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Abstract

Several important applications, such as streaming PCA and semidefinite program-
ming, involve a large-scale positive-semidefinite (psd) matrix that is presented as a
sequence of linear updates. Because of storage limitations, it may only be possible
to retain a sketch of the psd matrix. This paper develops a new algorithm for
fixed-rank psd approximation from a sketch. The approach combines the Nyström
approximation with a novel mechanism for rank truncation. Theoretical analysis
establishes that the proposed method can achieve any prescribed relative error in
the Schatten 1-norm and that it exploits the spectral decay of the input matrix. Com-
puter experiments show that the proposed method dominates alternative techniques
for fixed-rank psd matrix approximation across a wide range of examples.

1 Motivation

In recent years, researchers have studied many applications where a large positive-semidefinite (psd)
matrix is presented as a series of linear updates. A recurring theme is that we only have space to store
a small summary of the psd matrix, and we must use this information to construct an accurate psd
approximation with specified rank. Here are two important cases where this problem arises.

Streaming Covariance Estimation. Suppose that we receive a stream h1,h2,h3, · · · ∈ Rn of
high-dimensional vectors. The psd sample covariance matrix of these vectors has the linear dynamics

A(0) ← 0 and A(i) ← (1− i−1)A(i−1) + i−1hih
∗
i .

When the dimension n and the number of vectors are both large, it is not possible to store the vectors
or the sample covariance matrix. Instead, we wish to maintain a small summary that allows us to
compute the rank-r psd approximation of the sample covariance matrix A(i) at a specified instant i.
This problem and its variants are often called streaming PCA [4, 13, 15, 16, 25, 32].

Convex Low-Rank Matrix Optimization with Optimal Storage. A primary application of
semidefinite programming (SDP) is to search for a rank-r psd matrix that satisfies additional con-
straints. Because of storage costs, SDPs are difficult to solve when the matrix variable is large.
Recently, Yurtsever et al. [42] exhibited the first provable algorithm, called SketchyCGM, that
produces a rank-r approximate solution to an SDP using optimal storage.

Implicitly, SketchyCGM forms a sequence of approximate psd solutions to the SDP via the iteration

A(0) ← 0 and A(i) ← (1− ηi)A(i−1) + ηihih
∗
i .

The step size ηi = 2/(i + 2), and the vectors hi do not depend on the matrices A(i). In fact,
SketchyCGM only maintains a small summary of the evolving solution A(i). When the iteration
terminates, SketchyCGM computes a rank-r psd approximation of the final iterate using the method
described by Tropp et al. [36, Alg. 9].

Date: 18 May 2017

jtropp@caltech.edu
alp.yurtsever@epfl.ch
mru8@cornell.edu
volkan.cevher@epfl.ch


1.1 Notation and Background

The scalar field F = R or F = C. Define α(R) = 1 and α(C) = 0. The asterisk ∗ is the (conjugate)
transpose, and the dagger † denotes the Moore–Penrose pseudoinverse. The notation A1/2 refers to
the unique psd square root of a psd matrix A. For p ∈ [1,∞], the Schatten p-norm ‖ · ‖p returns the
`p norm of the singular values of a matrix. As usual, σr refers to the rth largest singular value.

For a nonnegative integer r, the phrase “rank-r” and its variants mean “rank at most r.” For a
matrix M , the symbol JMKr denotes a (simultaneous) best rank-r approximation of the matrix
M with respect to any Schatten p-norm. We can take JMKr to be any r-truncated singular value
decomposition (SVD) of M [24, Sec. 6]. Every best rank-r approximation of a psd matrix is psd.

2 Sketching and Fixed-Rank PSD Approximation

We begin with a streaming data model for a psd matrix that evolves via a sequence of general
linear updates, and it describes a randomized linear sketch for tracking the psd matrix. To compute
a fixed-rank psd approximation, we develop an algorithm based on the Nyström method [38], a
technique from the literature on kernel methods. In contrast to previous approaches, our algorithm
uses a distinct mechanism to truncate the rank of the approximation.

The Streaming Model. Fix a rank parameter r in the range 1 ≤ r ≤ n. Initially, the psd matrix
A ∈ Fn×n equals a known psd matrix Ainit ∈ Fn×n. Then A evolves via a series of linear updates:

A← θ1A + θ2H where θi ∈ R, H ∈ Fn×n is (conjugate) symmetric. (2.1)

In many applications, the innovation H is low-rank and/or sparse. We assume that the evolving matrix
A always remains psd. At one given instant, we must produce an accurate rank-r approximation of
the psd matrix A induced by the stream of linear updates.

The Sketch. Fix a sketch size parameter k in the range r ≤ k ≤ n. Independent from A, we draw
and fix a random test matrix

Ω ∈ Fn×k. (2.2)
See Sec. 3 for a discussion of possible distributions. The sketch of the matrix A takes the form

Y = AΩ ∈ Fn×k. (2.3)

The sketch (2.3) supports updates of the form (2.1):

Y ← θ1Y + θ2HΩ. (2.4)

To find a good rank-r approximation, we must set the sketch size k larger than r. But storage costs
and computation also increase with k. One of our main contributions is to clarify the role of k.

Under the model (2.1), it is more or less necessary to use a randomized linear sketch to track A [28].
For psd matrices, sketches of the form (2.2)–(2.3) appear explicitly in Gittens’s work [17, 18, 20].
Tropp et al. [36] relies on a more complicated sketch developed in [8, 40].

The Nyström Approximation. The Nyström method is a general technique for low-rank psd matrix
approximation. Various instantiations appear in the papers [6, 12, 14, 17, 18, 20, 23, 27, 34, 38].

Here is the application to the present situation. Given the test matrix Ω and the sketch Y = AΩ, the
Nyström method constructs a rank-k psd approximation of the psd matrix A via the formula

Ânys = Y (Ω∗Y )†Y ∗. (2.5)

In most work on the Nyström method, the test matrix Ω depends adaptively on A, so these approaches
are not valid in the streaming setting. Gittens’s framework [17, 18, 20] covers the streaming case.

Fixed-Rank Nyström Approximation: Prior Art. To construct a Nyström approximation with
exact rank r from a sketch of size k, the standard approach is to truncate the center matrix to rank r:

Ânysfix
r = Y (JΩ∗Y Kr)†Y ∗. (2.6)

The truncated Nyström approximation (2.6) appears in the many papers, including [6, 12, 19, 34].
We have found (Sec. 5) that the truncation method (2.6) performs poorly in the present setting. This
observation motivated us to search for more effective techniques.
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Fixed-Rank Nyström Approximation: Proposal. The purpose of this paper is to develop, analyze,
and evaluate a new approach for fixed-rank approximation of a psd matrix under the streaming model.
We propose a more intuitive rank-r approximation:

Âr = JÂnysKr. (2.7)

That is, we report a best rank-r approximation of the full Nyström approximation (2.5).

This “matrix nearness” approach to fixed-rank approximation appears in the papers [22, 23, 36]. The
combination with the Nyström method (2.5) seems totally natural. Even so, we were unable to find a
reference after an exhaustive literature search and inquiries to experts on this subject.

Summary of Contributions. This paper contains a number of advances over the prior art:

1. We propose a distinct technique (2.7) for truncating the Nyström approximation to rank r.
This formulation differs from earlier work on fixed-rank Nyström approximations.

2. We present a stable numerical implementation of (2.7) based on the best practices outlined
in the paper [27]. This approach is essential for achieving high precision! (Sec. 3)

3. We establish informative error bounds for the method (2.7). In particular, we prove that it
attains (1 + ε)-relative error in the Schatten 1-norm when k = Θ(r/ε). (Sec. 4)

4. We document numerical experiments on real and synthetic data to demonstrate that our
method dominates existing techniques [19, 36] for fixed-rank psd approximation. (Sec. 5)

Psd matrix approximation is a ubiquitous problem, so we expect these results to have a broad impact.

Related Work. Randomized algorithms for low-rank matrix approximation were proposed in the
late 1990s and developed into a technology in the 2000s; see [23, 30, 39] for more background. In the
absence of constraints, such as streaming, we recommend the general-purpose methods from [23, 27].

Algorithms for low-rank matrix approximation in the important streaming data setting are discussed
in [5, 8, 9, 16, 23, 36, 39, 40]. Few of these methods are designed for psd matrices.

Nyström methods for low-rank psd matrix approximation appear in [12, 14, 17, 18, 20, 23, 26, 34,
36, 38, 41]. These works mostly concern kernel matrices; they do not focus on the streaming model.

We are only aware of a few papers [17, 18, 20, 36] on algorithms for psd matrix approximation
that operate under the streaming model (2.1). These papers form the comparison group.

Finally, let us mention two very recent theoretical papers [7, 33] that present existential results on
algorithms for fixed-rank psd matrix approximation. The approach in [7] is only appropriate for
sparse input matrices, while the work [33] is not valid in the streaming setting.

3 Implementation

Distributions for the Test Matrix. To ensure that the sketch is informative, we must draw the test
matrix (2.2) at random from a suitable distribution. The choice of distribution determines the computa-
tional requirements for the sketch (2.3), the linear updates (2.4), and the matrix approximation (2.7). It
also affects the quality of the approximation (2.7). Let us outline some of the most useful distributions.
An exhaustive discussion is outside the scope of our work, but see [18, 20, 23, 29, 30, 36, 39].

Isotropic Models. Mathematically, the most natural model is to construct a test matrix Ω ∈ Fn×k
whose range is a uniformly random k-dimensional subspace in Fn. There are two approaches:

1. Gaussian. Draw each entry of the matrix Ω ∈ Fn×k independently at random from the
standard normal distribution on F.

2. Orthonormal. Draw a Gaussian matrix G ∈ Fn×k, as above. Compute a thin orthogonal–
triangular factorization G = ΩR to obtain the test matrix Ω ∈ Fn×k. Discard R.

Gaussian and orthonormal test matrices both require storage of kn floating-point numbers in F for
the test matrix Ω and another kn floating-point numbers for the sketch Y . In both cases, the cost of
multiplying a vector in Fn into Ω is Θ(kn) floating-point operations.

For isotropic models, we can analyze the approximation (2.7) in detail. In exact arithmetic, Gaussian
and isotropic test matrices yield identical Nyström approximations (Proposition A.2). In floating-point
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Algorithm 1 Sketch Initialization. Implements (2.2)–(2.3) with a random orthonormal test matrix.

Input: Positive-semidefinite input matrix A ∈ Fn×n; sketch size parameter k
Output: Constructs test matrix Ω ∈ Fn×k and sketch Y = AΩ ∈ Fn×k

1 local: Ω,Y . Internal variables for NYSTROMSKETCH
2 function NYSTROMSKETCH(A; k) . Constructor
3 if F = R then
4 Ω← randn(n, k)

5 if F = C then
6 Ω← randn(n, k) + i ∗ randn(n, k)

7 Ω← orth(Ω) . Improve numerical stability
8 Y ← AΩ

Algorithm 2 Linear Update. Implements (2.4).

Input: Scalars θ1, θ2 ∈ R and conjugate symmetric H ∈ Fn×n
Output: Updates sketch to reflect linear innovation A← θ1A + θ2H

1 local: Ω,Y . Internal variables for NYSTROMSKETCH
2 function LINEARUPDATE(θ1, θ2,H)
3 Y ← θ1Y + θ2HΩ

arithmetic, orthonormal matrices are more stable for large k, but we can generate Gaussian matrices
with less arithmetic and communication. References for isotropic test matrices include [22, 23, 31].

Subsampled Scrambled Fourier Transform (SSFT). One shortcoming of the isotropic models is
the cost of storing the test matrix and the cost of multiplying a vector into the test matrix. We can
often reduce these costs using an SSFT test matrix. An SSFT takes the form

Ω = Π1FΠ2FR ∈ Fn×k. (3.1)

The Πi ∈ Fn×n are independent, signed permutation matrices,1 chosen uniformly at random. The
matrix F ∈ Fn×n is a discrete Fourier transform (F = C) or a discrete cosine transform (F = R).
The matrix R ∈ Fn×k is a restriction to k coordinates, chosen uniformly at random.

An SSFT Ω requires only Θ(n) storage, but the sketch Y still requires storage of kn numbers.
We can multiply a vector in Fn into Ω using Θ(n log n) arithmetic operations via an FFT or FCT
algorithm. Thus, for most choices of sketch size k, the SSFT improves over the isotropic models.

In practice, the SSFT yields matrix approximations whose quality is identical to those we obtain with
an isotropic test matrix (Sec. 5). Although the analysis for SSFTs is less complete, the empirical
evidence confirms that the theory for isotropic models also offers excellent guidance for SSFTs.
References for SSFTs and related test matrices include [1, 3, 10, 23, 29, 35, 40].

Numerically Stable Implementation. It requires care to compute the fixed-rank approximation (2.7).
App. B shows that a poor implementation may produce an approximation with 100% error!

Let us outline a numerically stable and very accurate implementation of (2.7), based on an idea
from [27, 37]. Fix a small parameter ν > 0. Instead of approximating the psd matrix A directly, we
approximate the shifted matrix Aν = A + νI and then remove the shift. Here are the steps:

1. Construct the shifted sketch Yν = Y + νΩ.
2. Form the matrix B = Ω∗Yν .
3. Compute a Cholesky decomposition B = CC∗.
4. Compute E = YνC

−1 by back-substitution.
5. Compute the (thin) singular value decomposition E = UΣV ∗.
6. Form Âr = UJΣ2 − νIKrU∗.

The pseudocode addresses some additional implementation details. Related, but distinct, methods
were proposed by Williams & Seeger [38] and analyzed in Gittens’s thesis [18].

1A signed permutation has exactly one nonzero entry in each row and column; the nonzero has modulus one.
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Algorithm 3 Fixed-Rank PSD Approximation. Implements (2.7).

Input: Matrix A in sketch must be psd; rank parameter 1 ≤ r ≤ k
Output: Returns factors U ∈ Fn×r with orthonormal columns and nonnegative, diagonal Λ ∈ Fr×r

that form a rank-r psd approximation Âr = UΛU∗ of the sketched matrix A

1 local: Ω,Y . Internal variables for NYSTROMSKETCH
2 function FIXEDRANKPSDAPPROX(r)
3 ν ← µ norm(Y ) . µ = 2.2 · 10−16 in double precision
4 Y ← Y + νΩ . Sketch of shifted matrix A + νI
5 B ← Ω∗Y
6 C ← chol((B + B∗)/2) . Force symmetry
7 (U ,Σ,∼)← svd(Y /C, ’econ’) . Solve least squares problem; form thin SVD
8 U ← U(:, 1:r) and Σ← Σ(1:r, 1:r) . Truncate to rank r
9 Λ← max{0,Σ2 − νI} . Square to get eigenvalues; remove shift

10 return (U ,Λ)

Pseudocode. We present detailed pseudocode for the sketch (2.2)–(2.4) and the implementation of
the fixed-rank psd approximation (2.7) described above. For simplicity, we only elaborate the case of
a random orthonormal test matrix; we have also developed an SSFT implementation for empirical
testing. The pseudocode uses both mathematical notation and MATLAB 2017A functions.

Algorithms and Computational Costs. Algorithm 1 constructs a random orthonormal test matrix,
and computes the sketch (2.3) of an input matrix. The test matrix and sketch require the storage of
2kn floating-point numbers. Owing to the orthogonalization step, the construction of the test matrix
requires Θ(k2n) floating-point operations. For a general input matrix, the sketch requires Θ(kn2)
floating-point operations; this cost can be removed by initializing the input matrix to zero.

Algorithm 2 implements the linear update (2.4) to the sketch. Nominally, the computation requires
Θ(kn2) arithmetic operations, but this cost can be reduced when H has structure (e.g., low rank).
Using the SSFT test matrix (3.1) also reduces this cost.

Algorithm 3 computes the rank-r psd approximation (2.7). This method requires additional storage of
Θ(kn). The arithmetic cost is Θ(k2n) operations, which is dominated by the SVD of the matrix E.

4 Theoretical Results

Relative Error Bound. Our first result is an accurate bound for the expected Schatten 1-norm error
in the fixed-rank psd approximation (2.7).
Theorem 4.1 (Fixed-Rank Nyström: Relative Error). Assume 1 ≤ r < k ≤ n. Let A ∈ Fn×n be a
psd matrix. Draw a test matrix Ω ∈ Fn×k from the Gaussian or orthonormal distribution, and form
the sketch Y = AΩ. Then the approximation Âr given by (2.5) and (2.7) satisfies

E ‖A− Âr‖1 ≤
(

1 +
r

k − r − α

)
· ‖A− JAKr‖1; (4.1)

E ‖A− Âr‖∞ ≤ ‖A− JAKr‖∞ +
r

k − r − α
· ‖A− JAKr‖1. (4.2)

The quantity α(R) = 1 and α(C) = 0. Similar results hold with high probability.

The proof of Theorem 4.1 appears in App. A.

In contrast to previous analyses of Nyström methods, Theorem 4.1 yields explicit, sharp constants.
As a consequence, the formulae (4.1)–(4.2) offer an a priori mechanism for selecting the sketch size
k to achieve a desired error bound. In particular, for each ε > 0,

k = (1 + ε−1)r + α implies E ‖A− Âr‖1 ≤ (1 + ε) · ‖A− JAKr‖1.
Thus, we can attain an arbitrarily small relative error in the Schatten 1-norm. In the streaming setting,
the scaling k = Θ(r/ε) is optimal for this result [15, Thm. 4.2]. Furthermore, it is impossible [39,
Sec. 6.2] to obtain “pure” relative error bounds in the Schatten∞-norm unless k = Ω(n).
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The Role of Spectral Decay. To circumvent these limitations, it is necessary to develop a different
kind of error bound. Our second result shows that the fixed-rank psd approximation (2.7) automatically
exploits decay in the spectrum of the input matrix.
Theorem 4.2 (Fixed-Rank Nyström: Spectral Decay). Instate the notation and assumptions of
Theorem 4.1. Then

E ‖A− Âr‖1 ≤ ‖A− JAKr‖1 + 2 min
%<k−α

[(
1 +

%

k − %− α

)
· ‖A− JAK%‖1

]
; (4.3)

E ‖A− Âr‖∞ ≤ ‖A− JAKr‖∞ + 2 min
%<k−α

[(
1 +

%

k − %− α

)
· ‖A− JAK%‖1

]
. (4.4)

The index % ranges over the natural numbers.

The proof of Theorem 4.2 appears in App. A.

Here is one way to understand this result. As the index % increases, the quantity %/(k−%−α) increases
while the rank-% approximation error decreases. Theorem 4.2 states that the approximation (2.7)
automatically achieves the best tradeoff between these two terms. When the spectrum of A decays,
the rank-% approximation error may be far smaller than the rank-r approximation error. In this case,
Theorem 4.2 is tighter than Theorem 4.1, although the prediction is more qualitative.

Additional Results. The proofs can be extended to obtain high-probability bounds, as well as results
for other Schatten norms or for other test matrices (App. A).

5 Numerical Performance

Experimental Setup. In many streaming applications, such as [42], it is essential that the sketch
uses as little memory as possible and that the psd approximation achieves the best possible error. For
the methods we consider, the arithmetic costs of linear updates and psd approximation are roughly
comparable. Therefore, we only assess storage and accuracy.

For the numerical experiments, the field F = C except when noted explicitly. Choose a psd input
matrix A ∈ Fn×n and a target rank r. Then fix a sketch size parameter k with r ≤ k ≤ n. For each
trial, draw the test matrix Ω from the orthonormal or the SSFT distribution, and form the sketch
Y = AΩ of the input matrix. Using Algorithm 3, compute the rank-r psd approximation Âr defined
in (2.7). We evaluate the performance using the relative error metric:

Schatten p-norm relative error =
‖A− Âr‖p
‖A− JAKr‖p

− 1. (5.1)

We perform 20 independent trials and report the average error.

We compare our method (2.7) with the standard truncated Nyström approximation (2.6); the best
reference for this type of approach is [19, Sec. 2.2]. The approximation (2.6) is constructed from the
same sketch as (2.7), so the experimental procedure is identical.

We also consider the sketching method and psd approximation algorithm [36, Alg. 9] based on earlier
work from [8, 23, 40]. We implemented this sketch with orthonormal matrices and also with SSFT
matrices. The sketch has two different parameters (k, `), so we select the parameters that result in the
minimum relative error. Otherwise, the experimental procedure is the same.

We apply the methods to representative input matrices; see Figure B.1 for the spectra.

Synthetic Examples. The synthetic examples are diagonal with dimension n = 103; results for
larger and non-diagonal matrices are similar. These matrices are parameterized by an effective rank
parameter R, which takes values in {5, 10, 20}. We compute approximations with rank r = 10.

1. Low-Rank + PSD Noise. These matrices take the form
A = diag(1, . . . , 1︸ ︷︷ ︸

R

, 0, . . . , 0) + ξn−1W ∈ Fn×n.

The matrix W ∈ Fn×n has the WISHART(n, n;F) distribution; that is, W = GG∗ where
G ∈ Fn×n is standard normal. The parameter ξ controls the signal-to-noise ratio. We
consider three examples: LowRankLowNoise (ξ = 10−4), LowRankMedNoise (ξ = 10−2),
LowRankHiNoise (ξ = 10−1).
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FIGURE 5.1: Application Examples, Approximation Rank r, Schatten 1-Norm Error. The data
series show the performance of three algorithms for rank-r psd approximation. Solid lines are
generated from the Gaussian sketch; dashed lines are from the SSFT sketch. Each panel displays the
Schatten 1-norm relative error (5.1) as a function of storage cost T . See Sec. 5 for details.

2. Polynomial Decay. These matrices take the form

A = diag(1, . . . , 1︸ ︷︷ ︸
R

, 2−p, 3−p, . . . , (n−R+ 1)−p) ∈ Fn×n.

The parameter p > 0 controls the rate of polynomial decay. We consider three examples:
PolyDecaySlow (p = 0.5), PolyDecayMed (p = 1), PolyDecayFast (p = 2).

3. Exponential Decay. These matrices take the form

A = diag(1, . . . , 1︸ ︷︷ ︸
R

, 10−q, 10−2q, . . . , 10−(n−R)q) ∈ Fn×n.

The parameter q > 0 controls the rate of exponential decay. We consider three examples:
ExpDecaySlow (q = 0.1), ExpDecayMed (q = 0.25), ExpDecayFast (q = 1).

Application Examples. We also consider non-diagonal matrices inspired by the SDP algorithm [42].

1. MaxCut: This is a real-valued psd matrix with dimension n = 2 000, and its effective rank
R = 14. We form approximations with rank r ∈ {1, 14}. The matrix is an approximate
solution to the MAXCUT SDP [21] for the sparse graph G40 [11].

2. PhaseRetrieval: This is a psd matrix with dimension n = 25 921. It has exact rank 250,
but its effective rank R = 5. We form approximations with rank r ∈ {1, 5}. The matrix is
an approximate solution to a phase retrieval SDP; it was provided by the authors of [42].

Experimental Results. Figures 5.1–5.2 display the performance of the three fixed-rank psd approxi-
mation methods for a subcollection of the input matrices. The vertical axis is the Schatten 1-norm
relative error (5.1). The variable T on the horizontal axis is proportional to the storage required for
the sketch only. For the Nyström-based approximations (2.6)–(2.7), we have the correspondence
T = k. For the approximation [36, Alg. 9], we set T = k + `.

The experiments demonstrate that the proposed method (2.7) has a significant benefit over the
alternatives for input matrices that admit a good low-rank approximation. It equals or improves on the
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FIGURE 5.2: Synthetic Examples with Effective Rank R = 10, Approximation Rank r = 10,
Schatten 1-Norm Error. The data series show the performance of three algorithms for rank-r psd
approximation with r = 10. Solid lines are generated from the Gaussian sketch; dashed lines are
from the SSFT sketch. Each panel displays the Schatten 1-norm relative error (5.1) as a function of
storage cost T .

competitors for almost all other examples and storage budgets. App. B contains additional numerical
results; these experiments only reinforce the message of Figures 5.1–5.2.

Conclusions. This paper makes the case for using the proposed fixed-rank psd approximation (2.7)
in lieu of the alternatives (2.6) or [36, Alg. 9]. Theorem 4.1 shows that the proposed fixed-rank psd
approximation (2.7) can attain any prescribed relative error, and Theorem 4.2 shows that it can exploit
spectral decay. Furthermore, our numerical work demonstrates that the proposed approximation
improves (almost) uniformly over the competitors for a range of examples. These results are timely
because of the recent arrival of compelling applications, such as [42], for sketching psd matrices.
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N00014-17-1-2146 and the Gordon & Betty Moore Foundation. VC and AY were supported in
part by the European Commission under Grant ERC Future Proof, SNF 200021-146750, and SNF
CRSII2-147633. MU was supported in part by DARPA Award FA8750-17-2-0101.
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A Details of the Theoretical Analysis

This appendix contains a new theoretical analysis of the simple Nyström approximation (2.5) and the
proposed fixed-rank Nyström approximation (2.7).

A.1 Best Approximation in Schatten Norms

Let us introduce compact notation for the optimal rank-r approximation error in the Schatten p-norm:

σ
(p)
r+1(M) = ‖M − JMKr‖p =

[∑
i>r

σi(M)p
]1/p

. (A.1)

Ordinary singular values correspond to the case p =∞.

A.2 Analysis of the Nyström Approximation

The first result gives a very accurate error bound for the basic Nyström approximation Ânys with
respect to the Schatten 1-norm. This estimate is the key ingredient in the proof of Theorem 4.2.
Theorem A.1 (Error in Nyström Approximation). Assume 1 ≤ r ≤ k ≤ n. Let A ∈ Fn×n be a psd
matrix. Draw the test matrix Ω ∈ Fn×k from the Gaussian or orthonormal distribution, and form the
sketch Y = AΩ. Then the rank-k Nyström approximation Ânys determined by (2.5) satisfies the
error bound

E ‖A− Ânys‖1 ≤ min
%<k−α

[(
1 +

%

k − %− α

)
σ

(1)
%+1(A)

]
. (A.2)

The index % ranges over natural numbers. The quantity α(R) = 1 and α(C) = 0. The optimal rank-%
Schatten 1-norm approximation error is defined in (A.1).

To the best of our knowledge, Theorem A.1 is new. The proof appears below in App. A.3.

Let us situate Theorem A.1 with respect to the results in Gittens’s work [18, 20]. Gittens develops
error bounds for the Nyström approximation (2.5) that hold with high probability, rather than in
expectation. He measures errors in the Schatten p-norm for p = 1, 2,∞. He also obtains results for
several types of test matrices, including isotropic models and a relative of the SSFT. In contrast to
Theorem A.1, Gittens’s bounds are more complicated, and the constants are much larger.

A.3 Proof of Theorem A.1

We begin with the proof of Theorem A.1. Gittens [17, 18, 20] uses a related argument to obtain
bounds on the probability that the Nyström approximation achieves a given error.

The first step is to write the Nyström approximation in terms of an orthogonal projector. This
expression allows us to exploit the analysis from [23, 36].
Proposition A.2 (Representation of Nyström Approximation). Let P be the orthogonal projector
onto range(A1/2Ω):

P = (A1/2Ω)(Ω∗AΩ)†(A1/2Ω)∗. (A.3)
Then the Nyström approximation (2.5) can be expressed as

Ânys = A1/2PA1/2 (A.4)

In particular, the Nyström approximation only depends on Ω through range(Ω).

We believe that Proposition A.2 first appeared explicitly in the work of Gittens [17].

Proof. This argument follows from a direct calculation:

Ânys = AΩ(Ω∗AΩ)†Ω∗A

= A1/2(A1/2Ω)
[
(A1/2Ω)∗(A1/2Ω)

]†
(A1/2Ω)∗A1/2

= A1/2PA1/2.

To reach the last line, we identified the orthogonal projector (A.3).
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With Proposition A.2 at hand, the proof of Theorem A.1 is straightforward.

We may assume that Ω is a Gaussian matrix because the reconstruction Â only depends on range(Ω).
The range of a random orthonormal matrix has the same distribution as a Gaussian matrix up to a set
of measure zero.

Let P be the orthogonal projector (A.3). In view of the formula (A.4) for Ânys, we have

A− Ânys = A1/2(I− P )A1/2. (A.5)

We can now express the Schatten 1-norm of the error in terms of the Schatten 2-norm:

‖A− Ânys‖1 = ‖A1/2(I− P )(I− P )A1/2‖1 = ‖(I− P )A1/2‖22.
The first identity follows from (A.5) and the fact that the orthogonal projector I− P is idempotent.

Fix a natural number % < k − α. We can use established results from the literature to control the
expectation of the error. In particular, we invoke a slight generalization [36, Fact. 8.3] of a result [23,
Thm. 10.5] of Halko et al. We arrive at the bound

E ‖(I− P )A1/2‖22 ≤
(

1 +
%

k − %− α

)∑
i>%

σi(A
1/2)2

=

(
1 +

%

k − %− α

)∑
i>%

σi(A) =

(
1 +

%

k − %− α

)
σ

(1)
%+1(A).

Combine the last two displays and minimize over eligible % to complete the argument.
Remark A.3 (Spectral-Norm Error). When F = R, we can also obtain a spectral-norm error bound
by combining this argument with another result [23, Thm. 10.6] of Halko et al.:

E
√
‖A− Ânys‖ ≤ min

%<k−1

[(
1 +

√
%

k − %− 1

)√
σ%+1(A) +

e
√
k

k − %

√
σ

(1)
%+1(A)

]
.

It takes a surprising amount of additional work to obtain an accurate bound for the first moment of
the error (instead of the 1/2 moment). We have chosen not to include this argument.
Remark A.4 (High-Probability Bounds). As noted by Gittens [18, 20], we can obtain high-probability
error bounds in the real setting by combining the approach here with results [23, Thms. 10.7–10.8]
from Halko et al. We omit the details.
Remark A.5 (Other Test Matrices). As noted by Gittens [18, 20], we can obtain results for other
types of test matrices by replacing parts of the analysis that depend on Gaussian matrices. These
changes result in bounds that are quantitatively and qualitatively worse. The numerical evidence
suggests that many types of test matrices have the same empirical performance, so we omit this
development.

A.4 Theorem 4.2: Schatten 1-Norm Bound

Let us continue with the proof of the Schatten 1-norm bound (4.3) from Theorem 4.2. We require a
basic result on rank-r approximation adapted from [36, Prop. 7.1].

Proposition A.6 (Fixed-Rank Projection). Let A ∈ Fn×n and Â ∈ Fn×n be arbitrary matrices. For
each natural number r and number p ∈ [1,∞],

‖A− JÂKr‖p ≤ σ(p)
r+1(A) + 2‖A− Â‖p.

Proof. The argument follows from a short calculation based on the triangle inequality:

‖A− JÂKr‖p ≤ ‖A− Â‖p + ‖Â− JÂKr‖p
≤ ‖A− Â‖p + ‖Â− JAKr‖p
≤ 2‖A− Â‖p + ‖A− JAKr‖p.

In the second line, we have used the fact that JÂKr is a best rank-r approximation of Â. To complete
the argument, we identify the last term (A.1) as the best rank-r approximation error in the Schatten
p-norm.
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The bound (4.3) from Theorem 4.2 is now an immediate consequence of Theorem A.1 and Proposi-
tion A.6:

E ‖A− Âr‖1 ≤ σ(1)
r+1(A) + 2E ‖A− Ânys‖1

≤ σ(1)
r+1(A) + 2 min

%<k−α

(
1 +

%

k − %− α

)
σ

(1)
%+1(A).

We have used the definition (2.7) of our fixed-rank approximation: Âr = JÂnysKr.

Remark A.7 (Extensions). Given a bound on the error in the Nyström approximation (2.5) in the
Schatten p-norm for any test matrix, this approach automatically yields an estimate for the associated
fixed-rank psd approximation (2.7).

A.5 Theorem 4.1: Schatten 1-Norm Bound

Next, we turn to the proof of the Schatten 1-norm bound (4.1) from Theorem 4.1. This argument
is based on the same approach as Theorem A.1, but we require several additional ingredients
from [18, 22, 23, 36].

As before, we may assume that Ω is Gaussian. With probability one, the nonzero eigenvalues of
Ânys are all distinct, so the best rank-r approximation Âr of Ânys is determined uniquely.

Let P be the orthogonal projector (A.3). According to (A.4), the Nyström approximation takes the
form

Ânys = A1/2PA1/2 = (A1/2P )(PA1/2).

Let Q denote the orthogonal projector onto the range of JPA1/2Kr. Using the (truncated) SVD of
the matrix PA1/2, we can verify that the best rank-r approximation Âr of Ânys satisfies

Âr = JA1/2P KrJPA1/2Kr = A1/2PQPA1/2

As in the proof of Theorem A.1, the Schatten 1-norm of the error satisfies

‖A− Âr‖1 = ‖A−A1/2PQPA1/2‖1 = ‖(I−QP )A1/2‖22.

Since range(Q) ⊂ range(P ), we can rewrite this expression as

‖(I−QP )A1/2‖22 = ‖(I− PQP )A1/2‖22 = ‖A1/2 − P JPA1/2Kr‖22.

The last identity holds because QPA1/2 = JPA1/2Kr. A direct application of Gu’s result [22,
Thm. 3.5] yields

‖A1/2 − P JPA1/2Kr‖22 ≤ ‖(I− P )JA1/2Kr‖22 +
∑
i>r

σi(A
1/2)2.

A direct application of the result [36, Prop. 9.2] shows that

E ‖(I− P )JA1/2Kr‖22 =
r

k − r − α
∑
i>r

σi(A
1/2)2.

As before, we note that ∑
i>r

σi(A
1/2)2 = σ

(1)
r+1(A).

Taking an expectation and sequencing these displays, we arrive at

E ‖A− Âr‖1 ≤
(

1 +
r

k − r − α

)
σ

(1)
r+1(A).

This is the stated result (4.1).
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A.6 Theorems 4.1 and 4.2: Schatten∞-Norm Bounds

Last, we develop the bounds (4.2) and (4.4) on the Schatten∞-norm of the fixed-rank psd approxi-
mation (2.7) using a formal argument. We require the following result.
Proposition A.8 (Reversed Eckart–Young). Let A,B ∈ Fn×n be matrices, and assume that
rank(B) ≤ r. Then

‖A−B‖∞ ≤ σr+1(A) +
[
‖A−B‖1 − σ(1)

r+1(A)
]
.

The proof of Proposition A.8 follows from a minor change to [22, Thm. 3.4].

Proof. As a consequence of Weyl’s inequalities [2, Thm. III.2.1], we have the bound

σi+r(A) ≤ σi(A−B) + σr+1(B) = σi(A−B). (A.6)

The last identity holds because rank(B) ≤ r. It follows that

‖A−B‖1 =
∑
i≥1

σi(A−B)

= σ1(A−B) +
∑
i≥2

σi(A−B)

≥ ‖A−B‖∞ +
∑
i≥2

σr+i(A)

= ‖A−B‖∞ − σr+1(A) + σ
(1)
r+1(A).

The first expression is the representation of the Schatten 1-norm in terms of singular values. The
inequality is (A.6). Finally, we identify the best Schatten 1-norm error from (A.1).

To obtain the Schatten∞-norm bound (4.2), we combine Proposition A.8 with the Schatten 1-norm
bound (4.1):

E ‖A− Âr‖∞ ≤ σr+1(A) +
[
E ‖A− Âr‖1 − σ(1)

r+1(A)
]

≤ σr+1(A) +
r

k − r − α
· σ(1)

r+1(A).

Similarly, to obtain the Schatten∞-norm bound (4.4), we combine Proposition A.8 with the Schatten
1-norm bound (4.3).

B Supplemental Numerics

This appendix documents additional numerical work. These experiments provide a more complete
picture of the performance of the psd approximation methods.

• Figure B.1 contains a plot of the singular-value spectrum of each input matrix described in
Sec. 5.

• Figures B.2–B.10 document the results of numerical experiments for the remaining parameter
regimes outlined in Sec. 5. In particular, we consider all Schatten p-norm relative error
measures for p ∈ {1, 2,∞} and all effective rank parameters R ∈ {5, 10, 20} for the
synthetic data. We omit the case p =∞, R = 20 because the plots are uninformative.

• Figure B.11 gives evidence about the numerical challenges involved in implementing
Nyström approximations, such as (2.7). Our implementation in Algorithm 3 is based on
the Nyström approximation routine eigenn released by Tygert [37] to accompany the
paper [27]. We compare with another implementation strategy described in the text of the
same paper [27, Eqn. (13)]. It is surprising to discover very different levels of precision in
two implementations designed by professional numerical analysts.
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FIGURE B.1: Singular Values of Input Matrices. These plots display the singular value spectra of
the input matrices that appear in the experiments. See Sec. 5 for descriptions of the matrices.
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FIGURE B.2: Application Examples, Approximation Rank r, Schatten 2-Norm Error. The data
series are generated by three algorithms for rank-r psd approximation. Solid lines are generated from
the Gaussian sketch; dashed lines are from the SSFT sketch. Each panel displays the Schatten 2-norm
relative error (5.1) as a function of storage cost T . See Sec. 5 for details.
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FIGURE B.6: Synthetic Examples with Effective Rank R = 5, Approximation Rank r = 10,
Schatten 2-Norm Error. The series are generated by three algorithms for rank-r psd approximation
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FIGURE B.7: Synthetic Examples with Effective Rank R = 10, Approximation Rank r = 10,
Schatten 2-Norm Error. The series are generated by three algorithms for rank-r psd approximation
with r = 10. Solid lines are generated from the Gaussian sketch; dashed lines are from the SSFT
sketch. Each panel displays the Schatten 2-norm relative error (5.1) as a function of storage cost T .
See Sec. 5 for details.
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FIGURE B.8: Synthetic Examples with Effective Rank R = 20, Approximation Rank r = 10,
Schatten 2-Norm Error. The series are generated by three algorithms for rank-r psd approximation
with r = 10. Solid lines are generated from the Gaussian sketch; dashed lines are from the SSFT
sketch. Each panel displays the Schatten 2-norm relative error (5.1) as a function of storage cost T .
See Sec. 5 for details.
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FIGURE B.9: Synthetic Examples with Effective Rank R = 5, Approximation Rank r = 10,
Schatten ∞-Norm Error. The series are generated by three algorithms for rank-r psd approximation
with r = 10. Solid lines are generated from the Gaussian sketch; dashed lines are from the SSFT
sketch. Each panel displays the Schatten ∞-norm relative error (5.1) as a function of storage cost T .
See Sec. 5 for details.
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FIGURE B.10: Synthetic Examples with Effective Rank R = 10, Approximation Rank r = 10,
Schatten ∞-Norm Error. The series are generated by three algorithms for rank-r psd approximation
with r = 10. Solid lines are generated from the Gaussian sketch; dashed lines are from the SSFT
sketch. Each panel displays the Schatten ∞-norm relative error (5.1) as a function of storage cost T .
See Sec. 5 for details.
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FIGURE B.11: Bad Numerics, Approximation Rank r = 10, Schatten 1-Norm Error. The
series are generated by two implementations of the fixed-rank psd approximation (2.7). We compare
Algorithm 3 with another approach [LLS+17] proposed in [27, Eqn. (13)]. Solid lines are generated
from the Gaussian sketch; dashed lines are from the SSFT sketch. Each panel displays the Schatten
1-norm relative error (5.1) as a function of storage cost T . See App. B for details.
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