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Random Matrices in Statistics

§ Covariance estimation for the multivariate normal distribution

38 The Generalised Product Moment Distribution in Samples

We may simplify this expression by writing
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It is to be noted that | abc | is equal to «,'«,•»»' | rpqI. p. ? = li 2, 3.

This is the fundamental frequency distribution for the three variate case, and
in a later section the calculation of its moment coeflScients will be dealt with.

3. Multi-varvite Distribution. Use of Quadratic co-ordinates.

A comparison of equation (8) with the corresponding results (1) and (2) for
uni-variate and bi-variate sampling, respectively, indicates the form the general
result may be expected to take. In fact, we have for the simultaneous distribution
in random samples of the n variances (squared standard deviations) and the

— product moment coefficients the following expression:

dp =

A»... Ala
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•(9),

where Opq = SpSgVpg, and

I ••• dm

N A
', A being the determinant

\Pp<i\,p,q°l, 2,3, ...n,
and Ap, the minor of pm in A.

John Wishart

[Refs] Wishart, Biometrika 1928. Photo from apprendre-math.info.
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Random Matrices in Numerical Linear Algebra

§ Model for floating-point errors in LU decomposition

195I] NUMERICAL INVERTING OF MATRICES OF HIGH ORDER. II 191 

1~l/2 
(8.* 5) 4)(X) < - X Tr112 kn-3/2e-1/20,2 (8.5) < 

~~( 2T2)n8-112(r (n/2) ) 2 

With the help of (8.5) and the substitution 2-2, = X - 2o2rn we find 
that 

Prob (X > 2u-2rn) 

r0 oo 1/2 . o 

- U 40(X)dX < / j n-332e-X/2a2dX 
J?2rn - (2o-2) n1/2(r(n/2))2 20&2rn 

ir1 2e-rn r 

(P(nf/2))2 ,J O r(4 + rn) n-32dj 

(8.6) (rn) n-3I2e-rn7r1/2 J e (1 + An-3/2 

(r(n/2) )2 JO rn/ 

(rn) n-312e-rn7rl2 r e 2 

(F(n/2))2 J2 

(rn) n-3I2e-rnyrl/2 (rn) n-12e-rn7l/2 

(F(n/2))2(1 -((n - 3/2)/rn)) (r(n/2))2(r - 1)n 

Finally we recall with the help of Stirling's formula that 

/ /\2 7rnn-l 
(8.7) n2)) > en-22 (n = 1, 2,* 

now combining (8.6) and (8.7) we obtain our desired result: 

(rn) n- 1/2e-rn7rl /2en . 2n-2 

Prob (X > 2Cr2rn) < 

(8.8) 7rn-l(r -1)n 

- 
(er. 4(r - 1)(rrn)12 

We sum up in the following theorem: 

(8.9) The probability that the upper bound jA j of the matrix A 
of (8.1) exceeds 2.72o-n 12 is less than .027X2-n"n-12, that is, with 
probability greater than 99% the upper bound of A is less than 
2.72an 12 for n = 2, 3, * . 

This follows at once by taking r = 3.70. 

8.2 An estimate for the length of a vector. It is well known that 

(8.10) If a1, a2, * * *, an are independent random variables each of 
which is normally distributed with mean 0 and dispersion a2 and if 
I a| is the length of the vector a= (a,, a2, . , an), then 

John von Neumann

[Refs] von Neumann and Goldstine, Bull. AMS 1947 and Proc. AMS 1951. Photo c©IAS Archive.
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Random Matrices in Nuclear Physics

§ Model for the Hamiltonian of a heavy atom in a slow nuclear reaction

552 EUGENE P. WIGNER 

Multiplication with VW" and summation over X yields by means of (7) the well 
known equation 

(9a) (HV)>,/; = , XXv"\()X) 

Setting m = k = 0 herein and summing over all matrices of the set gives 

(9b) M1V =9 F' Zset (HV)oo -Av(Hv)oo . 
Av will denote the average of the succeeding expression over all matrices of 
the set. 

The M, will be calculated in the following section for a certain set of matrices 
in the limiting case that the dimension 2N + 1 of these matrices becomes in- 
finite. It will be shown, then, that S(x), which is a step function for every finite 
N, becomes a differentiable function and its derivative S'(x) = O-(x) will 
be called the strength function. In the last section, infinite sets of infinite 
matrices will be considered. However, all powers of these matrices will be defined 
and (HV)oo involves, for every P, only a finite part of the matrix. It will be seen 
that the definition of the average of this quantity for the infinite set of H does 
not involve any difficulty. However, a similar transition to a limiting case N -* 
co Will be carried out with this set as with the aforementioned set and this tran- 
sition will not be carried through in a rigorous manner in either case. 

The expression "strength function" originates from the fact that the absorp- 
tion of an energy level depends, under certain conditions, only on the square of a 
definite component of the corresponding characteristic vector. This component 
was taken, in (8), to be the 0 component. Hence S(x1) - S(x2) is the average 
strength of absorption by all energy levels in the (xI , x2) interval. 

Random sign symmetric matrix 
The matrices to be considered are 2N + 1 dimensional real symmetric matrices; 

N is a very large number. The diagonal elements of these matrices are zero, 
the non diagonal elements Vik = Vkit = ?v have all the same absolute value but 
random signs. There are = 2N(2N+l) such matrices. We shall calculate, after 
an introductory remark, the averages of (H')oo and hence the strength function 
S'(x) = a(x). This has, in the present case, a second interpretation: it also 
gives the density of the characteristic values of these matrices. This will be 
shown first. 

Let us consider one of the above matrices and choose a characteristic value 
X with characteristic vector 4/s6). Clearly, X will be a characteristic value also of 
all those matrices which are obtained from the chosen one by renumbering 
rows and columns. However, the components 41(i of the corresponding charac- 
teristic vectors will be all possible permutations of the components of the original 
matrix' characteristic vector. It follows that if we average (+p0)2 over the afore- 
mentioned matrices, the result will be independent of k. Because of the nor- 
malization condition (7), it will be equal to 1/(2N + 1). 

Let us denote now the average number of characteristic values of the matrices 

This content downloaded by the authorized user from 192.168.52.73 on Thu, 29 Nov 2012 18:29:16 PM
All use subject to JSTOR Terms and Conditions

Eugene Wigner

[Refs] Wigner, Ann. Math 1955. Photo from Nobel Foundation.
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Randomized Linear Algebra

Input: An m× n matrix A, a target rank k, an oversampling parameter p

Output: An m× (k + p) matrix Q with orthonormal columns

1. Draw an n× (k + p) random matrix Ω

2. Form the matrix product Y = AΩ

3. Construct an orthonormal basis Q for the range of Y

[Ref] Halko–Martinsson–T, SIAM Rev. 2011.
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Other Algorithmic Applications

§ Sparsification. Accelerate spectral calculation by randomly zeroing

entries in a matrix.

§ Subsampling. Accelerate construction of kernels by randomly

subsampling data.

§ Dimension Reduction. Accelerate nearest neighbor calculations by

random projection to a lower dimension.

§ Relaxation & Rounding. Approximate solution of maximization

problems with matrix variables.

[Refs] Achlioptas–McSherry 2001 and 2007, Spielman–Teng 2004; Williams–Seeger 2001, Drineas–Mahoney

2006, Gittens 2011; Indyk–Motwani 1998, Ailon–Chazelle 2006; Nemirovski 2007, So 2009...
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Random Matrices as Models

§ High-Dimensional Data Analysis. Random matrices are used to

model multivariate data.

§ Wireless Communications. Random matrices serve as models for

wireless channels.

§ Demixing Signals. Random model for incoherence when separating

two structured signals.

[Refs] Bühlmann and van de Geer 2011, Koltchinskii 2011; Tulino–Verdú 2004; McCoy–T 2011.
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Theoretical Applications

§ Algorithms. Smoothed analysis of Gaussian elimination.

§ Combinatorics. Random constructions of expander graphs.

§ High-Dimensional Geometry. Structure of random slices of convex

bodies.

§ Quantum Information Theory. (Counter)examples to conjectures

about quantum channel capacity.

[Refs] Sankar–Spielman–Teng 2006; Pinsker 1973; Gordon 1985; Hayden–Winter 2008, Hastings 2009.
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Random Matrices:.
My Way
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The Conventional Wisdom

“Random Matrices are Tough!”

[Refs] youtube.com/watch?v=NO0cvqT1tAE, most monographs on RMT.
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Principle A

“But...

In many applications, a random matrix can
be decomposed as a sum of independent
random matrices:

Z =
n∑
k=1

Sk
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Principle B

and

There are exponential concentration
inequalities for the spectral norm of a sum
of independent random matrices:

P {‖Z‖ ≥ t} ≤ exp( · · · )

!!!”
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Gaussian Series
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The Norm of a Matrix Gaussian Series

Theorem 1. [Oliveira 2010, T 2010] Suppose

§ B1,B2,B3, . . . are fixed matrices with dimension d1 × d2, and

§ γ1, γ2, γ3, . . . are independent standard normal RVs.

Define d := d1 + d2 and the variance parameter

σ2 := max
{∥∥∥∑

k
BkB

∗
k

∥∥∥ , ∥∥∥∑
k
B∗
kBk

∥∥∥} .
Then

P
{∥∥∥∑

k
γkBk

∥∥∥ ≥ t} ≤ d · e−t2/2σ2.
[Refs] Tomczak–Jaegerman 1974, Lust-Picquard 1986, Lust-Picquard–Pisier 1991, Rudelson 1999,

Buchholz 2001 and 2005, Oliveira 2010, T 2011. Notes: Cor. 4.2.1, page 33.
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The Norm of a Matrix Gaussian Series

Theorem 2. [Oliveira 2010, T 2010] Suppose

§ B1,B2,B3, . . . are fixed matrices with dimension d1 × d2, and

§ γ1, γ2, γ3, . . . are independent standard normal RVs.

Define d := d1 + d2 and the variance parameter

σ2 := max
{∥∥∥∑

k
BkB

∗
k

∥∥∥ , ∥∥∥∑
k
B∗
kBk

∥∥∥} .
Then

E
∥∥∥∑

k
γkBk

∥∥∥ ≤√2σ2 log d.

[Refs] Tomczak–Jaegerman 1974, Lust-Picquard 1986, Lust-Picquard–Pisier 1991, Rudelson 1999,

Buchholz 2001 and 2005, Oliveira 2010, T 2011. Notes: Cor. 4.2.1, page 33.

Joel A. Tropp, User-Friendly Tools for Random Matrices, NIPS, 3 December 2012 18



The Variance Parameter

§ Define the matrix Gaussian series Z =
∑n
k=1 γkBk

§ The variance parameter σ2(Z) derives from the “mean square of Z”

§ But a general matrix has two different squares!

E(ZZ∗) =

n∑
j=1

n∑
k=1

E(γjγk)BjB
∗
k =

n∑
k=1

BkB
∗
k

E(Z∗Z) =

n∑
j=1

n∑
k=1

E(γjγk)B∗
jBk =

n∑
k=1

B∗
kBk

§ Variance parameter σ2(Z) = max{‖E(ZZ∗)‖ , ‖E(Z∗Z)‖}.
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Schematic of Gaussian Series Tail Bound

0.2
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0.8

1.0
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Warmup: A Wigner Matrix

§ Let {γjk : 1 ≤ j < k ≤ n} be independent standard normal variables

§ A Gaussian Wigner matrix:

W =


0 γ12 γ13 . . . γ1n
γ12 0 γ23 . . . γ2n
γ13 γ23 0 γ3n

... ... . . . ...
γ1n γ2n . . . γn−1,n 0



§ Problem: What is E ‖W ‖?

Notes: §4.4.1, page 35.
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The Wigner Matrix, qua Gaussian Series

§ Express the Wigner matrix as a Gaussian series:

W =
∑

1≤j<k≤n

γjk(Ejk + Ekj)

§ The symbol Ejk denotes the n× n matrix unit

Ejk =

 1

 ← j

↑

k
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Norm Bound for the Wigner Matrix

§ Need to compute the variance parameter σ2(W )

§ Summands are symmetric, so both matrix squares are the same:∑
1≤j<k≤n

(Ejk + Ekj)
2 =

∑
1≤j<k≤n

(EjkEjk + EjkEkj + EkjEjk + EkjEkj)

=
∑

1≤j<k≤n

(0 + Ejj + Ekk + 0) = (n− 1) In

§ Thus, the variance σ2(W ) = ‖(n− 1) In‖ = n− 1.

§ Conclusion: E ‖W ‖ ≤
√

2(n− 1) log(2n)

§ Optimal: E ‖W ‖ ∼ 2
√
n

[Refs] Wigner 1955, Davidson–Szarek 2002, Tao 2012.
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Example: A Gaussian Toeplitz Matrix

§ Let {γk} be independent standard normal variables

§ An unsymmetric Gaussian Toeplitz matrix:

T =


γ0 γ1 . . . γn−1

γ−1 γ0 γ1
γ−1 γ0 γ1

...
... . . . . . . . . .

γ−1 γ0 γ1
γ−(n−1) . . . γ−1 γ0



§ Problem: What is E ‖T ‖?

Notes: §4.6, page 38.
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The Toeplitz Matrix, qua Gaussian Series

§ Express the unsymmetric Toeplitz matrix as a Gaussian series:

T = γ0 I +

n−1∑
k=1

γkS
k +

n−1∑
k=1

γ−k(S
k)∗

§ The matrix S is the shift-up operator on n-dimensional column vectors:

S =


0 1

0 1
. . . . . .

0 1
0

 .
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Variance Calculation for the Toeplitz Matrix

§ Note that

(Sk)(Sk)∗ =

n−k∑
j=1

Ejj and (Sk)∗(Sk) =

n∑
j=k+1

Ejj.

§ Both sums of squares take the form

I2 +

n−1∑
k=1

(Sk)(Sk)∗ +

n−1∑
k=1

(Sk)∗(Sk)

= I +

n−1∑
k=1

n−k∑
j=1

Ejj +

n∑
j=k+1

Ejj

 =

n∑
j=1

[
1 +

n−j∑
k=1

1 +

j−1∑
k=1

1

]
Ejj

=

n∑
j=1

(1 + (n− j) + (j − 1))Ejj = n In.
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Norm Bound for the Toeplitz Matrix

§ The variance parameter σ2(T ) = ‖n In‖ = n

§ Conclusion: E ‖T ‖ ≤
√
2n log(2n)

§ Optimal: E ‖T ‖ ∼ const ·
√
2n log n

§ The optimal constant is at least 0.8288...

[Refs] Bryc–Dembo–Jiang 2006, Meckes 2007, Sen–Virág 2011, T 2011.
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The Norm of a Matrix Rademacher Series

Theorem 3. [Oliveira 2010, T 2010] Suppose

§ B1,B2,B3, . . . are fixed matrices with dimension d1 × d2, and

§ ε1, ε2, ε3, . . . are independent Rademacher RVs.

Then

P
{∥∥∥∑

k
εkBk

∥∥∥ ≥ t} ≤ d · e−t2/2σ2
where d := d1 + d2 and the variance parameter

σ2 := max
{∥∥∥∑

k
BkB

∗
k

∥∥∥ , ∥∥∥∑
k
B∗
kBk

∥∥∥} .
[Refs] Tomczak–Jaegerman 1974, Lust-Picquard 1986, Lust-Picquard–Pisier 1991, Rudelson 1999,

Buchholz 2001 and 2005, Oliveira 2010, T 2011. Notes: Cor. 4.2.1, page 33.
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The Norm of a Matrix Rademacher Series

Theorem 4. [Oliveira 2010, T 2010] Suppose

§ B1,B2,B3, . . . are fixed matrices with dimension d1 × d2, and

§ ε1, ε2, ε3, . . . are independent Rademacher RVs.

Then

E
∥∥∥∑

k
εkBk

∥∥∥ ≤√2σ2 log d

where d := d1 + d2 and the variance parameter

σ2 := max
{∥∥∥∑

k
BkB

∗
k

∥∥∥ , ∥∥∥∑
k
B∗
kBk

∥∥∥} .
[Refs] Tomczak–Jaegerman 1974, Lust-Picquard 1986, Lust-Picquard–Pisier 1991, Rudelson 1999,

Buchholz 2001 and 2005, Oliveira 2010, T 2011. Notes: Cor. 4.2.1, page 33.
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Example: Modulation by Random Signs

Fixed matrix, in captivity:

C =


c11 c12 c13 . . .
c21 c22 c23 . . .
c31 c32 c33 . . .

... ... ... . . .


d1×d2

Random matrix, formed by randomly flipping the signs of the entries:

Z =


ε11 c11 ε12 c12 ε13 c13 . . .
ε21 c21 ε22 c22 ε23 c23 . . .
ε31 c31 ε32 c32 ε33 c33 . . .

... ... ... . . .


d1×d2

Problem: What is E ‖Z‖?

Notes: §4.5, page 37.
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The Random Matrix, qua Rademacher Series

§ Express the random matrix as a Gaussian series:

Z =


ε11 c11 ε12 c12 ε13 c13 . . .
ε21 c21 ε22 c22 ε23 c23 . . .
ε31 c31 ε32 c32 ε33 c33 . . .

... ... ... . . .


d1×d2

=
∑

jk
εjk cjkEjk
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Variance of the Randomly Signed Matrix

The first term in the matrix variance σ2 satisfies∥∥∥∑
jk
(cjkEjk)(cjkEjk)

∗
∥∥∥ =

∥∥∥∑
jk
|cjk|2 EjkEkj

∥∥∥
=
∥∥∥∑

j

(∑
k
|cjk|2

)
Ejj

∥∥∥
=

∥∥∥∥∥∥
∑k |c1k|

2 ∑
k |c2k|

2

. . .

∥∥∥∥∥∥
= maxj

∑
k
|cjk|2

The same argument applies to the second term. Thus,

σ2 = max
{
maxj

∑
k
|cjk|2, maxk

∑
j
|cjk|2

}
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Comparison with the Literature

Consider the randomly signed matrix Z = [εjk cjk]. Define

σ2(Z) = max
{
maxj

∑
k
|cjk|2, maxk

∑
j
|cjk|2

}
[T 2010], obtained via matrix Rademacher bound:

E ‖Z‖ ≤
√

2 log d · σ

[Seginer 2000], obtained with path-counting arguments:

E ‖Z‖ ≤ const · 4
√
log d · σ

[Lata la 2005], obtained with chaining arguments:

E ‖Z‖ ≤ const ·
[
σ + 4

√∑
jk
|cjk|4

]
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The Matrix Chernoff Bound

Theorem 5. [T 2010] Suppose

§ X1,X2,X3, . . . are random psd matrices with dimension d, and

§ λmax(Xk) ≤ R for each k.

Then

P
{
λmin

(∑
k
Xk

)
≤ (1− t) · µmin

}
≤ d ·

[
e−t

(1− t)1−t

]µmin/R

P
{
λmax

(∑
k
Xk

)
≥ (1 + t) · µmax

}
≤ d ·

[
et

(1 + t)1+t

]µmax/R

where µmin := λmin (
∑
k EXk) and µmax := λmax (

∑
k EXk).

[Refs] Ahlswede–Winter 2002, T 2011. Notes: Thm. 5.1.1, page 48.
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The Matrix Chernoff Bound

Theorem 6. [T 2010] Suppose

§ X1,X2,X3, . . . are random psd matrices with dimension d, and

§ λmax(Xk) ≤ R for each k.

Then

Eλmin

(∑
k
Xk

)
≥ 0.6µmin −R log d

Eλmax

(∑
k
Xk

)
≤ 1.8µmax +R log d

.

where µmin := λmin (
∑
k EXk) and µmax := λmax (

∑
k EXk).

[Refs] Ahlswede–Winter 2002, T 2011. Notes: Thm. 5.1.1, page 48.
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Example: Random Submatrices

Fixed matrix, in captivity:

C =

 | | | | |
c1 c2 c3 c4 . . . cn
| | | | |


d×n

Random matrix, formed by picking random columns:

Z =

 | | |
c2 c3 . . . cn
| | |


d×n

↑ ↑ ↑

Problem: What is the expectation of σ1(Z)? What about σd(Z)?

Notes: §5.2.1, page 49.
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Model for Random Submatrix

§ Let C be a fixed d× n matrix with columns c1, . . . , cn

§ Let δ1, . . . , δn be independent 0–1 random variables with mean s/n

§ Define ∆ = diag(δ1, . . . , δn)

§ Form a random submatrix Z by turning off columns from C

Z = C∆ =

 | | |
c1 c2 . . . cn
| | |


d×n


δ1

δ2
. . .

δn


n×n

§ Note that Z typically contains about s nonzero columns
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The Random Submatrix, qua PSD Sum

§ The largest and smallest singular values of Z satisfy

σ1(Z)2 = λmax(ZZ∗)

σd(Z)2 = λmin(ZZ∗)

§ Define the psd matrix Y = ZZ∗, and observe that

Y = ZZ∗ = C∆2C∗ = C∆C∗ =
∑n

k=1
δk ckc

∗
k

§ We have expressed Y as a sum of independent psd random matrices

Joel A. Tropp, User-Friendly Tools for Random Matrices, NIPS, 3 December 2012 40



Preparing to Apply the Chernoff Bound

§ Consider the random matrix

Y =
∑

k
δk ckc

∗
k

§ The maximal eigenvalue of each summand is bounded as

R = maxk λmax(δk ckc
∗
k) ≤ maxk ‖ck‖2

§ The expectation of the random matrix Y is

E(Y ) =
s

n

∑n

k=1
ckc

∗
k =

s

n
CC∗

§ The mean parameters satisfy

µmax = λmax(EY ) =
s

n
σ1(C)2 and µmin = λmin(EY ) =

s

n
σd(C)2
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What the Chernoff Bound Says

Applying the Chernoff bound, we reach

E
[
σ1(Z)2

]
= Eλmax(Y ) ≤ 1.8 · s

n
σ1(C)2 +maxk ‖ck‖22 · log d

E
[
σd(Z)2

]
= Eλmin(Y ) ≥ 0.6 · s

n
σd(C)2 −maxk ‖ck‖22 · log d

§ Matrix C has n columns; the random submatrix Z includes about s

§ The singular value σi(Z)2 inherits an s/n share of σi(C)2 for i = 1, d

§ Additive correction reflects number d of rows of C, max column norm

§ [Gittens–T 2011] Remaining singular values have similar behavior
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Key Example: Unit-Norm Tight Frame

§ A d× n unit-norm tight frame C satisfies

CC∗ =
n

d
Id and ‖ck‖22 = 1 for k = 1, 2, . . . , n

§ Specializing the inequalities from the previous slide...

E
[
σ1(Z)2

]
≤ 1.8 · s

d
+ log d

E
[
σd(Z)2

]
≥ 0.6 · s

d
− log d

§ Choose s ≥ 1.67 d log d columns for a nontrivial lower bound

§ Sharp condition s > d log d also follows from matrix Chernoff bound

[Refs] Rudelson 1999, Rudelson–Vershynin 2007, T 2008, Gittens–T 2011, T 2011, Chrétien–Darses 2012.
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.

Matrix.
Bernstein Inequality
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The Matrix Bernstein Inequality

Theorem 7. [Oliveira 2010, T 2010] Suppose

§ S1,S2,S3, . . . are indep. random matrices with dimension d1 × d2,

§ ESk = 0 for each k, and

§ ‖Sk‖ ≤ R for each k.

Then

P
{∥∥∥∑

k
Sk

∥∥∥ ≥ t} ≤ d · exp{ −t2/2
σ2 +Rt/3

}
.

where d := d1 + d2 and the variance parameter

σ2 := max
{∥∥∥∑

k
E(SkS∗

k)
∥∥∥ , ∥∥∥∑

k
E(S∗

kSk)
∥∥∥}

[Refs] Gross 2010, Recht 2011, Oliveira 2010, T 2011. Notes: Cor. 6.2.1, page 64.
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The Matrix Bernstein Inequality

Theorem 8. [Oliveira 2010, T 2010] Suppose

§ S1,S2,S3, . . . are indep. random matrices with dimension d1 × d2,

§ ESk = 0 for each k, and

§ ‖Sk‖ ≤ R for each k.

Then
E
∥∥∥∑

k
Sk

∥∥∥ ≤√2σ2 log d+ 1
3R log d

.

where d := d1 + d2 and the variance parameter

σ2 := max
{∥∥∥∑

k
E(SkS∗

k)
∥∥∥ , ∥∥∥∑

k
E(S∗

kSk)
∥∥∥}

[Refs] Gross 2010, Recht 2011, Oliveira 2010, T 2011. Notes: Cor. 6.2.1, page 64.
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Example: Randomized Matrix Multiplication

Product of two matrices, in captivity:

BC∗ =

 | | | | |
b1 b2 b3 b4 . . . bn
| | | | |


d1×n


— c∗1 —
— c∗2 —
— c∗3 —
— c∗4 —

...
— c∗n —


n×d2

[Idea] Approximate multiplication by random sampling

[Refs] Drineas–Mahoney–Kannan 2004, Magen–Zouzias 2010, Magdon-Ismail 2010, Hsu–Kakade–Zhang

2011 and 2012.
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A Sampling Model for Tutorial Purposes

§ Assume

‖bj‖2 = 1 and ‖cj‖2 = 1 for j = 1, 2, . . . , n

§ Construct a random variable S whose value is a d1 × d2 matrix:

§ Draw J ∼ uniform{1, 2, . . . , n}
§ Set S = n · bJc∗J

§ The random matrix S is an unbiased estimator of the product BC∗

ES =
∑n

j=1
(n · bjc∗j) · P {J = j} =

∑n

j=1
bjc

∗
j = BC∗

§ Approximate BC∗ by averaging m independent copies of S

Z =
1

m

∑m

k=1
Sk ≈ BC∗

Notes: §6.4, page 67.
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Preparing to Apply the Bernstein Bound I

§ Let Sk be independent copies of S, and consider the average

Z =
1

m

∑m

k=1
Sk

§ We study the typical approximation error

E ‖Z −BC∗‖ = 1

m
· E
∥∥∥∑m

k=1
(Sk −BC∗)

∥∥∥
§ The summands are independent and ESk = BC∗, so we symmetrize:

E ‖Z −BC∗‖ ≤ 2

m
· E
∥∥∥∑m

k=1
εkSk

∥∥∥
where {εk} are independent Rademacher RVs, independent from {Sk}
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Preparing to Apply the Bernstein Bound II

§ The norm of each summand satisfies the uniform bound

R = ‖εS‖ = ‖S‖ = ‖n · (bJc∗J)‖ = n ‖bJ‖2 ‖cJ‖2 = n

§ Compute the variance in two stages:

E(SS∗) =
∑n

j=1
n2(bjc

∗
j)(bjc

∗
j)

∗ P {J = j} = n
∑n

j=1
‖cj‖22 bjb

∗
j

= nBB∗

E(S∗S) = nCC∗

σ2 = max
{∥∥∥∑m

k=1
E(SkS∗

k)
∥∥∥ , ∥∥∥∑m

k=1
E(SkS∗

k)
∥∥∥}

= max {‖mn ·BB∗‖ , ‖mn ·CC∗‖}

= mn ·max{‖B‖2 , ‖C‖2}
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What the Bernstein Bound Says

Applying the Bernstein bound, we reach

E ‖Z −BC∗‖ ≤ 2

m
E
∥∥∥∑m

k=1
εkSk

∥∥∥
≤ 2

m

[
σ
√
2 log(d1 + d2) +

1
3R log(d1 + d2)

]
= 2

√
n log(d1 + d2)

m
·max{‖B‖ , ‖C‖}+ 2

3
· n log(d1 + d2)

m

[Q] What can this possibly mean? Is this bound any good at all?
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Detour: The Stable Rank

§ The stable rank of a matrix is defined as

srank(A) :=
‖A‖2F
‖A‖2

§ In general, 1 ≤ srank(A) ≤ rank(A)

§ When A has either n rows or n columns, 1 ≤ srank(A) ≤ n

§ Assume that A has n unit-norm columns, so that ‖A‖2F = n

§ When all columns of A are the same, ‖A‖2 = n and srank(A) = 1

§ When all columns of A are orthogonal, ‖A‖2 = 1 and srank(A) = n
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Randomized Matrix Multiply, Relative Error

§ Define the (geometric) mean stable rank of the factors to be

s :=
√

srank(B) · srank(C).

§ Converting the error bound to a relative scale, we obtain

E ‖Z −BC∗‖
‖B‖ ‖C‖

≤ 2

√
s log(d1 + d2)

m
+

2

3
· s log(d1 + d2)

m

§ For relative error ε ∈ (0, 1), the number m of samples should be

m ≥ Const · ε−2 · s log(d1 + d2)

§ The number of samples is proportional to the mean stable rank!

§ We also pay weakly for the dimension d1 × d2 of the product BC∗
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More Things in Heaven & Earth

§ [More Bounds for Eigenvalues] There are exponential tail bounds for maximum

eigenvalues, minimum eigenvalues, and eigenvalues in between...

§ [More Exponential Bounds] There is a matrix Hoeffding inequality and a matrix

Bennett inequality, plus matrix Chernoff and Bernstein for unbounded matrices...

§ [Matrix Martingales] There is a matrix Azuma inequality, a matrix bounded

difference inequality, and a matrix Freedman inequality...

§ [Dependent Sums] Exponential tail bounds hold for some random matrices based on

dependent random variables...

§ [Polynomial Bounds] There are matrix versions of the Rosenthal inequality, the

Pinelis inequality, and the Burkholder–Davis–Gundy inequality...

§ [Intrinsic Dimension] The dimensional dependence can sometimes be weakened...

§ [The Proofs!] And the technical arguments are amazingly pretty...

[Refs] T 2011, Gittens–T 2011, Oliveira 2010, Mackey et al. 2012, ...

Joel A. Tropp, User-Friendly Tools for Random Matrices, NIPS, 3 December 2012 54



To learn more...

E-mail: jtropp@cms.caltech.edu

Web: http://users.cms.caltech.edu/~jtropp

Some papers:

§ “User-friendly tail bounds for sums of random matrices,” FOCM, 2011.
§ “User-friendly tail bounds for matrix martingales.” Caltech ACM Report 2011-01.
§ “Freedman’s inequality for matrix martingales,” ECP, 2011.
§ “A comparison principle for functions of a uniformly random subspace,” PTRF, 2011.
§ “From the joint convexity of relative entropy to a concavity theorem of Lieb,” PAMS, 2012.

§ “Improved analysis of the subsampled randomized Hadamard transform,” AADA, 2011.
§ “Tail bounds for all eigenvalues of a sum of random matrices” with A. Gittens. Submitted 2011.
§ “The masked sample covariance estimator” with R. Chen and A. Gittens. I&I, 2012.
§ “Matrix concentration inequalities...” with L. Mackey et al.. Submitted 2012.
§ “User-Friendly Tools for Random Matrices: An Introduction.” 2012.

See also...

§ Ahlswede and Winter, “Strong converse for identification via quantum channels,” Trans. IT, 2002.
§ Oliveira, “Concentration of the adjacency matrix and of the Laplacian.” Submitted 2010.
§ Vershynin, “Introduction to the non-asymptotic analysis of random matrices,” 2011.
§ Minsker, “Some extensions of Bernstein’s inequality for self-adjoint operators,” 2011.
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