}$ from sketch:

$$
\hat{\boldsymbol{X}}=\llbracket \boldsymbol{Y}\left(\mathbf{\Omega}^{*} \boldsymbol{Y}\right)^{\dagger} \boldsymbol{Y}^{*} \rrbracket_{r} \quad \text { (truncated Nyström) }
$$

Sketch uses additional storage $\Theta(r n)$!

Sources: Nyström 1930; Williams \& Seeger 2001; Drineas \& Mahoney 2005; Woolfe et al. 2008; Clarkson \& Woodruff 2009; Halko et al. 2009; Gittens 2011, 2013; Tropp et al. 2017-2021;

Guarantees for Reconstruction

Theorem 3 (Nyström Sketch). The Nyström Sketch has reconstruction guarantee

$$
\mathbb{E}\|\boldsymbol{X}-\hat{\boldsymbol{X}}\|_{*} \leq 2\left\|\boldsymbol{X}-\llbracket \boldsymbol{X} \rrbracket_{r}\right\|_{*}
$$

. If the sketch contains a matrix \boldsymbol{X} with a good low-rank approximation, then the reconstruction $\hat{\boldsymbol{X}}$ is also a good low-rank approximation of \boldsymbol{X}
se Similar bounds hold with high probability
Larger sketches reduce error $(k=\zeta r)$
a Improvements when \boldsymbol{X} has spectral decay
Extension: Shift $\hat{\boldsymbol{X}}$ so trace $\hat{\boldsymbol{X}}=\alpha$
$\|\cdot\|_{*}=$ Schatten 1-norm; $\left[\cdot \|_{r}=\right.$ best rank- r approximation

Sources: Nyström 1930; Williams \& Seeger 2001; Drineas \& Mahoney 2005; Woolfe et al. 2008; Clarkson \& Woodruff 2009; Halko et al. 2009; Gittens 2011, 2013; Tropp et al. 2017-2021; Kueng 2018;

SketchyCGM for the Model Problem

Input: Problem data; target rank r
Output: Rank- r approximate solution $\hat{\boldsymbol{X}}=\boldsymbol{V} \boldsymbol{\Lambda} \boldsymbol{V}^{*} \in \alpha \boldsymbol{\Delta}_{n}$ in factored form

```
function SKETCHYCGM
    SKETCH.INIT \((n, r) \quad \triangleright\) Initialize sketch to zero
    \(\boldsymbol{z} \leftarrow \mathbf{0}_{d}\)
    for \(t \leftarrow 0,1,2,3, \ldots\) do
        \(\eta \leftarrow 2 /(t+2)\)
        \(\boldsymbol{u} \leftarrow \operatorname{AppMinEvec}\left(\mathcal{A}^{*}(\nabla f(\boldsymbol{z}))\right)\)
        \(\boldsymbol{h} \leftarrow \mathcal{A}\left(-\alpha \boldsymbol{u} \boldsymbol{u}^{*}\right)\)
        \(z \leftarrow(1-\eta) \boldsymbol{z}+\eta \boldsymbol{h}\)
        SKETCH.CGMUPDATE \((-\sqrt{\alpha} \boldsymbol{u}, \eta) \quad \triangleright\) Update sketch of \(\boldsymbol{X}\)
    \((\boldsymbol{V}, \boldsymbol{\Lambda}) \leftarrow\) Sketch.Reconstruct ()
    \(\boldsymbol{\Lambda} \leftarrow \boldsymbol{\Lambda}+r^{-1}(\alpha-\operatorname{trace} \boldsymbol{\Lambda}) \mathbf{I}_{r}\)
    return \((\boldsymbol{V}, \boldsymbol{\Lambda})\)
```


Methods for SKетCH Object

```
function SkeTCh.INIT( \(n, r\) )
    \(k \leftarrow 2 r\)
    \(\boldsymbol{\Omega} \leftarrow \operatorname{randn}(\mathbb{C}, n, k)\)
    \(\boldsymbol{Y} \leftarrow \operatorname{zeros}(n, k)\)
function SKETCH.CGMUPDATE( \(\boldsymbol{u}, \eta)\)
    \(\boldsymbol{Y} \leftarrow(1-\eta) \boldsymbol{Y}+\eta \boldsymbol{u}\left(\boldsymbol{u}^{*} \boldsymbol{\Omega}\right)\)
        \(\triangleright\) Average \(\boldsymbol{u} \boldsymbol{u}^{*}\) into sketch
function Sketch.Reconstruct()
    \(\boldsymbol{C} \leftarrow \operatorname{chol}\left(\boldsymbol{\Omega}^{*} \boldsymbol{Y}\right) \quad \triangleright\) Cholesky decomposition
    \(\boldsymbol{Z} \leftarrow \boldsymbol{Y} / \boldsymbol{C} \quad \triangleright\) Solve least-squares problems
    \((\boldsymbol{U}, \boldsymbol{\Sigma}, \sim) \leftarrow \operatorname{svds}(\boldsymbol{Z}, r) \quad \triangleright\) Compute \(r\)-truncated SVD
    return \(\left(\boldsymbol{U}, \boldsymbol{\Sigma}^{2}\right) \quad \triangleright\) Return eigenvalue factorization
```

Comment: Modifications required for numerical stability

Sources: Yurtsever et al. 2017; Tropp et al. 2017.

Less Filling / Great Taste

Theorem 4 (SkeTChyCGM). SKETCHYCGM has the following properties (whp):
SKETCHYCGM computes a rank- r approximation of a solution of (SDP-nl)
SKETCHYCGM has optimal storage $\Theta(d+r n)$
Assume (SDP-nl) has smoothness + stability + $\operatorname{rank} X_{\star} \leq r$
Then SKETCHYCGM produces rank-r iterates \hat{X}_{t} that satisfy

$$
\mathbb{E}_{\boldsymbol{\Omega}}\left\|\hat{\boldsymbol{X}}_{t}-\boldsymbol{X}_{\star}\right\|_{*}=\mathbb{E}_{\boldsymbol{\Omega}} f\left(\mathcal{A} \hat{\boldsymbol{X}}_{t}\right)-f\left(\mathcal{A} \boldsymbol{X}_{\star}\right)=O\left(t^{-1}\right)
$$

To achieve ε-suboptimal solution, SKETCHYCGM has arithmetic costs

1. $O\left(r^{2} n+\varepsilon^{-1}(d+r n)+\varepsilon^{-3 / 2} n \log n\right)$ flops
2. $O\left(\varepsilon^{-3 / 2} \log n\right)$ applications of the \mathscr{A}^{*} and ∇f primitives
3. $O\left(\varepsilon^{-1}\right)$ applications of the \mathcal{A} primitive

Performance of SketchyCGM

Fourier Ptychography, Redux

Wirtinger Flow

Burer-Monteiro

SketchyCGM

29 illuminations; 80^{2} pixels each; $d=1.86 \cdot 10^{5}$ measurements image size $n=160^{2}$ pixels; matrix variable $n^{2}=6.55 \cdot 10^{8}$ SkETCHYCGM storage (rank $r=1$): $6.53 \cdot 10^{5}$ quadratic loss

Fourier Ptychography: Malaria Phase Gradients

Linear SDP: MaxCut

The Most Unkindest Cut of All

Let $L \in \mathbb{W}_{n}$ be the (psd) Laplacian of a graph with n vertices and m edges
Calculate the maximum cut via a mathematical program:

$$
\text { maximize } \quad \boldsymbol{x}^{\mathrm{T}} \boldsymbol{L} \boldsymbol{x} \text { subject to } \quad \boldsymbol{x} \in\{ \pm 1\}^{n}
$$

NP-hard, so relax to an SDP via the map $\boldsymbol{x} \boldsymbol{x}^{\mathrm{T}} \mapsto \boldsymbol{X}$:

maximize	$\operatorname{trace}(\boldsymbol{L} \boldsymbol{X})$
subject to	$\operatorname{diag}(\boldsymbol{X})=\mathbf{1}, \quad \boldsymbol{X}$ psd

(MAXCUT SDP)

Report signum of maximum eigenvector of solution (or randomly round)
(e Provably good idea, but...
Laplacian L of a graph with m edges has $\Theta(m)$ nonzeros
SDP decision variable \boldsymbol{X} has $\Theta\left(n^{2}\right)$ degrees of freedom
Storage! Communication! Computation!
Sources: Delorme \& Poljak 1993; Goemans \& Williamson 1996.

SDP with

Optimal Storage

Model Problem: Trace-Constrained SDP

minimize trace $(\boldsymbol{C} \boldsymbol{X})$
 subject to $\mathcal{A} \boldsymbol{X}=\boldsymbol{b}$
 $\boldsymbol{X} \in \alpha \boldsymbol{\Delta}_{n}$

(SDP)
ce $\boldsymbol{C} \in \mathbb{H}_{n}$ and $\boldsymbol{b} \in \mathbb{R}^{d}$
(s) $\mathcal{A}: \mathbb{H}_{n} \rightarrow \mathbb{R}^{d}$ is a real-linear map
© $\boldsymbol{\Delta}_{n}:=\left\{\boldsymbol{X} \in \mathbb{-}_{n}^{+}:\right.$trace $\left.\boldsymbol{X}=1\right\}$
a $\alpha>0$ controls trace (and sometimes modulates rank)
In many applications, $d \ll n^{2}$ and all solutions have low rank
Goal: Produce a rank- r approximation to a solution of (SDP)
$\mathbb{H}_{n}=n \times n$ Hermitian matrices; $\mathbb{H}_{n}^{+}=n \times n$ psd matrices

Approximate Solutions

Let \boldsymbol{X}_{\star} be an optimal point of (SDP)
Algorithms produce a semifeasible matrix $\boldsymbol{X} \in \alpha \boldsymbol{\Delta}_{n}$ that is ε-suboptimal:

$$
\|\mathcal{A} \boldsymbol{X}-\boldsymbol{b}\| \leq \varepsilon \quad \text { and } \quad \operatorname{trace}(\boldsymbol{C} \boldsymbol{X})-\operatorname{trace}\left(\boldsymbol{C} \boldsymbol{X}_{\star}\right) \leq \varepsilon
$$

Stability: Suboptimality controls distance to (unique) optimum:

$$
\max \left\{\|\mathcal{A} \boldsymbol{X}-\boldsymbol{b}\|, \operatorname{trace}(\boldsymbol{C} \boldsymbol{X})-\operatorname{trace}\left(\boldsymbol{C} \boldsymbol{X}_{\star}\right)\right\} \quad \geq \boldsymbol{\kappa}\left\|\boldsymbol{X}-\boldsymbol{X}_{\star}\right\|_{*}
$$

Assume stability to simplify guarantees
$\|\cdot\|=\ell_{2}$ norm
$\|\cdot\|_{*}=$ Schatten 1-norm

Low-Rank Approximation of a Solution

NP-hard to solve (SDP) $+\operatorname{rank} \boldsymbol{X} \leq r$
Legerdemain: Find a rank- r approximation $\hat{\boldsymbol{X}}$ of a solution to (SDP):

$$
\left\|\hat{\boldsymbol{X}}-\boldsymbol{X}_{\star}\right\|_{*} \leq \mathrm{const} \cdot\left\|\boldsymbol{X}_{\star}-\llbracket \boldsymbol{X}_{\star} \rrbracket_{r}\right\|_{*}
$$

In particular, if $\operatorname{rank}\left(\boldsymbol{X}_{\star}\right) \leq r$, then $\hat{\boldsymbol{X}}=\boldsymbol{X}_{\star}$
Goal: Compute a rank- r approximation $\hat{\boldsymbol{X}}$ to an ε-suboptimal point $\boldsymbol{X}_{\varepsilon}$:

$$
\left\|\hat{\boldsymbol{X}}-\boldsymbol{X}_{\varepsilon}\right\|_{*} \leq \text { const } \cdot\left\|\boldsymbol{X}_{\varepsilon}-\llbracket \boldsymbol{X}_{\varepsilon} \rrbracket_{r}\right\|_{*}
$$

Assume stability $+\operatorname{rank}\left(\boldsymbol{X}_{\star}\right) \leq r$
Conclude

$$
\left\|\hat{\boldsymbol{X}}-\boldsymbol{X}_{\star}\right\|_{*}=\max \left\{\|\mathcal{A} \hat{\boldsymbol{X}}-\boldsymbol{b}\|, \operatorname{trace}(\boldsymbol{C} \hat{\boldsymbol{X}})-\operatorname{trace}\left(\boldsymbol{C} \boldsymbol{X}_{\star}\right)\right\}=\varepsilon
$$

$\llbracket \cdot \|_{r}=$ a best rank- r approximation with respect to $\|\cdot\|_{*}$

Optimal Storage

What kind of storage bounds can we hope for?

Assume black-box implementation of operations with objective + constraint:

$$
\begin{array}{rlrl}
\boldsymbol{u} & \mapsto \boldsymbol{C u} & \boldsymbol{u} & \mapsto \mathcal{A}\left(\boldsymbol{u} \boldsymbol{u}^{*}\right) \\
\mathbb{C}^{n} & \rightarrow \mathbb{C}^{n} & \mathbb{C}^{n} & \rightarrow \mathbb{R}^{d}
\end{array}
$$

Need $\Theta(n+d)$ storage for output of black-box operations

Need $\Theta(r n)$ storage for rank- r approximate solution of model problem

Definition. An algorithm for the trace-constrained SDP (SDP) has optimal storage if its working storage is $\Theta(d+r n)$ rather than $\Theta\left(n^{2}\right)$.

The Challenge

Some algorithms provably solve the trace-constrained SDP...

Some algorithms have optimal storage guarantees...

$$
\begin{gathered}
\text { Is there a practical algorithm } \\
\text { that provably computes } \\
\text { a low-rank approximation } \\
\text { to a solution of the trace-constrained SDP } \\
\text { + has optimal storage guarantees? }
\end{gathered}
$$

SketchyHCGM

Smoothing + Homotopy

$$
\begin{array}{ll}
\text { minimize } & f_{\beta}(\boldsymbol{X}):=\operatorname{trace}(\boldsymbol{C} \boldsymbol{X})+\frac{\beta}{2}\|\mathcal{A} \boldsymbol{X}-\boldsymbol{b}\|^{2} \\
\text { subject to } & \boldsymbol{X} \in \alpha \boldsymbol{\Delta}_{n}
\end{array}
$$

Objective is convex and continuously differentiable
As $\beta \rightarrow \infty$, the solutions of (SDP- β) converge to the solution set of (SDP)
Idea: Solve (SDP- β) with CGM while increasing smoothing parameter β
Gradient of objective and updates:

$$
\begin{aligned}
& \nabla f_{\beta}(\boldsymbol{X})=\boldsymbol{C}+\beta \mathcal{A}^{*}(\mathcal{A} \boldsymbol{X}-\boldsymbol{b}) \\
& \boldsymbol{H}=\underset{\boldsymbol{Y} \in \alpha \boldsymbol{\Delta}_{n}}{\arg \max }\left\langle\boldsymbol{Y},-\nabla f_{\beta}(\boldsymbol{X})\right\rangle
\end{aligned}
$$

Parallel with development of SKETCHYCGM from CGM

HCGM for Trace-Constrained SDP

Input: Problem data

Output: Approximate solution matrix $\boldsymbol{X}_{\mathrm{hcgm}}$
1 function HCGM
$2 \quad \boldsymbol{X} \leftarrow \mathbf{0}_{n \times n}$
\triangleright Initialize matrix variable
for $t \leftarrow 0,1,2,3, \ldots$ do

$$
\beta \leftarrow(t+2)^{1 / 2} \text { and } \eta \leftarrow 2 /(t+2) \quad \triangleright \text { Parameter schedule }
$$

$$
\boldsymbol{u} \leftarrow \operatorname{MinEvec}\left(\boldsymbol{C}+\beta \mathcal{A}^{*}(\mathcal{A} \boldsymbol{X}-\boldsymbol{b})\right)
$$

$$
\boldsymbol{H} \leftarrow-\alpha \boldsymbol{u} \boldsymbol{u}^{*}
$$

\triangleright Form update direction

$$
\boldsymbol{X} \leftarrow(1-\eta) \boldsymbol{X}+\eta \boldsymbol{H}
$$

$7 \boldsymbol{X} \leftarrow(1-\eta) \boldsymbol{X}+\eta \boldsymbol{H} \quad \triangleright$ Linear update to matrix variable
8 return X

State: Track state $\boldsymbol{z}=\mathcal{A} \boldsymbol{X}$
Primitives: Access \mathcal{A} using primitives + approximate eigenvector computation

Sources: Yurtsever et al. 2018-2021.

StateHCGM for Trace-Constrained SDP

Input: Problem data

Output: Approximate solution state $z_{\text {hcgm }}$
1 function StateHCGM

```
\(2 \quad z \leftarrow \mathbf{0}_{d}\)
                                    \(\triangleright\) Initialize state variable
```

$3 \quad$ for $t \leftarrow 0,1,2,3, \ldots$ do
$4 \quad \beta \leftarrow(t+2)^{1 / 2}$ and $\eta \leftarrow 2 /(t+2)$
$\left.5 \quad \boldsymbol{u} \leftarrow \operatorname{AppMinEvec}\left(\boldsymbol{C}+\beta \mathcal{A}^{*}(\boldsymbol{z}-\boldsymbol{b})\right)\right) \quad \triangleright$ RandLanczos, $q=t^{1 / 4} \log n$
6
$7 \quad \boldsymbol{h} \leftarrow \mathcal{A}\left(-\alpha \boldsymbol{u} \boldsymbol{u}^{*}\right)$
$8 \quad \boldsymbol{z} \leftarrow(1-\eta) \boldsymbol{z}+\eta \boldsymbol{h}$
9 return \boldsymbol{Z}

Benefit: Only uses storage $\Theta(n+d)$!
Problem: Where do we get $\boldsymbol{X}_{\mathrm{hcgm}}$? Maintain a sketch.
Sources: Yurtsever et al. 2018-2021.

SкeTCHYHCGM for Trace-Constrained SDP

```
Input: Problem data
Output: Rank- \(r\) approximate solution \(\hat{\boldsymbol{X}}=\boldsymbol{V} \boldsymbol{\Lambda} \boldsymbol{V}^{*} \in \alpha \boldsymbol{\Delta}_{n}\) in factored form
    1 function SkETCHYHCGM
    SKETCH.INIT \((n, r) \quad \triangleright\) Initialize sketch to zero
\(z \leftarrow \mathbf{0}_{d}\)
for \(t \leftarrow 0,1,2,3, \ldots\) do
    \(\beta \leftarrow(t+2)^{1 / 2}\) and \(\eta \leftarrow 2 /(t+2)\)
        \(\left.\boldsymbol{u} \leftarrow \operatorname{AppMinEvec}\left(\boldsymbol{C}+\beta \mathcal{A}^{*}(\boldsymbol{z}-\boldsymbol{b})\right)\right)\)
        \(\boldsymbol{h} \leftarrow \mathcal{A}\left(-\alpha \boldsymbol{u} \boldsymbol{u}^{*}\right)\)
        \(z \leftarrow(1-\eta) \boldsymbol{z}+\eta \boldsymbol{h}\)
        Sketch.CGMUPDATE \((-\sqrt{\alpha} \boldsymbol{u}, \eta) \quad \triangleright\) Update sketch of \(\boldsymbol{X}\)
\((\boldsymbol{V}, \boldsymbol{\Lambda}) \leftarrow\) Sketch.ReConstruct ()
\(\boldsymbol{\Lambda} \leftarrow \boldsymbol{\Lambda}+r^{-1}(\alpha-\operatorname{trace} \boldsymbol{\Lambda}) \mathbf{I}_{r}\)
\(\triangleright\) Approx. eigendecomp of \(\boldsymbol{X}\)
    \(\triangleright\) Shift \(\hat{X}\) to fix trace
return \((\boldsymbol{V}, \boldsymbol{\Lambda})\)
```

Sources: Yurtsever et al. 2018-2021.

Less Filling / Great Taste

Theorem 5 (SKETCHYHCGM). SKETCHYHCGM has the following properties (whp):
SKETCHYHCGM computes a rank- r approximation of a solution of (SDP)
SKETCHYHCGM has optimal storage $\Theta(d+r n)$
Assume (SDP) has stability $+\operatorname{rank} X_{\star} \leq r$
Then SKETCHYHCGM produces rank-r iterates \hat{X}_{t} that satisfy
$\mathbb{E}_{\boldsymbol{\Omega}}\left\|\hat{\boldsymbol{X}}_{t}-\boldsymbol{X}_{\star}\right\|_{*}=\mathbb{E}_{\boldsymbol{\Omega}} \max \left\{\left\|\mathcal{A} \hat{\boldsymbol{X}}_{t}-\boldsymbol{b}\right\|, \operatorname{trace}\left(\boldsymbol{C} \hat{\boldsymbol{X}}_{t}\right)-\operatorname{trace}\left(\boldsymbol{C} \boldsymbol{X}_{\star}\right)\right\}=O\left(t^{-1 / 2}\right)$
To achieve an ε-suboptimal solution, SKETCHYHCGM has arithmetic costs

1. $O\left(\varepsilon^{-2}(d+r n)+\varepsilon^{-5 / 2} n \log n\right)$ flops
2. $O\left(\varepsilon^{-5 / 2} \log n\right)$ applications of primitives \boldsymbol{C} and \mathscr{A}^{*}
3. $O\left(\varepsilon^{-2}\right)$ applications of primitive \mathcal{A}

Source: Yurtsever et al. 2018-2021.

SketchyCGAL for Trace-Constrained SDP

Pe Problem: $O\left(t^{-1 / 2}\right)$ convergence is probably optimal, but still impractical
Solution: Augmented Lagrangians!

$$
\begin{array}{rrl}
\text { maximize }_{\boldsymbol{y}} & \text { minimize }_{\boldsymbol{X}} & \operatorname{trace}(\boldsymbol{C} \boldsymbol{X})+\langle\boldsymbol{y}, \mathcal{A} \boldsymbol{X}-\boldsymbol{b}\rangle+\frac{\beta}{2}\|\mathcal{A} \boldsymbol{X}-\boldsymbol{b}\|^{2} \\
& \text { subject to } & \boldsymbol{X} \in \alpha \boldsymbol{\Delta}_{n}, \quad \boldsymbol{y} \in \mathbb{R}^{d}
\end{array}
$$

CGAL: Primal update via CGM; dual update via gradient step; homotopy on β
SKETCHYCGAL: CGAL + state variable + sketching
Same theoretical guarantee as SKETCHYHCGM
Empirical convergence $O\left(t^{-1}\right)$
Extensions: No trace constraint; affine cone constraints; other matrix sets; ...

MaxCut for Gset / DIMACS10: Scalability ($R=10$)

MaxCut for G67: Solution Trajectories

G67 graph $=10000$ vertices; 20000 edges; dashes $=$ cut from SDPT3
SkeTCHYCGAL (rank = sketch size = R); eigenvector rounding
$[1]$ objective residual; [c] infeasibility; [r] cut value versus [t] iteration; [b] time

Burer-Monteiro is not Storage-Optimal

MaxCut; dimension $n=100$; unique solution; solution rank 1 Algorithm trajectories: Typical instance
manopt ($R=2$) fails in 77\% to 90\% of trials SketchyCGAL ($R=2$) solves all instances

Linear Phase Retrieval: Scalability

minimize trace \boldsymbol{X} subject to $\mathcal{A} \boldsymbol{X}=\boldsymbol{b}$, trace $\boldsymbol{X} \leq \alpha, \quad \boldsymbol{X}$ psd
Random instances (rank $=1$), measurements $d=12 n$, bound $\alpha=3 n$
CGAL $=$ no sketching; THINCGAL $=$ CGAL + thin SVD update SKetchycGAL (sketch size $R=5$); relative errors $=10^{-2}$

Fourier Ptychography (Simulated)

$$
t=100(1063 \mathrm{sec})
$$

$$
n=320^{2} \text { pixels }
$$

225 illuminations
64^{2} pixels each
$n^{2}=1.05 \times 10^{10}$ vars
$d=921600$ eqns

original

SDP Relaxations of QAP

minimize trace $\left(\boldsymbol{A} \boldsymbol{\square} \boldsymbol{B} \boldsymbol{\Pi}^{*}\right)$
subject to $\quad \Pi$ is an $\mathrm{n} \times \mathrm{n}$ permutation matrix
minimize $\operatorname{trace}[(\boldsymbol{B} \otimes \boldsymbol{A}) \mathrm{Y}]$
(QAP-SDP)
subject to $\quad \operatorname{trace}_{1}(\mathrm{Y})=\mathbf{I}, \quad \operatorname{trace}_{2}(\mathrm{Y})=\mathbf{I}, \quad \mathcal{G}(\mathrm{Y}) \geq 0$

$$
\begin{aligned}
& \operatorname{vec}(\boldsymbol{P})=\operatorname{diag}(\mathrm{Y}), \quad \boldsymbol{P} \mathbf{1}=\mathbf{1}, \quad \mathbf{1}^{*} \boldsymbol{P}=\mathbf{1}^{*}, \quad \boldsymbol{P} \geq \mathbf{0} \\
& {\left[\begin{array}{cc}
1 & \operatorname{vec}(\boldsymbol{P})^{*} \\
\operatorname{vec}(\boldsymbol{P}) & \mathrm{Y}
\end{array}\right] \succcurlyeq \mathbf{0}, \quad \operatorname{trace} \mathrm{Y}=n}
\end{aligned}
$$

SDP dimension $n=\mathrm{n}^{2}$; structure constraints $d=\mathrm{n}^{2}$
Number of positivity constraints modulated by \mathcal{G}

QAP Relaxations: Solution Quality

Sources: Zaslavskiy et al. 2009; Bravo-Ferreira et al. 2018; Yurtsever et al. 2018-2021.

To learn more...

E-mail: jtropp@cms.caltech.edu

Web: http://users.cms.caltech.edu/~jtropp

Related Papers:

S Yurtsever, Tropp, Fercoq, Udell \& Cevher, "Scalable semidefinite programming", SIMODS 2O21, arXiv arXiv:1912.02949
Yurtsever, Udell, Tropp \& Cevher, "Sketchy decisions: Convex low-rank matrix optimization with optimal storage," AISTATS 2017, arXiv:1702.06838
(Tropp, Yurtsever, Udell \& Cevher, "Fixed-rank approximation of a positive-semidefinite matrix from streaming data", NIPS 2017, arXiv:1706.05736
te Tropp, Yurtsever, Udell \& Cevher, "Practical sketching algorithms for low-rank matrix approximation," SIMAX 2017, arXiv:1609.00048
te Tropp, Yurtsever, Udell \& Cevher, "Streaming low-rank matrix approximation with an application to scientific simulation," SISC 2019, arXiv:1902.08651
e Horstmeyer, Chen, Ou, Ames, Tropp \& Yang, "Solving ptychography with a convex relaxation," New J. Physics, 2015
Halko, Martinsson \& Tropp, "Finding structure with randomness: Probabilistic algorithms for computing approximate matrix decompositions," SIREV 2011, arXiv:0909.4061
(e Martinsson \& Tropp, "Randomized numerical linear algebra: Foundations and algorithms," Acta Numerica 2020, arXiv arXiv:2002.01387

[^0]: Sources: Interior-point: Nemirovski \& Nesterov 1994; ... First-order: Rockafellar 1976; Helmberg \& Rendl 1997; Auslender \& Teboulle 2006; ... CGM: Frank \& Wolfe 1956; Levitin \& Poljak 1967; Jaggi 2013; Baes et al. 2013; ... Heuristics: Homer \& Peinado 1997; Burer \& Monteiro 20O3; Keshavan et al. 2009; Jain et al. 2012; Candès et al. 2014; Bhojanapalli et al. 2015; Boumal et al. 2016; Cifuentes \& Moitra 2019;

