Finding Structure with Randomness

Joel A. Tropp
Computing + Mathematical Sciences
California Institute of Technology
jtropp@cms.caltech.edu

Thanks: Alex Gittens (eBay), Michael Mahoney (Berkeley Stat), Gunnar Martinsson (Boulder Appl. Math), Mark Tygert (Facebook)

Primary Sources for Tutorial

© T. User-Friendly Tools for Random Matrices: An Introduction. Submitted to FnTML, 2014.
tinyurl.com/pobvezn

Halko, Martinsson, and T. "Finding structure with randomness..." SIAM Rev., 2011.
tinyurl.com/p5b5uw6

Download the slides:

tinyurl.com/nbq2erb

[Ref] http://users.cms.caltech.edu/~jtropp/slides/Tro14-Finding-Structure-ICML.pdf

Matrix Decompositions \& Approximations

Top 10 Scientific Algorithms

 VVC'
the articles appear in no particular order):
enc

- Metropolis Algorithm for Montc Carlovol
- Simplex Mcthod for Linear Programmingof v
- Krylov Subspace Iteration Mcthods way
- The Decompositional Approach to Matrix eve
Computations rela
- The Fortran Optimizing Compiler pro
- QR Algorithm for Computing Eigenvalues are
- Quicksort Algorithm for Sorting hig:
- Fast Fourier Transform J
- Integer Relation Detection ing
- Fast Multipole Method WO1plaWith each of these algorithms or approaches, therewh:
is a nerson or ornmen receivino credit fror inventino or nnt

The Decompositional Approach

"The underlying principle of the decompositional approach to matrix computation is that it is not the business of the matrix algorithmicists to solve particular problems but to construct computational platforms from which a variety of problems can be solved."

A decomposition solves not one but many problems
Often expensive to compute but can be reused
Shows that apparently different algorithms produce the same object
Facilitates rounding-error analysis
Can be updated efficiently to reflect new information
Has led to highly effective black-box software

Matrix Approximations

"Matrix nearness problems arise in many areas... A common situation is where a matrix \boldsymbol{A} approximates a matrix \boldsymbol{B} and \boldsymbol{B} is known to possess a property \mathbf{P}... An intuitively appealing way of improving \boldsymbol{A} is to replace it by a nearest matrix \boldsymbol{X} with property \mathbf{P}.
"Conversely, in some applications it is important that \boldsymbol{A} does not have a certain property \mathbf{P} and it useful to know how close \boldsymbol{A} is to having the undesirable property."

Approximations can purge an undesirable property (ill-conditioning)

- Can enforce a property the matrix lacks (sparsity, low rank)

Can identify structure in a matrix
Perform regularization, denoising, compression, ...
[Ref] Higham 1989; Dhillon \& T 2006.

What's Wrong with Classical Approaches?

Nothing... when the matrices are small and fit in core memory

Challenges:
. Medium- to large-scale data (Megabytes+)
New architectures (multi-core, distributed, data centers, ...)

Why Randomness?
e It works...
Randomized approximations can be very effective
Leads to multiplication-rich algorithms (low communication costs; highly optimized primitives)

Hour 1: Approximation via Random Sampling

Goal: Find a structured approximation to a given matrix

Approach:
Construct a simple unbiased estimator of the matrix
Average independent copies to reduce variance

Examples:
(e Matrix sparsification
© Random features

Analysis: Matrix Bernstein inequality

Shortcomings: Low precision; no optimality properties

Hour 2: Two-Stage Randomized Algorithms

Goal: Construct near-optimal, low-rank matrix approximations
Approach:
Use randomness to find a subspace that captures most of the action
Compress the matrix to this subspace, and apply classical NLA
Randomized Range Finder:
Multiply random test vectors into the target matrix and orthogonalize
Apply several steps of subspace iteration to improve precision
Some Low-Rank Matrix Decompositions:
Truncated singular value decomposition
Interpolative approximations, matrix skeleton, and CUR
Nyström approximations for psd matrices

Some Wisdom* from Scientific Computing

"Who cares about the optimality of an approximation?
Who cares if I solve a specified computational problem?
My algorithm does great on the test set."
—Nemo

Optimality. If your approximation is suboptimal, you could do better.
Validation. If your algorithm does not fit the model reliably, you cannot attribute success to either the model or the algorithm.

Verification. If your algorithm does not solve a specified problem, you cannot easily check whether it has bugs.

Modularity. To build a large system, you want each component to solve a specified problem under specified conditions.

Reproducibility. To use an approach for a different problem, you need the method to have consistent behavior.

Approximation by Random Sampling

Matrix Approximation via Sampling

Let \boldsymbol{A} be a fixed matrix we want to approximate
Represent $\boldsymbol{A}=\sum_{i} \boldsymbol{A}_{i}$ as a sum (or integral) of simple matrices
Construct a simple random matrix \boldsymbol{Z} by sampling terms; e.g.,

$$
\boldsymbol{Z}=p_{i}^{-1} \boldsymbol{A}_{i} \text { with probability } p_{i}
$$

Ensures that \boldsymbol{Z} is an unbiased estimator: $\mathbb{E} \boldsymbol{Z}=\boldsymbol{A}$
Average independent copies to reduce variance: $\widehat{\boldsymbol{A}}=\frac{1}{\mathrm{r}} \sum_{r=1}^{\mathrm{r}} \boldsymbol{Z}_{r}$
Examples? Analysis?
[Refs] Maurey 1970s; Carl 1985; Barron 1993; Rudelson 1999; Achlioptas \& McSherry 2002, 2007; Drineas et al. 2006; Rudelson
\& Vershynin 2007; Rahimi \& Recht 2007, 2008; Shalev-Shwartz \& Srebro 2008; ..

The Matrix Bernstein Inequality

Theorem 1. [T 2012] Assume

a $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \boldsymbol{X}_{3}, \ldots$ are indep. random matrices with dimension $m \times n$
© $\mathbb{E} \boldsymbol{X}_{r}=\mathbf{0}$ and $\left\|\boldsymbol{X}_{r}\right\| \leq L$ for each index r
Compute the variance measure

$$
v:=\max \left\{\left\|\sum_{r} \mathbb{E}\left[\boldsymbol{X}_{r} \boldsymbol{X}_{r}^{*}\right]\right\|,\left\|\sum_{r} \mathbb{E}\left[\boldsymbol{X}_{r}^{*} \boldsymbol{X}_{r}\right]\right\|\right\}
$$

Then

$$
\mathbb{P}\left\{\left\|\sum_{r} \boldsymbol{X}_{r}\right\| \geq t\right\} \leq d \cdot \exp \left\{\frac{-t^{2} / 2}{v+L t / 3}\right\}
$$

where $d:=m+n$.
$\|\cdot\|=$ spectral norm; * $=$ conjugate transpose
[Refs] Oliveira 2009-2011; T 2010-2014. This version from T 2014, User-Friendly Tools, Chap. 6.

The Matrix Bernstein Inequality

Theorem 2. [T 2014] Assume

($\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \boldsymbol{X}_{3}, \ldots$ are indep. random matrices with dimension $m \times n$
© $\mathbb{E} \boldsymbol{X}_{r}=\mathbf{0}$ and $\left\|\boldsymbol{X}_{r}\right\| \leq L$ for each index r
Compute the variance measure

$$
v:=\max \left\{\left\|\sum_{r} \mathbb{E}\left[\boldsymbol{X}_{r} \boldsymbol{X}_{r}^{*}\right]\right\|,\left\|\sum_{r} \mathbb{E}\left[\boldsymbol{X}_{r}^{*} \boldsymbol{X}_{r}\right]\right\|\right\}
$$

Then

$$
\mathbb{E}\left\|\sum_{r} \boldsymbol{X}_{r}\right\| \leq \sqrt{2 v \log d}+\frac{1}{3} L \log d
$$

where $d:=m+n$.
$\|\cdot\|=$ spectral norm; * $=$ conjugate transpose
[Refs] Chen et al. 2012; Mackey et al. 2014. This version from T 2014, User-Friendly Tools, Chap. 6.

Short History of Matrix Bernstein Inequality

Operator Khintchine and Noncommutative Martingales

se Tomczak-Jaegermann 1974. First operator Khintchine inequality; suboptimal variance.
Lust-Piquard 1986. Operator Khintchine; optimal variance; suboptimal constants.
Le Lust-Piquard \& Pisier 1991. Operator Khintchine for trace class.
© Pisier \& Xu 1997. Initiates study of noncommutative martingales.
© Rudelson 1999. First use of operator Khintchine for random matrix theory.
© Buchholz 2001, 2005. Optimal constants for operator Khintchine.
(e Many more works in 2000s.

Matrix Concentration Inequalities

A Ahlswede \& Winter 2002. Matrix Chernoff inequalities; suboptimal variance.
© Christofides \& Markström 2007. Matrix Hoeffding; suboptimal variance.
a Gross 2011; Recht 2011. Matrix Bernstein; suboptimal variance.
Oliveira 2011; T 2012. Matrix Bernstein; optimal variance. Independent works!
Chen et al. 2012; Mackey et al. 2014; T 2014. Expectation form of matrix inequalities.
© Hsu et al. 2012. Intrinsic dimension bounds; suboptimal form.
. Minsker 2012. Intrinsic dimension bounds; optimal form.

- T 2014. Simplified proof of intrinsic dimension bounds.

Mackey et al. 2014. New proofs and results via exchangeable pairs.
[Ref] See T 2014, User-Friendly Tools for more historical information.

Error Estimate for Matrix Sampling

Corollary 3. [Matrix Sampling Estimator] Assume

a \boldsymbol{A} is a fixed $m \times n$ matrix and $d:=m+n$
\boldsymbol{Z} is a random matrix with $\mathbb{E} \boldsymbol{Z}=\boldsymbol{A}$ and $\|\boldsymbol{Z}\| \leq L$
$\boldsymbol{Z}_{1}, \ldots, \boldsymbol{Z}_{\mathrm{r}}$ are iid copies of \boldsymbol{Z}
Compute the per-sample variance

$$
v:=\max \left\{\left\|\mathbb{E}\left[\boldsymbol{Z} \boldsymbol{Z}^{*}\right]\right\|,\left\|\mathbb{E}\left[\boldsymbol{Z}^{*} \boldsymbol{Z}\right]\right\|\right\}
$$

Then the estimator $\widehat{\boldsymbol{A}}=\frac{1}{\mathrm{r}} \sum_{r=1}^{\mathrm{r}} \boldsymbol{Z}_{r}$ satisfies

$$
\mathbb{E}\|\boldsymbol{A}-\widehat{\boldsymbol{A}}\| \leq \sqrt{\frac{2 v \log d}{\mathrm{r}}}+\frac{2 L \log d}{3 \mathrm{r}}
$$

[Refs] This version is new. Variants appear in Rudelson 1999; Ahlswede \& Winter 2002; Gross 2011; Recht 2011. See T 2014, User-Friendly Tools, Chap. 1.

Comments on Matrix Sampling Estimators

Constructing simple random matrix \boldsymbol{Z} requires insight + cleverness

Approximation $\|\boldsymbol{A}-\widehat{\boldsymbol{A}}\|$ in spectral norm controls
All linear functions of the approximation (marginals)
All singular values and singular vectors
Warning: Frobenius-norm error bounds are usually vacuous!

Sampling estimators are typically low precision
Bottleneck: Central Limit Theorem
Cost of reducing error is exorbitant $\left(\varepsilon^{-2}\right)$
Error is generally not comparable with best possible approximation

Matrix
 Sparsification

Matrix Sparsification

Challenge: Can we replace a dense matrix by a sparse proxy?

$$
\left[\begin{array}{lllll}
x & x & x & x & x \\
x & x & x & x & x \\
x & x & x & x & x \\
x & x & x & x & x \\
x & x & x & x & x
\end{array}\right] \leadsto\left[\begin{array}{lllll}
x & & x & x & x \\
& x & x & & x \\
x & & x & x & \\
& x & & & x \\
x & & x & x &
\end{array}\right]
$$

© Idea: Achlioptas \& McSherry $(2002,2007)$ propose random sampling
Goals:
Accelerate spectral computations via Krylov methods
a Compression, denoising, regularization, etc.

Writing a Matrix as a Sparse Sum

$\boldsymbol{A}=\sum_{i j} a_{i j} \mathbf{E}_{i j}$

$a_{i j}$ denotes the (i, j) entry of \boldsymbol{A}
$\mathbf{E}_{i j}$ is the standard basis matrix with a one in the (i, j) position and zeroes elsewhere

Sparsification by Random Sampling

Let \boldsymbol{A} be a fixed $n \times n$ matrix

Define sampling probabilities

$$
p_{i j}=\frac{1}{2}\left[\frac{\left|a_{i j}\right|^{2}}{\|\boldsymbol{A}\|_{\mathrm{F}}^{2}}+\frac{\left|a_{i j}\right|}{\|\boldsymbol{A}\|_{\ell_{1}}}\right] \quad \text { for } i, j=1, \ldots, n
$$

Let $\boldsymbol{Z}=p_{i j}^{-1} \cdot a_{i j} \cdot \mathbf{E}_{i j}$ with probability $p_{i j}$
Let $\boldsymbol{Z}_{1}, \ldots, \boldsymbol{Z}_{\mathrm{r}}$ be iid copies of the estimator \boldsymbol{Z}
Thus, $\widehat{\boldsymbol{A}}=\frac{1}{\mathrm{r}} \sum_{r=1}^{r} \boldsymbol{Z}_{r}$ is an r-sparse unbiased estimator of \boldsymbol{A}
$\|\cdot\|_{F}=$ Frobenius norm; $\|\cdot\|_{\ell_{1}}=$ elementwise ℓ_{1} norm
[Refs] Kundu \& Drineas 2014. T 2014, User-Friendly Tools, Chap. 6.

Analysis of Sparsification

Recall: $\boldsymbol{Z}=p_{i j}^{-1} \cdot a_{i j} \cdot \mathbf{E}_{i j}$ with probability $p_{i j}$
Observe: $p_{i j} \geq \frac{\left|a_{i j}\right|}{2\|\boldsymbol{A}\|_{\ell_{1}}}$ and $p_{i j} \geq \frac{\left|a_{i j}\right|^{2}}{2\|\boldsymbol{A}\|_{\mathrm{F}}^{2}}$
Uniform bound: $\|\boldsymbol{Z}\| \leq \max _{i j} \frac{\left|a_{i j}\right|}{p_{i j}} \cdot\left\|\mathbf{E}_{i j}\right\| \leq 2\|\boldsymbol{A}\|_{\ell_{1}}$
Variance computation:

$$
\begin{aligned}
& \mathbb{E}\left[\boldsymbol{Z} \boldsymbol{Z}^{*}\right]=\sum_{i j} \frac{\left|a_{i j}\right|^{2}}{p_{i j}^{2}} \cdot \mathbf{E}_{i j} \mathbf{E}_{i j}^{*} \cdot p_{i j} \preccurlyeq \sum_{i j} 2\|\boldsymbol{A}\|_{\mathrm{F}}^{2} \cdot \mathbf{E}_{i i}=2 n\|\boldsymbol{A}\|_{\mathrm{F}}^{2} \cdot \mathbf{I} \\
& \mathbb{E}\left[\boldsymbol{Z}^{*} \boldsymbol{Z}\right]=\sum_{i j} \frac{\left|a_{i j}\right|^{2}}{p_{i j}^{2}} \cdot \mathbf{E}_{i j}^{*} \mathbf{E}_{i j} \cdot p_{i j} \preccurlyeq \sum_{i j} 2\|\boldsymbol{A}\|_{\mathrm{F}}^{2} \cdot \mathbf{E}_{j j}=2 n\|\boldsymbol{A}\|_{\mathrm{F}}^{2} \cdot \mathbf{I}
\end{aligned}
$$

Thus, $\max \left\{\left\|\mathbb{E}\left[\boldsymbol{Z} \boldsymbol{Z}^{*}\right]\right\|,\left\|\mathbb{E}\left[\boldsymbol{Z}^{*} \boldsymbol{Z}\right]\right\|\right\} \leq 2 n\|\boldsymbol{A}\|_{\mathrm{F}}^{2}$

Error Bound for Sparsification

Corollary 3 provides the error bound

$$
\mathbb{E}\|\boldsymbol{A}-\widehat{\boldsymbol{A}}\| \leq \sqrt{\frac{2 n\|\boldsymbol{A}\|_{\mathrm{F}}^{2} \log (2 n)}{\mathrm{r}}}+\frac{2\|\boldsymbol{A}\|_{\ell_{1}} \log (2 n)}{3 \mathrm{r}}
$$

Note that $\|\boldsymbol{A}\|_{\ell_{1}} \leq n\|\boldsymbol{A}\|_{\mathrm{F}}$, and place error on relative scale:

$$
\frac{\mathbb{E}\|\boldsymbol{A}-\widehat{\boldsymbol{A}}\|}{\|\boldsymbol{A}\|} \leq \frac{\|\boldsymbol{A}\|_{\mathrm{F}}}{\|\boldsymbol{A}\|}\left[\sqrt{\frac{2 n \log (2 n)}{\mathrm{r}}}+\frac{2 n \log (2 n)}{3 \mathrm{r}}\right]
$$

[Q] What does this mean?
[Refs] Kundu \& Drineas 2014. T 2014, User-Friendly Tools, Chap. 6.

Detour: The Stable Rank

The stable rank of a matrix is defined as

$$
\operatorname{srank}(\boldsymbol{A}):=\frac{\|\boldsymbol{A}\|_{\mathrm{F}}^{2}}{\|\boldsymbol{A}\|^{2}}
$$

In general, $1 \leq \operatorname{srank}(\boldsymbol{A}) \leq \operatorname{rank}(\boldsymbol{A})$
When \boldsymbol{A} has either n rows or n columns, $1 \leq \operatorname{srank}(\boldsymbol{A}) \leq n$
Assume that \boldsymbol{A} has n unit-norm columns, so that $\|\boldsymbol{A}\|_{\mathrm{F}}^{2}=n$
When all columns of \boldsymbol{A} are the same, $\|\boldsymbol{A}\|^{2}=n$ and $\operatorname{srank}(\boldsymbol{A})=1$
When all columns of \boldsymbol{A} are orthogonal, $\|\boldsymbol{A}\|^{2}=1$ and $\operatorname{srank}(\boldsymbol{A})=n$
[Refs] Bourgain \& Tzafriri 1987; Rudelson \& Vershynin 2007; T 2009; Vershynin 2011. See T 2014, User-Friendly Tools, Chap. 6.

Error Bound for Sparsification II

Fix a tolerance $\varepsilon \in(0,1)$
Suppose the sparsity r satisfies

$$
\mathbf{r} \geq \varepsilon^{-2} \cdot 2 n \log (2 n) \cdot \operatorname{srank}(\boldsymbol{A})
$$

Then the r-sparse matrix $\widehat{\boldsymbol{A}}$ achieves relative error

$$
\frac{\mathbb{E}\|\boldsymbol{A}-\widehat{\boldsymbol{A}}\|}{\|\boldsymbol{A}\|} \leq 2 \varepsilon
$$

If $\operatorname{srank}(\boldsymbol{A}) \ll n$, then $\operatorname{nnz}(\widehat{\boldsymbol{A}}) \ll n^{2}$ suffices
[Refs] Kundu \& Drineas 2014. See T 2014, User-Friendly Tools, Chap. 6.

Random

Features

Kernel Matrices

Consider data points $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n} \in \mathscr{X} \subset \mathbb{R}^{d}$
Let $k: \mathscr{X} \times \mathscr{X} \rightarrow[-1,+1]$ be a bounded similarity measure
Form $n \times n$ kernel matrix \boldsymbol{K} with entries $k_{i j}=k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)$
Useful for regression, classification, feature selection, ...
Challenge: Kernel is big $(n \times n)$ and expensive to evaluate $\mathcal{O}\left(d n^{2}\right)$
© Opportunity: The kernel often has low effective dimension
Idea: Construct a randomized low-rank approximation of the kernel

Random Features

Let \mathscr{W} be an auxiliary space
Let $\varphi: \mathscr{X} \times \mathscr{W} \rightarrow[-1,+1]$ be a bounded feature map
Let \boldsymbol{w} be a random variable taking values in \mathscr{W}
Assume the random feature $\varphi(\boldsymbol{x} ; \boldsymbol{w})$ has the reproducing property

$$
k(\boldsymbol{x}, \boldsymbol{y})=\mathbb{E}_{\boldsymbol{w}}[\varphi(\boldsymbol{x} ; \boldsymbol{w}) \cdot \varphi(\boldsymbol{y} ; \boldsymbol{w})] \quad \text { for all } \boldsymbol{x}, \boldsymbol{y} \in \mathscr{X}
$$

Example: Random Fourier features for shift-invariant kernels
Related: Random Walsh features for inner-product kernels

Example: Angular Similarity

For $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{d}$, consider the angular similarity

$$
k(\boldsymbol{x}, \boldsymbol{y})=\frac{2}{\pi} \arcsin \frac{\langle\boldsymbol{x}, \boldsymbol{y}\rangle}{\|\boldsymbol{x}\|\|\boldsymbol{y}\|}=1-\frac{2 \measuredangle(\boldsymbol{x}, \boldsymbol{y})}{\pi} \in[-1,+1]
$$

Define random feature $\varphi(\boldsymbol{x} ; \boldsymbol{w})=\operatorname{sgn}\langle\boldsymbol{x}, \boldsymbol{w}\rangle$ with $\boldsymbol{w} \sim \operatorname{UNIF}\left(\mathbb{S}^{d-1}\right)$

$$
\begin{gathered}
k(\boldsymbol{x}, \boldsymbol{y})=\mathbb{E}[\varphi(\boldsymbol{x} ; \boldsymbol{w}) \cdot \varphi(\boldsymbol{y} ; \boldsymbol{w})] \\
\operatorname{sgn}\langle\boldsymbol{x}, \boldsymbol{u}\rangle\langle\boldsymbol{y}, \boldsymbol{u}\rangle>0 \\
\operatorname{sgn}\langle\boldsymbol{x}, \boldsymbol{u}\rangle\langle\boldsymbol{y}, \boldsymbol{u}\rangle<0
\end{gathered}
$$

[Refs] Early 1900s; Grothendieck 1953; Goemans \& Williamson 1996.

Low-Rank Approximation of Kernel Matrix

Draw a random vector $\boldsymbol{w} \in \mathscr{W}$

Define $z_{i}=\varphi\left(\boldsymbol{x}_{i} ; \boldsymbol{w}\right)$ for each datum $i=1, \ldots, n$

By the reproducing property, $k_{i j}=k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)=\mathbb{E}\left[z_{i} z_{j}\right]$

In matrix form: $\boldsymbol{K}=\mathbb{E}\left[\boldsymbol{z} \boldsymbol{z}^{*}\right]$ where $\boldsymbol{z}=\left[z_{i}\right] \in \mathbb{R}^{n}$

That is, $\boldsymbol{Z}=\boldsymbol{z} \boldsymbol{z}^{*}$ is an unbiased rank-one estimator for \boldsymbol{K}

Draw iid copies $Z_{1}, \ldots, \boldsymbol{Z}_{\text {r }}$ of the estimator \boldsymbol{Z}

Thus, $\widehat{\boldsymbol{K}}=\frac{1}{\mathrm{r}} \sum_{r=1}^{\mathrm{r}} \boldsymbol{Z}_{r}$ is an unbiased rank-r estimator for \boldsymbol{K}

Analysis of Random Features

Recall: $\boldsymbol{Z}=\boldsymbol{z} \boldsymbol{z}^{*}$ where $\mathbb{E} \boldsymbol{Z}=\boldsymbol{K}$ and $\|\boldsymbol{z}\|_{\ell_{\infty}^{n}} \leq 1$
© Uniform bound:

$$
\|\boldsymbol{Z}\|=\left\|\boldsymbol{z} \boldsymbol{z}^{*}\right\|=\|\boldsymbol{z}\|^{2} \leq n
$$

(Variance computation:

$$
0 \preccurlyeq \mathbb{E}\left[\boldsymbol{Z}^{2}\right]=\mathbb{E}\left[\|\boldsymbol{z}\|^{2} \cdot \boldsymbol{z} \boldsymbol{z}^{*}\right] \preccurlyeq n \cdot \mathbb{E}\left[\boldsymbol{z} \boldsymbol{z}^{*}\right]=n \cdot \boldsymbol{K}
$$

Thus, $\left\|\mathbb{E}\left[\boldsymbol{Z}^{2}\right]\right\| \leq n\|\boldsymbol{K}\|$

Error Bound for Random Features

Corollary 3 implies that

$$
\mathbb{E}\|\boldsymbol{K}-\widehat{\boldsymbol{K}}\| \leq \sqrt{\frac{2 n\|\boldsymbol{K}\| \log (2 n)}{\mathrm{r}}}+\frac{2 n \log (2 n)}{3 \mathrm{r}}
$$

Define the effective rank $\rho:=n /\|\boldsymbol{K}\|$ of the kernel to obtain

$$
\frac{\mathbb{E}\|\boldsymbol{K}-\widehat{\boldsymbol{K}}\|}{\|\boldsymbol{K}\|} \leq \sqrt{\frac{2 \rho \log (2 n)}{r}}+\frac{2 \rho \log (2 n)}{3 \mathbf{r}}
$$

For relative error $\mathcal{O}(\varepsilon)$, need at most r random features where

$$
\mathrm{r} \geq 2 \varepsilon^{-2} \rho \log (2 n)
$$

Random features are efficient when $\rho \ll n$
[Ref] Lopez-Paz et al., ICML 2014.

Entr'acte

Optimal Low-Rank Approximation

Let \boldsymbol{A} be an $n \times n$ matrix with SVD $\boldsymbol{A}=\sum_{i=1}^{n} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{*}$
Assume normalization $\sum_{i=1}^{n} \sigma_{i}=1$
"Optimal" low-rank sampling: $\boldsymbol{Z}=\boldsymbol{u}_{i} \boldsymbol{v}_{i}^{*}$ with probability σ_{i}
Corollary 3 gives error bound for $\widehat{\boldsymbol{A}}=\frac{1}{\mathrm{r}} \sum_{r=1}^{\mathrm{r}} \boldsymbol{Z}_{r}$:

$$
\mathbb{E}\|\boldsymbol{A}-\widehat{\boldsymbol{A}}\| \leq \sqrt{\frac{2 \sigma_{1} \log (2 n)}{\mathrm{r}}}+\frac{2 \log (2 n)}{3 \mathrm{r}}
$$

Mirsky's Theorem (1969). The best rank-r approximation satisfies

$$
\min _{\operatorname{rank}(\boldsymbol{B})=\mathrm{r}}\|\boldsymbol{A}-\boldsymbol{B}\|=\sigma_{\mathrm{r}+1} \leq \frac{1}{r+1}
$$

Sampling is really (really) suboptimal!

Two-stage Low-rank Approximations

Low-Rank Approximations

Goal: Given a large matrix \boldsymbol{A}, find low-rank factors:

Solving this problem gives algorithms for computing
Leading singular vectors of a general matrix
Leading eigenvectors of a symmetric matrix
Spanning sets of rows or columns

We will focus on controlling backward error: $\|\boldsymbol{A}-\boldsymbol{B C}\| \leq$ tol

Example: Truncated SVD

$\boldsymbol{A} \approx \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{*}$ where $\boldsymbol{U}, \boldsymbol{V}$ have orthonormal columns and $\boldsymbol{\Sigma}$ is diagonal:

Interpretation: r-truncated SVD $=$ optimal rank-r approximation

Applications:

ce Least-squares computations
© Principal component analysis
Summarization and data reduction
c...

Overview of Two-Stage Randomized SVD

Goal: Construct a truncated SVD of an input matrix \boldsymbol{A}
Stage A: Finding the range
Use a randomized algorithm to compute a low-dimensional basis \boldsymbol{Q} that captures most of the action of \boldsymbol{A} :
Q has orthonormal columns and $A \approx Q Q^{*} A$.
Stage B: Forming the decomposition
Use the basis Q to reduce the problem size
Apply classical linear algebra to reduced problem
Obtain truncated SVD in factored form
[Ref] Halko et al. 2011, $\S 1$.

Stage A: Finding the Range

Given:

An $m \times n$ matrix \boldsymbol{A}
Target rank $r_{0} \ll \min \{m, n\}$
Actual rank $r=r_{0}+s$ where s is a small oversampling parameter

Construct an $m \times r$ matrix \boldsymbol{Q} with orthonormal columns s.t.

$$
\left\|\boldsymbol{A}-\boldsymbol{Q} \boldsymbol{Q}^{*} \boldsymbol{A}\right\| \approx \min _{\operatorname{rank}(\boldsymbol{B})=\mathrm{r}_{0}}\|\boldsymbol{A}-\boldsymbol{B}\|,
$$

$Q Q^{*}$ is the orthogonal projector onto the range of \boldsymbol{Q}

Approach: Use a randomized algorithm!
Total Cost: One multiply $(m \times n \times r)+\mathcal{O}\left(\mathrm{r}^{2} n\right)$ flops

Stage B: Forming the SVD

Assume \boldsymbol{A} is $m \times n$ and \boldsymbol{Q} is $m \times \mathrm{r}$ with ON columns and $\boldsymbol{A} \approx \boldsymbol{Q} \boldsymbol{Q}^{*} \boldsymbol{A}$
Approach: Reduce problem size; apply classical numerical linear algebra!

1. Form $\mathrm{r} \times n$ matrix $\boldsymbol{B}=\boldsymbol{Q}^{*} \boldsymbol{A}$
2. Factor $\boldsymbol{B}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{*}$
3. Conclude $\boldsymbol{A} \approx(\boldsymbol{Q U}) \boldsymbol{\Sigma} \boldsymbol{V}^{*}$

Total Cost: One multiply $(m \times n \times r)+\mathcal{O}\left(\mathrm{r}^{2} n\right)$ flops

Total Costs for Truncated SVD

Two-Stage Randomized Algorithm:

2 multiplies $(m \times n \times r)+r^{2}(m+n)$ flops

Classical Sparse Methods (Krylov):
r_{0} multiplies $(m \times n \times 1)+\mathrm{r}_{0}^{2}(m+n)$ flops

Classical Dense Methods (RRQR + full SVD):

Not based on multiplies $+\mathrm{r}_{0} m n$ flops

Roadmap

1. How to use the range information to construct matrix approximations
2. How to find a subspace that captures the range of the matrix
3. Other types of sampling schemes
4. How to get high precision approximations by iteration

From Range to Decomposition

Interpolative Approximations

(Interpolative approximation represents matrix via a few rows (or cols)
© Takes the form $\boldsymbol{A} \approx \boldsymbol{W} \boldsymbol{A}_{I}$: where
s I is a small set of row indices
(a) $\boldsymbol{W}_{I:}=\mathbf{I}$

All entries of \boldsymbol{W} have magnitude ≤ 2
Can be constructed efficiently with rank-revealing QR
Useful when we must preserve meaning of rows (or cols)
Assume \boldsymbol{A} is $m \times n$ and \boldsymbol{Q} is $m \times \mathrm{r}$ and $\boldsymbol{A} \approx \boldsymbol{Q} \boldsymbol{Q}^{*} \boldsymbol{A}$

1. Form interpolative decomposition $\boldsymbol{Q}=\boldsymbol{W} \boldsymbol{Q}_{I}$: with $|I|=\mathrm{r}$
2. Conclude $\boldsymbol{A} \approx \boldsymbol{W} \boldsymbol{A}_{I}$:

Total cost: $\mathcal{O}\left(r^{2} m\right)$ flops
[Ref] Gu \& Eisenstat 1996; Goreinov et al. 1997; Cheng et al. 2005. See Halko et al. 2011, §3.2.3 and §5.2.

Matrix Skeletons

A skeleton approximation represents a matrix via a small submatrix
Takes the form $\boldsymbol{A} \approx \boldsymbol{W} \boldsymbol{A}_{I J} \boldsymbol{X}$ where
I is a small set of row indices; J is a small set of column indices
($\boldsymbol{W}_{I:}=\mathbf{I}$ and $\boldsymbol{X}_{: J}=\mathbf{I}$
All entries of \boldsymbol{W} and \boldsymbol{X} have magnitude ≤ 2
Useful when we must preserve meaning of rows and columns
Assume \boldsymbol{A} is $m \times n$ and \boldsymbol{Q} is $m \times \mathrm{r}$ and $\boldsymbol{A} \approx \boldsymbol{Q} \boldsymbol{Q}^{*} \boldsymbol{A}$

1. Form row interpolative decomposition $\boldsymbol{Q}=\boldsymbol{W} \boldsymbol{Q}_{I}$ with $|I|=\mathrm{r}$
2. Form column interpolative decomposition $\boldsymbol{A}_{I:}=\boldsymbol{A}_{I J} \boldsymbol{X}$ with $|J|=\mathrm{r}$
3. Conclude $\boldsymbol{A} \approx \boldsymbol{W} \boldsymbol{A}_{I J} \boldsymbol{X}$

Total cost: $\mathcal{O}\left(\mathrm{r}^{2}(m+n)\right)$ flops
[Ref] Gu \& Eisenstat 1996; Goreinov et al. 1997; Cheng et al. 2005. See Halko et al. 2011, §3.2.3 and §5.2.

CUR Approximations

A CUR approximation represents a matrix via a few rows and columns
. Takes the form $\boldsymbol{A} \approx \boldsymbol{A}_{: J} \boldsymbol{T} \boldsymbol{A}_{I}$: where I and J are small
Useful when we must preserve meaning of rows and columns
Assume \boldsymbol{A} is $m \times n$ and \boldsymbol{Q} is $m \times \mathrm{r}$ and \boldsymbol{P} is $n \times \mathrm{r}$ and

$$
\boldsymbol{A} \approx \boldsymbol{Q} \boldsymbol{Q}^{*} \boldsymbol{A} \quad \text { and } \quad \boldsymbol{A} \approx \boldsymbol{A} \boldsymbol{P} \boldsymbol{P}^{*}
$$

1. Form row interpolative decomposition $\boldsymbol{Q}=\boldsymbol{W} \boldsymbol{Q}_{\boldsymbol{I}}$: with $|I|=\mathrm{r}$
2. Form column interpolative decomposition $\boldsymbol{P}=\boldsymbol{P}_{: J} \boldsymbol{X}$ with $|J|=\mathrm{r}$
3. Compute the pseudoinverse $\boldsymbol{T}=\left(\boldsymbol{A}_{I J}\right)^{\dagger}$
4. Conclude $\boldsymbol{A} \approx \boldsymbol{A}_{: J} \boldsymbol{T} \boldsymbol{A}_{I}$:

Total cost: $\mathcal{O}\left(\mathrm{r}^{2}(m+n)\right)$ flops
[Ref] Goreinov et al. 1997; Drineas et al. 2009; Mahoney \& Drineas 2009; Bien et al. 2010.

Nyström Approximation for PSD Matrices

Nyström approximations represent psd matrices (much) more accurately
Assume \boldsymbol{A} is $n \times n$ psd and \boldsymbol{Q} is $n \times \mathrm{r}$ with ON columns and $\boldsymbol{A} \approx Q Q^{*} \boldsymbol{A}$ Nyström approximation:

$$
\boldsymbol{A} \approx(\boldsymbol{A} \boldsymbol{Q})\left(\boldsymbol{Q}^{*} \boldsymbol{A} \boldsymbol{Q}\right)^{\dagger}(\boldsymbol{A} \boldsymbol{Q})^{*}
$$

1. Form $n \times n \times \mathbf{r}$ product $\boldsymbol{F}_{0}=\boldsymbol{A} \boldsymbol{Q}$
2. Form $\mathbf{r} \times n \times \mathrm{r}$ product $\boldsymbol{F}=\boldsymbol{Q}^{*} \boldsymbol{F}_{0}$
3. Compute $\mathrm{r} \times \mathrm{r}$ Cholesky decomposition $\boldsymbol{F}=\boldsymbol{T}^{*} \boldsymbol{T}$
4. Form $n \times \mathbf{r}$ matrix $\boldsymbol{H}=\boldsymbol{F}_{0} \boldsymbol{T}^{-1}$ by triangular solve
5. Conclude $\boldsymbol{A} \approx \boldsymbol{H} \boldsymbol{H}^{*}$

Total cost: One multiply $(n \times n \times r)+\mathcal{O}\left(\mathrm{r}^{2} n\right)$ flops
[Ref] Williams \& Seeger 2002; Drineas \& Mahoney 2005; Halko et al. 2011, §5.4; Gittens 2011; Gittens \& Mahoney 2013.

Randomized Range Finder

Randomized Range Finder: Intuition

Prototype for Randomized Range Finder

Input: An $m \times n$ matrix \boldsymbol{A}, number r of samples
Output: An $m \times r$ matrix \boldsymbol{Q} with orthonormal columns

1. Draw an $n \times \mathrm{r}$ random matrix $\boldsymbol{\Omega}$.
2. Form the matrix product $\boldsymbol{Y}=\boldsymbol{A} \boldsymbol{\Omega}$.
3. Construct an orthonormal basis \boldsymbol{Q} for the range of \boldsymbol{Y}.

Total Cost: 1 multiply $(m \times n \times \mathrm{r})+\mathcal{O}\left(\mathrm{r}^{2} n\right)$ flops
[Refs] NLA community: Stewart (1970s). GFA: Johnson \& Lindenstrauss (1984) et seq. TCS: Boutsidis, Deshpande, Drineas,
Frieze, Kannan, Mahoney, Papadimitriou, Sarlós, Vempala (1998-present). SciComp: Martinsson, Rokhlin, Szlam, Tygert
(2004-present). See Halko et al. 2011, §2 for more history.
Joel A. Tropp, Finding Structure with Randomness, ICML, Beijing, 21 June 2014

Implementation Issues

Q: How do we pick the number r of samples?
A: Adaptively, using a randomized error estimator.
Q: How does the number r of samples compare with the target rank r_{0} ?
A: Remarkably, $r=r_{0}+5$ or $r=r_{0}+10$ is usually adequate!
Q: What random matrix $\boldsymbol{\Omega}$?
A: For many applications, standard Gaussian works brilliantly.
Q: How do we perform the matrix-matrix multiply?
A: Exploit the computational architecture.
Q: How do we compute the orthonormal basis?
A: Carefully... Double Gram-Schmidt or Householder reflectors.
[Ref] Halko et al. 2011, §4.

Simple Error Bound for Random Range Finder

Theorem 4. [HMT 2011] Assume

The matrix \boldsymbol{A} is $m \times n$ with $m \geq n$
The target rank is r_{0}
. The optimal error $\sigma_{\mathrm{r}_{0}+1}=\min _{\operatorname{rank}(\boldsymbol{B})=\mathrm{r}_{0}}\|\boldsymbol{A}-\boldsymbol{B}\|$
The test matrix $\boldsymbol{\Omega}$ is $n \times\left(r_{0}+\mathrm{s}\right)$ standard Gaussian

Then the random range finder yields an $\left(r_{0}+s\right)$-dimensional basis \boldsymbol{Q} with

$$
\mathbb{E}\left\|\boldsymbol{A}-\boldsymbol{Q} \boldsymbol{Q}^{*} \boldsymbol{A}\right\| \leq\left[1+\frac{4 \sqrt{\mathrm{r}_{0}+\mathrm{s}}}{\mathrm{~s}-1} \cdot \sqrt{n}\right] \sigma_{\mathrm{r}_{0}+1}
$$

The probability of a substantially larger error is negligible.

Error Bound for Random Range Finder

Theorem 5. [HMT 2011] Assume

The matrix \boldsymbol{A} is $m \times n$
The target rank is r_{0}
© The singular values of \boldsymbol{A} are $\sigma_{1} \geq \sigma_{2} \geq \sigma_{3} \geq \ldots$
The test matrix $\boldsymbol{\Omega}$ is $n \times\left(r_{0}+\mathrm{s}\right)$ standard Gaussian
Then the random range finder yields an $\left(\mathrm{r}_{0}+\mathrm{s}\right)$-dimensional basis \boldsymbol{Q} with

$$
\mathbb{E}\left\|\boldsymbol{A}-\boldsymbol{Q} \boldsymbol{Q}^{*} \boldsymbol{A}\right\| \leq\left[1+\sqrt{\frac{\mathrm{r}_{0}}{\mathrm{~s}-1}}\right] \sigma_{\mathrm{r}_{0}+1}+\frac{\mathrm{e} \sqrt{\mathrm{r}_{0}+\mathrm{s}}}{\mathrm{~s}}\left(\sum_{j>\mathrm{r}_{0}} \sigma_{j}^{2}\right)^{1 / 2}
$$

The probability of a substantially larger error is negligible. This bound is essentially optimal.
[Ref] Halko et al. 2011, §10.2.

Adaptive Error Estimation

In practice, we do not know the target rank!
A priori error bounds are motivating-but not so useful
Solution: Estimate the error, and stop when we reach a target
Let $\boldsymbol{\omega}_{1}, \ldots, \boldsymbol{\omega}_{10}$ be iid standard Gaussian vectors

$$
\text { err_est }:=\max _{1 \leq j \leq 10}\left\|\left(\mathbf{I}-\boldsymbol{Q} \boldsymbol{Q}^{*}\right) \boldsymbol{A} \boldsymbol{\omega}_{j}\right\|
$$

How good is this estimate?

$$
\mathbb{P}\left\{\left\|\left(\mathbf{I}-\boldsymbol{Q} \boldsymbol{Q}^{*}\right) \boldsymbol{A}\right\| \geq 10 \cdot \text { err_est }\right\} \leq 10^{-10}
$$

Can modify the random range finder to form err_est (almost) for free

Approximating a Helmholtz Integral Operator

Other

Sampling Strategies

Other Sampling Techniques?

In randomized range finder, can change distribution of test matrix $\boldsymbol{\Omega}$
Why?
(a To exploit $\boldsymbol{\Omega}$ with fast multiply
To avoid dense $\boldsymbol{Y}=\boldsymbol{A} \boldsymbol{\Omega}$ when \boldsymbol{A} is sparse
When are these techniques worth considering?
The matrix \boldsymbol{A} must have a rapidly decaying spectrum
The dominant right singular vectors of the matrix \boldsymbol{A} are flat
Executive summary:
Sampling with an SRFT is effective when \boldsymbol{A} has spectral decay
I do not recommend the other schemes, except in special cases

Deterministic Error Bound for Range Finder

A is $m \times n$ with SVD partitioned as

$$
\boldsymbol{A}=\boldsymbol{U} \quad\left[\begin{array}{cc}
\mathrm{r}_{0} & n-\mathrm{r}_{0} \\
\boldsymbol{\Sigma}_{1} & \\
& \boldsymbol{\Sigma}_{2}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{V}_{1}^{*} \\
\boldsymbol{V}_{2}^{*}
\end{array}\right] \begin{gathered}
\\
\mathrm{r}_{0} \\
n-\mathrm{r}_{0}
\end{gathered}
$$

Let Ω be any test matrix, decomposed as

$$
\boldsymbol{\Omega}_{1}=\boldsymbol{V}_{1}^{*} \boldsymbol{\Omega} \quad \text { and } \quad \boldsymbol{\Omega}_{2}=\boldsymbol{V}_{2}^{*} \boldsymbol{\Omega}
$$

Construct the sample matrix $\boldsymbol{Y}=\boldsymbol{A} \boldsymbol{\Omega}$ and a basis \boldsymbol{Q} for $\operatorname{range}(\boldsymbol{Y})$
Theorem 6. [BMD11; HMT11] When $\boldsymbol{\Omega}_{1}$ has full row rank,

$$
\left\|\boldsymbol{A}-\boldsymbol{Q} \boldsymbol{Q}^{*} \boldsymbol{A}\right\|^{2} \leq\left\|\boldsymbol{\Sigma}_{2}\right\|^{2}+\left\|\boldsymbol{\Sigma}_{2} \boldsymbol{\Omega}_{2} \boldsymbol{\Omega}_{1}^{\dagger}\right\|^{2}
$$

Roughly: Range finder works when $\boldsymbol{\Omega}_{1}$ has well-conditioned rows.
[Refs] Boutsidis et al. 2011. See Halko et al. 2011, §9.

Leverage Score Sampling

Let \boldsymbol{V}_{1}^{*} be the $r_{0} \times n$ matrix of top right singular vectors of \boldsymbol{A}
The squared column norms $\ell_{1}, \ldots, \ell_{n}$ of \boldsymbol{V}_{1}^{*} are called leverage scores
We can obtain a sampling distribution by normalizing: $p_{i}=\ell_{i} / r_{0}$
Let the number r of samples satisfy $r \sim r_{0} \log r_{0}$
Let $\boldsymbol{\omega}=\mathbf{e}_{i}$ with probability p_{i}
Test matrix $\boldsymbol{\Omega}$ has r columns, each an independent copy of $\boldsymbol{\omega}$
Then $\boldsymbol{\Omega}_{1}=\boldsymbol{V}_{1}^{*} \boldsymbol{\Omega}$ is likely to have well-conditioned rows
Leverage score sampling respects columns
But... Cost of approximating leverage scores is $\mathcal{O}(m n \log m)$
Better method: Use SRFT (p. 63) + interpolative approximation
$\mathbf{e}_{i}=i$ th standard basis vector
[Ref] See Mahoney 2011 for details about leverage score sampling.

Simple Column Sampling

Assume that the columns of \boldsymbol{V}_{1}^{*} have comparable norms
Then we can take a sampling distribution $p_{i}=1 / n$ for each i
Let the number r of samples satisfy $r \sim r_{0} \log r_{0}$
Let $\boldsymbol{\omega}=\mathbf{e}_{i}$ with probability p_{i}
Test matrix $\boldsymbol{\Omega}$ has r columns, each an independent copy of ω
Then $\boldsymbol{\Omega}_{1}=\boldsymbol{V}_{1}^{*} \boldsymbol{\Omega}$ is likely to have well-conditioned rows
Simple random sampling respects columns and is basically free
Works when leverage scores are approximately uniform
But... the approach fails when leverage scores are nonuniform

Sparse Projections

Assume that the matrix \boldsymbol{A} is very sparse
May be valuable to try to preserve this sparsity
Consider test matrix Ω has $\log ^{\mathcal{O}(1)}(n)$ random ± 1 entries per column
The number r of columns in Ω has order $r_{0} \log ^{\mathcal{O}(1)}(n)$
Then $\boldsymbol{\Omega}_{1}=\boldsymbol{V}_{1}^{*} \boldsymbol{\Omega}$ is likely to have well-conditioned rows
Sparse projections respect sparsity and are relatively cheap
But... this approach tends not to work well for sparse matrices
Ironically, may be more valuable for dense matrices

Structured Random Matrices

Choose a structured random matrix $\boldsymbol{\Omega}$ to accelerate multiply
Example: Subsampled randomized Fourier transform (SRFT)

Intuition: The transform $\boldsymbol{D} \mathscr{F}$ uniformizes leverage scores
Cost of forming $\boldsymbol{Y}=\boldsymbol{A} \boldsymbol{\Omega}$ by FFT is $\mathcal{O}(m n \log n)$
In practice, if \boldsymbol{A} has spectral decay, SRFT works as well as Gaussian

An Error Bound for the SRFT

Theorem 7. [Boutsidis \& Gittens 2013] Assume

© The matrix \boldsymbol{A} is $m \times n$
The target rank is r_{0}
The singular values of \boldsymbol{A} are $\sigma_{1} \geq \sigma_{2} \geq \sigma_{3} \geq \ldots$
The test matrix Ω is an $n \times \mathrm{r}$ SRFT with

$$
r \gtrsim\left(r_{0}+\log n\right) \log r_{0}
$$

Then

$$
\left\|\boldsymbol{A}-\boldsymbol{Q} \boldsymbol{Q}^{*} \boldsymbol{A}\right\| \lesssim\left[1+\frac{\log n}{\sqrt{\mathrm{r}}}\right] \sigma_{\mathrm{r}_{0}+1}+\sqrt{\frac{\log n}{\mathrm{r}}} \cdot\left(\sum_{j>\mathrm{r}_{0}} \sigma_{j}^{2}\right)^{1 / 2}
$$

except with probability $\mathcal{O}\left(\mathrm{r}_{0}^{-1}\right)$
[Refs] T 2011; Halko et al. 2011; Boutsidis \& Gittens 2013.

SRFT: Faster SVD when Spectrum Decays

[Ref] Halko et al. 2011, §7.4.

Randomized Power Scheme

The Role of Spectral Decay

The random range finder works when the spectrum of \boldsymbol{A} decays quickly (Helmholtz)

Problem: This behavior is not common in data analysis problems

Examples:
Matrix is contaminated with noise: $\boldsymbol{A}=\boldsymbol{A}_{0}+\boldsymbol{N}$ with $\|\boldsymbol{N}\| \propto\left\|\boldsymbol{A}_{0}\right\|$
© Matrix spectrum decays slowly: $\sigma_{j} \sim j^{-\alpha}$ for $\alpha<\frac{1}{2}$

In these settings, the random range finder will give unreliable results

Remedy: Use subspace iteration

Randomized Range Finder + Power Scheme

Problem: The singular values of a data matrix often decay slowly
Remedy: Apply the randomized range finder to $\left(\boldsymbol{A} \boldsymbol{A}^{*}\right)^{q} \boldsymbol{A}$ for small q

Input: An $m \times n$ matrix \boldsymbol{A}, number r of samples
Output: An $m \times r$ matrix \boldsymbol{Q} with orthonormal columns

1. Draw an $n \times \mathrm{r}$ random matrix $\boldsymbol{\Omega}$.
2. Carefully form the matrix product $\boldsymbol{Y}=\left(\boldsymbol{A} \boldsymbol{A}^{*}\right)^{q} \boldsymbol{A} \boldsymbol{\Omega}$.
3. Construct an orthonormal basis \boldsymbol{Q} for the range of \boldsymbol{Y}.

Total Cost: $2 \mathrm{q}+1$ multiplies $(m \times n \times r)+\mathcal{O}\left(\mathrm{qr}^{2} n\right)$
[Refs] Stewart 1970s; Roweis 1997; Gu 2007; Rokhlin et al. 2008. See Halko et al. 2011, $\S 4.5$.

Implementation Issues

Q: How do we pick the number r of samples?
A: Adaptively, using a randomized error estimator.
Q: How do we pick the number q of power iterations?
A: Remarkably, $\mathrm{q}=2$ or $\mathrm{q}=3$ is usually adequate!
Q: What random matrix $\boldsymbol{\Omega}$?
A: Standard Gaussian. Other sampling distributions have limited value.
Q: How do we perform the matrix-matrix multiply?
A: Alternately multiply by \boldsymbol{A} and \boldsymbol{A}^{*}.
Q: How do we compute the orthonormal basis?
A: Carefully... Perform QR factorization at each step.
[Ref] Halko et al. 2011, §4.

Simple Error Bound for Power Scheme

Theorem 8. [HMT 2011] Assume

ce The matrix \boldsymbol{A} is $m \times n$ with $m \geq n$
The target rank is r_{0}
C. The optimal error $\sigma_{\mathrm{r}_{0}+1}=\min _{\operatorname{rank}(\boldsymbol{B}) \leq k}\|\boldsymbol{A}-\boldsymbol{B}\|$

The test matrix $\boldsymbol{\Omega}$ is $n \times\left(\mathrm{r}_{0}+\mathrm{s}\right)$ standard Gaussian
Then the basis Q computed by the power scheme satisfies

$$
\mathbb{E}\left\|\boldsymbol{A}-\boldsymbol{Q} \boldsymbol{Q}^{*} \boldsymbol{A}\right\| \leq\left[1+\frac{4 \sqrt{\mathrm{r}_{0}+\mathrm{s}}}{\mathrm{~s}-1} \cdot \sqrt{n}\right]^{1 /(2 q+1)} \sigma_{\mathrm{r}_{0}+1}
$$

The power scheme drives the extra factor to one exponentially fast!

A Graph Laplacian

Graph Laplacian on a point cloud of 9×9 image patches
Form $9,025 \times 9,025$ symmetric data matrix \boldsymbol{A}
Total storage: 311 Megabytes (uncompressed)
The eigenvectors give information about graph structure
Attempt to compute first 100 eigenvalues/vectors using power scheme

[Ref] Courtesy of Gunnar Martinsson \& François Meyer.

Joel A. Tropp, Finding Structure with Randomness, ICML, Beijing, 21 June 2014

Eigenfaces

Database consists of 7,254 photographs with 98,304 pixels each
5. Form $98,304 \times 7,254$ data matrix $\widetilde{\boldsymbol{A}}$

Total storage: 5.4 Gigabytes (uncompressed)
Center each column and scale to unit norm to obtain \boldsymbol{A}
The dominant left singular vectors of \boldsymbol{A} are called eigenfaces
Attempt to compute first 100 eigenfaces using power scheme

[Ref] Image from Scholarpedia article "Eigenfaces," accessed 12 October 2009

[Ref] Halko et al. 2011, §7.3.

Resources

Articles with Broad Scope

. M. Mahoney, "Randomized algorithms for matrices and data," Foundations \& Trends in Machine Learning, 2011
N. Halko, P.-G. Martinsson, and J. A. Tropp,
"Finding structure with randomness...," SIAM Rev., 2011
J. A. Tropp, "User-Friendly Tools for Random Matrices." Submitted to Foundations \& Trends in Machine Learning, 2014

High-Quality Software for Randomized NLA

© Mark Tygert.
http://tygert.com/software.html

Ce Haim Avron.
http://researcher.watson.ibm.com/researcher/view_group. php?id=5131

Xiangrui Meng.
http://www.stanford.edu/~mengxr/pub/lsrn.htm

To learn more...

E-mail: jtropp@cms.caltech.edu

Web: http://users.cms.caltech.edu/~jtropp

