
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 1, NUM. 1, JANUARY 1948 1

Corrigendum in “Just Relax: Convex Programming
Methods for Identifying Sparse Signals in Noise”

Joel A. Tropp, Member, IEEE

Abstract— This note closes a gap in the proof of the main lemma from
the paper “Just Relax: Convex Programming Methods for Identifying
Sparse Signals in Noise.”

Index Terms— Algorithms, approximation methods, Basis Pursuit,
convex program, optimization methods, linear regression, Orthogonal
Matching Pursuit, sparse representations

I. INTRODUCTION

The article [1] studies the minimizers of the nonsmooth convex
function

L(b) =
1

2
‖s−Φb‖22 + γ ‖b‖1 , (L)

which plays an important role in sparse approximation and compres-
sive sampling. The key result [1, Lem. 6] is a sufficient condition for
the support of the minimizer to be contained within a specified index
set. This lemma can then be used to study circumstances in which
minimizers of (L) correctly identify the support of a sparse signal s
contaminated with noise.

It has come to the author’s attention that the proof of [1, Lem. 6]
relies on a claim that holds only for differentiable convex functions.
Although the argument requires some amplification, the lemma is
true as originally stated. This note provides a complete proof that
corrects the error.

A. Notation

All notation is recycled from [1], but we repeat the essential pieces
for the convenience of the reader. As usual, ‖·‖p denotes the `p vector
norm with respect to the standard basis. The angle bracket 〈·, ·〉
represents the Hermitian inner product, which is linear in the first
variable and conjugate-linear in the second variable.

Let Ω be an index set, and consider the linear space CΩ of
complex-valued vectors indexed by Ω. The standard basis for CΩ

is the family {eω : ω ∈ Ω}, where the vector eω equals one in the
component ω and zero in the remaining components.

We study signals that lie in the space Cd. Consider a family of
vectors {ϕω : ω ∈ Ω} ⊂ Cd, and form a matrix Φ using these
vectors as columns. The matrix maps a vector of coefficients in CΩ

into a signal by the rule

Φc =
X

ω∈Ω
cωϕω.

The adjoint maps a signal into a coefficient vector by the rule

(Φ∗s)(ω) = 〈s, ϕω〉 .

Given a subset Λ of Ω, we write ΦΛ for the submatrix of Φ
whose columns are listed in Λ. When ΦΛ has full column rank, the
pseudoinverse

Φ†Λ = (Φ∗ΛΦΛ)−1Φ∗Λ.

For a fixed signal s, we define a coefficient vector cΛ = Φ†Λs and
a signal approximation aΛ = ΦΛcΛ. This approximation aΛ can be
seen as the orthogonal projection of s onto the range of ΦΛ.
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Finally, for a convex function f we write ∂f(x) for the subdiffer-
ential of f at the point x.

B. The Correlation Condition

To establish [1, Lem. 6], the first step is to study minimizers of
the function (L) that are restricted to have fixed support. We state the
result without proof, referring the reader to [1, Lem. 5].

Lemma 1 (Restricted Minimizers): Suppose that ΦΛ has full col-
umn rank, and let b? minimize the objective function (L) over
all coefficient vectors supported on Λ. A necessary and sufficient
condition on such a minimizer is that

cΛ − b? = γ(Φ∗ΛΦΛ)−1g (1)

where the vector g is drawn from ∂ ‖b?‖1. Moreover, the minimizer
is unique.

The main result provides a sufficient condition under which the
restricted minimizer is also the global minimizer of the objective
function.

Lemma 2 (Correlation Condition): Suppose that ΦΛ has full col-
umn rank, and let b? minimize the function (L) over all coefficient
vectors supported on Λ. Suppose that

‖Φ∗(s− aΛ)‖∞ < γ

»
1−max

ω /∈Λ

˛̨̨D
Φ†Λϕω, g

E˛̨̨–
where g ∈ ∂ ‖b?‖1 is determined by (1). It follows that b? is the
unique global minimizer of (L).

Together, these two lemmata provide detailed information about
the performance of convex programming methods for sparse approx-
imation, as discussed in [1].

II. PROOF OF LEMMA 2

Let b? be the unique minimizer of (L) over coefficient vectors
supported on Λ. We develop a sufficient condition under which

L(b? + h)− L(b?) > 0

whenever the norm of the perturbation h is small enough. Since the
objective function (L) is convex, it follows that b? is the unique global
minimizer.

Each perturbation admits a unique decomposition

h = u+ v

where supp(u) ⊂ Λ and supp(v) ⊂ Λc. Without loss of generality,
we may pose some additional constraints. First, we take v 6= 0, since
Lemma 1 already addresses the complementary case. We also instate
the bound ‖u‖∞ ≤ δ for a small, positive number δ, which reflects
the requirement that the perturbation is tiny.

To begin the calculation, write the perturbed objective function as

L(b? + h) =
1

2
‖s−Φ(b? + u)−Φv‖22 + γ ‖(b? + u) + v‖1 .

Expand the `2 norm to obtain

‖s−Φ(b? + u)−Φv‖22
= ‖s−Φ(b? + u)‖22 + ‖Φv‖22
− 2 Re 〈s−Φb?, Φv〉+ 2 Re 〈Φu, Φv〉 .
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Since the vectors b? + u and v have disjoint support,

‖(b? + u) + v‖1 = ‖b? + u‖1 + ‖v‖1 .

Combine the last three relations, and identify the quantity L(b? +u)
to reach

L(b? + h)− L(b?) = L(b? + u)− L(b?)

+
1

2
‖Φv‖22 − Re 〈s−Φb?, Φv〉

+ Re 〈Φu, Φv〉+ γ ‖v‖1 . (2)

This identity holds for each perturbation h = u+ v.
The next step is to develop a lower bound on the right-hand side

of (2). Lemma 1 states that b? minimizes (L) over coefficient vectors
supported on Λ. As a result,

L(b? + u)− L(b?) ≥ 0.

The quadratic term ‖Φv‖22 is also nonnegative, hence

L(b? + h)− L(b?)

≥ γ ‖v‖1 − |〈s−Φb?, Φv〉| − |〈Φu, Φv〉| . (3)

It is intuitive that the final term, which is quadratic, has smaller order
than the other terms, so we will ultimately be able to neglect it.

Let us focus on the second term from the right-hand side of (3).
Evidently, we can write

v =
hX

ω /∈Λ
θωeω

i
‖v‖1

where ‖θ‖1 = 1. Using this expression, we see that

Φv =
hX

ω /∈Λ
θωϕω

i
‖v‖1 .

Invoke the triangle inequality and then Jensen’s inequality to obtain

|〈s−Φb?, Φv〉| ≤
hX

ω /∈Λ
|θω| |〈s−Φb?, ϕω〉|

i
‖v‖1

≤ max
ω /∈Λ
|〈s−Φb?, ϕω〉| · ‖v‖1 .

To control the third term from the right-hand side of (3), we use
standard operator norm bounds. Indeed,

|〈Φu, Φv〉| = |〈Φ∗Φu, v〉|
≤ ‖Φ∗Φu‖∞ ‖v‖1
≤ δ ‖Φ∗Φ‖∞,∞ ‖v‖1

where we have applied the fact that ‖u‖∞ ≤ δ.
Introduce the last two estimates into (3) to discover that

L(b? + h)− L(b?)

≥
»
γ −max

ω /∈Λ
|〈s−Φb?, ϕω〉| − δ ‖Φ∗Φ‖∞,∞

–
‖v‖1 .

Since we may select δ as small as we like, the right-hand side is
strictly positive for each small perturbation h, provided that

γ −max
ω /∈Λ
|〈s−Φb?, ϕω〉| > 0. (4)

The remaining challenge is to find a more desirable condition which
ensures that (4) holds.

To that end, we write

s−Φb? = (s−ΦcΛ) + Φ(cΛ − b?).

By definition, ΦcΛ = aΛ. Invoke the fact that cΛ − b? is supported
inside Λ along with the characterization from Lemma 1 to see that

Φ(cΛ − b?) = ΦΛ(cΛ − b?) = γ(Φ†Λ)∗g

where g ∈ ∂ ‖b?‖1. Thus, for each index ω,

|〈s−Φb?, ϕω〉| ≤ |〈s− aΛ, ϕω〉|+
˛̨̨D

Φ†Λϕω, g
E˛̨̨
.

It follows that a sufficient condition for (4) to hold is that

γ −max
ω /∈Λ

h
γ
˛̨̨D

Φ†Λϕω, g
E˛̨̨

+ |〈s− aΛ, ϕω〉|
i
> 0.

This inequality is in force whenever

max
ω /∈Λ
|〈s− aΛ, ϕω〉| < γ

»
1−max

ω /∈Λ

˛̨̨D
Φ†Λϕω, g

E˛̨̨–
. (5)

To complete the argument, we just need to rewrite the left-hand
side of the latter relation. By construction, the vector s − aΛ is
orthogonal to ϕω for each ω ∈ Λ. Therefore, the left-hand side of
(5) does not change if we maximize over all ω ∈ Ω:

max
ω /∈Λ
|〈s− aΛ, ϕω〉| = max

ω∈Ω
|〈s− aΛ, ϕω〉|

Finally, note that

max
ω∈Ω
|〈s− aΛ, ϕω〉| = ‖Φ∗(s− aΛ)‖∞ .

We arrive at the sufficient condition stated in Lemma 2.
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