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Abstract: This paper derives exponential tail bounds and polynomial moment inequali-
ties for the spectral norm deviation of a random matrix from its mean value. The argument
depends on a matrix extension of Stein’s method of exchangeable pairs for concentration
of measure, as introduced by Chatterjee. Recent work of Mackey et al. uses these tech-
niques to analyze random matrices with additive structure, while the enhancements in
this paper cover a wider class of matrix-valued random elements. In particular, these ideas
lead to a bounded differences inequality that applies to random matrices constructed from
weakly dependent random variables. The proofs require novel trace inequalities that may
be of independent interest.

AMS 2000 subject classifications: Primary 60B20, 60E15; secondary 60G09, 60F10.
Keywords and phrases: Concentration inequalities, Stein’s method, random matrix,
non-commutative, exchangeable pairs, coupling, bounded differences, Dobrushin depen-
dence, Ising model, Haar measure, trace inequality.

This paper is based on two independent manuscripts from late 2012 that both used kernel cou-
plings to establish matrix concentration inequalities. One manuscript is by Paulin; the other
is by Mackey and Tropp. The authors have combined this research into a unified presentation,
with equal contributions from both groups.

1. Introduction

Matrix concentration inequalities provide probabilistic bounds on the spectral-norm deviation
of a random matrix from its mean value. Over the last decade, a growing field of research
has established that many scalar concentration results have direct analogs for matrices. For
example, see [1, 16, 23]. This machinery has simplified the study of random matrices that
arise in applications from statistics [8], machine learning [15], signal processing [2], numerical
analysis [22], theoretical computer science [24], and combinatorics [17].

Most of the recent research on matrix concentration depends on a matrix extension of the
Laplace transform method from elementary probability. In the matrix setting, it is a serious
technical challenge to obtain bounds on the matrix analog of the moment generating function.
The earlier works [1, 16] use the Golden–Thompson inequality to accomplish this task. A more
powerful argument [23] invokes Lieb’s Theorem [10, Thm. 6] to complete the estimates.

Very recently, Mackey et al. [13] have shown that it is also possible to use Stein’s method of
exchangeable pairs to control the matrix moment generating function. This argument depends
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on a matrix version of Chatterjee’s technique [5, 4] for establishing concentration inequalities
using exchangeable pairs. This approach has two chief advantages. First, it offers a straightfor-
ward way to prove polynomial moment inequalities for matrices, which are not easy to obtain
using earlier techniques. Second, exchangeable pair arguments also apply to random matrices
constructed from weakly dependent random variables.

The work [13] focuses on sums of weakly dependent random matrices because its techniques
are less effective for other examples. The goal of the current research is to adapt ideas from
Chatterjee’s thesis [4] to establish concentration inequalities for more general types of random
matrices. In particular, we have obtained new versions of the matrix bounded difference in-
equality (see [23, Cor. 7.5] or [13, Cor. 11.1]) that hold for a random matrix that is expressed
as a measurable function of weakly dependent random variables. These results appear as Corol-
lary 4.1 and Corollary 5.2.

1.1. A First Look at Exchangeable Pairs

The method of exchangeable pairs depends on the idea that an exchangeable counterpart of a
random variable encodes information about the symmetries in the distribution. Here is a simple
but fundamental example of an exchangeable pair of random matrices:

X =
∑n

j=1
Yj and X ′ = X + (ỸJ − YJ) (1.1)

where {Yj} is an independent family of random Hermitian matrices, J is a random index chosen

uniformly from {1, . . . , n}, and ỸJ is an independent copy of YJ . Notice that

n

2
E
[
(X −X ′)2

]
= E

[
X2
]
− [EX]2 = Var(X).

As a consequence, we can interpret the random matrix n
2
(X−X ′)2 as a stochastic estimate for

the variance of the independent sum X. When this random matrix is uniformly small in norm,
we can prove that the sum X concentrates around its mean value. We refer to Theorem 3.1 or
the result [13, Thm. 4.1] for a rigorous statement.

1.2. Roadmap

Section 1.3 continues with some notation and preliminary remarks. In Section 2, we describe
the concept of a kernel Stein pair of random matrices, which stands at the center of our analy-
sis. In Section 3, we state abstract concentration inequalities for kernel Stein pairs. Afterward,
Sections 4 and 5 derive bounded difference inequalities for random matrices constructed from
independent and weakly dependent random variables. As an application, we consider the prob-
lem of estimating the correlations in a two-dimensional Ising model in Section 6. We close with
some complementary material in Section 7. The proofs of the main results appear in three
Appendices.

1.3. Notation and Preliminaries

First, we introduce the identity matrix I and the zero matrix 0. Their dimensions are determined
by context.
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We write Md for the algebra of d× d complex matrices. The symbol ‖·‖ always refers to the
usual operator norm on Md induced by the `d2 vector norm. We also equip Md with the trace
inner product 〈B, C〉 := tr[B∗C] to form a Hilbert space.

Let Hd denote the subspace of Md consisting of d× d Hermitian matrices. Given an interval
I of the real line, we define Hd(I) to be the family of Hermitian matrices with eigenvalues
contained in I. We use curly inequalities, such as 4, for the positive semidefinite order on the
Hilbert space `d2 and the Hilbert space Hd.

Let f : I → R be a function on an interval I of the real line. We can lift f to form a standard
matrix function f : Hd(I) → Hd. More precisely, for each matrix A ∈ Hd(I), we define the
standard matrix function via the rule

f(A) :=
∑d

k=1
f(λk)uku

∗
k where A =

∑d

k=1
λk uku

∗
k

is an eigenvalue decomposition of the Hermitian matrix A. When we apply a familiar scalar
function to an Hermitian matrix, we are always referring to the associated standard operator
function. To denote general matrix-valued functions, we use bold uppercase letters, such as
F ,H ,Ψ.

For M ∈Md, we write Re(M ) := 1
2
(M +M ∗) for the Hermitian part of M . The following

semidefinite relation holds.

Re(AB) =
AB +BA

2
4
A2 +B2

2
for all A,B ∈ Hd. (1.2)

This result follows when we expand the expression (A−B)2 < 0. As a consequence,(
A+B

2

)2

4
A2 +B2

2
for all A,B ∈ Hd. (1.3)

In other words, the matrix square is operator convex.
Finally, we need two additional families of matrix norms. For p ∈ [1,∞], the Schatten p-norm

is given by

‖B‖Sp
:=
(

tr |B|p
)1/p

for each B ∈Md,

where |B| := (B∗B)1/2. For p ≥ 1, we introduce the matrix norm induced by the `dp vector
norm:

‖B‖p→p := sup
x6=0

‖Bx‖p
‖x‖p

for each B ∈Md (1.4)

In particular, the matrix norm induced by the `d1 vector norm returns the maximum `d1 norm
of a column; the norm induced by `d∞ returns the maximum `d1 norm of a row.

2. Exchangeable Pairs of Random Matrices

The basic principle behind this paper is that we can exploit the symmetries of the distribution
of a random matrix to obtain matrix concentration inequalities. One way to encode symmetries
is to identify an exchangeable counterpart of the random matrix. This section outlines the
main concepts from the method of exchangeable pairs, including an example of fundamental
importance. Once we have an exchangeable pair, we can apply ideas of Chatterjee [4] to obtain
concentration inequalities, which is the subject of Section 3.
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2.1. Kernel Stein Pairs

In this work, the primal concept is an exchangeable pair of random variables.

Definition 2.1 (Exchangeable Pair). Let Z and Z ′ be a pair of random variables taking values
in a Polish space Z. We say that a (Z,Z ′) is an exchangeable pair when it has the same
distribution as the pair (Z ′, Z).

In particular, Z and Z ′ have the same distribution, and E f(Z,Z ′) = E f(Z ′, Z) for every
function f where the expectations are finite.

We are interested in a special class of exchangeable pairs of random matrices. There must be
an antisymmetric bivariate kernel that “reproduces” the matrices in the pair.

Definition 2.2 (Kernel Stein Pair). Let (Z,Z ′) be an exchangeable pair of random variables
taking values in a Polish space Z, and let Ψ : Z → Hd be a measurable function. Define the
random Hermitian matrices

X := Ψ(Z) and X ′ := Ψ(Z ′).

We say that (X,X ′) is a kernel Stein pair if there is a bivariate function K : Z2 → Hd for
which

K(Z,Z ′) = −K(Z ′, Z) and E[K(Z,Z ′) |Z] = X almost surely. (2.1)

When discussing a kernel Stein pair (X,X ′), we always assume that E ‖X‖2 < ∞. We some-
times write K-Stein pair to emphasize the specific kernel K.

It turns out that most exchangeable pairs of random matrices admit a kernel K that satis-
fies (2.1). We describe the construction in Section 2.2.

Kernel Stein Pairs versus Matrix Stein Pairs. The analysis in the article [13] is based
on an important subclass of kernel Stein pairs termed matrix Stein pairs. A matrix Stein pair
(X,X ′) derived from an auxiliary exchangeable pair (Z,Z ′) satisfies the stronger condition

E[X −X ′ |Z] = αX for some α > 0. (2.2)

That is, a matrix Stein pair is a kernel Stein pair with K(Z,Z ′) = α−1(X −X ′). Although
the paper [13] describes several fundamental classes of matrix Stein pairs, most exchangeable
pairs of random matrices do not satisfy the condition (2.2). Kernel Stein pairs are much more
common, so they are commensurately more useful.

2.2. Kernel Couplings

Given an exchangeable pair of random matrices, we can ask whether it is possible to equip
the pair with a kernel that satisfies (2.1). In fact, there is a very general construction that
works whenever the exchangeable pair is suitably ergodic. This method depends on an idea of
Chatterjee [4, Sec. 4.1] that ultimately relies on an observation of Stein [21].

Stein noticed that any exchangeable pair (Z,Z ′) of Z-valued random variables defines a
reversible Markov chain with a symmetric transition kernel P given by

Pf(z) := E[f(Z ′) |Z = z]
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for each integrable function f : Z → R. In other words, for any initial value Z(0) ∈ Z, we can
construct a Markov chain

Z(0) → Z(1) → Z(2) → Z(3) → · · ·
where E[f(Z(i+1)) |Z(i)] = Pf(Z(i)) for each integrable function f . This requirement suffices to
determine the distribution of each Z(i+1).

When the chain (Z(i))i≥0 is ergodic enough, we can explicitly construct a kernel that sat-
isfies (2.1) for any exchangeable pair of random matrices constructed from the auxiliary ex-
changeable pair (Z,Z ′). To explain this idea, we begin with a definition.

Definition 2.3 (Kernel Coupling). Let (Z,Z ′) ∈ Z2 be an exchangeable pair. Let (Z(i))i≥0
and (Z ′(i))i≥0 be two Markov chains with arbitrary initial values, each evolving according to the

transition kernel P induced by (Z,Z ′). We call (Z(i), Z
′
(i))i≥0 a kernel coupling for (Z,Z ′) if,

Z(i) ⊥⊥ Z ′(0) |Z(0) and Z ′(i) ⊥⊥ Z(0) |Z ′(0) for all i. (2.3)

The expression U ⊥⊥ V |W means that U and V are independent conditional on W .

The key lemma, essentially due to Chatterjee [4, Sec. 4.1], allows us to construct a kernel
Stein pair by way of a kernel coupling.

Lemma 2.4. Let (Z(i), Z
′
(i))i≥0 be a kernel coupling for an exchangeable pair (Z,Z ′) ∈ Z2.

Let Ψ : Z → Hd be a measurable function with EΨ(Z) = 0. Suppose that there is a positive
constant L for which∑∞

i=0

∥∥E[Ψ(Z(i))−Ψ(Z ′(i)) |Z(0) = z, Z ′(0) = z′]
∥∥ ≤ L for all z, z′ ∈ Z. (2.4)

Then (Ψ(Z),Ψ(Z ′)) is a kernel Stein pair with kernel

K(Z,Z ′) :=
∑∞

i=0
E[Ψ(Z(i))−Ψ(Z ′(i)) |Z(0) = Z,Z ′(0) = Z ′]. (2.5)

The proof of this result is identical with that of [4, Lem. 4.2], which establishes the same
formula (2.5) in the scalar setting. Lemma 2.4 indicates that the kernel K associated with an
exchangeable pair (Z,Z ′) and a map Ψ tends to be small when the two Markov chains in the
kernel coupling have a small coupling time.

2.3. Conditional Variance

To each kernel Stein pair (X,X ′), we may associate two random matrices called the conditional
variance and kernel conditional variance of X. Ultimately, we show that X is concentrated
around the zero matrix whenever the conditional variance and the kernel conditional variance
are both small.

Definition 2.5 (Conditional Variance). Suppose that (X,X ′) is a K-Stein pair, constructed
from an auxiliary exchangeable pair (Z,Z ′). The conditional variance is the random matrix

VX := VX(Z) :=
1

2
E
[
(X −X ′)2 |Z

]
, (2.6)

and the kernel conditional variance is the random matrix

V K := V K(Z) :=
1

2
E
[
K(Z,Z ′)2 |Z

]
. (2.7)
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The following lemma provides a convenient way to control the conditional variance and the
kernel conditional variance when the kernel is obtained from a kernel coupling as in Lemma 2.4.

Lemma 2.6. Let (Z(i), Z
′
(i))i≥0 be a kernel coupling for an exchangeable pair (Z,Z ′) ∈ Z2, and

let Ψ : Z → Hd be a measurable map. Suppose that (X,X ′) = (Ψ(Z),Ψ(Z ′)) is a kernel Stein
pair where the kernel K is constructed via (2.5). For each i = 0, 1, 2, . . . , assume that

E
[
E[Ψ(Z(i))−Ψ(Z ′(i)) |Z,Z ′]2 |Z

]
4 s2i Γ(Z) almost surely, (2.8)

where Γ : Z → Hd is a measurable map and (si)i≥0 is a deterministic sequence of nonnegative
numbers. Then the conditional variance (2.6) satisfies

VX 4
1

2
s20 Γ(Z) almost surely,

and the kernel conditional variance (2.7) satisfies

V K 4
1

2

(∑∞

i=0
si

)2
Γ(Z) almost surely.

Proof. Using a continuity argument, we may assume that each si > 0 for each integer i ≥ 0.
For each i, define Yi := E[Ψ(Z(i))−Ψ(Z ′(i)) |Z,Z ′]. By the kernel coupling construction (2.5),
we have

V K =
1

2

∑∞

i=0

∑∞

j=0
E[YiYj |Z] =

1

2

∑∞

i=0

∑∞

j=0
E[Re(YiYj) |Z]

4
1

2

∑∞

i=0

∑∞

j=0

1

2

(
sj
si

E[Y 2
i |Z] +

si
sj

E[Y 2
j |Z]

)
4

1

2

∑∞

i=0

∑∞

j=0

1

2

(
sj
si
s2i Γ(Z) +

si
sj
s2j Γ(Z)

)
=

1

2

(∑∞

i=0
si
∑∞

j=0
sj

)
Γ(Z) =

1

2

(∑∞

i=0
si

)2
Γ(Z),

where the first semidefinite inequality follows from (1.2) and the second inequality depends on
the hypothesis (2.8). Similarly,

VX =
1

2
E[Y 2

0 |Z] 4
1

2
s20 Γ(Z).

This observation completes the proof.

2.4. Example: Matrix Functions of Independent Variables

To illustrate the definitions in this section, we describe a simple but important example of a
kernel Stein pair. Suppose that Z := (Z1, . . . , Zn) is a vector of independent random variables
taking values in a Polish space Z. Let H : Z → Hd be a measurable function, and let (Aj)j≥1
be a sequence of deterministic Hermitian matrices satisfying

(H(z1, . . . , zn)−H(z1, . . . , z
′
j, . . . , zn))2 4 A2

j (2.9)
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where zj, z
′
j range over the possible values of Zj for each j. We aim to analyze the random

matrix
X := H(Z)− EH(Z). (2.10)

We encounter matrices of this form in a variety of applications. For instance, concentration
inequalities for the norm of X have immediate implications for the generalization properties of
algorithms for multiclass classification [11, 15].

In this section, we explain how to construct a kernel exchangeable pair for studying the
random matrix (2.10), and we compute the conditional variance and kernel conditional variance.
Later, in Section 4, we use these calculations to establish a matrix bounded difference inequality
that improves on [23, Cor 7.5].

To begin, we form an exchangeable counterpart for Z:

Z ′ := (Z1, . . . , ZJ−1, Z̃J , ZJ+1, . . . , Zn)

where Z̃ := (Z̃1, . . . , Z̃n) is an independent copy of Z. We draw the coordinate J uniformly at
random from {1, . . . , n}, independent from everything else. Then the random matrix

X ′ := H(Z ′)− EH(Z)

is an exchangeable counterpart for the matrix X.
To verify that (X,X ′) is a kernel Stein pair for a suitable kernel K, we establish an explicit

kernel coupling (Z(i), Z
′
(i))i≥0. For each i ≥ 1, define Z̃(i) to be an independent copy of Z. We

generate the pair (Z(i), Z
′
(i)) from the previous pair (Z(i−1), Z

′
(i−1)) by selecting an independent

random index Ji uniformly from {1, . . . , n} and replacing the Ji-th coordinates of both Z(i−1)

and Z ′(i−1) with the Ji-th coordinate of Z̃(i). By construction, the two marginal chains (Z(i))i≥0
and (Z ′(i))i≥0 evolve according to the transition kernel induced by (Z,Z ′), and they satisfy

the kernel coupling property (2.3). The analysis of the coupon collector’s problem [9, Sec. 2.2]
shows that the expected coupling time for this pair of Markov chains is bounded by n(1+log n).
Therefore, Lemma 2.4 implies that (X,X ′) is a kernel Stein pair with

K(Z,Z ′) :=
∑∞

i=0
E[H(Z(i))−H(Z ′(i)) |Z(0) = Z,Z ′(0) = Z ′].

Since the two Markov chains couple rapidly, we expect that the kernel is small.
To bound the size of the kernel, we use Lemma 2.6. For each integer i ≥ 0, define the event
Ei := {J /∈ {J1, . . . , Ji}}. Off of the event Ei, we have H(Z(i)) = H(Z ′(i)); on the event Ei, the
random vectors Z(i) and Z ′(i) can differ only in the J-th coordinate. Therefore,

E
[
E[H(Z(i))−H(Z ′(i)) |Z,Z ′]2 |Z

]
= E

[
(P {Ei} · E[H(Z(i))−H(Z ′(i)) |Z,Z ′, Ei])2 |Z

]
4 (1− 1/n)2i · E[(H(Z(i))−H(Z ′(i)))

2 |Z, Ei]
4 (1− 1/n)2i · E[A2

J ].

The first semidefinite inequality follows from the convexity (1.3) of the matrix square, and
the second depends on our bounded differences assumption (2.9). Apply Lemma 2.6 with si =
(1− 1/n)i and Γ(Z) = E[A2

J ] to conclude that

V K 4
1

2
E[A2

J ]
(∑∞

i=0
(1− 1/n)i

)2
=
n2

2
E[A2

J ] =
n

2

∑n

j=1
A2
j (2.11)
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and that

VX 4
1

2
E[A2

J ] =
1

2n

∑n

j=1
A2
j . (2.12)

We discover that the conditional variance and the kernel conditional variance are under control
when H has bounded coordinate differences. Section 4 discusses how these estimates imply
that the matrix X concentrates well.

3. Concentration Inequalities for Random Matrices

This section contains our main results on concentration for random matrices. Given a kernel
Stein pair, we explain how the conditional variance and kernel conditional variance allow us to
obtain exponential tail bounds and polynomial moment inequalities.

At a high level, our work suggests the following plan of action. You begin with a random
matrix, X. You use the symmetries of the random matrix to construct an exchangeable coun-
terpart, X ′, that is close but not identical to X. You construct a kernel coupling from this
exchangeable pair, and you compute the conditional variances, VX and VK . Then you apply
the concentration results from this section to control the deviation of X from its mean. In the
sections to come, we provide specific examples and applications of this template.

3.1. Exponential Tail Bounds

Our first result establishes exponential concentration for the maximum and minimum eigenval-
ues of a random matrix.

Theorem 3.1 (Concentration for Bounded Random Matrices). Consider a K-Stein pair
(X,X ′) ∈ Hd ×Hd. Suppose there exist nonnegative constants c, v, s for which the conditional
variance (2.6) and the kernel conditional variance (2.7) of the pair satisfy

VX 4 s−1 · (cX + v I) and V K 4 s · (cX + v I) almost surely. (3.1)

Then, for all t ≥ 0,

P {λmin(X) ≤ −t} ≤ d · exp

{
−t2

2v

}
P {λmax(X) ≥ t} ≤ d · exp

{
− t
c

+
v

c2
log

(
1 +

ct

v

)}
≤ d · exp

{
−t2

2v + 2ct

}
.

Furthermore,

Eλmin(X) ≥ −
√

2v log d

Eλmax(X) ≤
√

2v log d+ c log d.

Theorem 3.1 extends the concentration result of [13, Thm. 4.1], which only applies to matrix
Stein pairs. The argument leading up to Theorem 3.1 is very similar with the proof of the earlier
result. The main innovation is a new type of mean value inequality for matrices that improves
on [13, Lem. 3.4].
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Lemma 3.2 (Exponential Mean Value Trace Inequality). For all matrices A,B,C ∈ Hd and
all s > 0 it holds that

| tr
[
C(eA − eB)

]
| ≤ 1

4
tr[(s (A−B)2 + s−1C2)(eA + eB)].

See Appendix B for the proofs of Theorem 3.1 and Lemma 3.2.

3.2. Polynomial Moment Inequalities

The second main result shows that we can bound the polynomial moments of a random matrix
in terms of the conditional variance and the kernel conditional variance.

Theorem 3.3 (Matrix BDG Inequality). Suppose that (X,X ′) is a K-Stein pair based on an
auxiliary exchangeable pair (Z,Z ′). Let p ≥ 1 be a natural number, and assume that E ‖X‖2pS2p

<

∞ and E ‖K(Z,Z ′)‖2p <∞. Then, for any s > 0,

(
E ‖X‖2pS2p

)1/2p ≤√2p− 1

(
E
∥∥∥∥1

2
(sVX + s−1 V K)

∥∥∥∥p
Sp

)1/2p

.

We have written ‖·‖Sp
for the Schatten p-norm.

Theorem 3.3 generalizes the matrix Burkholder–Davis–Gundy inequality [13, Thm. 7.1], which
only applies to matrix Stein pairs. This result depends on another novel mean value inequality
for matrices.

Lemma 3.4 (Polynomial Mean Value Trace Inequality). For all matrices A,B,C ∈ Hd, all
integers q ≥ 1, and all s > 0, it holds that

|tr [C(Aq −Bq)]| ≤ q

4
tr
[
(s (A−B)2 + s−1C2)(|A|q−1 + |B|q−1)

]
.

The proofs of Theorem 3.3 and Lemma 3.4 can be found in Appendix C. We remark that both
results extend directly to infinite-dimensional Schatten-class operators.

4. Example: Matrix Bounded Differences Inequality

As a first example, we show how to use Theorem 3.1 to derive a matrix version of McDiarmid’s
bounded differences inequality [14].

Corollary 4.1 (Matrix Bounded Differences). Suppose that Z := (Z1, . . . , Zn) ∈ Z is a vector
of independent random variables that takes values in a Polish space Z. Let H : Z → Hd be a
measurable function, and let (A1, . . . ,An) be a deterministic sequence of Hermitian matrices
that satisfy

(H(z1, . . . , zn)−H(z1, . . . , z
′
j, . . . , zn))2 4 A2

j

where zk, z
′
k range over the possible values of Zk for each k. Compute the boundedness parameter

σ2 :=
∥∥∥∑n

j=1
A2
j

∥∥∥ .
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Then, for all t ≥ 0,
P {λmax (H(Z)− EH(Z)) ≥ t} ≤ d · e−t2/σ2

.

Furthermore,
Eλmax (H(Z)− EH(Z)) ≤ σ

√
log d.

Proof. Introduce the random matrix X = H(Z) − EH(Z). We can use the kernel Stein pair
constructed in Section 2.4 to study the behavior of X. According to (2.12), the conditional
variance satisfies

VX 4
1

2n

∑n

j=1
A2
j 4

(
σ2

2
I

)
/n.

According to (2.11), the kernel conditional variance satisfies

V K 4
n

2

∑n

j=1
A2
j 4 n

(
σ2

2
I

)
,

Invoke Theorem 3.1 with c = 0, v = σ2/2, and s = n to complete the bound.

Corollary 4.1 improves on the matrix bounded differences inequality [23, Cor. 7.5], which
features an additional factor of 1/8 in the exponent of the tail bound. It also strengthens the
bounded differences inequality [13, Cor. 11.1] for matrix Stein pairs, which requires an extra
assumption that the function H is “self-reproducing.”

Remark 4.2 (Extensions). The conclusions of Corollary 4.1 hold with σ2 :=
∥∥A2

∥∥ under either
one of the weaker hypotheses∑

j
(H(z1, . . . , zn)−H(z1, . . . , z

′
j, . . . , zn))2 4 A2

or ∑
j
E
[
(H(z1, . . . , zn)−H(z1, . . . , Zj . . . , zn))2

]
4 A2

where A ∈ Hd is deterministic and zk, z
′
k range over all possible values of Zk for each index k.

This claim follows from a simple adaptation of the argument in Section 2.4.
We can also obtain moment inequalities for the random matrix H(Z) by invoking The-

orem 3.3. We have omitted a detailed statement because exponential tail bounds are more
popular in applications.

5. Example: Matrix Bounded Differences without Independence

A key strength of the method of exchangeable pairs is the fact that it also applies to random
matrices that are built from weakly dependent random variables. This section describes an
extension of Corollary 4.1 that holds even when the input variables exhibit some interactions.

To quantify the amount of dependency among the variables, we use a Dobrushin interde-
pendence matrix [7]. This concept involves a certain amount of auxiliary notation. Given a
vector x = (x1, . . . , xn), we write x−i = (x1, . . . xi−1, xi+1, . . . , xn) for the vector with its ith
component deleted. Let Z = (Z1, . . . , Zn) be a vector of random variables taking values in a
Polish space Z with sigma algebra F . The symbol µi(· |Z−i) refers to the distribution of Zi
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conditional on the random vector Z−i. We also require the total variation distance dTV between
probability measures µ and ν on (Z,F):

dTV(ν, µ) := sup
A∈F
|ν(A)− µ(A)| . (5.1)

With this foundation in place, we can state the definition.

Definition 5.1 (Dobrushin Interdependence Matrix). Let Z = (Z1, . . . , Zn) be a random vector
taking values in a Polish space Z. Let D ∈ Rn×n be a matrix with a zero diagonal that satisfies
the condition

dTV

(
µi(· |x−i), µi(· |y−i)

)
≤
∑n

j=1
Dij1[xj 6= yj] (5.2)

for each index i and for all vectors x,y ∈ Z. Then D is called a Dobrushin interdependence
matrix for the random vector Z.

The kernel coupling method extends readily to the setting of weak dependence. We obtain
a new matrix bounded differences inequality, which is a significant extension of Corollary 4.1.
This statement can be viewed as a matrix version of Chatterjee’s result [4, Thm. 4.3].

Corollary 5.2 (Dobrushin Matrix Bounded Differences). Suppose that Z := (Z1, . . . , Zn) in
a Polish space Z is a vector of dependent random variables with a Dobrushin interdependence
matrix D with the property that

max
{
‖D‖1→1 , ‖D‖∞→∞

}
< 1. (5.3)

Let H : Z → Hd be a measurable function, and let (A1, . . . ,An) be a deterministic sequence of
Hermitian matrices that satisfy

(H(z1, . . . , zn)−H(z1, . . . , z
′
j, . . . , zn))2 4 A2

j

where zk, z
′
k range over the possible values of Zk for each k. Compute the boundedness and

dependence parameters

σ2 :=
∥∥∥∑n

j=1
A2
j

∥∥∥ and b :=

[
1− 1

2

(
‖D‖1→1 + ‖D‖∞→∞

)]−1
.

Then, for all t ≥ 0,

P {λmax (H(Z)− EH(Z)) ≥ t} ≤ d · e−t2/(bσ2).

Furthermore,
Eλmax (H(Z)− EH(Z)) ≤ σ

√
b log d.

The proof of Corollary 5.2 appears below in Section 5.1. In Section 6, we describe an appli-
cation of the result to physical spin systems in Section 6. Observe that the bounds here are a
factor of b worse than the independent case outlined in Corollary 4.1.

5.1. Proof of Concentration under Dobrushin Assumptions

The proof of Corollary 5.2 is longer than the argument behind Corollary 4.1, but it follows the
same pattern.
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Exchangeable Counterparts. Let X = H(Z)− EH(Z). To begin, we form exchangeable
counterparts for the random input Z and the random matrix X.

Z ′ := (Z1, . . . , ZJ−1, Z̃J , ZJ+1, . . . , Zn) and X ′ := H(Z ′)− EH(Z)

where J is an independent index drawn uniformly from {1, . . . , n} and Z̃i and Zi are condition-
ally i.i.d. given Z−i for each index i.

A Kernel Coupling. Next, we construct a kernel coupling (Z(i), Z
′
(i))i≥0 by adapting the

proof of [4, Thm. 4.3]. For each i ≥ 1, we generate (Z(i), Z
′
(i)) from (Z(i−1), Z

′
(i−1)) by selecting an

independent random index Ji uniformly from {1, . . . , n} and replacing the Ji-th coordinates of
Z(i−1) and Z ′(i−1) with Z̃(i−1),Ji and Z̃ ′(i−1),Ji respectively. The replacement variables are sampled
so that

Z(i−1),j ⊥⊥ Z̃(i−1),j |Z(i−1),−j and Z ′(i−1),j ⊥⊥ Z̃ ′(i−1),j |Z ′(i−1),−j.

We require that Z̃(i−1),j and Z̃ ′(i−1),j are maximally coupled, i.e.,

P
{
Z̃(i−1),j 6= Z̃ ′(i−1),j |Z(i−1), Z

′
(i−1)

}
= dTV

(
µj(· |Z(i−1),−j), µj(· |Z ′(i−1),−j)

)
.

By construction, the two marginal chains (Z(i))i≥0 and (Z ′(i))i≥0 have the same the kernel as

(Z,Z ′), and they satisfy the kernel coupling property (2.3). Furthermore, the coupling bound-
edness criterion (2.4) is met, just as in the scalar setting [4, p. 78]. Lemma 2.4 now implies that
(X,X ′) is a kernel Stein pair with kernel

K(z, z′) :=
∑∞

i=0
E
[
H(Z(i))−H(Z ′(i)) |Z(0) = z, Z ′(0) = z′

]
.

The Conditional Variances. With the kernel coupling established, we may proceed to
analyze the conditional variances VX and V K . First, we collect the information necessary to
apply Lemma 2.6. Fix an index i ≥ 0, and write H(Z(i))−H(Z ′(i)) as a telescoping sum:

H(Z(i))−H(Z ′(i)) =
n∑
j=1

[
H
(
Z(i),1, . . . , Z(i),j, Z

′
(i),j+1, . . . , Z

′
(i),n

)
−H

(
Z(i),1, . . . , Z(i),j−1, Z

′
(i),j, . . . , Z

′
(i),n

) ]
=:

n∑
j=1

W(i),j.

Introduce the event E(i),j := {Z(i),j 6= Z ′(i),j}. Abbreviate p(i),j = P
{
E(i),j |Z,Z ′

}
and W̃(i),j =

E[W(i),j |Z,Z ′, E(i),j]. Off of the event E(i),j, it holds that W(i),j = 0. Therefore,

E[W(i),j |Z,Z ′] = W̃(i),j p(i),j.

In [4, pp. 77–78], Chatterjee established that, for each i and j,

p(i),j ≤ e∗jB
ieJ for B :=

(
1− 1

n

)
I +

1

n
D. (5.4)

We use ek to denote the kth standard basis vector, and Bi refers to the ith power of the square,
nonnegative matrix B.
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To continue, make the calculation(∑n

j=1
E[W(i),j |Z,Z ′]

)2
=
∑n

j=1

∑n

k=1
W̃(i),jW̃(i),k p(i),jp(i),k

4
∑

1≤j,k≤n

1

2
(W̃ 2

(i),j + W̃ 2
(i),k) p(i),jp(i),k

4
∑

1≤j,k≤n
A2
k · e∗jBieJ · e∗kBieJ

=
∥∥BieJ

∥∥
1
·
∑n

k=1
A2
k · e∗kBieJ

4 ‖B‖i1→1 ·
∑n

k=1
A2
k · e∗kBieJ .

The first semidefinite inequality follows from (1.2). The second relation depends on (5.4). We
reach the next identity by summing over j, noting that e∗jB

ieJ is nonnegative. The last inequal-
ity follows from the definition (1.4) of ‖·‖1→1 and the fact that this norm is submultiplicative.
Next, take the expectation of the latter display with respect to J . We obtain

E
[(∑n

j=1
E[W(i),j |Z,Z ′]

)2∣∣∣∣Z] 4 ‖B‖i1→1 ·
1

n

∑
1≤j,k≤n

A2
k · e∗kBiej

= ‖B‖i1→1 ·
1

n

∑n

k=1
A2
k ·
∥∥e∗kBi

∥∥
1

4 ‖B‖i1→1 · ‖B‖
i
∞→∞ ·

1

n

∑n

k=1
A2
k.

The justifications are similar with those for the preceding calculation.
As a consequence of this bound, we are in a position to apply Lemma 2.6. Set Γ(Z) =

n−1
∑n

k=1A
2
k and si = ‖B‖i/21→1 ‖B‖

i/2
∞→∞ for each i ≥ 0. The lemma delivers

VX 4
1

2
Γ(Z) 4

σ2

2n
· I, and

V K 4
1

2

(∑∞

i=0
si

)2
Γ(Z) 4

(
1−

√
‖B‖∞→∞ ‖B‖1→1

)−2
σ2

2n
· I.

where σ2 is defined in the statement of Corollary 5.2. It remains to simplify the formula for the
kernel conditional variance.

The definition of B ensures that

‖B‖1→1 = 1− 1

n
(1− ‖D‖1→1) and ‖B‖∞→∞ = 1− 1

n
(1− ‖D‖∞→∞) .

As a consequence of the geometric–arithmetic mean inequality,

1−
√
‖B‖1→1 ‖B‖∞→∞ ≥

1

n

[
1− 1

2

(
‖D‖1→1 + ‖D‖∞→∞

)]
.

We conclude that

V K 4

[
1− 1

2

(
‖D‖1→1 + ‖D‖∞→∞

)]−2
· nσ

2

2
· I =

nb2σ2

2
· I,

where b is defined in the statement of Corollary 5.2.
Finally, we invoke Theorem 3.1 with c = 0 and v = bσ2/2 and s = nb to obtain the advertised

conclusions.
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6. Application: Correlation in the 2D Ising Model

In this section, we apply the dependent matrix bounded differences inequality of Corollary 5.2
to study correlations in a simple spin system. Consider the 2D Ising model without an external
field on an n × n square lattice with a periodic boundary. Let σ := (σij : 1 ≤ i, j ≤ n) be
an array of random spins taking values in {+1,−1}. To simplify the discussion, we treat array
indices periodically, so we interpret the index i to mean ((i − 1) mod n) + 1. We also write
(i, j) ∼ (k, l) to indicate that the vertices are neighbors in the periodic square lattice; that is,
k = i ± 1 and l = j or else k = i and l = j ± 1. With this notation, the Hamiltonian may be
expressed as

H(σ) =
∑

(i,j)∼(k,l)

σij σkl,

where the sum occurs over distinct pairs of neighboring vertices. We assign a probability dis-
tribution to the array σ of spins:

P {σ} =
1

A
exp

(
β H(σ)

)
, (6.1)

where A =
∑
σ′ exp

(
β H(σ′)

)
denotes the normalizing constant (also known as the partition

function). This model has been studied extensively, and it is known to exhibit a phase transition
at βc = 1

2
log(1 +

√
2). For example, see [19].

Fix a positive number d ≤ n. For indices 1 ≤ i, j ≤ d, we define the spin–spin correlation
function as

cij = E[σ11 σij].

We write C for the d× d matrix whose entries are cij. The paper [25] of Wu offers an explicit
expression for the correlations in the limit as the size n of the lattice tends to infinity. In
particular, in the high-temperature regime β < βc, the correlations decay exponentially. On the
other hand, this is a limiting result and there is no analytic formula for finite lattices.

One may wish to estimate the spin–spin correlation matrix from a sampled value σ of the
spins. We propose the estimator

Ĉij :=
1

n2

∑
1≤k,l≤n

σkl · σk+i−1,l+j−1 for 1 ≤ i, j ≤ d. (6.2)

The mean of Ĉ is the spin–spin correlation matrix C, so it is natural to wonder about the
deviations of the estimator from its mean value. We can use the concentration results from the
previous section to quantify these fluctuations.

6.1. Concentration for General Matrices

Since the estimator Ĉ need not be Hermitian, we need a way to extend our techniques to
general matrices. We employ a well-known device from operator theory, called the Hermitian
dilation [23, Sec. 2.6].

Definition 6.1 (Hermitian dilation). Consider a matrix B ∈ Cd1×d2 , and set d = d1 + d2. The
Hermitian dilation of B is the matrix

D(B) :=

[
0 B
B∗ 0

]
∈ Hd.
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The dilation preserves spectral properties in the sense that λmax(D(B)) = ‖D(B)‖ = ‖B‖.
Therefore,

P
{∥∥Ĉ −C∥∥ ≥ t

}
= P

{
λmax

(
D(Ĉ)−D(C)

)
≥ t
}
. (6.3)

Using this observation, we can obtain a tail bound for the spectral-norm error in the estimator
Ĉ by studying its dilation.

6.2. Bounding the Dobrushin Coefficients

To apply Corollary 5.2, we need to bound the Dobrushin coefficients of the array σ of spins.
Let σ′ ∈ {±1}n×n be a second independent draw from the Ising model. Extending our notation
from before, we write µij(· |σ−(i,j)) for the conditional distribution of σij given the remaining
variables. In our setting,

dTV

(
µij(· |σ−(i,j)), µij(· |σ′−(i,j))

)
=

∣∣∣∣P{σij = 1

∣∣∣∣ ∑(k,l):(i,j)∼(k,l)
σkl

}
− P

{
σ′ij = 1

∣∣∣∣ ∑(k,l):(i,j)∼(k,l)
σ′kl

}∣∣∣∣ . (6.4)

It follows from (6.1) that

P
{
σij = 1

∣∣∣∣ ∑(k,l):(i,j)∼(k,l)
σkl = s

}
=

exp(sβ)

exp(sβ) + exp(−sβ)
=

1

1 + exp(−2sβ)

for each possible value s ∈ {−4,−2, 0, 2, 4}. Therefore, the expression (6.4) admits the upper
bound

1

1 + exp(−4β)
− 1

2

when σ and σ′ differ in a single coordinate. We may select the Dobrushin interdependence
matrix

D(i,j),(k,l) =

{
(1 + exp(−4β))−1 − 1

2
, when(i, j) ∼ (k, l)

0, otherwise.

This matrix satisfies the Dobrushin condition (5.2). By direct computation,

max
{
‖D‖1→1 , ‖D‖∞→∞

}
≤ 4

1− exp(−4β)
− 2. (6.5)

because every vertex has four neighbors. The right-hand side of (6.5) is smaller than one
precisely when β < βD = 1

4
log(3). Since βD < βc, the hypotheses of Corollary 5.2 are satisfied

for only part of the high-temperature regime.

6.3. Tail Bound for the Estimator

We intend to apply Corollary 5.2 to the Hermitian matrix D(Ĉ). For each index 1 ≤ i, j ≤ n,

write Ĉij for the value of Ĉ when the sign of σij is flipped. From (6.2), we have the inequalities∣∣∣Ĉkl − Ĉij
kl

∣∣∣ ≤ 4

n2
for 1 ≤ k, l ≤ d.
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As a consequence, we reach the semidefinite relation(
D(Ĉ)−D(Ĉij)

)2
4

16d2

n4
I.

Summing over all vertices in the lattice, we obtain an inequality for the boundedness parameter

σ2 =

∥∥∥∥∑1≤i,j≤n

16d2

n4
· I
∥∥∥∥ =

16d2

n2
.

For β < βD, Corollary 5.2 implies that

P
{∥∥Ĉ −C∥∥ ≥ t

}
≤ 2d · exp

(
−t2

3− 4(1 + exp(−4β))−1
· n2

16d2

)
.

Therefore, the typical deviation E
∥∥Ĉ −C∥∥ has order (d

√
log d)/n. Therefore, in the regime

where β < βD, one sample suffices to obtain an accurate estimate of the spin–spin correlation
matrix C, provided that n� d.

7. Complements

The tools of Section 3 are applicable in a wide variety of settings. To indicate what might
be possible, we briefly present another packaged concentration result. We also indicate some
prospects for future research.

7.1. Matrix-Valued Functions of Haar Random Elements

This section describes a concentration result for a matrix-valued function of a random element
drawn uniformly from a compact group. This corollary can be viewed as a matrix extension
of [4, Thm. 4.6]. We provide the proof in Appendix D.

Corollary 7.1 (Concentration for Hermitian Functions of Haar Measures). Let Z ∼ µ be Haar
distributed on a compact topological group G, and let Ψ : G → Hd be a measurable function
satisfying EΨ(Z) = 0. Let Y, Y1, Y2, . . . be i.i.d. random variables in G satisfying

Y =d Y
−1 and zY z−1 =d Y for all z ∈ G. (7.1)

Compute the boundedness parameter

σ2 :=
S2

2

∑∞

i=0
min

{
1, 4RS−1dTV(µi, µ)

}
where µi is the distribution of the product Yi · · ·Y1,

‖Ψ(z)‖ ≤ R for all z ∈ G, and S2 = sup
g∈G

∥∥E [(Ψ(g)−Ψ(Y g))2
]∥∥ .

Then, for all t ≥ 0,
P {λmax (Ψ(Z)) ≥ t} ≤ d · e−t2/(2σ2).

Furthermore,
Eλmax (Ψ(Z)) ≤ σ

√
2 log d.
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Corollary 7.1 relates the concentration of Hermitian functions to the convergence of random
walks on a group. Since representation theory leads to a matrix model of compact groups, it is
often natural to build random matrices from a group representation. In particular, Corollary 7.1
can be used to study matrices constructed from random permutations or random unitary ma-
trices. We omit the details.

7.2. Conjectures and Consequences

Lugosi et al. [3] study a class of self-bounding (scalar) functions, which arise in applications in
statistics and learning theory. They use log-Sobolev inequalities to obtain information about
the concentration properties of these functions. It is also possible to perform the analysis using
the method of exchangeable pairs.

Let us introduce the matrix analog of a self-bounding function.

Definition 7.2 (Self-bounding Matrix Function). A function H : Z → Hd is called (a, b)
matrix self-bounding if, for any Z,Z ′ ∈ Z,

1. H(Z)−H(z1, . . . , z
′
i, . . . , zn) 4 I, and

2.
∑n

i=1(H(Z)−H(z1, . . . , z
′
i, . . . , zn))+ 4 aH(Z) + bI.

H is weakly (a, b) matrix self-bounding if, for any Z,Z ′ ∈ Z,∑n

i=1
(H(Z)−H(z1, . . . , z

′
i, . . . , zn))2+ 4 aH(Z) + bI.

Mackey [12, Thm. 25] proposed a slightly different definition that includes an additional self-
reciprocity condition. His analysis requires this extra hypothesis because it is based on matrix
Stein pairs.

The approach in this paper is not quite strong enough to develop concentration inequalities
for self-bounding matrix functions. Our techniques would work if the following mean value trace
inequality were valid.

Conjecture 7.3 (Signed Mean Value Trace Inequalities). For all matrices A,B,C ∈ Hd, all
positive integers q, and any s > 0 it holds that

tr
[
C(eA − eB)

]
≤ 1

2
tr
[
(s(A−B)2+ + s−1C2

+)eA + (s(A−B)2− + s−1C2
−)eB)

]
.

and

tr
[
C(Aq −Bq)

]
≤ q

2

[
(s(A−B)2+ + s−1C2

+) |A|q−1 + (s(A−B)2− + s−1C2
−) |B|q−1)

]
.

This statement involves the standard matrix functions that lift the scalar functions x+ :=
max{x, 0} and x− := max{−a, 0}. Extensive simulations with random matrices suggest that
Conjecture 7.3 holds, but we did not find a proof.
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Appendix A: Operator Inequalities

Our main results rely on some basic inequalities from operator theory. We are not aware of
good references for this material, so we have included short proofs.

A.1. Young’s Inequality for Commuting Operators

In the scalar setting, Young’s inequality provides an additive bound for the product of two
numbers. More precisely, for indices p, q ∈ (1,∞) that satisfy the conjugacy relation p−1+q−1 =
1, we have

ab ≤ 1

p
|a|p +

1

q
|b|q for all a, b ∈ R. (A.1)

The same result has a natural extension for commuting operators.

Lemma A.1 (Young’s Inequality for Commuting Operators). Suppose that A and B are self-
adjoint linear maps on the Hilbert space Md that commute with each other. Let p, q ∈ (1,∞)
satisfy the conjugacy relation p−1 + q−1 = 1. Then

AB 4
1

p
|A|p +

1

q
|B|q .

Proof. Since A and B commute, there exists a unitary operator U and diagonal operators D
andM for which A = UDU∗ and B = UMU∗. Young’s inequality (A.1) for scalars immediately
implies that

DM 4
1

p
|D|p +

1

q
|M|q .

Conjugating both sides of this inequality by U , we obtain

AB = U(DM)U∗ 4 1

p
U |D|p U∗ +

1

q
U |M|q U∗ =

1

p
|A|p +

1

q
|B|q .

The last identity follows from the definition of a standard function of an operator.

A.2. An Operator Version of Cauchy–Schwarz

We also need a simple version of the Cauchy–Schwarz inequality for operators. The proof follows
a classical argument, but it also involves an operator decomposition.

Lemma A.2 (Operator Cauchy–Schwarz). Let A be a self-adjoint linear operator on the Hilbert
space Md, and let M and N be matrices in Md. Then

|〈M , A(N )〉| ≤
[
〈M , |A| (M)〉 · 〈N , |A| (N )〉

]1/2
.

The inner product symbol refers to the trace, or Frobenius, inner product.

Proof. Consider the Jordan decomposition A = A+−A−, where A+ and A− are both positive
semidefinite. For all s > 0,

0 ≤
〈
(sM − s−1N ), A+(sM − s−1N )

〉
= s2 〈M , A+(M )〉+ s−2 〈N , A+(N )〉 − 2 〈M , A+(N )〉 .
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Likewise,

0 ≤
〈
(sM + s−1N ), A−(sM + s−1N )

〉
= s2 〈M , A−(M )〉+ s−2 〈N , A−(N )〉+ 2 〈M , A−(N )〉 .

Add the latter two inequalities and rearrange the terms to obtain

2 〈M , A(N )〉 ≤ s2 〈M , |A| (M )〉+ s−2 〈N , |A| (N )〉 ,

where we have used the relation |A| = A+ +A−. Take the infimum of the right-hand side over
s > 0 to reach

〈M , A(N )〉 ≤
[
〈M , |A| (M )〉 · 〈M , |A| (N )〉

]1/2
. (A.2)

Repeat the same argument, interchanging the roles of the matrices sM−s−1N and sM+s−1N .
We conclude that (A.2) also holds with an absolute value on the left-hand side. This observation
completes the proof.

Appendix B: Proof of the Exponential Tail Bound

This appendix contains a proof of the exponential tail bound Theorem 3.1. The argument
parallels the approach developed in [13], but we require more powerful estimates along the way.
In view of the similarities, we emphasize the places where the proofs differ, and we suppress
details that are identical with the earlier work.

B.1. The Matrix Laplace Transform Method

A central tool in our investigation is a matrix variant of the classical moment generating func-
tion. Ahlswede & Winter [1, App.] introduced this definition in their investigation of matrix
concentration.

Definition B.1 (Trace Mgf). Let X be a random Hermitian matrix. The (normalized) trace
moment generating function of X is defined as

m(θ) := mX(θ) := E t̄r eθX for θ ∈ R.

The following proposition from [13, Prop. 3.3] collects results from [1, 18, 23, 6].

Proposition B.2 (Matrix Laplace Transform Method). Let X ∈ Hd be a random matrix with
normalized trace mgf m(θ) := E t̄r eθX . For each t ∈ R,

P {λmax(X) ≥ t} ≤ d · inf
θ>0

exp{−θt+ logm(θ)}. (B.1)

P {λmin(X) ≤ t} ≤ d · inf
θ<0

exp{−θt+ logm(θ)}. (B.2)

Furthermore,

Eλmax(X) ≤ inf
θ>0

1

θ
[log d+ logm(θ)]. (B.3)

Eλmin(X) ≥ sup
θ<0

1

θ
[log d+ logm(θ)]. (B.4)

In summary, we can bound the extreme eigenvalues of a random matrix by controlling the trace
mgf.
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B.2. The Method of Exchangeable Pairs

The main technical challenge in developing concentration inequalities is to obtain bounds for the
trace mgf. In this work, we follow the approach from the paper [13], which extends Chatterjee’s
concentration argument [5] to the matrix setting. The key idea is to use an exchangeable pair
to bound the derivative of the trace mgf, which in turns allows us to control the growth of the
trace mgf.

We begin with a technical lemma, which generalizes [13, Lem. 2.3] and [4, Lem. 3.1]. This
result permits us to rewrite certain matrix expectations using kernel Stein pairs.

Lemma B.3 (Method of Exchangeable Pairs). Suppose that (X,X ′) ∈ Hd ×Hd is a K-Stein
pair constructed from an auxiliary exchangeable pair (Z,Z ′). Let F : Hd → Hd be a measurable
function that satisfies the regularity condition

E ‖K(Z,Z ′) · F (X)‖ <∞. (B.5)

Then

E [X · F (X)] =
1

2
E [K(Z,Z ′)(F (X)− F (X ′))] . (B.6)

Proof. Definition 2.2, of a kernel Stein pair, implies that

E[X · F (X)] = E
[
E[K(Z,Z ′) |Z] · F (X)

]
= E[K(Z,Z ′)F (X)],

where we justify the pull-through property of conditional expectation using the regularity con-
dition (B.5). Since the kernel K satisfies the antisymmetry property (2.1), we also have the
relation

E[K(Z,Z ′)F (X)] = E[K(Z ′, Z)F (X ′)] = −E[K(Z,Z ′)F (X ′)].

Average the two preceding displays to reach the identity (B.6).

Under suitable regularity conditions, the derivative of the trace mgf of a random matrix X
has precisely the form needed to invoke to the method of exchangeable pairs:

m′(θ) = E t̄r
[
XeθX

]
.

Hence, we may apply Lemma B.3 with F (X) = eθX to obtain the expression

m′(θ) =
1

2
E t̄r

[
K(Z,Z ′)

(
eθX − eθX

′)]
. (B.7)

The primary novelty in this work is a method for bounding the right-hand side of (B.7).

B.3. The Exponential Mean Value Trace Inequality

To control the expression (B.7) for the derivative of the trace mgf, we will invoke Lemma 3.2,
the exponential mean value trace inequality. We establish this key lemma in this section. See
the manuscript [20] for an alternative proof.
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Proof of Lemma 3.2. To begin, we develop an alternative expression for the trace quantity that
we need to bound. Observe that

d

dτ
eτAe(1−τ)B = eτA(A−B)e(1−τ)B.

The Fundamental Theorem of Calculus delivers the identity

eA − eB =

∫ 1

0

d

dτ
eτAe(1−τ)B dτ =

∫ 1

0

eτA(A−B)e(1−τ)B dτ.

Therefore, using the definition of the trace inner product, we reach

tr
[
C
(
eA − eB

)]
=

∫ 1

0

〈
C, eτA(A−B)e(1−τ)B

〉
dτ. (B.8)

We can bound the right-hand side by developing an appropriate matrix version of the inequality
between the logarithmic mean and the arithmetic mean.

Let us define two families of positive-definite operators on the Hilbert space Md:

Aτ (M) = eτAM and B1−τ (M ) = Me(1−τ)B for each τ ∈ [0, 1].

In other words, Aτ is a left-multiplication operator, and B1−τ is a right-multiplication operator.
It follows immediately that Aτ and B1−τ commute for each τ ∈ [0, 1]. Young’s inequality for
commuting operators, Lemma A.1, implies that

AτB1−τ 4 τ · |Aτ |1/τ + (1− τ) · |B1−τ |1/(1−τ) = τ · |A1|+ (1− τ) · |B1| .

Integrating over τ , we discover that∫ 1

0

AτB1−τdτ 4
1

2
(|A1|+ |B1|) =

1

2
(A1 + B1). (B.9)

This is our matrix extension of the logarithmic–arithmetic mean inequality.
To relate this result to the problem at hand, we rewrite the expression (B.8) using the

operators Aτ and B1−τ . Indeed,

tr
[
C
(
eA − eB

)]
=

∫ 1

0

〈C, (AτB1−τ )(A−B)〉 dτ

≤
[∫ 1

0

〈C, (AτB1−τ )(C)〉 dτ ·
∫ 1

0

〈A−B, (AτB1−τ )(A−B)〉 dτ
]1/2

. (B.10)

The second identity follows from the definition of the trace inner product. The last relation
follows from the operator Cauchy–Schwarz inequality, Lemma A.2, and the usual Cauchy–
Schwarz inequality for the integral.

It remains to bound the two integrals in (B.10). These estimates are an immediate conse-
quence of (B.9). First,∫ 1

0

〈C, (AτB1−τ )(C)〉 dτ ≤ 1

2
〈C, (A1 + B1)(C)〉

=
1

2

〈
C, eAC +CeB

〉
=

1

2
tr
[
C2
(
eA + eB

)]
. (B.11)
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The last two relations follow from the definitions of the operators A1 and B1, the definition of
the trace inner product, and the cyclicity of the trace. Likewise,∫ 1

0

〈A−B, (AτB1−τ )(A−B)〉 dτ =
1

2
tr
[
(A−B)2

(
eA + eB

)]
. (B.12)

Substitute (B.11) and (B.12) into the inequality (B.10) to reach

tr
[
C
(
eA − eB

)]
≤ 1

2

(
tr
[
C2
(
eA + eB

)]
· tr
[
(A−B)2

(
eA + eB

)])1/2

.

We obtain the result stated in Lemma 3.2 by applying the numerical inequality between the
geometric mean and the arithmetic mean.

B.4. Bounding the Derivative of the Trace Mgf

We are now prepared to obtain a bound for the derivative of the trace mgf in terms of the
conditional variance and the kernel conditional variance.

Lemma B.4 (The Derivative of the Trace Mgf). Suppose that (X,X ′) is a K-Stein pair, and
assume that X is almost surely bounded in norm. Define the normalized trace mgf m(θ) :=
E t̄r eθX . Then

|m′(θ)| ≤ 1

2
|θ| · inf

s>0
E t̄r

[(
sVX + s−1V K

)
eθX
]

for all θ ∈ R. (B.13)

The conditional variances VX and V K are defined in (2.6) and (2.7).

Proof. Consider the derivative of the trace mgf

m′(θ) = E t̄r

[
d

dθ
eθX
]

= E t̄r
[
XeθX

]
, (B.14)

where the dominated convergence theorem and the boundedness of X justify the exchange
of expectation and derivative. When θ = 0, we have m′(θ) = 0, as advertised. When θ 6= 0,
the form of this derivative is ripe for an application of the method of exchangeable pairs,
Lemma B.3. Since X is bounded, the regularity condition (B.5) is satisfied, and we obtain

m′(θ) =
1

2
E t̄r

[
K(Z,Z ′)

(
eθX − eθX

′)]
. (B.15)

The exponential mean value trace inequality, Lemma 3.2, implies that

|m′(θ)| ≤ 1

8
· inf
s>0

E t̄r
[(
s (θX − θX ′)2 + s−1K(Z,Z ′)2

)
·
(
eθX + eθX

′)]
=

1

4
· inf
s>0

E t̄r
[(
s (θX − θX ′)2 + s−1K(Z,Z ′)2

)
· eθX

]
=

1

4
|θ| · inf

t>0
E t̄r

[(
t (X −X ′)2 + t−1K(Z,Z ′)2

)
· eθX

]
=

1

2
|θ| · inf

t>0
E t̄r

[
t

2
E
[
(X −X ′)2 |Z

]
· eθX +

1

2t
E
[
K(Z,Z ′)2 |Z

]
· eθX

]
.

The first equality follows from the exchangeability of (X,X ′); the second follows from the
change of variables s = |θ|−1 t; and the final one depends on the pull-through property of
conditional expectation. We reach the result (B.13) by introducing the definitions (2.6) and
(2.7) of the conditional variance and the kernel conditional variance.
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B.5. Bounding the Trace Mgf

Lemma B.4 gives us a powerful tool for bounding the trace mgf of a random matrix X that is
presented as part of a kernel Stein pair. The following lemma shows how to derive a trace mgf
bound from bounds on the kernel conditional variance.

Lemma B.5 (Trace Mgf Estimates for Bounded Random Matrices). Let (X,X ′) be a K-Stein
pair, and suppose there exist nonnegative constants c, v, s for which

VX 4 s−1(cX + v I) and V K 4 s (cX + v I) almost surely. (B.16)

Then the normalized trace mgf m(θ) := E t̄r eθX satisfies the bounds

logm(θ) ≤ vθ2

2
when θ ≤ 0. (B.17)

logm(θ) ≤ v

c2

[
log

(
1

1− cθ

)
− cθ

]
(B.18)

≤ vθ2

2(1− cθ)
when 0 ≤ θ < 1/c. (B.19)

The two conditional variances are defined in (2.6) and (2.7).

Proof. As demonstrated in [13, Lem. 4.3], the assumption (B.16) implies that X is almost
surely bounded in norm. Hence, we may apply Lemma B.4 along with our conditional variance
bounds (B.16) to obtain

|m′(θ)| ≤ 1

2
|θ| · inf

t>0
E t̄r

[
(tVX + t−1V K) eθX

]
≤ 1

2
|θ| · E t̄r

[
(sVX + s−1V K) eθX

]
≤ |θ| · E t̄r

[
(cX + v I) eθX

]
= c |θ| · E t̄r

[
XeθX

]
+ v |θ| · E t̄r eθX

= c |θ| ·m′(θ) + v |θ| ·m(θ),

where the third inequality follows from the positivity of eθX . The remainder of the argument
now proceeds as in [13, Lem. 4.3].

B.6. Proof of Theorem 3.1

The remainder of the proof of Theorem 3.1 is identical to that of [13, Thm. 4.1], once we
substitute the trace mgf estimates from Lemma B.5 in place of the result [13, Lem. 4.3]. We
omit the details.

Appendix C: Proof of the Polynomial Moment Inequality

Next, we develop a proof of the matrix Burkholder–Davis–Gundy inequality, Theorem 3.3. The
proof parallels the argument in [13], but we need some new matrix inequalities to make the
extension to kernel Stein pairs.
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C.1. The Polynomial Mean Value Trace Inequality

The critical new ingredient in Theorem 3.3 is the polynomial mean value trace inequality,
Lemma 3.4. Let us proceed with a proof of this result.

Proof of Lemma 3.4. First, we need to develop another representation for the trace quantity
that we are analyzing. Assume that A,B,C ∈ Hd. A direct calculation shows that

Aq −Bq =
∑q−1

k=0
Ak(A−B)Bq−1−k.

As a consequence,

tr [C(Aq −Bq)] =
∑q−1

k=0

〈
C, Ak(A−B)Bq−1−k〉 . (C.1)

To bound the right-hand side of (C.1), we require an approriate mean inequality.
To that end, we define some self-adjoint operators on Md:

Ak(M) := AkM and Bk(M ) := MBk for each k = 0, 1, 2, . . . , q − 1.

The absolute values of these operators satisfy

|Ak| (M ) = |A|kM and |Bk| (M ) = M |B|k for each k = 0, 1, 2, . . . , q − 1.

Note that |Ak| and |Bq−k−1| commute with each other for each k. Therefore, Young’s inequality
for commuting operators, Lemma A.1, yields the bound

|AkBq−k−1| = |Ak| |Bq−k−1| 4
k

q − 1
|Ak|(q−1)/k +

q − k − 1

q − 1
|Bq−k−1|(q−1)/(q−k−1)

=
k

q − 1
|A1|q−1 +

q − k − 1

q − 1
|B1|q−1 . (C.2)

Summing over k, we discover that∑q−1

k=0
|AkBq−k−1| 4

q

2
|A1|q−1 +

q

2
|B1|q−1 . (C.3)

This is the mean inequality that we require.
To apply this result, we need to rewrite (C.1) using the operators Ak and Aq−k−1. It holds

that

tr [C(Aq −Bq)] =

q−1∑
k=0

〈C, (AkBq−k−1)(A−B)〉

≤

[
q−1∑
k=0

〈C, |AkBq−k−1| (C)〉 ·
q−1∑
k=0

〈A−B, |AkBq−k−1| (A−B)〉

]1/2
. (C.4)

The second relation follows from the operator Cauchy–Schwarz inequality, Lemma A.2, and the
usual Cauchy–Schwarz inequality for the sum.
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It remains to bound to two sums on the right-hand side of (C.4). The mean inequality (C.2)
ensures that

q−1∑
k=0

〈C, |AkBq−k−1| (C)〉 ≤ q

2

〈
C,

(
|A1|q−1 + |B1|q−1

)
(C)

〉
=
q

2

〈
C, |A|q−1C +C |B|q−1

〉
=
q

2
tr
[
C2
(
|A|q−1 + |B|q−1

)]
. (C.5)

Likewise,

q−1∑
k=0

〈A−B, |AkBq−k−1| (A−B)〉 ≤ q

2
tr
[
(A−B)2

(
|A|q−1 + |B|q−1

)]
. (C.6)

Introduce the two inequalities (C.5) and (C.6) into (C.4) to reach

tr [C(Aq −Bq)] ≤ q

2

(
tr
[
C2
(
|A|q−1 + |B|q−1

)]
· tr
[
(A−B)2

(
|A|q−1 + |B|q−1

)])1/2

.

The result follows when we apply the numerical inequality between the geometric mean and
the arithmetic mean.

C.2. Proof of Theorem 3.3

Abbreviate

E := E ‖X‖2pS2p
= E tr |X|2p = E tr

[
X ·X2p−1].

To apply the method of exchangeable pairs, Lemma B.3, we check the regularity condition (B.5):

E
∥∥K(Z,Z ′) ·X2p−1∥∥ ≤ E

(
‖K(Z,Z ′)‖ ‖X‖2p−1

)
≤
(
E ‖K(Z,Z ′)‖2p

)1/2p(E ‖X‖2p )(2p−1)/2p <∞,
where we have applied Hölder’s inequality for expectation and the fact that the spectral norm
is dominated by the Schatten (2p)-norm. Invoke Lemma B.3 with F (X) = X2p−1 to reach

E =
1

2
E tr

[
K(Z,Z ′) ·

(
X2p−1 −X ′2p−1

)]
.

Next, fix a parameter s > 0. Apply the polynomial mean value trace inequality, Lemma 3.4,
with q = 2p− 1 to obtain the estimate

E ≤ 2p− 1

8
E tr[(s (X −X ′)2 + s−1K(Z,Z ′)2) · (X2p−2 +X ′2p−2)]

=
2p− 1

4
E tr[(s (X −X ′)2 + s−1K(Z,Z ′)2) ·X2p−2]

= (2p− 1)E tr

[
1

2
(sVX + s−1V K) ·X2p−2

]
,

where we have used the exchangeability of (X,X ′) and the definitions (2.6) and (2.7) of the
conditional variances. In the last step, we justify the pull-through property with the regularity
condition E ‖X‖2pS2p

< ∞. The remainder of the argument is identical with the proof of [13,

Thm. 8.1].
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Appendix D: Haar Measures and Controlled Total Variation

In this section, we prove Corollary 7.1 by studying the behavior of Hermitian functions of
group-valued random elements. Under the notation of Corollary 7.1, we define X := Ψ(Z). [4,
Thm. 4.6] showed that scalar functions of the Haar measure are well concentrated whenever
particular random walks on G converge rapidly to the Haar distribution. In the sections to
follow, we develop a Hermitian analogue of this relationship using the tools of Sections 2 and 3.
As in [4], we will adopt the total variation distance between measures (5.1) as our convergence
metric.

D.1. A Kernel Coupling

We begin by establishing a kernel coupling suitable for analyzingX. Since Y ∈ G is independent
of Z and satisfies (7.1), Z ′ = Y Z is exchangeable counterpart for Z, and hence (X,X ′) =
(Ψ(Z),Ψ(Z ′)) is an exchangeable pair.

Moreover, the sequence of pairs

(Z(i), Z
′
(i)) := (Yi · · ·Y1Z, Yi · · ·Y1Z ′) for each i ≥ 0 (D.1)

defines a kernel coupling for (X,X ′). Thus, (X,X ′) is a kernel Stein pair with K defined as
in Lemma 2.4 whenever the precondition (2.4) is met.

D.2. The Conditional Variances

The sequence of multipliers (Yi · · ·Y1)∞i=1 in our kernel coupling (D.1) can be viewed as a random
walk on the group G, and, for many choices of Y , this sequence will converge to a Haar dis-
tributed random variable. Intuitively, a faster rate of convergence implies a faster coupling time
for the Markov chains (Z(i))i≥0 and (Z ′(i))i≥0 and hence a smaller K-conditional variance (2.7).
Our next lemma makes this intuition more precise by bounding the K-conditional variance in
terms of the total variation distance between Yi · · ·Y1 and Z.

Lemma D.1. Let Z ∼ µ be Haar distributed on a group G. Let (X,X ′) := (Ψ(Z),Ψ(Z ′))
with K constructed as in Section D.1. Suppose that µi is the distribution of Yi · · ·Y1 and that

S2 := sup
g∈G

∥∥E[(Ψ(g)−Ψ(Y g))2]
∥∥ .

Then (X,X ′) is a K-Stein pair whenever
∑∞

i=0 dTV(µi, µ) < ∞. Moreover, the conditional
variance (2.6) satisfies

λmax (VX) ≤ S2

2
almost surely,

and the K-conditional variance (2.7) satisfies

λmax

(
V K

)
≤ S2

2

(∑∞

i=0
min

{
1, 4RS−1 dTV(µi, µ)

})2
almost surely.
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Proof. Fix any i ≥ 0. We aim to bound

E[Ψ(Z(i))−Ψ(Z ′(i)) |Z = z, Z ′ = z′]2 = (E[Ψ(Yi · · ·Y1z)]− E[Ψ(Yi · · ·Y1z′)])2

4 2E[Ψ(Yi · · ·Y1z)]2 + 2E[Ψ(Yi · · ·Y1z′)]2,

where the inequality follows from the convexity of the matrix square. For any z ∈ G,

E[Ψ(Yi · · ·Y1z)] = E[Ψ(Yi · · ·Y1z)]− E[Ψ(Z)]

= E[Ψ(Yi · · ·Y1z)]− E[Ψ(Zz)],

since Z is Haar distributed, and hence Zz =d Z. Furthermore, for any positive measure ν that
dominates µ and µi,

‖E[Ψ(Yi · · ·Y1z)]‖ =

∥∥∥∥∫ Ψ(yz)

(
dµi
dν

(y)− dµ

dν
(y)

)
dν(y)

∥∥∥∥
≤ R

∫ ∣∣∣∣dµidν
(y)− dµ

dν
(y)

∣∣∣∣ dν(y)

≤ 2R dTV(µi, µ),

by our bound on Ψ and the definition of total variation. Therefore,

E[E[Ψ(Z(i))−Ψ(Z ′(i)) |Z,Z ′]2 |Z] 4 16R2d2TV(µi, µ) I.

We note moreover that∥∥∥∑∞

i=0
|E[Ψ(Z(i))−Ψ(Z ′(i)) |Z(0) = z, Z ′(0) = z′]|

∥∥∥ ≤∑∞

i=0
4R dTV(µi, µ)

for all z and z′. Hence, by Lemma 2.4, (X,X ′) is a valid K-Stein pair whenever the total
variation distances are summable.

Next, let Wi := Yi · · ·Y1, and notice that∥∥E[E[Ψ(Z(i))−Ψ(Z ′(i)) |Z,Z ′]2 |Z = z]
∥∥ ≤ ∥∥E[(Ψ(Z(i))−Ψ(Z ′(i)))

2 |Z = z]
∥∥

=
∥∥E[(Ψ(Wiz)−Ψ(WiY z))

2]
∥∥

≤ sup
g∈G

∥∥E[(Ψ(gz)−Ψ(gY z))2]
∥∥

= sup
g∈G

∥∥E[(Ψ(gz)−Ψ(Y gz))2]
∥∥ ≤ S2,

where the first inequality is a consequence of the convexity of the matrix square, and the final
equality follows from the property g−1Y g =d Y for all g ∈ G. Hence, we may apply Lemma 2.6
with s0 = S, with si = min

{
S, 4RdTV(µi, µ)

}
for i > 0, and with Γ(Z) = I to obtain the

result.

D.3. Exponential Concentration

We are finally equipped to prove Corollary 7.1. Under the kernel coupling construction of Sec-
tion D.1, the conditional variance bounds of Lemma D.1 imply that Theorem 3.1 holds with c =
0, with v = 1

2
S2
∑∞

i=0 min
{

1, 4RS−1 dTV(µi, µ)
}

, and with s =
∑∞

i=0 min
{

1, 4RS−1 dTV(µi, µ)
}

.
This establishes the result.
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