User-Friendly Tools for Random Matrices

Joel A. Tropp

Computing + Mathematical Sciences
California Institute of Technology
jtropp@cms.caltech.edu

Download the Notes:

tinyurl.com/bocrqhe

[URL] http://users.cms.caltech.edu/~jtropp/notes/Tro12-User-Friendly-Tools-NIPS.pdf

Random Matrices
 in the Mist

Random Matrices in Statistics

Covariance estimation for the multivariate normal distribution

John Wishart

3. Multi-variate Distribution. Use of Quadratic co-ordinates.

A comparison of equation (8) with the corresponding results (1) and (2) for uni-variate and bi-variate sampling, respectively, indicates the form the general result may be expected to take. In fact, we have for the simultaneous distribution in random samples of the n variances (squared standard deviations) and the $\frac{n(n-1)}{2}$ product moment coefficients the following expression:

$$
\times\left|\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{n n} \\
a_{n n} & a_{n 1} & \ldots & a_{n n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right|^{\frac{N-n-2}{2}} d a_{n 1} d a_{n 2} \ldots . d a_{n n}
$$

\qquad
where $a_{p q}=s_{p} s_{q} r_{p q}$, and $A_{p q}=\frac{N}{2 \sigma_{p} \sigma_{q}} \cdot \frac{\Delta_{p q}}{\Delta}, \Delta$ being the determinant

$$
\left|\rho_{p q}\right|, p, q=1,2,3, \ldots n
$$

and $\Delta_{p q}$ the minor of $\rho_{p q}$ in Δ.
[Refs] Wishart, Biometrika 1928. Photo from apprendre-math.info.

Random Matrices in Numerical Linear Algebra

Model for floating-point errors in LU decomposition

now combining (8.6) and (8.7) we obtain our desired result:

$$
\begin{align*}
\operatorname{Prob}\left(\lambda>2 \sigma^{2} r n\right) & <\frac{(r n)^{n-1 / 2} e^{-r n} \pi^{1 / 2} e^{n} \cdot 2^{n-2}}{\pi n^{n-1}(r-1) n} \tag{8.8}\\
& =\left(\frac{2 r}{e^{r-1}}\right)^{n} \times \frac{1}{4(r-1)(r \pi n)^{1 / 2}}
\end{align*}
$$

We sum up in the following theorem:
(8.9) The probability that the upper bound $|A|$ of the matrix A of (8.1) exceeds $2.72 \sigma n^{1 / 2}$ is less than $.027 \times 2^{-n} n^{-1 / 2}$, that is, with probability greater than 99% the upper bound of A is less than $2.72 \sigma n^{1 / 2}$ for $n=2,3, \cdots$.

This follows at once by taking $r=3.70$.
[Refs] von Neumann and Goldstine, Bull. AMS 1947 and Proc. AMS 1951. Photo ©IAS Archive.

Random Matrices in Nuclear Physics

Model for the Hamiltonian of a heavy atom in a slow nuclear reaction

Eugene Wigner

Random sign symmetric matrix

The matrices to be considered are $2 N+1$ dimensional real symmetric matrices; N is a very large number. The diagonal elements of these matrices are zero, the non diagonal elements $v_{i k}=v_{k i}= \pm v$ have all the same absolute value but random signs. There are $\mathfrak{N}=2^{N(2 N+1)}$ such matrices. We shall calculate, after an introductory remark, the averages of $\left(H^{\nu}\right)_{00}$ and hence the strength function $S^{\prime}(x)=\sigma(x)$. This has, in the present case, a second interpretation: it also gives the density of the characteristic values of these matrices. This will be shown first.
[Refs] Wigner, Ann. Math 1955. Photo from Nobel Foundation.

Modern

 Applications
Randomized Linear Algebra

Input: An $m \times n$ matrix \boldsymbol{A}, a target rank k, an oversampling parameter p
Output: An $m \times(k+p)$ matrix \boldsymbol{Q} with orthonormal columns

1. Draw an $n \times(k+p)$ random matrix $\boldsymbol{\Omega}$
2. Form the matrix product $\boldsymbol{Y}=\boldsymbol{A} \boldsymbol{\Omega}$
3. Construct an orthonormal basis \boldsymbol{Q} for the range of \boldsymbol{Y}
[Ref] Halko-Martinsson-T, SIAM Rev. 2011.

Other Algorithmic Applications

Sparsification. Accelerate spectral calculation by randomly zeroing entries in a matrix.

Subsampling. Accelerate construction of kernels by randomly subsampling data.
© Dimension Reduction. Accelerate nearest neighbor calculations by random projection to a lower dimension.
© Relaxation \& Rounding. Approximate solution of maximization problems with matrix variables.
[Refs] Achlioptas-McSherry 2001 and 2007, Spielman-Teng 2004; Williams-Seeger 2001, Drineas-Mahoney
2006, Gittens 2011; Indyk-Motwani 1998, Ailon-Chazelle 2006; Nemirovski 2007, So 2009...

Random Matrices as Models

Ce High-Dimensional Data Analysis. Random matrices are used to model multivariate data.
(e Wireless Communications. Random matrices serve as models for wireless channels.

Demixing Signals. Random model for incoherence when separating two structured signals.
[Refs] Bühlmann and van de Geer 2011, Koltchinskii 2011; Tulino-Verdú 2004; McCoy-T 2011.

Theoretical Applications

Algorithms. Smoothed analysis of Gaussian elimination.

Combinatorics. Random constructions of expander graphs.

High-Dimensional Geometry. Structure of random slices of convex bodies.

Quantum Information Theory. (Counter)examples to conjectures about quantum channel capacity.
[Refs] Sankar-Spielman-Teng 2006; Pinsker 1973; Gordon 1985; Hayden-Winter 2008, Hastings 2009.

Random Matrices: My Way

The Conventional Wisdom

[Refs] youtube.com/watch?v=NOOcvqT1tAE, most monographs on RMT.

Principle A

"But...

In many applications, a random matrix can be decomposed as a sum of independent random matrices:

$$
\boldsymbol{Z}=\sum_{k=1}^{n} \boldsymbol{S}_{k}
$$

Principle B

and

There are exponential concentration inequalities for the spectral norm of a sum of independent random matrices:

$$
\mathbb{P}\{\|\boldsymbol{Z}\| \geq t\} \leq \exp (\quad \cdots \quad)
$$

Matrix Gaussian Series

The Norm of a Matrix Gaussian Series

Theorem 1. [Oliveira 2010, T 2010] Suppose

a $\boldsymbol{B}_{1}, \boldsymbol{B}_{2}, \boldsymbol{B}_{3}, \ldots$ are fixed matrices with dimension $d_{1} \times d_{2}$, and
利, $\gamma_{2}, \gamma_{3}, \ldots$ are independent standard normal $R V$ s.
Define $d:=d_{1}+d_{2}$ and the variance parameter

$$
\sigma^{2}:=\max \left\{\left\|\sum_{k} \boldsymbol{B}_{k} \boldsymbol{B}_{k}^{*}\right\|,\left\|\sum_{k} \boldsymbol{B}_{k}^{*} \boldsymbol{B}_{k}\right\|\right\} .
$$

Then

$$
\mathbb{P}\left\{\left\|\sum_{k} \gamma_{k} \boldsymbol{B}_{k}\right\| \geq t\right\} \leq d \cdot \mathrm{e}^{-t^{2} / 2 \sigma^{2}} .
$$

[Refs] Tomczak-Jaegerman 1974, Lust-Picquard 1986, Lust-Picquard-Pisier 1991, Rudelson 1999,
Buchholz 2001 and 2005, Oliveira 2010, T 2011. Notes: Cor. 4.2.1, page 33.

The Norm of a Matrix Gaussian Series

Theorem 2. [Oliveira 2010, T 2010] Suppose

a $\boldsymbol{B}_{1}, \boldsymbol{B}_{2}, \boldsymbol{B}_{3}, \ldots$ are fixed matrices with dimension $d_{1} \times d_{2}$, and
. $\gamma_{1}, \gamma_{2}, \gamma_{3}, \ldots$ are independent standard normal $R V$ s.
Define $d:=d_{1}+d_{2}$ and the variance parameter

$$
\sigma^{2}:=\max \left\{\left\|\sum_{k} \boldsymbol{B}_{k} \boldsymbol{B}_{k}^{*}\right\|,\left\|\sum_{k} \boldsymbol{B}_{k}^{*} \boldsymbol{B}_{k}\right\|\right\} .
$$

Then

$$
\mathbb{E}\left\|\sum_{k} \gamma_{k} \boldsymbol{B}_{k}\right\| \leq \sqrt{2 \sigma^{2} \log d} .
$$

[Refs] Tomczak-Jaegerman 1974, Lust-Picquard 1986, Lust-Picquard-Pisier 1991, Rudelson 1999,
Buchholz 2001 and 2005, Oliveira 2010, T 2011. Notes: Cor. 4.2.1, page 33.

The Variance Parameter

Define the matrix Gaussian series $\boldsymbol{Z}=\sum_{k=1}^{n} \gamma_{k} \boldsymbol{B}_{k}$
The variance parameter $\sigma^{2}(\boldsymbol{Z})$ derives from the "mean square of \boldsymbol{Z} "

But a general matrix has two different squares!

$$
\begin{aligned}
& \mathbb{E}\left(\boldsymbol{Z} \boldsymbol{Z}^{*}\right)=\sum_{j=1}^{n} \sum_{k=1}^{n} \mathbb{E}\left(\gamma_{j} \gamma_{k}\right) \boldsymbol{B}_{j} \boldsymbol{B}_{k}^{*}=\sum_{k=1}^{n} \boldsymbol{B}_{k} \boldsymbol{B}_{k}^{*} \\
& \mathbb{E}\left(\boldsymbol{Z}^{*} \boldsymbol{Z}\right)=\sum_{j=1}^{n} \sum_{k=1}^{n} \mathbb{E}\left(\gamma_{j} \gamma_{k}\right) \boldsymbol{B}_{j}^{*} \boldsymbol{B}_{k}=\sum_{k=1}^{n} \boldsymbol{B}_{k}^{*} \boldsymbol{B}_{k}
\end{aligned}
$$

Variance parameter $\sigma^{2}(\boldsymbol{Z})=\max \left\{\left\|\mathbb{E}\left(\boldsymbol{Z} \boldsymbol{Z}^{*}\right)\right\|,\left\|\mathbb{E}\left(\boldsymbol{Z}^{*} \boldsymbol{Z}\right)\right\|\right\}$.

Schematic of Gaussian Series Tail Bound

Warmup: A Wigner Matrix

Let $\left\{\gamma_{j k}: 1 \leq j<k \leq n\right\}$ be independent standard normal variables

A Gaussian Wigner matrix:

$$
\boldsymbol{W}=\left[\begin{array}{ccccc}
0 & \gamma_{12} & \gamma_{13} & \cdots & \gamma_{1 n} \\
\gamma_{12} & 0 & \gamma_{23} & \cdots & \gamma_{2 n} \\
\gamma_{13} & \gamma_{23} & 0 & & \gamma_{3 n} \\
\vdots & \vdots & & \ddots & \vdots \\
\gamma_{1 n} & \gamma_{2 n} & \cdots & \gamma_{n-1, n} & 0
\end{array}\right]
$$

Problem: What is $\mathbb{E}\|\boldsymbol{W}\|$?

Notes: §4.4.1, page 35.

The Wigner Matrix, qua Gaussian Series

Express the Wigner matrix as a Gaussian series:

$$
\boldsymbol{W}=\sum_{1 \leq j<k \leq n} \gamma_{j k}\left(\mathbf{E}_{j k}+\mathbf{E}_{k j}\right)
$$

The symbol $\mathbf{E}_{j k}$ denotes the $n \times n$ matrix unit

Norm Bound for the Wigner Matrix

Need to compute the variance parameter $\sigma^{2}(\boldsymbol{W})$
Summands are symmetric, so both matrix squares are the same:

$$
\begin{aligned}
\sum_{1 \leq j<k \leq n}\left(\mathbf{E}_{j k}+\mathbf{E}_{k j}\right)^{2} & =\sum_{1 \leq j<k \leq n}\left(\mathbf{E}_{j k} \mathbf{E}_{j k}+\mathbf{E}_{j k} \mathbf{E}_{k j}+\mathbf{E}_{k j} \mathbf{E}_{j k}+\mathbf{E}_{k j} \mathbf{E}_{k j}\right) \\
& =\sum_{1 \leq j<k \leq n}\left(\mathbf{0}+\mathbf{E}_{j j}+\mathbf{E}_{k k}+\mathbf{0}\right)=(n-1) \mathbf{I}_{n}
\end{aligned}
$$

Thus, the variance $\sigma^{2}(\boldsymbol{W})=\left\|(n-1) \mathbf{I}_{n}\right\|=n-1$.
Conclusion: $\mathbb{E}\|\boldsymbol{W}\| \leq \sqrt{2(n-1) \log (2 n)}$
Optimal: $\quad \mathbb{E}\|\boldsymbol{W}\| \sim 2 \sqrt{n}$
[Refs] Wigner 1955, Davidson-Szarek 2002, Tao 2012.

Example: A Gaussian Toeplitz Matrix

Let $\left\{\gamma_{k}\right\}$ be independent standard normal variables

An unsymmetric Gaussian Toeplitz matrix:

$$
\boldsymbol{T}=\left[\begin{array}{cccccc}
\gamma_{0} & \gamma_{1} & & \cdots & & \gamma_{n-1} \\
\gamma_{-1} & \gamma_{0} & \gamma_{1} & & & \\
& \gamma_{-1} & \gamma_{0} & \gamma_{1} & & \vdots \\
\vdots & & \ddots & \ddots & \ddots & \\
& & & \gamma_{-1} & \gamma_{0} & \gamma_{1} \\
\gamma_{-(n-1)} & & \cdots & & \gamma_{-1} & \gamma_{0}
\end{array}\right]
$$

(2 Problem: What is $\mathbb{E}\|\boldsymbol{T}\|$?

Notes: §4.6, page 38.

The Toeplitz Matrix, qua Gaussian Series

Express the unsymmetric Toeplitz matrix as a Gaussian series:

$$
\boldsymbol{T}=\gamma_{0} \mathbf{I}+\sum_{k=1}^{n-1} \gamma_{k} \boldsymbol{S}^{k}+\sum_{k=1}^{n-1} \gamma_{-k}\left(\boldsymbol{S}^{k}\right)^{*}
$$

The matrix \boldsymbol{S} is the shift-up operator on n-dimensional column vectors:

$$
\boldsymbol{S}=\left[\begin{array}{ccccc}
0 & 1 & & & \\
& 0 & 1 & & \\
& & \ddots & \ddots & \\
& & & 0 & 1 \\
& & & & 0
\end{array}\right]
$$

Variance Calculation for the Toeplitz Matrix

(a) Note that

$$
\left(\boldsymbol{S}^{k}\right)\left(\boldsymbol{S}^{k}\right)^{*}=\sum_{j=1}^{n-k} \mathbf{E}_{j j} \quad \text { and } \quad\left(\boldsymbol{S}^{k}\right)^{*}\left(\boldsymbol{S}^{k}\right)=\sum_{j=k+1}^{n} \mathbf{E}_{j j}
$$

Both sums of squares take the form

$$
\begin{aligned}
\mathbf{I}^{2} & +\sum_{k=1}^{n-1}\left(\boldsymbol{S}^{k}\right)\left(\boldsymbol{S}^{k}\right)^{*}+\sum_{k=1}^{n-1}\left(\boldsymbol{S}^{k}\right)^{*}\left(\boldsymbol{S}^{k}\right) \\
& =\mathbf{I}+\sum_{k=1}^{n-1}\left[\sum_{j=1}^{n-k} \mathbf{E}_{j j}+\sum_{j=k+1}^{n} \mathbf{E}_{j j}\right]=\sum_{j=1}^{n}\left[1+\sum_{k=1}^{n-j} 1+\sum_{k=1}^{j-1} 1\right] \mathbf{E}_{j j} \\
& =\sum_{j=1}^{n}(1+(n-j)+(j-1)) \mathbf{E}_{j j}=n \mathbf{I}_{n}
\end{aligned}
$$

Norm Bound for the Toeplitz Matrix

© The variance parameter $\sigma^{2}(\boldsymbol{T})=\left\|n \mathbf{I}_{n}\right\|=n$
Conclusion: $\mathbb{E}\|\boldsymbol{T}\| \leq \sqrt{2 n \log (2 n)}$

Optimal: $\quad \mathbb{E}\|\boldsymbol{T}\| \sim$ const $\cdot \sqrt{2 n \log n}$
a The optimal constant is at least 0.8288...
[Refs] Bryc-Dembo-Jiang 2006, Meckes 2007, Sen-Virág 2011, T 2011.

Matrix Rademacher Series

The Norm of a Matrix Rademacher Series

Theorem 3. [Oliveira 2010, T 2010] Suppose
a $\boldsymbol{B}_{1}, \boldsymbol{B}_{2}, \boldsymbol{B}_{3}, \ldots$ are fixed matrices with dimension $d_{1} \times d_{2}$, and
a $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \ldots$ are independent Rademacher $R V$ s.
Then

$$
\mathbb{P}\left\{\left\|\sum_{k} \varepsilon_{k} \boldsymbol{B}_{k}\right\| \geq t\right\} \leq d \cdot \mathrm{e}^{-t^{2} / 2 \sigma^{2}}
$$

where $d:=d_{1}+d_{2}$ and the variance parameter

$$
\sigma^{2}:=\max \left\{\left\|\sum_{k} \boldsymbol{B}_{k} \boldsymbol{B}_{k}^{*}\right\|,\left\|\sum_{k} \boldsymbol{B}_{k}^{*} \boldsymbol{B}_{k}\right\|\right\}
$$

[Refs] Tomczak-Jaegerman 1974, Lust-Picquard 1986, Lust-Picquard-Pisier 1991, Rudelson 1999,
Buchholz 2001 and 2005, Oliveira 2010, T 2011. Notes: Cor. 4.2.1, page 33.

The Norm of a Matrix Rademacher Series

Theorem 4. [Oliveira 2010, T 2010] Suppose

a $\boldsymbol{B}_{1}, \boldsymbol{B}_{2}, \boldsymbol{B}_{3}, \ldots$ are fixed matrices with dimension $d_{1} \times d_{2}$, and
a $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \ldots$ are independent Rademacher $R V$ s.
Then

$$
\mathbb{E}\left\|\sum_{k} \varepsilon_{k} \boldsymbol{B}_{k}\right\| \leq \sqrt{2 \sigma^{2} \log d}
$$

where $d:=d_{1}+d_{2}$ and the variance parameter

$$
\sigma^{2}:=\max \left\{\left\|\sum_{k} \boldsymbol{B}_{k} \boldsymbol{B}_{k}^{*}\right\|,\left\|\sum_{k} \boldsymbol{B}_{k}^{*} \boldsymbol{B}_{k}\right\|\right\} .
$$

[Refs] Tomczak-Jaegerman 1974, Lust-Picquard 1986, Lust-Picquard-Pisier 1991, Rudelson 1999,
Buchholz 2001 and 2005, Oliveira 2010, T 2011. Notes: Cor. 4.2.1, page 33.

Example: Modulation by Random Signs

Fixed matrix, in captivity:

$$
\boldsymbol{C}=\left[\begin{array}{cccc}
c_{11} & c_{12} & c_{13} & \ldots \\
c_{21} & c_{22} & c_{23} & \ldots \\
c_{31} & c_{32} & c_{33} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]_{d_{1} \times d_{2}}
$$

Random matrix, formed by randomly flipping the signs of the entries:

$$
\boldsymbol{Z}=\left[\begin{array}{cccc}
\varepsilon_{11} c_{11} & \varepsilon_{12} c_{12} & \varepsilon_{13} c_{13} & \ldots \\
\varepsilon_{21} c_{21} & \varepsilon_{22} c_{22} & \varepsilon_{23} c_{23} & \ldots \\
\varepsilon_{31} c_{31} & \varepsilon_{32} c_{32} & \varepsilon_{33} c_{33} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]_{d_{1} \times d_{2}}
$$

Problem: What is $\mathbb{E}\|Z\|$?
Notes: §4.5, page 37.

The Random Matrix, qua Rademacher Series

a Express the random matrix as a Gaussian series:

$$
\boldsymbol{Z}=\left[\begin{array}{cccc}
\varepsilon_{11} c_{11} & \varepsilon_{12} c_{12} & \varepsilon_{13} c_{13} & \cdots \\
\varepsilon_{21} c_{21} & \varepsilon_{22} c_{22} & \varepsilon_{23} c_{23} & \cdots \\
\varepsilon_{31} c_{31} & \varepsilon_{32} c_{32} & \varepsilon_{33} c_{33} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]_{d_{1} \times d_{2}}=\sum_{j k} \varepsilon_{j k} c_{j k} \mathbf{E}_{j k}
$$

Variance of the Randomly Signed Matrix

The first term in the matrix variance σ^{2} satisfies

$$
\begin{aligned}
\left\|\sum_{j k}\left(c_{j k} \mathbf{E}_{j k}\right)\left(c_{j k} \mathbf{E}_{j k}\right)^{*}\right\| & =\left\|\sum_{j k}\left|c_{j k}\right|^{2} \mathbf{E}_{j k} \mathbf{E}_{k j}\right\| \\
& =\left\|\sum_{j}\left(\sum_{k}\left|c_{j k}\right|^{2}\right) \mathbf{E}_{j j}\right\| \\
& =\left\|\left[\begin{array}{lll}
\sum_{k}\left|c_{1 k}\right|^{2} & \\
& \sum_{k}\left|c_{2 k}\right|^{2} & \\
& =\max _{j} \sum_{k}\left|c_{j k}\right|^{2}
\end{array}\right]\right\|
\end{aligned}
$$

The same argument applies to the second term. Thus,

$$
\sigma^{2}=\max \left\{\max _{j} \sum_{k}\left|c_{j k}\right|^{2}, \max _{k} \sum_{j}\left|c_{j k}\right|^{2}\right\}
$$

Comparison with the Literature

Consider the randomly signed matrix $\boldsymbol{Z}=\left[\varepsilon_{j k} c_{j k}\right]$. Define

$$
\sigma^{2}(\boldsymbol{Z})=\max \left\{\max _{j} \sum_{k}\left|c_{j k}\right|^{2}, \max _{k} \sum_{j}\left|c_{j k}\right|^{2}\right\}
$$

[T 2010], obtained via matrix Rademacher bound:

$$
\mathbb{E}\|\boldsymbol{Z}\| \leq \sqrt{2 \log d} \cdot \sigma
$$

[Seginer 2000], obtained with path-counting arguments:

$$
\mathbb{E}\|\boldsymbol{Z}\| \leq \mathrm{const} \cdot \sqrt[4]{\log d} \cdot \sigma
$$

[Latała 2005], obtained with chaining arguments:

$$
\mathbb{E}\|\boldsymbol{Z}\| \leq \text { const } \cdot\left[\sigma+\sqrt[4]{\sum_{j k}\left|c_{j k}\right|^{4}}\right]
$$

Matrix Chernoff Inequality

The Matrix Chernoff Bound

Theorem 5. [T 2010] Suppose

$\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \boldsymbol{X}_{3}, \ldots$ are random psd matrices with dimension d, and
$\lambda_{\max }\left(\boldsymbol{X}_{k}\right) \leq R$ for each k.

Then

$$
\begin{aligned}
\mathbb{P}\left\{\lambda_{\min }\left(\sum_{k} \boldsymbol{X}_{k}\right) \leq(1-t) \cdot \mu_{\min }\right\} \leq d \cdot\left[\frac{\mathrm{e}^{-t}}{(1-t)^{1-t}}\right]^{\mu_{\min } / R} \\
\mathbb{P}\left\{\lambda_{\max }\left(\sum_{k} \boldsymbol{X}_{k}\right) \geq(1+t) \cdot \mu_{\max }\right\} \leq d \cdot\left[\frac{\mathrm{e}^{t}}{(1+t)^{1+t}}\right]^{\mu_{\max } / R}
\end{aligned}
$$

where $\mu_{\min }:=\lambda_{\min }\left(\sum_{k} \mathbb{E} \boldsymbol{X}_{k}\right)$ and $\mu_{\max }:=\lambda_{\max }\left(\sum_{k} \mathbb{E} \boldsymbol{X}_{k}\right)$.
[Refs] Ahlswede-Winter 2002, T 2011. Notes: Thm. 5.1.1, page 48.

The Matrix Chernoff Bound

Theorem 6. [T 2010] Suppose

$\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \boldsymbol{X}_{3}, \ldots$ are random psd matrices with dimension d, and
$\lambda_{\max }\left(\boldsymbol{X}_{k}\right) \leq R$ for each k.

Then

$$
\begin{aligned}
& \mathbb{E} \lambda_{\min }\left(\sum_{k} \boldsymbol{X}_{k}\right) \geq 0.6 \mu_{\min }-R \log d \\
& \mathbb{E} \lambda_{\max }\left(\sum_{k} \boldsymbol{X}_{k}\right) \leq 1.8 \mu_{\max }+R \log d
\end{aligned}
$$

where $\mu_{\min }:=\lambda_{\min }\left(\sum_{k} \mathbb{E} \boldsymbol{X}_{k}\right)$ and $\mu_{\max }:=\lambda_{\max }\left(\sum_{k} \mathbb{E} \boldsymbol{X}_{k}\right)$.
[Refs] Ahlswede-Winter 2002, T 2011. Notes: Thm. 5.1.1, page 48.

Example: Random Submatrices

Fixed matrix, in captivity:

$$
\boldsymbol{C}=\left[\begin{array}{cccccc}
\mid & \mid & \mid & \mid & & \mid \\
\boldsymbol{c}_{1} & c_{2} & c_{3} & c_{4} & \ldots & \boldsymbol{c}_{n} \\
\mid & \mid & \mid & \mid & & \mid
\end{array}\right]_{d \times n}
$$

Random matrix, formed by picking random columns:

$$
\boldsymbol{Z}=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\boldsymbol{c}_{2} & c_{3} & \ldots & c_{n} \\
\mid & \mid & & \mid
\end{array}\right]_{d \times n}
$$

Problem: What is the expectation of $\sigma_{1}(\boldsymbol{Z})$? What about $\sigma_{d}(\boldsymbol{Z})$?
Notes: §5.2.1, page 49.

Model for Random Submatrix

Let \boldsymbol{C} be a fixed $d \times n$ matrix with columns $\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{n}$

Let $\delta_{1}, \ldots, \delta_{n}$ be independent $0-1$ random variables with mean s / n

Define $\boldsymbol{\Delta}=\operatorname{diag}\left(\delta_{1}, \ldots, \delta_{n}\right)$

Form a random submatrix Z by turning off columns from C

$$
\boldsymbol{Z}=\boldsymbol{C} \boldsymbol{\Delta}=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\boldsymbol{c}_{1} & \boldsymbol{c}_{2} & \ldots & \boldsymbol{c}_{n} \\
\mid & \mid & & \mid
\end{array}\right]_{d \times n}\left[\begin{array}{llll}
\delta_{1} & & & \\
& \delta_{2} & & \\
& & \ddots & \\
& & & \delta_{n}
\end{array}\right]_{n \times n}
$$

Note that Z typically contains about s nonzero columns

The Random Submatrix, qua PSD Sum

The largest and smallest singular values of \boldsymbol{Z} satisfy

$$
\begin{aligned}
\sigma_{1}(\boldsymbol{Z})^{2} & =\lambda_{\max }\left(\boldsymbol{Z} \boldsymbol{Z}^{*}\right) \\
\sigma_{d}(\boldsymbol{Z})^{2} & =\lambda_{\min }\left(\boldsymbol{Z} \boldsymbol{Z}^{*}\right)
\end{aligned}
$$

Define the psd matrix $\boldsymbol{Y}=\boldsymbol{Z} \boldsymbol{Z}^{*}$, and observe that

$$
\boldsymbol{Y}=\boldsymbol{Z} \boldsymbol{Z}^{*}=\boldsymbol{C} \boldsymbol{\Delta}^{2} \boldsymbol{C}^{*}=\boldsymbol{C} \boldsymbol{\Delta} \boldsymbol{C}^{*}=\sum_{k=1}^{n} \delta_{k} \boldsymbol{c}_{k} \boldsymbol{c}_{k}^{*}
$$

We have expressed \boldsymbol{Y} as a sum of independent psd random matrices

Preparing to Apply the Chernoff Bound

Consider the random matrix

$$
\boldsymbol{Y}=\sum_{k} \delta_{k} \boldsymbol{c}_{k} \boldsymbol{c}_{k}^{*}
$$

The maximal eigenvalue of each summand is bounded as

$$
R=\max _{k} \lambda_{\max }\left(\delta_{k} \boldsymbol{c}_{k} \boldsymbol{c}_{k}^{*}\right) \leq \max _{k}\left\|\boldsymbol{c}_{k}\right\|^{2}
$$

The expectation of the random matrix \boldsymbol{Y} is

$$
\mathbb{E}(\boldsymbol{Y})=\frac{s}{n} \sum_{k=1}^{n} \boldsymbol{c}_{k} \boldsymbol{c}_{k}^{*}=\frac{s}{n} \boldsymbol{C} \boldsymbol{C}^{*}
$$

The mean parameters satisfy

$$
\mu_{\max }=\lambda_{\max }(\mathbb{E} \boldsymbol{Y})=\frac{s}{n} \sigma_{1}(\boldsymbol{C})^{2} \quad \text { and } \quad \mu_{\min }=\lambda_{\min }(\mathbb{E} \boldsymbol{Y})=\frac{s}{n} \sigma_{d}(\boldsymbol{C})^{2}
$$

What the Chernoff Bound Says

Applying the Chernoff bound, we reach

$$
\begin{aligned}
& \mathbb{E}\left[\sigma_{1}(\boldsymbol{Z})^{2}\right]=\mathbb{E} \lambda_{\max }(\boldsymbol{Y}) \leq 1.8 \cdot \frac{s}{n} \sigma_{1}(\boldsymbol{C})^{2}+\max _{k}\left\|\boldsymbol{c}_{k}\right\|_{2}^{2} \cdot \log d \\
& \mathbb{E}\left[\sigma_{d}(\boldsymbol{Z})^{2}\right]=\mathbb{E} \lambda_{\min }(\boldsymbol{Y}) \geq 0.6 \cdot \frac{s}{n} \sigma_{d}(\boldsymbol{C})^{2}-\max _{k}\left\|\boldsymbol{c}_{k}\right\|_{2}^{2} \cdot \log d
\end{aligned}
$$

Matrix \boldsymbol{C} has n columns; the random submatrix \boldsymbol{Z} includes about s

The singular value $\sigma_{i}(\boldsymbol{Z})^{2}$ inherits an s / n share of $\sigma_{i}(\boldsymbol{C})^{2}$ for $i=1, d$

Additive correction reflects number d of rows of C, max column norm
[Gittens-T 2011] Remaining singular values have similar behavior

Key Example: Unit-Norm Tight Frame

A $d \times n$ unit-norm tight frame \boldsymbol{C} satisfies

$$
\boldsymbol{C} \boldsymbol{C}^{*}=\frac{n}{d} \mathbf{I}_{d} \quad \text { and } \quad\left\|\boldsymbol{c}_{k}\right\|_{2}^{2}=1 \quad \text { for } k=1,2, \ldots, n
$$

Specializing the inequalities from the previous slide...

$$
\begin{aligned}
& \mathbb{E}\left[\sigma_{1}(\boldsymbol{Z})^{2}\right] \leq 1.8 \cdot \frac{s}{d}+\log d \\
& \mathbb{E}\left[\sigma_{d}(\boldsymbol{Z})^{2}\right] \geq 0.6 \cdot \frac{s}{d}-\log d
\end{aligned}
$$

Choose $s \geq 1.67 d \log d$ columns for a nontrivial lower bound
Sharp condition $s>d \log d$ also follows from matrix Chernoff bound
[Refs] Rudelson 1999, Rudelson-Vershynin 2007, T 2008, Gittens-T 2011, T 2011, Chrétien-Darses 2012.

Matrix Bernstein Inequality

The Matrix Bernstein Inequality

Theorem 7. [Oliveira 2010, T 2010] Suppose

. $\boldsymbol{S}_{1}, \boldsymbol{S}_{2}, \boldsymbol{S}_{3}, \ldots$ are indep. random matrices with dimension $d_{1} \times d_{2}$,
© $\mathbb{E} \boldsymbol{S}_{k}=\mathbf{0}$ for each k, and

* $\left\|\boldsymbol{S}_{k}\right\| \leq R$ for each k.

Then

$$
\mathbb{P}\left\{\left\|\sum_{k} \boldsymbol{S}_{k}\right\| \geq t\right\} \leq d \cdot \exp \left\{\frac{-t^{2} / 2}{\sigma^{2}+R t / 3}\right\}
$$

where $d:=d_{1}+d_{2}$ and the variance parameter

$$
\sigma^{2}:=\max \left\{\left\|\sum_{k} \mathbb{E}\left(\boldsymbol{S}_{k} \boldsymbol{S}_{k}^{*}\right)\right\|,\left\|\sum_{k} \mathbb{E}\left(\boldsymbol{S}_{k}^{*} \boldsymbol{S}_{k}\right)\right\|\right\}
$$

[Refs] Gross 2010, Recht 2011, Oliveira 2010, T 2011. Notes: Cor. 6.2.1, page 64.

The Matrix Bernstein Inequality

Theorem 8. [Oliveira 2010, T 2010] Suppose

. $\boldsymbol{S}_{1}, \boldsymbol{S}_{2}, \boldsymbol{S}_{3}, \ldots$ are indep. random matrices with dimension $d_{1} \times d_{2}$,
E $\boldsymbol{S}_{k}=\mathbf{0}$ for each k, and
. $\left\|\boldsymbol{S}_{k}\right\| \leq R$ for each k.
Then

$$
\mathbb{E}\left\|\sum_{k} \boldsymbol{S}_{k}\right\| \leq \sqrt{2 \sigma^{2} \log d}+\frac{1}{3} R \log d
$$

where $d:=d_{1}+d_{2}$ and the variance parameter

$$
\sigma^{2}:=\max \left\{\left\|\sum_{k} \mathbb{E}\left(\boldsymbol{S}_{k} \boldsymbol{S}_{k}^{*}\right)\right\|,\left\|\sum_{k} \mathbb{E}\left(\boldsymbol{S}_{k}^{*} \boldsymbol{S}_{k}\right)\right\|\right\}
$$

[Refs] Gross 2010, Recht 2011, Oliveira 2010, T 2011. Notes: Cor. 6.2.1, page 64.

Example: Randomized Matrix Multiplication

Product of two matrices, in captivity:

$$
\boldsymbol{B} \boldsymbol{C}^{*}=\left[\begin{array}{cccccc}
\mid & \mid & \mid & \mid & & \mid \\
\boldsymbol{b}_{1} & b_{2} & \boldsymbol{b}_{3} & \boldsymbol{b}_{4} & \ldots & \boldsymbol{b}_{n} \\
\mid & \mid & \mid & \mid & & \mid
\end{array}\right]_{d_{1} \times n}\left[\begin{array}{ccc}
- & c_{1}^{*} & - \\
- & c_{2}^{*} & - \\
- & c_{3}^{*} & - \\
- & c_{4}^{*} & - \\
& \vdots & \\
- & \boldsymbol{c}_{n}^{*} & -
\end{array}\right]_{n \times d_{2}}
$$

[Idea] Approximate multiplication by random sampling

A Sampling Model for Tutorial Purposes

Assume

$$
\left\|\boldsymbol{b}_{j}\right\|_{2}=1 \quad \text { and } \quad\left\|\boldsymbol{c}_{j}\right\|_{2}=1 \quad \text { for } j=1,2, \ldots, n
$$

Construct a random variable \boldsymbol{S} whose value is a $d_{1} \times d_{2}$ matrix:
Draw $J \sim$ UNIFORM $\{1,2, \ldots, n\}$
Set $\boldsymbol{S}=n \cdot \boldsymbol{b}_{J} \boldsymbol{c}_{J}^{*}$
the random matrix S is an unbiased estimator of the product $B C^{*}$

$$
\mathbb{E} \boldsymbol{S}=\sum_{j=1}^{n}\left(n \cdot \boldsymbol{b}_{j} \boldsymbol{c}_{j}^{*}\right) \cdot \mathbb{P}\{J=j\}=\sum_{j=1}^{n} \boldsymbol{b}_{j} \boldsymbol{c}_{j}^{*}=\boldsymbol{B} \boldsymbol{C}^{*}
$$

Approximate $\boldsymbol{B C}$ * by averaging m independent copies of S

$$
\boldsymbol{Z}=\frac{1}{m} \sum_{k=1}^{m} \boldsymbol{S}_{k} \approx \boldsymbol{B} \boldsymbol{C}^{*}
$$

Notes: §6.4, page 67.

Preparing to Apply the Bernstein Bound I

Let \boldsymbol{S}_{k} be independent copies of \boldsymbol{S}, and consider the average

$$
\boldsymbol{Z}=\frac{1}{m} \sum_{k=1}^{m} \boldsymbol{S}_{k}
$$

We study the typical approximation error

$$
\mathbb{E}\left\|\boldsymbol{Z}-\boldsymbol{B} \boldsymbol{C}^{*}\right\|=\frac{1}{m} \cdot \mathbb{E}\left\|\sum_{k=1}^{m}\left(\boldsymbol{S}_{k}-\boldsymbol{B} \boldsymbol{C}^{*}\right)\right\|
$$

The summands are independent and $\mathbb{E} \boldsymbol{S}_{k}=\boldsymbol{B} \boldsymbol{C}^{*}$, so we symmetrize:

$$
\mathbb{E}\left\|\boldsymbol{Z}-\boldsymbol{B} \boldsymbol{C}^{*}\right\| \leq \frac{2}{m} \cdot \mathbb{E}\left\|\sum_{k=1}^{m} \varepsilon_{k} \boldsymbol{S}_{k}\right\|
$$

where $\left\{\varepsilon_{k}\right\}$ are independent Rademacher RV s, independent from $\left\{\boldsymbol{S}_{k}\right\}$

Preparing to Apply the Bernstein Bound II

The norm of each summand satisfies the uniform bound

$$
R=\|\varepsilon \boldsymbol{S}\|=\|\boldsymbol{S}\|=\left\|n \cdot\left(\boldsymbol{b}_{J} \boldsymbol{c}_{J}^{*}\right)\right\|=n\left\|\boldsymbol{b}_{J}\right\|_{2}\left\|\boldsymbol{c}_{J}\right\|_{2}=n
$$

Compute the variance in two stages:

$$
\begin{aligned}
\mathbb{E}\left(\boldsymbol{S} \boldsymbol{S}^{*}\right) & =\sum_{j=1}^{n} n^{2}\left(\boldsymbol{b}_{j} \boldsymbol{c}_{j}^{*}\right)\left(\boldsymbol{b}_{j} \boldsymbol{c}_{j}^{*}\right)^{*} \mathbb{P}\{J=j\}=n \sum_{j=1}^{n}\left\|\boldsymbol{c}_{j}\right\|_{2}^{2} \boldsymbol{b}_{j} \boldsymbol{b}_{j}^{*} \\
& =n \boldsymbol{B} \boldsymbol{B}^{*} \\
\mathbb{E}\left(\boldsymbol{S}^{*} \boldsymbol{S}\right) & =n \boldsymbol{C} \boldsymbol{C}^{*} \\
\sigma^{2} & =\max \left\{\left\|\sum_{k=1}^{m} \mathbb{E}\left(\boldsymbol{S}_{k} \boldsymbol{S}_{k}^{*}\right)\right\|,\left\|\sum_{k=1}^{m} \mathbb{E}\left(\boldsymbol{S}_{k} \boldsymbol{S}_{k}^{*}\right)\right\|\right\} \\
& =\max \left\{\left\|m n \cdot \boldsymbol{B} \boldsymbol{B}^{*}\right\|,\left\|m n \cdot \boldsymbol{C} \boldsymbol{C}^{*}\right\|\right\} \\
& =\operatorname{mn} \cdot \max \left\{\|\boldsymbol{B}\|^{2},\|\boldsymbol{C}\|^{2}\right\}
\end{aligned}
$$

What the Bernstein Bound Says

Applying the Bernstein bound, we reach

$$
\begin{aligned}
\mathbb{E}\left\|\boldsymbol{Z}-\boldsymbol{B} \boldsymbol{C}^{*}\right\| & \leq \frac{2}{m} \mathbb{E}\left\|\sum_{k=1}^{m} \varepsilon_{k} \boldsymbol{S}_{k}\right\| \\
& \leq \frac{2}{m}\left[\sigma \sqrt{2 \log \left(d_{1}+d_{2}\right)}+\frac{1}{3} R \log \left(d_{1}+d_{2}\right)\right] \\
& =2 \sqrt{\frac{n \log \left(d_{1}+d_{2}\right)}{m}} \cdot \max \{\|\boldsymbol{B}\|,\|\boldsymbol{C}\|\}+\frac{2}{3} \cdot \frac{n \log \left(d_{1}+d_{2}\right)}{m}
\end{aligned}
$$

[Q] What can this possibly mean? Is this bound any good at all?

Detour: The Stable Rank

The stable rank of a matrix is defined as

$$
\operatorname{srank}(\boldsymbol{A}):=\frac{\|\boldsymbol{A}\|_{\mathrm{F}}^{2}}{\|\boldsymbol{A}\|^{2}}
$$

In general, $1 \leq \operatorname{srank}(\boldsymbol{A}) \leq \operatorname{rank}(\boldsymbol{A})$

When \boldsymbol{A} has either n rows or n columns, $1 \leq \operatorname{srank}(\boldsymbol{A}) \leq n$
Assume that \boldsymbol{A} has n unit-norm columns, so that $\|\boldsymbol{A}\|_{\mathrm{F}}^{2}=n$
When all columns of \boldsymbol{A} are the same, $\|\boldsymbol{A}\|^{2}=n$ and $\operatorname{srank}(\boldsymbol{A})=1$
When all columns of \boldsymbol{A} are orthogonal, $\|\boldsymbol{A}\|^{2}=1$ and $\operatorname{srank}(\boldsymbol{A})=n$

Randomized Matrix Multiply, Relative Error

Define the (geometric) mean stable rank of the factors to be

$$
s:=\sqrt{\operatorname{srank}(\boldsymbol{B}) \cdot \operatorname{srank}(\boldsymbol{C})}
$$

Converting the error bound to a relative scale, we obtain

$$
\frac{\mathbb{E}\left\|\boldsymbol{Z}-\boldsymbol{B} \boldsymbol{C}^{*}\right\|}{\|\boldsymbol{B}\|\|\boldsymbol{C}\|} \leq 2 \sqrt{\frac{s \log \left(d_{1}+d_{2}\right)}{m}}+\frac{2}{3} \cdot \frac{s \log \left(d_{1}+d_{2}\right)}{m}
$$

For relative error $\varepsilon \in(0,1)$, the number m of samples should be

$$
m \geq \text { Const } \cdot \varepsilon^{-2} \cdot s \log \left(d_{1}+d_{2}\right)
$$

The number of samples is proportional to the mean stable rank!
We also pay weakly for the dimension $d_{1} \times d_{2}$ of the product $\boldsymbol{B} \boldsymbol{C}^{*}$

More Things in Heaven \& Earth

[More Bounds for Eigenvalues] There are exponential tail bounds for maximum eigenvalues, minimum eigenvalues, and eigenvalues in between...
c. [More Exponential Bounds] There is a matrix Hoeffding inequality and a matrix Bennett inequality, plus matrix Chernoff and Bernstein for unbounded matrices...
[Matrix Martingales] There is a matrix Azuma inequality, a matrix bounded difference inequality, and a matrix Freedman inequality...
[Dependent Sums] Exponential tail bounds hold for some random matrices based on dependent random variables...
[Polynomial Bounds] There are matrix versions of the Rosenthal inequality, the Pinelis inequality, and the Burkholder-Davis-Gundy inequality...
([Intrinsic Dimension] The dimensional dependence can sometimes be weakened...
[The Proofs!] And the technical arguments are amazingly pretty...
[Refs] T 2011, Gittens-T 2011, Oliveira 2010, Mackey et al. 2012, ...

To learn more...

E-mail: jtropp@cms.caltech.edu

Web: http://users.cms.caltech.edu/~jtropp

Some papers:

. "User-friendly tail bounds for sums of random matrices," FOCM, 2011.
" "User-friendly tail bounds for matrix martingales." Caltech ACM Report 2011-01.
". "Freedman's inequality for matrix martingales," ECP, 2011.
. "A comparison principle for functions of a uniformly random subspace," PTRF, 2011.
"From the joint convexity of relative entropy to a concavity theorem of Lieb," PAMS, 2012.
ce "Improved analysis of the subsampled randomized Hadamard transform," AADA, 2011.
" "Tail bounds for all eigenvalues of a sum of random matrices" with A. Gittens. Submitted 2011.
" "The masked sample covariance estimator" with R. Chen and A. Gittens. I\&I, 2012.
ce "Matrix concentration inequalities..." with L. Mackey et al.. Submitted 2012.
se "User-Friendly Tools for Random Matrices: An Introduction." 2012.

See also...

Ahlswede and Winter, "Strong converse for identification via quantum channels," Trans. IT, 2002.
Oliveira, "Concentration of the adjacency matrix and of the Laplacian." Submitted 2010.
Vershynin, "Introduction to the non-asymptotic analysis of random matrices," 2011.
se Minsker, "Some extensions of Bernstein's inequality for self-adjoint operators," 2011.

