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Abstract. Randomized matrix sparsification has proven to be a fruitful technique for producing
faster algorithms in applications ranging from graph partitioning to semidefinite programming. In
the decade or so of research into this technique, the focus has been—with few exceptions—on
ensuring the quality of approximation in the spectral and Frobenius norms. For certain graph
algorithms, however, the ∞→1 norm may be a more natural measure of performance.

This paper addresses the problem of approximating a real matrix A by a sparse random matrix
X with respect to several norms. It provides the first results on approximation error in the ∞→1
and ∞→2 norms, and it uses a result of Lata la to study approximation error in the spectral norm.
These bounds hold for a reasonable family of random sparsification schemes, those which ensure that
the entries of X are independent and average to the corresponding entries of A. Optimality of the
∞→1 and ∞→2 error estimates is established. Concentration results for the three norms hold when
the entries of X are uniformly bounded. The spectral error bound is used to predict the performance
of several sparsification and quantization schemes that have appeared in the literature; the results
are competitive with the performance guarantees given by earlier scheme-specific analyses.

1. Introduction

Massive datasets are ubiquitous in modern data processing. Classical dense matrix algorithms
are poorly suited to such problems because their running times scale superlinearly with the size
of the matrix. When the dataset is sparse, one prefers to use sparse matrix algorithms, whose
running times depend more on the sparsity of the matrix than on the size of the matrix. Of course,
in many applications the matrix is not sparse. Accordingly, one may wonder whether it is possible
to approximate a computation on a large dense matrix with a related computation on a sparse
approximant to the matrix.

Let ‖ · ‖ be a norm on matrices. We may phrase the following question: Given a matrix A, how
can one efficiently generate a sparse matrix X for which the approximation error ‖A−X‖ is small?

In the seminal papers [AM07, AM01], Achlioptas and McSherry demonstrate that one can bound,
a priori, the spectral and Frobenius norm errors incurred when using a particular random approx-
imation scheme. They use this scheme as the basis of an efficient algorithm for calculating near
optimal low-rank approximations to large matrices. In a related work [AHK06], Arora, Hazan,
and Kale present another randomized scheme for computing sparse approximants with controlled
Frobenius and spectral norm errors.

The literature has concentrated on the behavior of the approximation error in the spectral and
Frobenius norms; however, these norms are not always the most natural choice. For instance, the
problem of graph sparsification is naturally posed as a question of preserving the cut-norm of a
graph Laplacian. The strong equivalency of the cut-norm and the ∞→1 norm suggests that, for
graph-theoretic applications, it may be fruitful to consider the behavior of the ∞→1 norm under
sparsification. In other applications, e.g., the column subset selection algorithm in [Tro09], the
∞→2 norm is the norm of interest.

This paper investigates the errors incurred by approximating a fixed real matrix with a random
matrix. Our results apply to any scheme in which the entries of the approximating matrix are
independent and average to the corresponding entries of the fixed matrix. Our main contribution is
a bound on the expected ∞→p norm error, which we specialize to the case of the ∞→1 and ∞→2
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norms. We also use a result of Lata la [Lat05] to find an optimal bound on the expected spectral
approximation error, and we establish the subgaussianity of the spectral approximation error.

1.1. Summary of results. Consider the matrix A as an operator from ℓn
∞ to ℓm

p , where 1 ≤ p ≤
∞. The operator norm of A is defined as

‖A‖∞→p = max
u6=0

‖Au‖p

‖u‖∞
.

The major novel contributions of this paper are estimates of the ∞ → 1 and ∞ → 2 norm
approximation errors induced by random matrix sparsification schemes. Let A be a target matrix.
Suppose that X is a random matrix with independent entries that satisfies EX = A. ThenE ‖A − X‖∞→1 ≤ 2

[

∑

k

(

∑

j
Var(Xjk)

)1/2
+
∑

j

(

∑

k
Var(Xjk)

)1/2
]

and E ‖A − X‖∞→2 ≤ 2
(

∑

jk
Var(Xjk)

)1/2
+ 2

√
m min

D
max

j

(

∑

k

Var(Xjk)

d2
k

)1/2

where D is a positive diagonal matrix with trace(D2) = 1. We complement these estimates with
tail bounds for the approximation error in each norm.

We also note thatE ‖A − X‖ ≤ C

[

max
j

(

∑

k
Var(Xjk)

)1/2
+ max

k

(

∑

j
Var(Xjk)

)1/2
+
(

∑

jk
E(Xjk − ajk)4

)1/4
]

where C is a universal constant. This estimate follows from Lata la’s work [Lat05]. We use our spec-
tral norm results to analyze the sparsification and quantization schemes in [AHK06] and [AM07],
and we show that our analysis yields error estimates competitive with those established in the
respective works.

While on the path to proving the ∞→1 and ∞→2 norm approximation error estimates, we derive
analogous relations of independent interest that bound the expected norm of a random matrix Z

with independent, zero-mean entries:E ‖Z‖∞→1 ≤ 2E (‖Z‖col +
∥

∥ZT
∥

∥

col

)

,

where ‖A‖col is the sum of the ℓ2 norms of the columns of A, andE ‖Z‖∞→2 ≤ 2E ‖Z‖F + 2 min
D

E∥∥ZD−1
∥

∥

2→∞ ,

where D is a diagonal positive matrix with trace(D2) = 1. More generally,E ‖Z‖∞→p ≤ 2E∥∥∥∑
k
εkzk

∥

∥

∥

p
+ 2 max

‖u‖q=1
E∑

k

∣

∣

∣

∑

j
εjZjkuj

∣

∣

∣ ,

where q is the conjugate exponent to p and zk is the kth column of Z. Here, {εk} is a sequence of
independent random variables uniform on {±1}.

1.2. Outline. Section 2 offers an overview of the related strands of research, and Section 3 intro-
duces the reader to our notations. In Section 4, we establish the foundations for our ∞→1 and
∞→2 error estimates: an estimate of the expected ∞→ p norm of a random matrix with inde-
pendent, zero-mean entries and a tail bound for this quantity. In Sections 5 and 6, these estimates
are specialized to the cases p = 1 and p = 2, respectively, and we establish the optimality of the
resulting expressions. The bounds are provided in both their most generic forms and ones more
suitable for applications. In Section 7, we use a result due to Lata la [Lat05] to find an optimal
estimate of the spectral approximation error. A deviation bound is provided for the spectral norm
which captures the correct (subgaussian) tail behavior. We show that our estimates applied to the
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sparsification schemes in [AHK06] and [AM07] recover performance guarantees comparable with
those obtained from the original analyses, under slightly weaker hypotheses.

2. Related Work

In recent years, much attention has been paid to the problem of using sampling methods to
approximate linear algebra computations efficiently. Such algorithms find applications in areas like
data mining, computational biology, and other areas where the relevant matrices may be too large
to fit in RAM, or large enough that the computational requirements of standard algorithms become
prohibitive. Here we review the streams of literature that have motivated and influenced this work.

2.1. Randomized sparsification. The seminal research of Frieze, Kannan, and Vempala [FKV98,
FKV04] on using random sampling to decrease the running time of linear algebra algorithms focuses
on approximations to A constructed from random subsets of its rows. The subsequent influential
works of Drineas, Kannan, and Mahoney [DKM06a, DKM06b, DKM06c] also analyze the perfor-
mance of Monte Carlo algorithms which sample from the columns or rows of A.

In [AM01], Achlioptas and McSherry advance a different approach: instead of using low-rank
approximants, they sample the entries of A to produce a sparse matrix X that has a spectral
decomposition close to that of A. This transition from row/column sampling to independent
sampling of the entries allows them to bring to bear powerful techniques from random matrix
theory. In [AM01], their main tool is a result on the concentration of the spectral norm of a
random matrix with independent, zero-mean, bounded entries. In a follow-up paper, [AM07],
they obtain better estimates by using a sharper concentration result derived from Talagrand’s
inequality. They point out the importance of using schemes which sparsify a given entry in A with
a probability proportional to its magnitude. Such adaptive sparsification schemes keep the variance
of the individual entries small, which tends to keep the error in approximating A with X small.
Their scheme requires either two passes through the matrix or prior knowledge of an upper bound
for the largest magnitude in A.

In [AHK06], Arora, Hazan, and Kale describe a random sparsification algorithm which partially
quantizes its inputs and requires only one pass through the matrix. They use an epsilon-net
argument and Chernoff bounds to establish that with high probability the resulting approximant
has small error and high sparsity.

2.2. Probability in Banach spaces. In [RV07], Rudelson and Vershynin take a different ap-
proach to the Monte Carlo methodology for low-rank approximation. They consider A as a linear
operator between finite-dimensional Banach spaces and apply techniques of probability in Banach
spaces: decoupling, symmetrization, Slepian’s lemma for Rademacher random variables, and a law
of large numbers for operator-valued random variables. They show that, if A can be approximated
by any rank-r matrix, then it is possible to obtain an accurate rank-k approximation to A by
sampling O(r log r) rows of A. Additionally, they quantify the behavior of the ∞→1 and ∞→2
norms of random submatrices.

Our methods are similar to those of Rudelson and Vershynin in [RV07] in that we consider A

as a linear operator between finite-dimensional Banach spaces and use some of the same tools
of probability in Banach spaces. Whereas Rudelson and Vershynin consider the behavior of the
norms of random submatrices of A, we consider the behavior of the norms of matrices formed
by randomly sparsifying (or quantizing) the entries of A. This yields error bounds applicable to
schemes that sparsify or quantize matrices entrywise. Since some graph algorithms depend more
on the number of edges in the graph than the number of vertices, such schemes may be useful in
developing algorithms for handling large graphs.
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2.3. Random sampling of graphs. The bulk of the literature has focused on the behavior of
the spectral and Frobenius norms under randomized sparsification, but the ∞ →1 norm occurs
naturally in connection with graph theory. Let us review the relevant ideas.

Consider a weighted simple graph G = (V,E, ω) with adjacency matrix A given by

ajk =

{

ωjk, (j, k) ∈ E

0, otherwise.

A cut is a partition of the vertices into two blocks: V = S ∪ S. The cost of a cut is the sum of the
weights of all edges in E which have one vertex in S and one vertex in S. Several problems relating
to cuts are of considerable practical interest. In particular, the maxcut problem, to determine
the cut of maximum cost in a graph, is common in computer science applications. The cuts of
maximum cost are exactly those which realize the cut-norm of the adjacency matrix, which is
defined as

‖A‖C = max
S⊂E

∣

∣

∣

∣

∑

(j,k)∈E
ωjk(1S)j(1S)k

∣

∣

∣

∣

,

where 1S is the indicator vector for S. Finding the cut-norm of a general matrix is NP-hard, but
in [AN04], the authors offer a randomized polynomial-time algorithm which finds a submatrix Ã

of A such that |∑jk ãjk| ≥ 0.56 ‖A‖C. One crucial point in the derivation of the algorithm is the
fact that the ∞→1 norm is strongly equivalent with the cut-norm:

‖A‖C ≤ ‖A‖∞→1 ≤ 4 ‖A‖C .

In his thesis [Kar95] and the sequence of papers [Kar94a, Kar94b, Kar96], Karger introduces
the idea of random sampling to increase the efficiency of calculations with graphs, with a focus
on cuts. In [Kar96], he shows that by picking each edge of the graph with a probability inversely
proportional to the density of edges in a neighborhood of that edge, one can construct a sparsifier,
i.e., a graph with the same vertex set and significantly fewer edges that preserves the value of each
cut to within a factor of (1 ± ǫ).

In [SS08], Spielman and Srivastava improve upon this sampling scheme, instead keeping an edge
with probability proportional to its effective resistance—a measure of how likely it is to appear
in a random spanning tree of the graph. They provide an algorithm which produces a sparsifier
with O

(

(n log n)/ǫ2
)

edges, where n is the number of vertices in the graph. They obtain this result
by reducing the problem to the behavior of projection matrices ΠG and ΠG′ associated with the
original graph and the sparsifier, and appealing to a spectral norm concentration result.

The log n factor in [SS08] seems to be an unavoidable consequence of using spectral norm con-
centration. In [BSS09], Batson et. al. prove that the log n factor is not intrinsic: they establish
that every graph has a sparsifier that has O(n) edges. The proof is constructive and provides a
deterministic algorithm for constructing such optimal sparsifiers in O

(

n3m
)

time, where m is the
number of edges in the original graph.

The algorithm of [BSS09] is clearly not suitable for sparsifying graphs with a large number of
vertices. Part of our motivation for investigating the ∞→1 approximation error is the belief that
the equivalence of the cut-norm with the ∞→1 norm means that matrix sparsification in the ∞→1
norm might be useful for efficiently constructing optimal sparsifiers for such graphs.

3. Background

We establish the notation used in the sequel and introduce our key technical tools.
All quantities are real. The kth column of the matrix A is denoted by ak and the entries are

denoted ajk.
For 1 ≤ p ≤ ∞, the ℓp norm of x is written as ‖x‖p. We treat A as an operator from ℓn

p to ℓm
q ,

and the p → q operator norm of A is written as ‖A‖p→q. The p → q and q′ → p′ norms are dual
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in the sense that

‖A‖p→q =
∥

∥AT
∥

∥

q′→p′
.

This paper is concerned primarily with the spectral norm and the ∞→1 and ∞→2 norms. The
spectral norm ‖A‖ is the largest singular value of A. The ∞→1 and ∞→2 norms do not have such
nice interpretations, and they are NP-hard to compute for general matrices [Roh00]. We remark
that ‖A‖∞→1 = ‖Ax‖1 and ‖A‖∞→2 = ‖Ay‖2 for certain vectors x and y whose components take
values ±1.

An additional operator norm, the 2→∞ norm, is also of interest: it is the largest ℓ2 norm
achieved by a row of A. We encounter two norms in the sequel that are not operator norms: the
Frobenius norm, denoted by ‖A‖F, and the column norm

‖A‖col =
∑

k
‖ak‖2 .

The expectation of a random variable X is written EX and its variance is written Var(X) =E(X−EX)2. The expectation taken with respect to one variable X, with all others fixed, is writtenEX . The Lq norm of X is denoted by Eq(X) = (E|X|q)1/q.
The expression X ∼ Y indicates the random variables X and Y are identically distributed.

Given a random variable X, the symbol X ′ denotes a random variable independent of X such that
X ′ ∼ X. The indicator variable of the event X > Y is written 1X>Y .

The Bernoulli distribution with expectation p is written Bern(p) and the Binomial distribution
of n independent trials each with success probability p is written Bin(n, p). We write X ∼ Bern(p)
to indicate X is Bernoulli.

A Rademacher random variable takes on the values ±1 with equal probability. A vector whose
components are independent Rademacher variables is called a Rademacher vector. A real sum
whose terms are weighted by independent Rademacher variables is called a Rademacher sum. The
Khintchine inequality [Sza76] gives information on the moments of a Rademacher sum; in particular,
it tells us the expected value of the sum is equivalent with the ℓ2 norm of the vector x:

Proposition 1 (Khintchine inequality). Let x be a real vector, and let ε be a Rademacher vector.

Then
1√
2
‖x‖2 ≤ E ∣∣

∣

∑

k
εkxk

∣

∣

∣
≤ ‖x‖2 .

4. The ∞→p norm of a Random Matrix

We are interested in schemes that approximate a given matrix A by means of a random matrix
X in such a way that the entries of X are independent and EX = A. It follows that the error
matrix Z = A − X has independent, zero-mean entries. Our intellectual concern is the class of
sparse random matrices, but this property does not play a role at this stage of the analysis.

In this section, we derive a bound on the expected value of the ∞→p norm of a random matrix
with independent, zero-mean entries. We also study the tails of this error. In the next two sections,
we use the results of this section to reach more detailed conclusions on the ∞→1 and ∞→2 norms
of Z.

4.1. Expected ∞→ p norm. The main tool used to derive the bound on the expected norm of
Z is the following symmetrization argument [vW96, Lemma 2.3.1 et seq.].

Proposition 2. Let Z1, . . . , Zn, Z ′
1, . . . , Z

′
n be independent random variables satisfying Zi ∼ Z ′

i,

and let ε be a Rademacher vector. Let F be a family of functions such that

sup
f∈F

∑n

k=1
(f(Zk) − f(Z ′

k))
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is measurable. ThenE sup
f∈F

∑n

k=1
(f(Zk) − f(Z ′

k)) = E sup
f∈F

∑n

k=1
εk(f(Zk) − f(Z ′

k)).

Since we work with finite-dimensional probability models and linear functions, measurability
concerns can be ignored.

The other critical tool is a version of Talagrand’s Rademacher comparison theorem [LT91, The-
orem 4.12 et seq.].

Proposition 3. Fix finite-dimensional vectors z1, . . . ,zn and let ε be a Rademacher vector. ThenE max
‖u‖q=1

∑n

k=1
εk|〈zk,u〉| ≤ E max

‖u‖q=1

∑n

k=1
εk〈zk,u〉.

Now we state and prove the bound on the expected norm of Z.

Theorem 1. Let Z be a random matrix with independent, zero-mean entries and let ε be a

Rademacher vector independent of Z. ThenE ‖Z‖∞→p ≤ 2E∥∥
∥

∑

k
εkzk

∥

∥

∥

p
+ 2 max

‖u‖q=1
E∑

k

∣

∣

∣

∑

j
εjZjkuj

∣

∣

∣

where q is the conjugate exponent of p.

Proof of Theorem 1. By duality,E ‖Z‖∞→p = E∥∥ZT
∥

∥

q→1
= E max

‖u‖q=1

∑

k
|〈zk,u〉|.

Center the terms in the sum and apply subadditivity of the maximum to getE ‖Z‖∞→p ≤ E max
‖u‖q=1

∑

k
(|〈zk,u〉| − E′|〈z′

k,u〉|) + max
‖u‖q=1

E∑
k
|〈zk,u〉|

=: F + S.
(1)

Begin with the first term in (1). Use Jensen’s inequality to draw the expectation outside of the
maximum:

F ≤ E max
‖u‖q=1

∑

k
(|〈zk,u〉| − |〈z′

k,u〉|).

Now apply Proposition 2 to symmetrize the random variable:

F ≤ E max
‖u‖q=1

∑

k
εk(|〈zk,u〉| − |〈z′

k,u〉|).

By the subadditivity of the maximum,

F ≤ E( max
‖u‖q=1

∑

k
εk|〈zk,u〉| + max

‖u‖q=1

∑

k
−εk|〈zk,u〉|

)

= 2E max
‖u‖q=1

∑

k
εk|〈zk,u〉|,

where we have invoked the fact that −εk has the Rademacher distribution. Apply Proposition 3
to get the final estimate of F :

F ≤ 2E max
‖u‖q=1

∑

k
εk〈zk,u〉 = 2E max

‖u‖q=1

〈

∑

k
εkzk,u

〉

= 2E∥∥
∥

∑

k
εkzk

∥

∥

∥

p
.

Now consider the last term in (1). Use Jensen’s inequality to prepare for symmetrization:

S = max
‖u‖q=1

E∑
k

∣

∣

∣

∑

j
Zjkuj

∣

∣

∣
= max

‖u‖q=1
E∑

k

∣

∣

∣

∑

j
(Zjk − E′Z ′

jk)uj

∣

∣

∣

≤ max
‖u‖q=1

∑

k
E ∣∣∣∑

j
(Zjk − Z ′

jk)uj

∣

∣

∣ .
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Apply Proposition 2 to the expectation of the inner sum to see

S ≤ max
‖u‖q=1

∑

k
E ∣∣∣∑

j
εj(Zjk − Z ′

jk)uj

∣

∣

∣ .

The triangle inequality gives us the final expression:

S ≤ max
‖u‖q=1

2E∑
k

∣

∣

∣

∑

j
εjZjkuj

∣

∣

∣ .

Introduce the bounds for F and S into (1) to complete the proof. �

4.2. Tail bound for ∞→p norm. We now develop a deviation bound for the ∞→p approxima-
tion error. The argument is based on a bounded differences inequality.

First we establish some notation. Let g : Rn → R be a measurable function of n random
variables. Let X1, . . . ,Xn be independent random variables, and write W = g(X1, . . . ,Xn). Let
Wi denote the random variable obtained by replacing the ith argument of g with an independent
copy: Wi = g(X1, . . . ,X

′
i, . . . ,Xn).

The following bounded differences inequality states that if g is insensitive to changes of a single
argument, then W does not deviate much from its mean.

Proposition 4 ([BLM03]). Let W and {Wi} be random variables defined as above. Assume that

there exists a positive number C such that, almost surely,
∑n

i=1
(W − Wi)

21W>Wi
≤ C.

Then, for all t > 0, P (W > EW + t) ≤ e−t2/(4C).

To apply Proposition 4, we let Z = A − X be our error matrix, W = ‖Z‖∞→p, and W jk =
∥

∥Zjk
∥

∥

∞→p
, where Zjk is a matrix obtained by replacing ajk − Xjk with an identically distributed

variable ajk − X ′
jk while keeping all other variables fixed. The ∞ → p norms are sufficiently

insensitive to each entry of the matrix that Proposition 4 gives us a useful deviation bound.

Theorem 2. Fix an m× n matrix A, and let X be a random matrix with independent entries for

which EX = A. Assume |Xjk| ≤ D
2 almost surely for all j, k. Then, for all t > 0,P(‖A − X‖∞→p > E ‖A − X‖∞→p + t

)

≤ e−t2/(4D2nms)

where s = max{0, 1 − 2/q} and q is the conjugate exponent to p.

Proof. Let q be the conjugate exponent of p, and choose u,v such that W = uT Zv and ‖u‖q = 1

and ‖v‖∞ = 1. Then

(W − W jk)1W>W jk ≤ uT
(

Z − Zjk
)

v 1W>W jk = (X ′
jk − Xjk)ujvk 1W>W jk ≤ D|ujvk|.

This implies
∑

j,k
(W − W jk)21W>W jk ≤ D2

∑

j,k
|ujvk|2 ≤ nD2 ‖u‖2

2 ,

so we can apply Proposition 4 if we have an estimate for ‖u‖2
2. We have the bounds ‖u‖2 ≤ ‖u‖q

for q ∈ [1, 2] and ‖u‖2 ≤ m1/2−1/q ‖u‖q for q ∈ [2,∞]. Therefore,

∑

j,k
(W − W jk)21W>W jk ≤ D2

{

nm1−2/q, q ∈ [2,∞]

n, q ∈ [1, 2].



8 A. GITTENS AND J. A. TROPP

It follows from Proposition 4 thatP(‖A − X‖∞→p > E ‖A − X‖∞→p + t
)

= P (W > EW + t) ≤ e−t2/(4D2nms)

where s = max {0, 1 − 2/q} . �

It is often convenient to measure deviations on the scale of the mean. Taking t = δE ‖A − X‖∞→p

in Theorem 2 gives the following result.

Corollary 1. Under the conditions of Theorem 2, for all δ > 0,P(‖A − X‖∞→p > (1 + δ)E ‖A − X‖∞→p

)

≤ e−δ2(E‖A−X‖∞→p)
2
/(4D2nms).

5. Approximation in the ∞→1 norm

In this section, we develop the ∞ →1 error bound as a consequence of Theorem 1. We then
prove that one form of the error bound is optimal, and we describe an example of its application
to matrix sparsification.

5.1. Expected ∞→1 norm. To derive the ∞→1 error bound, we first apply Theorem 1 with
p = 1.

Theorem 3. Suppose that Z is a random matrix with independent, zero-mean entries. ThenE ‖Z‖∞→1 ≤ 2E(‖Z‖col +
∥

∥ZT
∥

∥

col
).

Proof. Apply Theorem 1 to getE ‖Z‖∞→1 ≤ 2E∥∥
∥

∑

k
εkzk

∥

∥

∥

1
+ 2 max

‖u‖∞=1
E∑

k

∣

∣

∣

∑

j
εjZjkuj

∣

∣

∣

=: F + S.
(2)

Use Hölder’s inequality to bound the first term in (2) with a sum of squares:

F = 2E∑
j

∣

∣

∣

∑

k
εkZjk

∣

∣

∣ = 2EZ

∑

j
Eε

∣

∣

∣

∑

k
εkZjk

∣

∣

∣

≤ 2EZ

∑

j

(Eε

∣

∣

∣

∑

k
εkZjk

∣

∣

∣

2
)1/2

.

The inner expectation can be computed exactly by expanding the square and using the indepen-
dence of the Rademacher variables:

F ≤ 2E∑
j

(

∑

k
Z2

jk

)1/2
= 2E∥∥ZT

∥

∥

col
.

We treat the second term in the same manner. Use Hölder’s inequality to replace the sum with a
sum of squares and invoke the independence of the Rademacher variables to eliminate cross terms:

S ≤ 2 max
‖u‖∞=1

EZ

∑

k

(Eε

∣

∣

∣

∑

j
εjZjkuj

∣

∣

∣

2
)1/2

= 2 max
‖u‖∞=1

E∑
k

(

∑

j
Z2

jku
2
j

)1/2
.

Since ‖u‖∞ = 1, it follows that u2
j ≤ 1 for all j, and

S ≤ 2E∑
k

(

∑

j
Z2

jk

)1/2
= 2E ‖Z‖col .

Introduce these estimates for F and S into (2) to complete the proof. �
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Taking Z = A − X in Theorem 3, we findE ‖A − X‖∞→1 ≤ 2E [∑
k

(

∑

j
(ajk − Xjk)2

)1/2
+
∑

j

(

∑

k
(ajk − Xjk)2

)1/2
]

.

A simple application of Jensen’s inequality gives an error bound in terms of the variances of the
entries of X.

Corollary 2. Fix the matrix A, and let X be a random matrix with independent entries for whichEXjk = ajk. ThenE ‖A − X‖∞→1 ≤ 2

[

∑

k

(

∑

j
Var(Xjk)

)1/2
+
∑

j

(

∑

k
Var(Xjk)

)1/2
]

.

5.2. Optimality. The bound in Corollary 2 is optimal in the sense that there are families of
matrices A and random approximants X for which E ‖A − X‖∞→1 grows like one of the terms
in the bound and dominates the other term in the bound. To show this, we construct specific
examples.

Let A be a tall m × √
m matrix of ones and choose the approximant Xjk ∼ 2 Bern

(

1
2

)

. With

this choice, Var(Xjk) = 1, so the first term in the bound is m and the second term is m5/4. The

following argument from [RV07, Sec. 4.2] establishes that ‖A − X‖∞→1 grows like m5/4.
Observe that the matrix A − X = [εjk], where εjk are i.i.d. Rademacher variables. Its ∞→1

norm is
‖A − X‖∞→1 = max

‖y‖∞=1

‖x‖∞=1

∑

j,k
εjkxjyk.

Let δk be a sequence of i.i.d. Rachemacher variables. By the scalar Khintchine inequality,Eδ

∑

j

∣

∣

∣

∑

k
εjkδk

∣

∣

∣
≥
∑

j

1√
2
‖εj·‖2 =

1√
2
m5/4.

The probabilistic method shows that there is a sign vector x for which
∑

j

∣

∣

∣

∑

k
εjkxk

∣

∣

∣
≥ 1√

2
m5/4.

Choose the vector y with components yj = sgn(
∑

k εjkxk). Then

‖A − X‖∞→1 ≥
∑

j

∑

k
εjkyjxk =

∑

j

∣

∣

∣

∑

k
εjkxk

∣

∣

∣
≥ 1√

2
m5/4.

This shows ‖A−X‖∞→1 grows like the second term in the error bound, so this term of the bound
cannot be ignored.

These arguments, applied to a fat
√

n×n matrix of ones, also establish the necessity of the first
term.

5.3. Example application. In this section we provide an example illustrating the application of
Corollary 2 to matrix sparsification.

From Corollary 2 we infer that a good scheme for sparsifying a matrix A while minimizing the
expected relative ∞→1 error is one which drastically increases the sparsity of X while keeping the
relative error

∑

k

(

∑

j Var(Xjk)
)1/2

+
∑

j

(

∑

k Var(Xjk)
)1/2

‖A‖∞→1

small. Once a sparsification scheme is chosen, the hardest part of estimating this quantity is
probably estimating the ∞→1 norm of A. The example shows, for a simple family of approximation
schemes, what kind of sparsification results can be obtained using Corollary 2 when we have a very
good handle on this quantity.
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Consider the case where A is an n × n matrix whose entries all lie within an interval bounded
away from zero; for definiteness, take them to be positive. Let γ be a desired bound on the expected
relative ∞→1 norm error. We choose the randomization strategy Xjk ∼ ajk

p Bern(p) and ask how

small can p be without violating our bound on the expected error.
In this case,

‖A‖∞→1 =
∑

j,k
ajk = O

(

n2
)

,

and Var(Xjk) =
a2

jk

p − a2
jk. Consequently, the first term in Corollary 2 satisfies

∑

k

(

∑

j
Var(Xjk)

)1/2
=
∑

k

(

1

p
‖ak‖2

2 − ‖ak‖2
2

)1/2

=

(

1 − p

p

)1/2

‖A‖col

= O

(

(

1 − p

p

)1/2

n
√

n

)

and likewise the second term satisfies

∑

j

(

∑

k
Var(Xjk)

)1/2
= O

(

(

1 − p

p

)1/2

n
√

n

)

.

Therefore the relative ∞→1 norm error satisfies

∑

k

(

∑

j Var(Xjk)
)1/2

+
∑

j

(

∑

k Var(Xjk)
)1/2

‖A‖∞→1

= O

(

(

1 − p

pn

)1/2
)

.

It follows that E ‖A − X‖∞→1 < γ for p on the order of (1 + nγ2)−1 or larger. The expected
number of nonzero entries in X is pn2, so for matrices with this structure, we can sparsify with a
relative ∞→1 norm error smaller than γ while reducing the number of expected nonzero entries

to as few as O( n2

1+nγ2 ) = O( n
γ2 ). Intuitively, this sparsification result is optimal in the dimension:

it seems we must keep on average at least one entry per row and column if we are to faithfully
approximate A.

6. Approximation in the ∞→2 norm

In this section, we develop the ∞ → 2 error bound stated in the introduction, establish the
optimality of a related bound, and provide examples of its application to matrix sparsification. To
derive the error bound, we first specialize Theorem 1 to the case of p = 2.

Theorem 4. Suppose that Z is a random matrix with independent, zero-mean entries. ThenE ‖Z‖∞→2 ≤ 2E ‖Z‖F + 2 min
D

E∥∥ZD−1
∥

∥

2→∞

where D is a positive diagonal matrix that satisfies trace(D2) = 1.

Proof. Apply Theorem 1 to getE ‖Z‖∞→2 ≤ 2E∥∥
∥

∑

k
εkzk

∥

∥

∥

2
+ 2 max

‖u‖
2
=1
E∑

k

∣

∣

∣

∑

j
εjZjkuj

∣

∣

∣

=: F + S.
(3)

Expand the first term, and use Jensen’s inequality to move the expectation with respect to the
Rademacher variables inside the square root:

F = 2E(∑
j

∣

∣

∣

∑

k
εkZjk

∣

∣

∣

2
)1/2

≤ 2EZ

(

∑

j
Eε

∣

∣

∣

∑

k
εkZjk

∣

∣

∣

2
)1/2

.



ERROR BOUNDS FOR RANDOM MATRIX APPROXIMATION 11

The independence of the Rademacher variables implies that the cross terms cancel, so

F ≤ 2E(∑
j

∑

k
Z2

jk

)1/2
= 2E ‖Z‖F .

We use the Cauchy–Schwarz inequality to replace the ℓ1 norm with an ℓ2 norm in the second
term of (3). A direct application would introduce a possibly suboptimal factor of

√
n (where n

is the number of columns in Z), so instead we choose dk > 0 such that
∑

k d2
k = 1 and use the

corresponding weighted ℓ2 norm:

S = 2 max
‖u‖

2
=1
E∑

k

∣

∣

∣

∑

j εjZjkuj

∣

∣

∣

dk
dk ≤ 2 max

‖u‖
2
=1
E


∑

k

∣

∣

∣

∑

j εjZjkuj

∣

∣

∣

2

d2
k







1/2

.

Move the expectation with respect to the Rademacher variables inside the square root and observe
that the cross terms cancel:

S ≤ 2 max
‖u‖

2
=1
EZ







∑

k

Eε

∣

∣

∣

∑

j εjZjkuj

∣

∣

∣

2

d2
k







1/2

= 2 max
‖u‖

2
=1
E(∑

j,k

Z2
jku

2
j

d2
k

)1/2

.

Use Jensen’s inequality to pass the maximum through the expectation, and note that if ‖u‖2 = 1
then the vector formed by elementwise squaring u lies on the ℓ1 unit ball, thus

S ≤ 2E( max
‖u‖

1
=1

∑

j,k

(

Zjk

dk

)2

uj

)1/2

.

Clearly this maximum is achieved when u is chosen so uj = 1 at an index j for which

(

∑

k

(

Zjk

dk

)2
)1/2

is maximal and uj = 0 otherwise. Consequently, the maximum is the largest of the ℓ2 norms
of the rows of ZD−1, where D = diag(d1, . . . , dn). Recall that this quantity is, by definition,
∥

∥ZD−1
∥

∥

2→∞ . Therefore S ≤ 2E∥∥ZD−1
∥

∥

2→∞. The theorem follows by optimizing our choice of
D and introducing our estimates for F and S into (3). �

Taking Z = A − X in Theorem 4, we haveE ‖A − X‖∞→2 ≤ 2E(∑
j,k

(Xjk − ajk)2
)1/2

+ 2 min
D

Emax
j

(

∑

k

(Xjk − ajk)2

d2
k

)1/2

. (4)

We now derive a bound which depends only on the variances of the Xjk.

Corollary 3. Fix the m× n matrix A and let X be a random matrix with independent entries so

that EX = A. ThenE ‖A − X‖∞→2 ≤ 2
(

∑

j,k
Var(Xjk)

)1/2
+ 2

√
m min

D
max

j

(

∑

k

Var(Xjk)

d2
k

)1/2

where D is a positive diagonal matrix with trace(D2) = 1.

Proof. Let F and S denote, respectively, the first and second term of (4). An application of Jensen’s

inequality shows that F ≤ 2
(

∑

j,k Var(Xjk)
)1/2

. A second application shows that

S ≤ 2 min
D

(Emax
j

∑

k

(Xjk − ajk)2

d2
k

)1/2

.
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Bound the maximum with a sum:

S ≤ 2 min
D

(

∑

j
E∑

k

(Xjk − ajk)2

d2
k

)1/2

.

The sum is controlled by a multiple of its largest term, so

S ≤ 2
√

m min
D

(

max
j

∑

k

Var(Xjk)

d2
k

)1/2

,

where m is the number of rows of A. �

6.1. Optimality. We now show that Theorem 4 gives an optimal bound, in the sense that each of
its terms is necessary. In the following, we reserve the letter D for a positive diagonal matrix with
trace(D2) = 1.

First, we establish the necessity of the Frobenius term by identifying a class of random matrices
whose ∞→2 norms are larger than their weighted 2→∞ norms but comparable to their Frobenius
norms. Let Z be a random m × √

m matrix such that the entries in the first column of Z are
equally likely to be positive or negative ones, and all other entries are zero. With this choice,E ‖Z‖∞→2 = E ‖Z‖F =

√
m. Meanwhile, E∥∥ZD−1

∥

∥

2→∞ = 1
d11

, so minD E∥∥ZD−1
∥

∥

2→∞ = 1,

which is much smaller than E ‖Z‖∞→2. Clearly, the Frobenius term is necessary.
Similarly, to establish the necessity of the weighted 2 →∞ norm term, we consider a class

of matrices whose ∞ →2 norms are larger than their Frobenius norms but comparable to their
weighted 2→∞ norms. Consider a

√
n × n matrix Z whose entries are all equally likely to be

positive or negative ones. It is a simple task to confirm that E ‖Z‖∞→2 ≥ n and E ‖Z‖F = n3/4; it
follows that the weighted 2→∞ norm term is necessary. In fact,

min
D

E∥∥ZD−1
∥

∥

2→∞ = min
D

E max
j=1,...,

√
n

(

∑n

k=1

Z2
jk

d2
kk

)1/2

= min
D

(

∑n

k=1

1

d2
kk

)1/2

= n,

so we see that E ‖Z‖∞→2 and the weighted 2→∞ norm term are comparable.

6.2. Example application. From Theorem 4 we infer that a good scheme for sparsifying a matrix
A while minimizing the expected relative ∞→2 norm error is one which drastically increases the
sparsity of X while keeping the relative errorE ‖Z‖F + minD E∥∥ZD−1

∥

∥

2→∞
‖A‖∞→2

small, where Z = A − X.
As before, consider the case where A is an n × n matrix all of whose entries are positive and

in an interval bounded away from zero. Let γ be a desired bound on the expected relative ∞→2
norm error. We choose the randomization strategy Xjk ∼ ajk

p Bern(p) and ask how much can we

sparsify while respecting our bound on the relative error. That is, how small can p be? We appeal
to Theorem 4. In this case,

‖A‖∞→2 =
(

∑

j

∑

k
a2

jk + 2
∑

j

∑

ℓ<m
ajℓajm

)
1

2

= O
(

(

n2 + n2(n − 1)
)

1

2

)

.

By Jensen’s inequality,E ‖Z‖F ≤ E ‖A‖F + E ‖X‖F ≤
(

1 +
1√
p

)

‖A‖F = O

(

n

(

1 +
1√
p

))

.

We bound the other term in the numerator, also using Jensen’s inequality:

min
D

E∥∥ZD−1
∥

∥

2→∞ ≤
√

nE ‖Z‖2→∞ ≤
√

n

(

1 +
1√
p

)

‖A‖2→∞ = O

(

n

(

1 +
1√
p

))
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to get E ‖Z‖F + minD E∥∥ZD−1
∥

∥

2→∞
‖A‖∞→2

= O

(

1√
n

+
1√
pn

)

= O

(

1√
pn

)

We conclude that, for this class of matrices and this family of sparsification schemes, we can reduce

the number of expected nonzero terms to O
(

n
γ2

)

while maintaining an expected ∞→2 norm relative

error of γ.

7. Spectral error bound

In this section we establish a bound on E ‖A − X‖ as an immediate consequence of Lata la’s
result [Lat05]. We then derive a deviation inequality for the spectral approximation error using a
log-Sobolev inequality from [BLM03], and use it to compare our results to those of Achlioptas and
McSherry [AM07] and Arora, Hazan, and Kale [AHK06].

Theorem 5. Suppose A is a fixed matrix, and let X be a random matrix with independent entries

for which EX = A. ThenE ‖A − X‖ ≤ C

[

max
j

(

∑

k
Var(Xjk)

)1/2
+ max

k

(

∑

j
Var(Xjk)

)1/2
+
(

∑

jk
E(Xjk − ajk)4

)1/4
]

where C is a universal constant.

In [Lat05], Lata la considered the spectral norm of random matrices with independent, zero-mean
entries, and he showed that, for any such matrix Z,E‖Z‖ ≤ C

[

max
j

(

∑

k
EZ2

jk

)1/2
+ max

k

(

∑

j
EZ2

jk

)1/2
+
(

∑

jk
EZ4

jk

)1/4
]

,

where C is some universal constant. Unfortunately, no estimate for C is available. Theorem 5
follows from Lata la’s result, by taking Z = A − X.

The bounded differences argument from Section 4 establishes the correct (subgaussian) tail be-
havior of E ‖A − X‖.

Theorem 6. Fix the matrix A, and let X be a random matrix with independent entries for whichEX = A. Assume |Xjk| ≤ D/2 almost surely for all j, k. Then, for all t > 0,P (‖A − X‖ > E ‖A − X‖ + t) ≤ e−t2/(4D2).

Proof. The proof is exactly that of Theorem 2, except now u and v are both in the ℓ2 unit
sphere. �

We find it convenient to measure deviations on the scale of the mean.

Corollary 4. Under the conditions of Theorem 6, for all δ > 0,P (‖A − X‖ > (1 + δ)E ‖A − X‖) ≤ e−δ2(E‖A−X‖)2/(4D2).

7.1. Comparison with previous results. To demonstrate the applicability of our bound on the
spectral norm error, we consider the sparsification and quantization schemes used by Achlioptas
and McSherry [AM07], and the quantization scheme proposed by Arora, Hazan, and Kale [AHK06].
We show that our spectral norm error bound and the associated concentration result give results of
the same order, with less effort. Throughout these comparisons, we take A to be a m × n matrix,
with m < n, and we define b = maxjk |ajk|.
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7.1.1. A matrix quantization scheme. First we consider the scheme proposed by Achlioptas and
McSherry for quantization of the matrix entries:

Xjk =

{

b with probability 1
2 +

ajk

2b

−b with probability 1
2 − ajk

2b

.

With this choice Var(Xjk) = b2 − a2
jk ≤ b2, and E(Xjk − ajk)4 = b2 − 3a4 + 2a2b2 ≤ 3b4, so the

expected spectral error satisfiesE‖A − X‖ ≤ C(
√

nb +
√

mb + b
4
√

3mn) ≤ 4Cb
√

n.

Applying Corollary 4, we find that the error satisfiesP (‖A − X‖ > 4Cb
√

n(1 + δ)
)

≤ e−δ2C2n.

In particular, with probability at least 1 − exp(−C2n),

‖A − X‖ ≤ 8Cb
√

n.

Achlioptas and McSherry proved that for n ≥ n0, where n0 is on the order of 109, with probability
at least 1 − exp(−19(log n)4),

‖A − X‖ < 4b
√

n.

Thus, Theorem 6 provides a bound of the same order in n which holds with higher probability and
over a larger range of n.

7.1.2. A nonuniform sparsification scheme. Next we consider an analog to the nonuniform sparsi-
fication scheme proposed in the same paper. Fix a number p in the range (0, 1) and sparsify entries
with probabilities proportional to their magnitudes:

Xjk ∼ ajk

pjk
Bern(pjk), where pjk = max

{

p
(ajk

b

)2
,

√

p
(ajk

b

)2
× (8 log n)4/n

}

.

Achlioptas and McSherry determine that, with probability at least 1 − exp(−19(log n)4),

‖A − X‖ < 4b
√

n/p.

Further, the expected number of nonzero entries in X is less than

pmn × Avg[(ajk/b)
2] + m(8 log n)4. (5)

Their choice of pjk, in particular the insertion of the (8 log n)4/n factor, is an artifact of their
method of proof. Instead, we consider a scheme which compares the magnitudes of ajk and b to
determine pjk. Introduce the quantity R = maxajk 6=0 b/|ajk| to measure the spread of the entries
in A, and take

Xjk ∼







ajk

pjk
Bern(pjk), where pjk =

pa2

jk

pa2

jk
+b2

, ajk 6= 0

0, ajk = 0.

With this scheme, Var(Xjk) = 0 when ajk = 0, otherwise Var(Xjk) = b2/p. Likewise, E(Xjk −
ajk)4 = 0 if ajk = 0, otherwiseE(Xjk − ajk)4 ≤ Var(Xjk) ‖Xjk − ajk‖2

∞ =
b2

p
max

{

|ajk|, |ajk|
(

pa2
jk + b2

pa2
jk

− 1

)}2

≤ b4

p2
R2,

so E ‖A − X‖ ≤ C

(

b

√

n

p
+ b

√

m

p
+ b

√

R

p
4
√

mn

)

≤ C(2 +
√

R)b

√

n

p
.
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Applying Corollary 4, we find that with probability at least 1 − exp(−C2(2 +
√

R)2pn/16),

‖A − X‖ ≤ 2C(2 +
√

R)b

√

n

p
.

Thus, Theorem 5 and Achlioptas and McSherry’s scheme-specific analysis yield results of the same
order in n and p. As before, we see that our bound holds with higher probability and over a larger
range of n. Furthermore, since the expected number of nonzero entries in X satisfies

∑

jk
pjk =

∑

jk

pa2
jk

pa2
jk + b2

≤ pnm × Avg

[

(ajk

b

)2
]

,

we have established a smaller limit on the expected number of nonzero entries.

7.1.3. A scheme which simultaneously sparsifies and quantizes. Finally, we use Theorem 6 to esti-
mate the error in using the scheme from [AHK06] which simultaneously quantizes and sparsifies.
Fix δ > 0 and consider

Xjk =

{

sgn(ajk) δ√
n

Bern
(

|ajk |
√

n
δ

)

, |ajk| ≤ δ√
n

ajk, otherwise.

Then Var(Xjk) = 0 if |ajk| ≥ δ/
√

n, otherwise

Var(Xjk) = |ajk|3
√

n

δ
− 2a2

jk + |ajk|
δ√
n
≤ δ2

n
.

Also the fourth moment term is zero for large enough ajk, otherwiseE(Xjk − ajk)4 = |ajk|5
√

n

δ
− 4a4

jk + 6|ajk|3
δ√
n
− 4a2

jk

δ2

n
+ |ajk|

(

δ√
n

)3

≤ 8
δ4

n2
.

This gives the estimatesE ‖A − X‖ ≤ C

(√
n

δ√
n

+
√

m
δ√
n

+ 2
δ√
n

4
√

mn

)

≤ 4Cδ

and P (‖A − X‖ > 4Cδ(γ + 1)) ≤ e−γ2C2n.

Taking γ = 1, we see that with probability at least 1 − exp(−C2n),

‖A − X‖ ≤ 8Cδ.

Let S =
∑

j,k |Ajk|, then appealing to Lemma 1 in [AHK06], we find that X has O
(√

nS
γ

)

nonzero

entries with probability at least 1 − exp
(

−Ω
(√

nS
γ

))

.

Arora, Hazan, and Kale establish that this scheme guarantees ‖A − X‖ ≤ O(δ) with probability
at least 1 − exp(−Ω(n)), so we see that our general bound recovers a bound of the same order.

In conclusion, we see that the bound on expected spectral error in Theorem 6 in conjunction with
the deviation result in Corollary 4 provide guarantees comparable to those derived with scheme-
specific analyses. We anticipate that the flexibility demonstrated here will make these useful tools
for analyzing and guiding the design of novel sparsification schemes.
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