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Abstract

Many problems in the theory of sparse approximation require bounds on operator norms of a random submatrix
drawn from a fixed matrix. The purpose of this note is to collect estimates for several different norms that are
most important in the analysis of `1 minimization algorithms. Several of these bounds have not appeared in detail.

Résumé

Sur la norme de sous-matrice tirée aléatoirement. Beaucoup de problèmes en théorie d’approximation non
linéaire demandent de majorer la norme d’une matrice aléatoirement extraite d’une matrice fixe de plus grandes
dimensions. L’objectif de cette note est de présenter quelques estimations de ces normes qui se revèlent être
importantes pour l’étude des algorithmes de minimisation de type `1. Plusieurs de ces bornes n’ont pas encore été
publiées explicitement.

1. Introduction

We consider matrices written with respect to the standard basis, and we focus on three specific norms.
The norm ‖·‖ is the usual Hilbert space operator norm; the `1 to `2 operator norm ‖·‖1→2 computes the
maximum `2 norm of a column; and ‖·‖max returns the maximum absolute entry of a matrix. Throughout,
{δj} is a sequence of independent 0–1 random variables with common mean δ. We write R for the square
diagonal matrix whose jth diagonal entry is δj ; the dimensions of R are determined by context. The
symbol Ep indicates the Lp norm of a random variable, i.e., EpX = (E |X|p)1/p.

The main theorem is a bound on the spectral norm of a random principal submatrix.
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Theorem 1.1 (Random principal submatrices) Let A be an n × n Hermitian matrix, decomposed
into diagonal and off-diagonal parts: A = D +H. Fix p in [2,∞), and set q = max{p, 2 log n}. Then

Ep ‖RAR‖ ≤ C
[
q Ep ‖RHR‖max +

√
δq Ep ‖HR‖1,2 + δ ‖H‖

]
+ Ep ‖RDR‖ .

A partial case of this theorem appears in [5]. The argument is based on [4] and classical ideas from [3].
We apply the result to sparse approximation in Section 5. From this moment bound, tail probabilities
can be estimated by applying Markov’s inequality in the usual fashion.

2. Preliminaries

We begin with some background. First, we present a decoupling result for the spectral norm that refines
a classical proposition from harmonic analysis [1].
Proposition 2.1 (Decoupling) Let H be an Hermitian matrix with a zero diagonal. Then

Ep ‖RHR‖ ≤ 2 Ep
∥∥RHR′∥∥

where the two random restrictions on the right-hand side are independent and identically distributed.
Proof. We establish the result for p = 1. Let Hjk be the matrix with entry hjk in position (j, k) and

zero elsewhere. Let ηj be iid 0–1 random variables with mean 1/2. By Jensen’s inequality,

E ‖RHR‖ = E
∥∥∥∑

j<k
δjδk(Hjk +Hkj)

∥∥∥
≤ 2 Eη Eδ

∥∥∥∑
j<k

[ηj(1− ηk) + ηk(1− ηj)] δjδk(Hjk +Hkj)
∥∥∥ .

There is a 0–1 vector η? for which the expression exceeds its expectation over η. Let T = {j : η?j = 1}.

E ‖RHR‖ ≤ 2 E
∥∥∥∥∑ j∈T

k∈T c

δjδk(Hjk +Hkj)
∥∥∥∥ = 2 E

∥∥∥∥∑ j∈T
k∈T c

δjδkHjk

∥∥∥∥ = 2 E
∥∥∥∥∑ j∈T

k∈T c

δjδ
′
kHjk

∥∥∥∥ .
where {δ′k} is an independent copy of the sequence {δj}. The first equality follows from a standard identity
for block counter-diagonal Hermitian matrices. Now, the norm of a submatrix does not exceed the norm
of the matrix, so we re-introduce the missing entries to complete the argument.

E ‖RHR‖ ≤ 2 E
∥∥∥∑

j 6=k
δjδ
′
kHjk

∥∥∥ = 2 E ‖RHR′‖ . 2

We also need a novel re-coupling result. It is based on the same ideas, so we omit the proof.
Proposition 2.2 (Re-coupling) Let H be an Hermitian matrix with a zero diagonal. Then

Ep ‖RHR′‖max ≤ 4 Ep ‖RHR‖max .

Third, we bound the expected maximum of a random subset of nonnegative scalars. See [4, Lemma 5.1]
for related ideas.
Proposition 2.3 (Max of a random subset) Let a1, a2, . . . , an be nonnegative and K = bδ−1c. Then

E max δjaj ≤ 2 max
|T |≤K

1
K

∑
j∈T

aj ≤
2δ

1− δ
max
|T |≤δ−1

∑
j∈T

aj .

Proof. We may take {aj} nonincreasing. The bound follows from a calculation and the fact K ≥ δ−1−1.

E max δjaj ≤ E
∑K

j=1
δjaj + aK+1 ≤ δ

∑K

j=1
aj +

1
K

∑K

j=1
aj ≤

2
K

∑K

j=1
aj . 2
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3. Maximum column norm of a random submatrix

This section contains bounds on the maximum column norm of a matrix restricted to a random set of
columns or a random set of rows. The first result is an easy application of Proposition 2.3.
Theorem 3.1 Let B be an m× n matrix with columns b1, . . . , bn. When p ≥ 1,

Ep ‖BR‖1→2 ≤
2δ

1− δ
max
|T |≤δ−1

[∑
j∈T
‖bj‖p2

]1/p
.

The second result is for random row restrictions. A partial case appears in [5, Prop. 13].
Theorem 3.2 Let B be an m× n matrix. For p in [2,∞), set q = max{p, 2 log n}. Then

Ep ‖RB‖1→2 ≤ 21.25√q Ep ‖RB‖max +
√
δ ‖B‖1→2 .

The proof relies on a lemma that is established with Khintchine’s inequality.
Lemma 3.3 Let X be an m× n matrix. For r ∈ [1,∞), choose q ≥ max{r, 2 log n}. Then

Er maxk=1,2,...,n

∣∣∣∑m

j=1
εj |xjk|2

∣∣∣ ≤ 20.25√q ‖X‖max ‖X‖1→2 .

where {εj} is a sequence of independent Rademacher variables.
Proof. First, we replace the maximum with the `q norm. Apply the inequalities of Jensen and Khint-

chine. Bound the sum over k by a maximum. Finally, apply Hölder’s inequality:

Er maxk
∣∣∣∑

j
εj |xjk|2

∣∣∣ ≤ [E(∑
k

∣∣∣∑
j
εj |xjk|2

∣∣∣q)r/q]1/r ≤ [∑
k

E
∣∣∣∑

j
εj |xjk|2

∣∣∣q]1/q
≤ Cq

[∑
k

(
E
∣∣∣∑

j
εj |xjk|2

∣∣∣2)q/2]1/q

≤ Cqn1/q
[
maxk

∑
j
|xjk|4

]1/2
≤ Cqe0.5 maxj,k |xjk|maxk

[∑
j
|xjk|2

]1/2
.

Finally, recall that the constant Cq from Khintchine’s inequality is bounded by 20.25e−0.5√q. 2

Proof. (Theorem 3.2) Define E = Ep ‖RB‖1→2. Writing r = p/2, we elaborate the quantity E. Then
we center the random variables and apply the usual symmetrization [3, Lem. 6.3]:

E2 =
[
E
(

maxk
∑

j
δj |bjk|2

)r]1/r
≤ 2

[
Eδ Eε

∣∣∣maxk
∑

j
εjδj |bjk|2

∣∣∣r]1/r + δ ‖B‖21→2 .

Invoke Lemma 3.3 with X = RB. Afterward, Cauchy–Schwarz results in

E2 ≤ 21.25√q [E ‖RB‖rmax ‖RB‖
r
1→2]1/r + δ ‖B‖21→2 ≤ 21.25√q Ep ‖RB‖maxE + δ ‖B‖21→2 .

Solutions to the relation E2 ≤ αE + β obey E ≤ α+
√
β. This point completes the proof. 2

4. Spectral norms of random submatrices

The proof of Theorem 1.1 uses a result of Rudelson–Vershynin [4] to bound the spectral norm of
a random column submatrix. Its proof is analogous with that of Theorem 3.2 but relies on a sharp
noncommutative Khintchine inequality [2]. The explicit constant was obtained in [5, Prop. 12].
Theorem 4.1 (Rudelson–Vershynin) Let B be an m × n matrix with rank r. For p in [2,∞), set
q = max{p, 2 log r}. Then

Ep ‖BR‖ ≤ 3
√
q Ep ‖BR‖1→2 +

√
δ ‖B‖ .
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Proof. (Theorem 1.1) Remove the matrix diagonal, then decouple the projectors with Proposition 2.1:

Ep ‖RAR‖ ≤ 2 Ep ‖RHR′‖+ Ep ‖RDR‖ .
To estimate the first term, we apply the Rudelson–Vershynin theorem twice, once for for each projector:

Ep ‖RHR′‖ ≤ 3
√
q Ep ‖RHR′‖1→2 +

√
δ Ep ‖R′H‖

≤ 3
√
q Ep ‖RHR′‖1→2 + 3

√
δq Ep ‖HR′‖1→2 + δ Ep ‖H‖ .

The maximum column norm bound, Theorem 3.2, yields

Ep ‖RHR′‖ ≤ 3
√
q
[
21.25√q Ep ‖RHR′‖max +

√
δ Ep ‖HR′‖1→2

]
+ 3
√
δq Ep ‖HR‖1→2 + δ Ep ‖H‖ .

Since R′ and R are identically distributed, we combine the second and third terms to reach

Ep ‖RAR‖ ≤ 15q Ep ‖RHR′‖max + 12
√
δq Ep ‖HR‖1→2 + 2δ Ep ‖H‖+ Ep ‖RDR‖ .

Finally, apply the re-coupling result, Proposition 2.2, to the first term. 2

5. Random subdictionaries

A dictionary is an m× n matrix Φ whose columns have unit `2 norm. Define the hollow Gram matrix
H = Φ∗Φ − I, and note that ‖H‖1→2 < ‖Φ∗Φ‖1→2 = maxk ‖Φ∗ϕk‖2 ≤ ‖Φ‖ . A random subdictionary
with expected cardinality δn is a column submatrix ΦT where T = {j : δj = 1}.

The most important statistic associated with a dictionary is the coherence µ = maxj 6=k |〈ϕj , ϕk〉|. For
a set T of columns, the local 2-cumulative coherence is the quantity

µ2(T ) = maxk/∈T
[∑

j∈T
|〈ϕj , ϕk〉|2

]1/2
.

Theorem 3.2 allows us to estimate the local 2-cumulative coherence of a random subdictionary.
Corollary 5.1 Let T = {j : δj = 1}. When p = 2 log n, we have Ep µ2(T ) ≤ 4µ

√
log n+

√
δ ‖Φ‖ .

Proof. Observe that the local coherence µ2(T ) = ‖RH(I−R)‖1→2 ≤ ‖RH‖1→2 . Invoke Theorem 3.2
along with the facts ‖RH‖max ≤ µ and ‖H‖1→2 < ‖Φ‖. 2

We can use Theorem 1.1 to study the conditioning of a random subdictionary via the quantity ‖RHR‖.
Corollary 5.2 For p = 2 log n, we have the bound

Ep ‖RHR‖ ≤ C
[
µ log n+

√
δ ‖Φ‖2 log n

]
. (1)

Proof. Apply Theorem 1.1 with A = H, then introduce ‖RH‖1→2 < ‖Φ‖ and ‖RHR‖max ≤ µ. 2

A subject for further investigation is to use Proposition 2.3 to sharpen the first term of the bracket in
(1) when p is small. An elegant answer has remained elusive.
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