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Greed is Good:
Algorithmic Results for Sparse Approximation

Joel A. Tropp,Student Member, IEEE

Abstract— This article presents new results on using a
greedy algorithm, Orthogonal Matching Pursuit (OMP),
to solve the sparse approximation problem over redundant
dictionaries. It provides a sufficient condition under which
both OMP and Donoho’s Basis Pursuit paradigm (BP) can
recover the optimal representation of an exactly sparse
signal. It leverages this theory to show that both OMP and
BP succeed for every sparse input signal from a wide class
of dictionaries. These quasi-incoherent dictionaries offer a
natural generalization of incoherent dictionaries, and the
cumulative coherence function is introduced to quantify
the level of incoherence. This analysis unifies all the recent
results on BP and extends them to OMP.

Furthermore, the paper develops a sufficient condition
under which OMP can identify atoms from an optimal
approximation of a nonsparse signal. From there, it argues
that Orthogonal Matching Pursuit is an approximation
algorithm for the sparse problem over a quasi-incoherent
dictionary. That is, for every input signal, OMP calculates
a sparse approximant whose error is only a small factor
worse than the minimal error that can be attained with
the same number of terms.

Index Terms— Approximation methods, algorithms, iter-
ative methods, linear programming, Orthogonal Matching
Pursuit, Basis Pursuit

I. I NTRODUCTION

SOME SIGNALS cannot be represented efficiently in
an orthonormal basis. For example, neither impulses

nor sinusoids adequately express the behavior of an
intermixture of impulses and sinusoids. In this case, two
types of structures appear in the signal, but they look
so radically different that neither one can effectively
mimic the other. Although orthonormal bases have a
distinguished service record in approximation theory,
examples like this have led researchers to enlist more
complicated techniques.

The most basic instrument of approximation projects
each signal onto a fixedm-dimensional linear subspace.
A familiar example is interpolation by means of fixed-
knot polynomial splines. For some functions, this el-
ementary procedure works quite well. Later, various
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nonlinear methods were developed. One fundamental
technique is to project each signal onto thebest linear
subspace spanned bym elements of a fixed orthonor-
mal basis. This type of approximation is quite easy to
perform due to the rigid structure of an orthonormal
system. In comparison with the linear method, it may
yield a significant improvement in the approximation
error [1], [2]. But, as noted, some functions just do not
fit into an orthonormal basis. To deal with this problem,
researchers have spent the last fifteen years developing
redundant systems, called dictionaries, for analyzing and
representing complicated functions. A Gabor dictionary,
for example, consists of complex exponentials smoothly
windowed to short time intervals. It is used for joint
time–frequency analysis [3].

The problem of approximating a signal with the best
linear combination ofm elements from a redundant
dictionary is calledsparse approximationor highly non-
linear approximation. The core algorithmic question is
the following.

For a given class of dictionaries, how does one
design a fast algorithm that provably calculates
a nearly optimal sparse representation of an
arbitrary input signal?

Unfortunately, it is quite difficult to answer. At present,
there are two major approaches, Orthogonal Matching
Pursuit (OMP) and Basis Pursuit (BP). OMP is an
iterative greedy algorithm that selects at each step the
dictionary element best correlated with the residual part
of the signal. Then it produces a new approximant by
projecting the signal onto the elements that have already
been selected. This technique extends the trivial greedy
algorithm that succeeds for an orthonormal system. Basis
Pursuit is a more sophisticated approach that replaces
the original sparse approximation problem by a linear
programming problem. Empirical evidence suggests that
BP is more powerful than OMP [4]. The major advantage
of Orthogonal Matching Pursuit is that it admits simple,
fast implementations [5], [6].

A. Major Results

We begin with a résumé of the major results. Fix a
(redundant) dictionary of elementary signals, which are
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called atoms. A representation of a signal is a linear
combination of atoms that equals the signal. Every signal
has an infinite number of distinct representations over a
redundant dictionary. The EXACT-SPARSEproblem is to
identify the representation of the input signal that uses
the least number of atoms, i.e., the sparsest one.

Our first result is a sufficient condition for Orthogonal
Matching Pursuit and Basis Pursuit to solve EXACT-
SPARSE. To state the theorem, we need a little nota-
tion. Given an input signal, form a matrixΦopt whose
columns are the atoms that make up the optimal repre-
sentation of the signal. The pseudo-inverse of this matrix
is defined asΦ+

opt = (Φ∗
optΦopt)

−1Φopt. The notation
‖·‖1 indicates theℓ1 vector norm, which returns the
absolute sum of a vector’s components.

Theorem A:Suppose that

max
ψ

∥

∥Φ
+
optψ

∥

∥

1
< 1 (ERC)

where the maximization occurs over atoms that do not
participate in the optimal representation of the signal.
It follows that the sparsest representation of the signal
is unique. Moreover, both Orthogonal Matching Pursuit
and Basis Pursuit identify the optimal atoms and their
coefficients.

This result encapsulates Theorem 3.1, Theorem 3.3,
and discussion from Section III-E. Theorem A is essen-
tially the best possible for Orthogonal Matching Pursuit
(Theorem 3.10), and it is also the best possible for BP
in certain cases (Section III-D). It is remarkable that
(ERC) is a natural sufficient condition for such disparate
techniques to resolve sparse signals. This fact suggests
that EXACT-SPARSE has tremendous structure.

Theorem A would not be very useful without a tech-
nique for checking when the condition (ERC) holds. To
that end, we define the coherence parameterµ, which
equals the maximum absolute inner product between two
distinct atoms. This quantity reflects how much atoms
look alike. A generalization of the coherence parameter
is the cumulative coherence function,µ1(m), which
equals the maximum absolute sum of inner products
between a fixed atom andm other atoms. If the cu-
mulative coherence function grows slowly, we say that
the dictionary is quasi-incoherent.

Theorem B:The condition (ERC) holds for every
signal with anm-term representation provided that

m < 1
2 (µ−1 + 1)

or, more generally, whenever

µ1(m − 1) + µ1(m) < 1.

Suppose that the dictionary consists ofJ concatenated
orthonormal bases. The condition (ERC) is in force if

m <

[√
2 − 1 +

1

2 (J − 1)

]

µ−1.

Theorem B is a restatement of Theorem 3.5, Corollary
3.6 and Corollary 3.9. Note that Theorems A and B unify
all of the recent results for Basis Pursuit [7], [8], [9] and
extend them to Orthogonal Matching Pursuit as well.

Our second problem, SPARSE, requests the best ap-
proximation of a general signal using a linear combina-
tion of m atoms, where the approximation error is mea-
sured with the Euclidean norm‖·‖2. Although EXACT-
SPARSE and SPARSE are related, the latter is much
harder to solve. Nevertheless, Orthogonal Matching Pur-
suit is a provably good approximation algorithm for the
sparse problem over a quasi-incoherent dictionary.

Theorem C:Suppose thatµ1(m) ≤ 1
3 . For every in-

put signals, Orthogonal Matching Pursuit will calculate
an m-term approximantam that satisfies

‖s− am‖2 ≤
√

1 + 6m ‖s− aopt‖2

whereaopt is an optimalm-term approximant of the
input signal.

Theorem C is Corollary 4.4 of the sequel. It extends
the work of Gilbert, Muthukrishnan and Strauss [6].
Significantly stronger results for Orthogonal Matching
Pursuit have recently been announced in [10], [11].

II. BACKGROUND

A. Important Definitions

The standard sparse approximation problem is set in
the finite-dimensional1 inner-product spaceCd, which
is called thesignal space. We use angle brackets to
denote the usual Hermitian inner product:〈s,x〉 def

= x∗s,
where∗ represents the complex-conjugate transpose. The
Euclidean norm is defined via the inner product:‖s‖2

def

=
√

〈s, s〉.
A dictionary for the signal space is a finite collection

D of unit-norm vectors that spans the whole space. The
members of the dictionary are calledatoms, and they are
denoted byϕω , where the parameterω is drawn from
an index setΩ. The indices may have an interpretation,
such as the time-frequency or time-scale localization
of an atom, or they may simply be labels without an
underlying meaning. The whole dictionary is thus

D = {ϕω : ω ∈ Ω} .

The letter N will indicate the size of the dictionary.
Clearly,N = |D | = |Ω|, where|·| returns the cardinality
of a finite set.

A representationof a signal is a linear combination of
atoms that equals the signal. Without loss of generality,
we assume that all the coefficients in a representation are

1We work in a finite-dimensional space because infinite-dimensional
vectors do not fit inside a computer. Nonetheless, the theorycarries
over with appropriate modifications to an infinite-dimensional setting.
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nonzero. Naturally, anm-term representation is a repre-
sentation that involvesm atoms. Identifying the atoms
and coefficients that appear in the sparsest representation
of a signal will be referred to asrecoveringthe sparsest
representation or, equivalently, recovering the signal.

B. Sparse Approximation Problems

The fundamental problem is to approximate a given
signal s using a linear combination ofm atoms. Since
m is taken to be much smaller than the dimensiond of
the signal space, the approximant issparse. Specifically,
we seek a solution to the minimization problem

min
|Λ|=m

min
{bλ}

∥

∥

∥
s−

∑

λ∈Λ
bλϕλ

∥

∥

∥

2
(1)

where the index setΛ ⊂ Ω and {bλ} is a collection
of complex coefficients. For a fixedΛ, the inner min-
imization of (1) can be accomplished with the usual
least-squares techniques. The real difficulty lies in the
optimal selection ofΛ, since the naı̈ve strategy would
involve sifting through all

(

N
m

)

possibilities.
The computational problem (1) will be called(D , m)-

SPARSE. Note that it is posed for anarbitrary input
signal with respect to afixed dictionary and sparsity
level. One reason for posing the problem with respect
to a specific dictionary is to reduce the time complexity
of the problem. If the dictionary were an input parameter,
then an algorithm would have to process the entire
dictionary as one of its computational duties. It is better
to transfer this burden to a preprocessing stage because
we are likely to use the same dictionary for many
approximations. A second reason is that solving or even
approximating the solution of (1) is NP-hard if the
dictionary is unrestricted [12], [5]. Nevertheless, it is not
quixotic to seek algorithms for the sparse problem over
a particular dictionary.

We will also consider a second problem called
(D , m)-EXACT-SPARSE, where the input signal is re-
quired to have a representation usingm atoms or fewer
from D . There are several motivations. Although natural
signals are not perfectly sparse (Proposition 4.1), one
might imagine applications in which a sparse signal
is constructed and transmitted without error. EXACT-
SPARSE models just this situation. Second, analysis
of the simpler problem can provide lower bounds on
the computational complexity of SPARSE; if the first
problem is NP-hard, the second one is too. Finally, we
might hope that understanding EXACT-SPARSEwill lead
to insights on the more general case.

C. Algorithms

In this section, we will describe some of the basic
algorithms for sparse approximation. The methods come

in two flavors. Greedy methods make a sequence locally
optimal choices in an effort to determine a globally
optimal solution. Convex relaxation methods replace
the combinatorial sparse approximation problem with
a related convex program. We begin with the greedy
techniques.

1) Matching Pursuit:If the dictionary is orthonormal,
the sparse approximation problem admits a straightfor-
ward algorithm. It is possible to build a solution one term
at a time by selecting at each step the atom that correlates
most strongly with the residual signal. Matching Pursuit
(MP) extends this idea to other types of dictionaries.

Matching Pursuit begins by setting the initial residual
equal to the input signals and making a trivial initial
approximation. That is,

r0 = s, and a0 = 0.

At stepk, MP chooses another atomϕλk
by solving an

easy optimization problem:

λk ∈ argmax
ω∈Ω

|〈rk−1,ϕω〉| . (2)

Then it calculates a new approximation and a new
residual.

ak = ak−1 + 〈rk−1,ϕλk
〉 ϕλk

, and

rk = rk−1 − 〈rk−1,ϕλk
〉 ϕλk

.
(3)

The residual can also be expressed asrk = s− ak.
When the dictionary is an orthonormal basis, the

approximantam is always an optimalm-term repre-
sentation of the signal. For general dictionaries, Jones
has shown that the norm of the residual converges to
zero [13]. In fact, it converges exponentially when the
signal space is finite dimensional [5].

Matching Pursuit was developed in the statistics com-
munity under the cognomen Projection Pursuit Regres-
sion [14]. It was introduced to the signal processing
community by [15] and independently by [16]. In the
approximation communitity, MP is known as the Pure
Greedy Algorithm [2]. For more history, theory, and a
list of references, see Temlyakov’s monograph [2].

2) Orthogonal Matching Pursuit:Orthogonal Match-
ing Pursuit (OMP) adds a least-squares minimization to
each step of MP to obtain the best approximation over
the atoms that have already been chosen. This revision
significantly improves the behavior of the algorithm.

Orthogonal Matching Pursuit is initialized the same
way as MP, and at each step, a new atom is selected ac-
cording to the same rule as MP, via (2). But the approxi-
mants are calculated differently. LetΛk = {λ1, . . . , λk}
list the atoms that have been chosen at stepk. Then the
k-th approximant is

ak
def

= argmin
a

‖s− a‖2

subject toa ∈ span {ϕλ : λ ∈ Λk}. (4)
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This minimization can be performed incrementally with
standard least-squares techniques. As before, the residual
is calculated asrk = s− ak.

Note that OMP never selects the same atom twice
because the residual is orthogonal to the atoms that have
already been chosen. In consequence, the residual must
equal zero afterd steps.

Orthogonal Matching Pursuit was developed inde-
pendently by many researchers. The earliest reference
appears to be a 1989 paper of Chen, Billings and
Luo [17]. The first signal processing papers on OMP
arrived around 1993 [18], [19].

3) Weak Greedy Algorithms:Orthogonal Matching
Pursuit has a cousin called Weak Orthogonal Matching
Pursuit (WOMP) that makes a brief appearance in this
article. Instead of selecting the optimal atom at each
step, WOMP settles for one that is nearly optimal.
Specifically, it finds an indexλk so that

|〈rk−1,ϕλk
〉| ≥ α max

ω
|〈rk−1,ϕω〉| (5)

whereα ∈ (0, 1] is a fixedweakness parameter. Once
the new atom is chosen, the approximation is calculated
as before, via (4).

4) Basis Pursuit: Convex relaxation offers another
approach to sparse approximation. The fundamental idea
is that the number of terms in a representation can be
approximated by the absolute sum of the coefficients.
This absolute sum is a convex function, and so it can be
minimized in polynomial time.

Basis Pursuit (BP) is a convex relaxation method
designed for(D , m)-EXACT-SPARSE[4]. Given an input
signals, the Basis Pursuit problem is

min
{bω}

∑

ω∈Ω
|bω| subject to

∑

ω∈Ω
bω ϕω = s

where{bω} is a collection of complex coefficients. One
hopes that the nonzero coefficients in the solution of
the Basis Pursuit problem will identify the atoms in
the optimal representation of the input signal and their
coefficients.

Strictly speaking, Basis Pursuit is not an algorithm but
a principle. At least two algorithms have been proposed
for solving the BP problem. The original paper advocates
interior-point methods of linear programming [4]. Sardy,
Bruce, and Tseng have suggested another procedure
called Block Coordinate Relaxation [20]. Both tech-
niques are computationally intensive.

D. Dictionary Analysis

To prove some of our major results, we need a way
to summarize the behavior of the dictionary. The coher-
ence parameter and the cumulative coherence function
perform this duty.

1) Coherence:The most fundamental quantity asso-
ciated with a dictionary is thecoherence parameterµ.
It equals the maximum absolute inner product between
two distinct atoms:

µ
def

= max
j 6=k

∣

∣

〈

ϕωj
,ϕωk

〉
∣

∣ .

Roughly speaking, this number measures how much two
atoms can look alike. Coherence is a blunt instrument
since it only reflects the most extreme correlations in
the dictionary. Nevertheless, it is easy to calculate, and
it captures well the behavior of uniform dictionaries.
Informally, we say that a dictionary isincoherentwhen
we judge thatµ is small.

It is obvious that every orthonormal basis has co-
herenceµ = 0. A union of two orthonormal bases
has coherenceµ ≥ d−1/2. This bound is attained, for
example, by the Dirac–Fourier dictionary, which consists
of impulses and complex exponentials. A dictionary
of concatenated orthonormal bases is called amulti-
ONB. For somed, it is possible to build a multi-ONB
that containsd or even (d + 1) bases yet retains the
minimal possible coherenceµ = d−1/2 [21]. For general
dictionaries, a lower bound on the coherence is

µ ≥
√

N − d

d (N − 1)
.

If each atomic inner product meets this bound, the
dictionary is called anequiangular tight frame. See [22]
for more details.

The idea of using the coherence parameter to summa-
rize a dictionary has a distinguished pedigree. Mallat and
Zhang introduced it as a quantity of heuristic interest for
Matching Pursuit [15]. The first theoretical developments
appeared in Donoho and Huo’s paper [23]. Stronger
results for Basis Pursuit, phrased in terms of coherence,
were provided in [7], [8], [9]. Gilbert, Muthukrishnan,
and Strauss have recently exhibited an approximation
algorithm for sparse problems over suitably incoherent
dictionaries [6].

2) The Cumulative Coherence:The coherence param-
eter does not characterize a dictionary very well since
it only reflects the most extreme correlations between
atoms. When most of the inner products are tiny, the co-
herence can be downright misleading. A wavelet packet
dictionary exhibits this type of behavior. To remedy
this shortcoming, we introduce thecumulative coherence
function, which measures the maximum total coherence
between a fixed atom and a collection of other atoms. In
a sense, the cumulative coherence indicates how much
the atoms are “speaking the same language.” It is much
simpler to distinguish Russian from English than it is
to distinguish Russian from Ukrainian. Likewise, if the
vectors in the dictionary are foreign to each other, they
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are much easier to tell apart. The cumulative coherence
function will arise naturally in the analysis. Although
it is more difficult to compute than the coherence, it
is a sharper scalpel. Donoho and Elad have defined a
similar notion of generalized incoherence, but they did
not develop it sufficiently for present purposes [8].

For a positive integerm, the cumulative coherence
function is defined as

µ1(m)
def

= max
|Λ|=m

max
ψ

∑

Λ

|〈ψ,ϕλ〉| (6)

where the vectorψ ranges over the atoms indexed
by Ω \ Λ. We place the convention thatµ1(0) = 0.
The subscript in the notation serves to distinguish the
cumulative coherence function from the coherence and
to remind us that it is an absolute sum. When the
cumulative coherence of a dictionary grows slowly, we
say informally that the dictionary isquasi-incoherent.

Inspection of the definition (6) shows thatµ1(1) = µ
and thatµ1 is a non-decreasing function ofm. The next
proposition provides more evidence that the cumulative
coherence generalizes the coherence parameter.

Proposition 2.1: If a dictionary has coherenceµ, then
µ1(m) ≤ m µ for every natural numberm.

Proof: Calculate that

µ1(m) = max
|Λ|=m

max
ψ

∑

Λ

|〈ψ,ϕλ〉|

≤ max
|Λ|=m

∑

Λ

µ

= m µ.

3) An Example:For a realistic dictionary where the
atoms have analytic definitions, the cumulative coher-
ence function is not too difficult to compute. As a
simple example, let us study a dictionary of decay-
ing atoms. To streamline the calculations, we work
in the infinite-dimensional Hilbert spaceℓ2 of square-
summable complex-valued sequences.

Fix a parameterβ < 1. For each indexk ≥ 0, define
an atom by

ϕk(t) =

{

0, 0 ≤ t < k

βt−k
√

1 − β2, k ≤ t.

A specimen appears in Fig. 1. It can be shown that the
atoms spanℓ2, so they form a dictionary. The absolute
inner product between two atoms is

|〈ϕk,ϕj〉| = β|k−j|.

In particular, each atom has unit norm. It also follows
that the coherence of the dictionary equalsβ.
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Fig. 1. The atomϕ6 with parameterβ = 0.75.

Here is the calculation of the cumulative coherence
function in detail:

µ1(m) = max
|Λ|=m

max
ψ

∑

Λ

|〈ψ,ϕλ〉|

= max
|Λ|=m

max
k/∈Λ

∑

j∈Λ

|〈ϕk,ϕj〉|

= max
|Λ|=m

max
k/∈Λ

∑

j∈Λ

β|k−j|.

The maximum occurs, for example, whenk = ⌊m
2 ⌋ and

Λ = {0, 1, 2, . . . , ⌊m
2 ⌋ − 1, ⌊m

2 ⌋ + 1, . . . , m − 1, m}.

The exact form of the cumulative coherence function
depends on the parity ofm. For m even,

µ1(m) =
2β (1 − βm/2)

1 − β

while for m odd,

µ1(m) =
2β (1 − β(m−1)/2)

1 − β
+ β(m+1)/2.

Notice that µ1(m) < 2β/(1 − β) for all m. On the
other hand, the quantitym µ grows without bound. Later,
we will return to this example to demonstrate how
much the cumulative coherence function improves on
the coherence parameter.

4) Uniqueness:The cumulative coherence can be
used to develop conditions under whichm-term repre-
sentations are unique. The material in this section is not
essential to understand most of the paper.

Thesparkof a dictionary is the least number of atoms
that form a linearly dependent set [8]. The following
theorem from [8], [9] is fundamental.

Theorem 2.2 (Donoho–Elad, Gribonval–Nielsen):
A necessary and sufficient condition for every linear
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combination of m atoms to have a uniquem-term
representation is thatm < 1

2 spark (D).
We can use the cumulative coherence function and

the coherence parameter to develop lower bounds on the
spark of a dictionary. LetΦm be a matrix whose columns
arem distinct atoms. The following lemma and its proof
are essentially due to Donoho and Elad [8].

Lemma 2.3:The squared singular values ofΦm ex-
ceed(1 − µ1(m − 1)).

Proof: Consider the Gram matrixG
def

= (Φ∗
m Φm).

The Gershgorin Disc Theorem [24] states that every
eigenvalue ofG lies in one of them discs

∆k =

{

z : |Gkk − z| ≤
∑

j 6=k

|Gjk|
}

.

The normalization of the atoms implies thatGkk ≡
1. The sum is bounded above by

∑

j 6=k |Gjk| =
∑

j 6=k

∣

∣

〈

ϕλk
,ϕλj

〉∣

∣ ≤ µ1(m − 1). The result follows
since the eigenvalues ofG equal the squared singular
values ofΦm.

If the singular values ofΦm are nonzero, then them
atoms that comprise the matrix are linearly independent.
Lower bounds on the spark follow instantly.

Theorem 2.4 (Donoho–Elad [8]):The spark of a dic-
tionary satisfies the bounds

1) spark (D) ≥ min{m : µ1(m − 1) ≥ 1} and
2) spark (D) ≥ µ−1 + 1.

The second bound also appears in [9].
If the dictionary has additional structure, it may be

possible to refine these estimates.
Theorem 2.5 (Gribonval–Nielsen [9]):If D is a µ-

coherent dictionary consisting ofL orthonormal bases,

spark (D) ≥
[

1 +
1

L − 1

]

µ−1.

E. Related Work

This section contains a brief survey of other major
results on sparse approximation, but it makes no pretense
of being comprehensive. We will pay close attention to
theory about whether or not each algorithm is provably
correct.

1) Structured Dictionaries:Early computational tech-
niques for sparse approximation concentrated on specific
dictionaries. For example, Coifman and Wickerhauser
designed the Best Orthogonal Basis (BOB) algorithm
to calculate sparse approximations over wavelet packet
and cosine packet dictionaries, which have a natural tree
structure. BOB minimizes an entropy function over a
subclass of the orthogonal bases contained in the dic-
tionary. Then it returns the bestm-term approximation
with respect to the distinguished basis [25]. Although
BOB frequently produces good results, it does not offer

any guarantees on the quality of approximation. Later,
Villemoes developed an algorithm that produces prov-
ably good approximations over the Haar wavelet packet
dictionary [26].

2) OMP and the Sparse Problem:Gilbert, Muthukr-
ishnan, and Strauss have shown that Orthogonal Match-
ing Pursuit is an approximation algorithm for(D , m)-
SPARSE, provided that the dictionary is suitably incoher-
ent [6]. One version of their result is the following.

Theorem 2.6 (Gilbert–Muthukrishnan–Strauss [6]):
Let D have coherence µ, and assume that
m < 1

8
√

2
µ−1 − 1. For an arbitrary signals, Orthogonal

Matching Pursuit generates anm-term approximantam

that satisfies

‖s− am‖2 ≤ 8
√

m ‖s− aopt‖2

whereaopt is an optimalm-term approximation ofs.
This theorem is a progenitor of the results in the cur-

rent paper, although the techniques differ significantly.
3) Basis Pursuit: For Basis Pursuit, there is a se-

quence of attractive results on(D , m)-EXACT-SPARSE.
In their seminal paper [23], Donoho and Huo established
a connection between uncertainty principles and sparse
approximation. Using this link, they proved a recovery
theorem for Basis Pursuit.

Theorem 2.7 (Donoho–Huo [23]):Let D be a union
of two orthonormal bases with coherenceµ. If m <
1
2 (µ−1 + 1), then Basis Pursuit recovers every signal
that has anm-term representation.

In [7], Elad and Bruckstein made some improvements
to the bounds onm, which turn out to be sharp [27].
More recently, the theorem of Donoho and Huo has been
extended to multi-ONBs and arbitrary incoherent dictio-
naries [8], [9]. Donoho and Elad have also developed
a generalized notion of incoherence that is equivalent to
the cumulative coherence function defined in this article.
We will discuss these results in more detail later.

Very recently, Basis Pursuit has been modified to solve
sparse approximation problems for general input signals.
These results appear in [10], [11].

III. R ECOVERINGSPARSESIGNALS

In this section, we consider the restricted problem
(D , m)-EXACT-SPARSE. The major result is a single
sufficient condition under which both Orthogonal Match-
ing Pursuit and Basis Pursuit recover a linear combina-
tion of m atoms from the dictionary. We also develop a
method for checking when this condition is in force for
an arbitrarym-term superposition. Together, these results
prove that OMP and BP are both correct algorithms for
EXACT-SPARSE over quasi-incoherent dictionaries.
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A. The Exact Recovery Condition

Suppose that a given signals can be written as a linear
combination ofm atoms and no fewer. Thus,

s =
∑

λ∈Λopt

bλϕλ

whereΛopt is a subset ofΩ with cardinalitym. Without
loss of generality, assume that the atoms inΛopt are
linearly independent and that the coefficientsbλ are
nonzero. Otherwise, the signal has a representation using
fewer thanm atoms.

Let Φopt be thed×m matrix whose columns are the
atoms listed inΛopt:

Φopt
def

=
[

ϕλ1
ϕλ2

. . . ϕλm

]

whereΛopt = {λ1, . . . , λm}. (The order of the indices
is unimportant, so long as it is fixed.) Then the signal
can also be expressed as

s = Φopt bopt

wherebopt is a vector ofm complex coefficients. Since
the optimal atoms are linearly independent,Φopt has
full column-rank. Define a second matrixΨopt whose
columns are the(N − m) atoms indexed byΩ \ Λopt.
ThusΨopt contains the atoms thatdo notparticipate in
the optimal representation.

Theorem 3.1 (Exact Recovery for OMP):A
sufficient condition for Orthogonal Matching Pursuit to
recover the sparsest representation of the input signal is
that

max
ψ

∥

∥Φ
+
optψ

∥

∥

1
< 1, (ERC)

whereψ ranges over the columns ofΨopt.
A fortiori, Orthogonal Matching Pursuit is a correct

algorithm for (D , m)-EXACT-SPARSE so long as the
condition (ERC) holds for every signal with anm-term
representation.

The tag (ERC) abbreviates the phrase “Exact Recovery
Condition.” It guarantees that no spurious atom can
masquerade as part of the signal well enough to fool
Orthogonal Matching Pursuit. Theorem 3.10 of the se-
quel shows that (ERC) is essentially the best possible for
OMP. Incredibly, (ERC) also provides a natural sufficient
condition for Basis Pursuit to recover a sparse signal,
which we will discover in Section III-B.

Proof: Suppose that, after the firstk steps, Orthog-
onal Matching Pursuit has computed an approximantak

that is a linear combination ofk atoms listed inΛopt.
Recall that the residual is defined asrk = s − ak. We
would like to develop a condition to guarantee that the
next atom is also optimal.

Observe that the vectorΦ∗
opt rk lists the inner prod-

ucts between the residual and the optimal atoms. So
the expression

∥

∥Φ∗
opt rk

∥

∥

∞ gives the largest magnitude

attained among the inner products, where‖·‖∞ denotes
the ℓ∞ vector norm. Similarly,

∥

∥Ψ∗
opt rk

∥

∥

∞ expresses
the largest inner product between the residual and any
nonoptimal atom. In consequence, to see whether the
largest inner product occurs at an optimal atom, we just
need to examine the quotient

ρ(rk)
def

=

∥

∥Ψ∗
opt rk

∥

∥

∞
∥

∥Φ∗
opt rk

∥

∥

∞
. (7)

On account of the selection criterion (2), we see that a
greedy choice2 will recover another one of the optimal
atoms if and only ifρ(rk) < 1.

Notice that the ratio (7) bears a suspicious resem-
blance to an induced matrix norm. Before we can apply
the usual norm bound, the termΦ∗

opt rk must appear in
the numerator. Sinces and ak both lie in the column
span of Φopt, so does the residualrk. The matrix
(Φ+

opt)
∗
Φ

∗
opt is a projector onto the column span ofΦopt,

and so we may calculate that

ρ(rk) =

∥

∥Ψ
∗
opt rk

∥

∥

∞
∥

∥Φ∗
opt rk

∥

∥

∞

=

∥

∥Ψ∗
opt(Φ

+
opt)

∗Φ∗
opt rk

∥

∥

∞
∥

∥Φ∗
opt rk

∥

∥

∞
≤

∥

∥Ψ
∗
opt(Φ

+
opt)

∗∥
∥

∞,∞ .

We use‖·‖p,p to denote the induced norm for linear
operators mapping(Cd, ‖·‖p) into itself. Since‖·‖∞,∞
equals the maximum absoluterow sum of its argument
and‖·‖1,1 equals the maximum absolutecolumnsum of
its argument, we take a conjugate transpose and switch
norms. Continuing the calculation,

ρ(rk) ≤
∥

∥Ψ
∗
opt(Φ

+
opt)

∗∥
∥

∞,∞
=

∥

∥Φ
+
optΨopt

∥

∥

1,1

= max
ψ

∥

∥Φ
+
optψ

∥

∥

1

where the maximimation occurs over the columns of
Ψopt, the nonoptimal atoms.

In summary, assuming thatrk lies in the column span
of Φopt, the relationρ(rk) < 1 will obtain whenever

max
ψ

∥

∥Φ
+
optψ

∥

∥

1
< 1. (ERC)

Suppose that (ERC) holds. Since the initial residualr0

lies in the column span ofΦopt, a greedy selection
recovers an optimal atom at each step. Each residual is

2In case thatρ(rk) = 1, an optimal atom and a nonoptimal atom
both attain the maximal inner product. The algorithm has no provision
for determining which one to select. In the sequel, we make the pes-
simistic assumption that a greedy procedure never chooses an optimal
atom when a nonoptimal atom also satisfies the selection criterion.
This convention forces greedy techniques to fail for borderline cases,
which is appropriate for analyzing algorithmic correctness.
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orthogonal to the atoms that have already been selected,
so OMP will never choose the same atom twice. It
follows thatm steps of OMP will identify allm atoms
that make up the optimal representation ofs. Therefore,
am = s.

An immediate consequence of the proof technique is
a result for Weak Orthogonal Matching Pursuit.

Corollary 3.2: A sufficient condition for WOMP(α)
to recover the sparsest representation of the input signal
is that

max
ψ

∥

∥Φ
+
optψ

∥

∥

1
< α, (8)

whereψ ranges over the columns ofΨopt.
Gribonval and Nielsen have pointed out that the proofs

here also apply to Matching Pursuit [28].

B. Recovery via Basis Pursuit

It is even easier to prove that the Exact Recovery
Condition is sufficient for Basis Pursuit to recover a
sparse signal. This theorem will allow us to unify all
the recent results about BP. We retain the same notation
as before.

Theorem 3.3 (Exact Recovery for BP):A sufficient
condition for Basis Pursuit to recover the sparsest
representation of the input signal is that

max
ψ

∥

∥Φ
+
optψ

∥

∥

1
< 1, (ERC)

whereψ ranges over the atoms that do not participate
in Φopt.

A fortiori, Basis Pursuit is a correct algorithm for
(D , m)-EXACT-SPARSE whenever (ERC) holds for ev-
ery signal that has anm-term representation.

We require a simple lemma aboutℓ1 norms.
Lemma 3.4:Suppose thatv is a vector with nonzero

components and thatA is a matrix whose columns do not
have identicalℓ1 norms. Then‖Av‖1 < ‖A‖1,1 ‖v‖1.

We omit the easy proof and move on to the demon-
stration of the theorem.

Proof: Suppose thats is an input signal whose
sparsest representation can be written ass = Φopt bopt.
Assume that the Exact Recovery Condition holds for the
input signal.

Let s = Φalt balt be a different representation with
nonzero coefficients. It follows thatΦalt has at least
one columnψ0 that does not appear inΦopt. Accord-
ing to (ERC), we have

∥

∥Φ
+
optψ0

∥

∥

1
< 1. Meanwhile,

∥

∥Φ
+
optϕ

∥

∥

1
≤ 1 for every other atomϕ, optimal or

nonoptimal.
Assume that the columns ofΦ+

optΦalt do not have
identicalℓ1 norms. We may use the lemma to calculate

that

‖bopt‖1 =
∥

∥Φ
+
optΦopt bopt

∥

∥

1

=
∥

∥Φ
+
opt s

∥

∥

1

=
∥

∥Φ
+
optΦalt balt

∥

∥

1

<
∥

∥Φ
+
optΦalt

∥

∥

1,1
‖balt‖1

≤ ‖balt‖1 .

If perchance the columns ofΦ+
optΦalt all have the

sameℓ1 norm, that norm must equal
∥

∥Φ
+
optψ0

∥

∥

1
, which

is strictly less than one. Repeat the calculation. Although
the first inequality is no longer strict, the second inequal-
ity becomes strict in compensation. We reach the same
conclusion.

In words, any set of nonoptimal coefficients for rep-
resenting the signal has strictly largerℓ1 norm than
the optimal coefficients. Therefore, Basis Pursuit will
recover the optimal representation.

C. Cumulative Coherence Estimates

Since we are unlikely to know the optimal atomsa
priori , Theorems 3.1 and 3.3 may initially seem useless.
But for many dictionaries, the Exact Recovery Condition
holds for everym-term signal, so long asm is not too
large.

Theorem 3.5:Suppose thatµ1 is the cumulative co-
herence function ofD . The Exact Recovery Condition
holds whenever

µ1(m − 1) + µ1(m) < 1. (9)

Thus, Orthogonal Matching Pursuit and Basis Pursuit are
correct algorithms for(D , m)-SPARSE whenever (9) is
in force. In other words, this condition guarantees that
either procedure will recover every signal with anm-
term representation.

One interpretation of this theorem is that the Exact
Recovery Condition holds for sparse signals over quasi-
incoherent dictionaries. The present result for Basis
Pursuit is slightly stronger than the most general theorem
in [8], which is equivalent to Corollary 3.6 of the sequel.

Proof: Begin the calculation by expanding the
pseudo-inverse.

max
ψ

∥

∥Φ
+
optψ

∥

∥

1
= max

ψ

∥

∥(Φ∗
opt Φopt)

−1
Φ

∗
optψ

∥

∥

1
.

Then apply the usual norm bound:

max
ψ

∥

∥(Φ∗
opt Φopt)

−1
Φ

∗
optψ

∥

∥

1

≤
∥

∥(Φ∗
opt Φopt)

−1
∥

∥

1,1
max
ψ

∥

∥Φ
∗
optψ

∥

∥

1
. (10)

The cumulative coherence function offers a tailor-made
estimate of the second factor on the right-hand side of
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(10).

max
ψ

∥

∥Φ
∗
optψ

∥

∥

1
= max

ψ

∑

Λopt

|〈ψ,ϕλ〉|

≤ µ1(m).

(11)

Bounding the first factor on the right-hand side of (10)
requires more sophistication. We develop the inverse as
a Neumann series and use Banach algebra methods to
estimate its norm. First, notice that(Φ∗

opt Φopt) has a
unit diagonal because all atoms are normalized. So the
off-diagonal partA satisfies

Φ
∗
opt Φopt = Im + A.

Each column ofA lists the inner products between one
atom of Φopt and the remaining(m − 1) atoms. By
definition of the cumulative coherence function,

‖A‖1,1 = max
k

∑

j 6=k

∣

∣

〈

ϕλk
,ϕλj

〉
∣

∣

≤ µ1(m − 1).

Whenever‖A‖1,1 < 1, the Neumann series
∑

(−A)k

converges to the inverse(Im + A)−1 [29]. In this case,
we may compute

∥

∥(Φ∗
opt Φopt)

−1
∥

∥

1,1
=

∥

∥(Im + A)−1
∥

∥

1,1

=

∥

∥

∥

∥

∥

∞
∑

k=0

(−A)k

∥

∥

∥

∥

∥

1,1

≤
∞
∑

k=0

‖A‖k
1,1

=
1

1 − ‖A‖1,1

≤ 1

1 − µ1(m − 1)
.

(12)

Introduce the bounds (11) and (12) into inequality (10)
to obtain

max
ψ

∥

∥Φ
+
optψ

∥

∥

1
≤ µ1(m)

1 − µ1(m − 1)
.

We reach the result by applying Theorems 3.1 and 3.3.

A weaker corollary follows directly from basic facts
about the cumulative coherence function.

Corollary 3.6: Orthogonal Matching Pursuit and Ba-
sis Pursuit both recover every superposition ofm atoms
from D whenever one of the following conditions is
satisfied:

m < 1
2 (µ−1 + 1), or (13)

µ1(m) < 1
2 . (14)

The incoherence condition is the best possible. It
would fail for any ⌈ 1

2 (µ−1 + 1)⌉ atoms chosen from

an equiangular tight frame withN = d + 1 vectors. The
bound (13) appears in both [8], [9] with reference to
Basis Pursuit. The bound (14) also appears in [8].

To see the difference between the two conditions in
Corollary 3.6, let us return to the dictionary of decaying
atoms from Section II-D.3. Recall that

µ = β and µ1(m) <
2β

1 − β
.

Setβ = 1
5 . Then the incoherence condition (13) requires

that m < 3. On the other hand,µ1(m) < 1
2 for every

m. Therefore, (14) shows that OMP or BP can recover
any (finite) linear combination of decaying atoms!

D. Structured Dictionaries

If the dictionary has special form, better estimates are
possible.

Theorem 3.7:Suppose thatD consists of J con-
catenated orthonormal bases with overall coherenceµ.
Suppose that the input signal can be written as a super-
position ofpj atoms from thej-th basis,j = 1, . . . , J .
Without loss of generality, assume that0 < p1 ≤ p2 ≤
· · · ≤ pJ . The Exact Recovery Condition holds whenever

J
∑

j=2

µ pj

1 + µ pj
<

1

2 (1 + µ p1)
. (15)

In which case both Orthogonal Matching Pursuit and
Basis Pursuit recover the optimal representation of the
signal.

The proof of Theorem 3.7 is quite delicate. We refer
the interested reader to the technical report [31].

The major theorem of Gribonval and Nielsen’s pa-
per [9] is that (15) is a sufficient condition for Basis
Pursuit to succeed in this setting. WhenJ = 2, we
retrieve the major theorem of Elad and Bruckstein’s
paper [7].

Corollary 3.8: Suppose thatD consists of two or-
thonormal bases with overall coherenceµ, and suppose
that the input signal has a representation usingp atoms
from the first basis andq atoms from the second basis,
where p ≤ q. The Exact Recovery Condition holds
whenever

2 µ2 pq + µq < 1. (16)

Feuer and Nemirovsky have shown that the bound
(16) is the best possible for BP [27]. It follows by
contraposition that Corollary 3.8 is the best possible
result on the Exact Recovery Condition for a two-ONB.

For an arbitrary m-term superposition from a
multi-ONB, revisit the calculations of Gribonval and
Nielsen [9] to discover the following corollary.
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Corollary 3.9: If D is a µ-coherent dictionary com-
prised ofJ orthonormal bases, the condition

m <

[√
2 − 1 +

1

2 (J − 1)

]

µ−1

is sufficient to ensure that the Exact Recovery Condition
holds for every signal with anm-term representation.

The bound in Corollary 3.9 is the best possible when
J = 2 on account of [27], but Donoho and Elad have
pointed out that the result can be improved whenJ > 2
[30].

E. Uniqueness and Recovery

Theorem 3.1 has another important consequence. If
the Exact Recovery Condition holds for every linear
combination ofm atoms, then allm-term superposi-
tions are unique. Otherwise, the Exact Recovery The-
orem states that OMP would simultaneously recover
two distinctm-term representations of the same signal,
a reductio ad absurdum. Therefore, the conditions of
Theorem 3.5, Corollary 3.6, and Corollary 3.9 ensure
that all m-term representations are unique. On the other
hand, Theorem 2.2 shows that the Exact Recovery Con-
dition must fail for some linear combination ofm atoms
wheneverm ≥ 1

2 sparkD .
That a signal has a uniquem-term representation

does not guarantee the Exact Recovery Condition holds.
For a union of two orthonormal bases, Theorem 2.5
implies that allm-term representations are unique when-
ever m < µ−1. But the discussion in the last section
demonstrates that the Exact Recovery Condition may
fail for m ≥ (

√
2 − 1

2 )µ−1. Within this pocket3 lie
uniquely determined signals that cannot be recovered by
Orthogonal Matching Pursuit, as this partial converse of
Theorem 3.1 shows.

Theorem 3.10 (Exact Recovery Converse for OMP):
Assume that allm-term representations are unique but
that the Exact Recovery Condition fails for a signal with
optimal synthesis matrixΦopt. Then there are signals
in the column span ofΦopt that Orthogonal Matching
Pursuit cannot recover.

Proof: If the Exact Recovery Condition fails, then

max
ψ

∥

∥Φ
+
optψ

∥

∥

1
≥ 1. (17)

By the uniqueness ofm-term representations, every
signal that has a representation using the atoms inΦopt

yields the same two matricesΦopt and Ψopt. Next,

3See the article of Elad and Bruckstein [7] for a very enlightening
graph that delineates the regions of uniqueness and recovery for two-
ONB dictionaries.

choosecbad ∈ C
m to be a vectorc for which equality

holds in the bound
∥

∥Ψ∗
opt(Φ

+
opt)

∗ c
∥

∥

∞
‖c‖∞

≤
∥

∥Ψ
∗
opt(Φ

+
opt)

∗∥
∥

∞,∞ .

Optimal synthesis matrices have full column rank, so
Φ∗

opt maps the column span ofΦopt ontoCm. Therefore,
the column span ofΦopt contains a signalsbad for which
Φ∗

opt sbad = cbad. Working backward from (17) through
the proof of the Exact Recovery Theorem, we discover
that ρ(sbad) ≥ 1. In conclusion, if we run Orthogonal
Matching Pursuit withsbad as input, it chooses a non-
optimal atom in the first step. SinceΦopt provides
the uniquem-term representation ofsbad, the initial
incorrect selection damns OMP from obtaining anm-
term representation ofsbad.

IV. RECOVERING GENERAL SIGNALS

The usual goal of sparse approximation is the analysis
or compression of natural signals. But the assumption
that a signal has a sparse representation is completely
academic on account of the following result.

Proposition 4.1: If m < d, the collection of signals
that have an exact representation as a linear combination
of m atoms forms a set of Lebesgue measure zero inCd.

Proof: The signals that lie in the span ofm distinct
atoms form anm-dimensional subspace, which has mea-
sure zero. There are

(

N
m

)

ways to choosem atoms, so
the collection of signals that have a representation over
m atoms is a finite union ofm-dimensional subspaces.
This union has measure zero inCd.

It follows that a generic signal does not have a sparse
representation. Even worse, the optimalm-term approx-
imant is a discontinuous, multivalent function of the
input signal. In consequence, proving that an algorithm
succeeds for(D , m)-EXACT-SPARSE is very different
from proving that it succeeds for(D , m)-SPARSE. Nev-
ertheless, the analysis in Section III-A suggests that
Orthogonal Matching Pursuit may be able to recover
atoms from the optimal representation even when the
signal is not perfectly sparse.

A. OMP as an Approximation Algorithm

Let s be an arbitrary signal, and suppose thataopt

is an optimalm-term approximation ofs. That is,aopt

is a solution to the minimization problem (1). Note that
aopt may not be unique. We write

aopt =
∑

λ∈Λopt

bλϕλ

for an index setΛopt of sizem. Once again, denote by
Φopt the d × m matrix whose columns are the atoms
listed in Λopt. We may assume that the atoms inΛopt

form a linearly independent set because any atom that is
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linearly dependent on the others could be replaced by a
linearly independent atom to improve the quality of the
approximation. LetΨopt be the matrix whose columns
are the(N − m) remaining atoms.

Now we may formulate a condition under which
Orthogonal Matching Pursuit recovers optimal atoms.

Theorem 4.2 (General Recovery):Assume that
µ1(m) < 1

2 , and suppose thatak is a linear
combination of atoms fromΛopt. At step (k + 1),
Orthogonal Matching Pursuit will recover another atom
from Λopt provided that

‖s− ak‖2 >

√

1 +
m (1 − µ1(m))

(1 − 2 µ1(m))2
‖s− aopt‖2 .

(18)

We will call (18) the General Recovery Condition. It
says that a greedy algorithm makes absolute progress
whenever the currentk-term approximant compares un-
favorably with an optimalm-term approximant. Theo-
rem 4.2 has an important structural implication:every
optimal representation of a signal contains the same
kernel of atoms. This fact follows from the observation
that OMP selects the same atoms irrespective of the
optimal approximation that appears in the calculation.
But the principal corollary of Theorem 4.2 is that OMP
is an approximation algorithm for(D , m)-SPARSE.

Corollary 4.3: Assume thatµ1(m) < 1
2 , and let

s be a completely arbitrary signal. Then Orthogonal
Matching Pursuit produces anm-term approximantam

that satisfies

‖s− am‖2 ≤
√

1 + C(D , m) ‖s− aopt‖2 (19)

whereaopt is an optimalm-term approximant. We may
estimate the constant as

C(D , m) ≤ m (1 − µ1(m))

(1 − 2 µ1(m))2
.

Proof: Imagine that (18) fails at step(K+1). Then,
we have an upper bound on theK-term approximation
error as a function of the optimalm-term approxima-
tion error. If we continue to apply OMP even afterk
exceedsK, the approximation error will only continue
to decrease.

Although OMP may not recover an optimal approx-
imant aopt, it always constructs an approximant whose
error lies within a constant factor of optimal. One might
argue that an approximation algorithm has the potential
to inflate a moderate error into a large error. But a
moderate error indicates that the signal does not have
a good sparse representation over the dictionary, and so
sparse approximation may not be an appropriate tool. In
practice, if it is easy to find a nearly optimal solution,
there is no reason to waste a lot of time and resources

to reach thene plus ultra. As the French say, “The best
is the enemy of the good.”

Placing a restriction on the cumulative coherence
function leads to a simpler statement of the result, which
generalizes and improves the work in [6].

Corollary 4.4: Assume thatm ≤ 1
3µ−1 or, more

generally, thatµ1(m) ≤ 1
3 . Then OMP generatesm-

term approximants that satisfy

‖s− ak‖2 ≤
√

1 + 6m ‖s− aopt‖2 . (20)

The constant here is not small, so it is better to regard
this as a qualitative theorem on the performance of OMP.
See [32] for another greedy algorithm with a much better
constant of approximation. Significantly better results for
OMP have also been announced in [10], [11].

Let us return again to the example of Section II-D.3.
This time, setβ = 1

7 . The coherence condition of Corol-
lary 4.4 suggests that we can achieve the approximation
constant

√
1 + 6m only if m = 1, 2. But the cumulative

coherence function condition demonstrates that, in fact,
the approximation constant is never more than

√
1 + 6m.

Another consequence of the analysis is a corollary for
Weak Orthogonal Matching Pursuit.

Corollary 4.5: Weak Orthogonal Matching Pursuit
with parameterα calculatesm-term approximants that
satisfy

‖s− am‖2

‖s− aopt‖2

≤
√

1 +
m (1 − µ1(m))

(α − (1 + α)µ1(m))2
.

As an example, assume thatµ1(m) ≤ 1
3 . Then

WOMP(3
4 ) has an approximation constant that does not

exceed
√

1 + 24m.

B. Proof of the General Recovery Theorem

Proof: Suppose that, afterk steps, Orthogonal
Matching Pursuit has produced an approximantak that
is a linear combination ofk atoms listed inΛopt. The
residual isrk = s−ak, and the condition for recovering
another optimal atom is

ρ(rk)
def

=

∥

∥Ψ∗
opt rk

∥

∥

∞
∥

∥Φ∗
opt rk

∥

∥

∞
< 1.

We may divide the ratio into two pieces, which we
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bound separately.

ρ(rk) =

∥

∥Ψ∗
optrk

∥

∥

∞
∥

∥Φ∗
optrk

∥

∥

∞

=

∥

∥Ψ∗
opt(s− ak)

∥

∥

∞
∥

∥Φ∗
opt(s− ak)

∥

∥

∞

=

∥

∥Ψ∗
opt(s− aopt) + Ψ∗

opt(aopt − ak)
∥

∥

∞
∥

∥Φ∗
opt(s− aopt) + Φ∗

opt(aopt − ak)
∥

∥

∞

≤
∥

∥Ψ∗
opt(s− aopt)

∥

∥

∞ +
∥

∥Ψ∗
opt(aopt − ak)

∥

∥

∞
∥

∥Φ∗
opt(aopt − ak)

∥

∥

∞
def

= ρerr + ρopt.
(21)

The termΦ∗
opt(s−aopt) has vanished from the denom-

inator since(s−aopt) is orthogonal to the column span
of Φopt.

To boundρopt, repeat the arguments of Section III-C,
mutatis mutandis. This yields

ρopt ≤
µ1(m)

1 − µ1(m − 1)

≤ µ1(m)

1 − µ1(m)
.

(22)

Meanwhile,ρerr has the following simple estimate:

ρerr =

∥

∥Ψ∗
opt(s− aopt)

∥

∥

∞
∥

∥Φ∗
opt(aopt − ak)

∥

∥

∞

=
maxψ |ψ∗(s− aopt)|
∥

∥Φ∗
opt(aopt − ak)

∥

∥

∞

≤ maxψ ‖ψ‖2 ‖s− aopt‖2

m−1/2
∥

∥Φ∗
opt(aopt − ak)

∥

∥

2

≤
√

m ‖s− aopt‖2

σmin(Φopt) ‖aopt − ak‖2

.

(23)

SinceΦopt has full column rank,σmin(Φopt) is nonzero.
Now we can develop a concrete condition under which

OMP retrieves optimal atoms. In the following calcu-
lation, assume thatµ1(m) < 1

2 . Combine inequalities
(21), (22), and (23). Then estimate the singular value
with Lemma 2.3. We discover thatρ(rk) < 1 whenever

√
m ‖s− aopt‖2

√

1 − µ1(m) ‖aopt − ak‖2

+
µ1(m)

1 − µ1(m)
< 1.

Some algebraic manipulations yield the inequality

‖aopt − ak‖2 >

√

m (1 − µ1(m))

1 − 2 µ1(m)
‖s− aopt‖2 .

Since the vectors(s − aopt) and (aopt − ak) are
orthogonal, we may apply the Pythagorean Theorem to
reach

‖s− ak‖2 >

√

1 +
m (1 − µ1(m))

(1 − 2 µ1(m))2
‖s− aopt‖2 .

If this relation is in force, then a step of OMP will
retrieve another optimal atom.

Remark 4.6:The term
√

m is an unpleasant aspect
of (23), but it cannot be avoided without a more subtle
approach. When the atoms in our optimal representation
have approximately equal correlations with the signal,
the estimate of the infinity norm is reasonably accurate.
An assumption on the relative size of the coefficients in
bopt might improve the estimate, but this is a severe
restriction. An astute reader could whittle the factor
down to

√
m − k, but the subsequent analysis would not

realize any benefit. It is also possible to strengthen the
bound if one postulates a model for the deficit(s−aopt).
If, for example, the nonsparse part of the signal were
distributed “uniformly” across the dictionary vectors, a
single atom would be unlikely to carry the entire error.
But we will retreat from a battle that should be fought
on behalf of a particular application.
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