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STREAMING LOW-RANK MATRIX APPROXIMATION WITH AN
APPLICATION TO SCIENTIFIC SIMULATION\ast 

JOEL A. TROPP\dagger , ALP YURTSEVER\ddagger , MADELEINE UDELL\S , AND VOLKAN CEVHER\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . This paper argues that randomized linear sketching is a natural tool for on-the-fly
compression of data matrices that arise from large-scale scientific simulations and data collection.
The technical contribution consists in a new algorithm for constructing an accurate low-rank ap-
proximation of a matrix from streaming data. This method is accompanied by an a priori analysis
that allows the user to set algorithm parameters with confidence and an a posteriori error estimator
that allows the user to validate the quality of the reconstructed matrix. In comparison to previous
techniques, the new method achieves smaller relative approximation errors and is less sensitive to
parameter choices. As concrete applications, the paper outlines how the algorithm can be used to
compress a Navier--Stokes simulation and a sea surface temperature dataset.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . dimension reduction, matrix approximation, numerical linear algebra, sketching,
streaming, singular value decomposition
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1. Motivation. Computer simulations of scientific models often generate data
matrices that are too large to store, process, or transmit in full. This challenge arises
in a huge number of fields, including weather and climate forecasting [72, 25, 8], heat
transfer and fluid flow [57, 10], computational fluid dynamics [9, 28], and aircraft
design [51, 62]. Similar exigencies can arise with automated methods for acquiring
large volumes of scientific data [19].

In these settings, the data matrix often has a decaying singular value spectrum,
so it admits an accurate low-rank approximation. For some downstream applications,
the approximation serves as well as—or even better than—the full matrix [64, 17].
Indeed, the approximation is easier to manipulate, and it can expose latent structure.
This observation raises the question of how best to compute a low-rank approximation
of a matrix of scientific data with limited storage, arithmetic, and communication.

The main purpose of this paper is to argue that sketching methods from the
field of randomized linear algebra [74, 20, 35, 46, 73, 14, 29, 69, 68] have tremendous
potential in this context. As we will explain, these algorithms can inexpensively
maintain a summary, or sketch, of the data as it is being generated. After the data
collection process terminates, we can extract a near-optimal low-rank approximation
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STREAMING MATRIX APPROXIMATION A2431

from the sketch. This approximation is accompanied by an a posteriori error estimate.
The second purpose of this paper is to design, analyze, and test a new sketching

algorithm that is suitable for handling scientific data. We will build out the theoretical
infrastructure needed for practitioners to deploy this algorithm with confidence. We
will also demonstrate that the method is effective for some small- and medium-scale
examples, including a computer simulation of the Navier–Stokes equations and a high-
resolution sea surface temperature dataset [1].

1.1. Streaming, sketching, and matrix approximation. Let us begin with
a brief introduction to streaming data and sketching, as they apply to the problem
of low-rank matrix approximation. This abstract presentation will solidify into a
concrete algorithm in sections 2 and 6. The explanation borrows heavily from our
previous paper [69], which contains more details and context.

1.1.1. Streaming. We are interested in acquiring a compressed representation
of an enormous matrix \bfitA \in \BbbF m\times n where \BbbF = \BbbR or \BbbF = \BbbC . This work focuses on a
setting where the matrix is presented as a long sequence of “simple” linear updates:

(1.1) \bfitA = \bfitH 1 + \bfitH 2 + \bfitH 3 + \cdot \cdot \cdot .

In applications, each innovation \bfitH i is sparse, is low-rank, or enjoys another favorable
structure. The challenge arises because we do not wish to store the full matrix \bfitA , and
we cannot revisit the innovation \bfitH i after processing it. The formula (1.1) describes
a particular type of streaming data model [53, 20, 73].

1.1.2. Sketching. To manage the data stream (1.1), we can use a randomized
linear sketch [5, 4]. Before any data arrives, we draw and fix a random linear map
S : \BbbF m\times n \rightarrow \BbbF d, called a sketching operator. Instead of keeping \bfitA in working memory,
we retain only the image S (\bfitA ). This image is called a sketch of the matrix. The
dimension d of the sketch is much smaller than the dimension mn of the matrix space,
so the sketching operator compresses the data matrix. Nonetheless, because of the
randomness, a well-designed sketching operator is likely to yield useful information
about any matrix \bfitA that is statistically independent from S .

Sketches and data streams enjoy a natural synergy. If the matrix \bfitA is presented
via the data stream (1.1), the linearity of the sketching operator ensures that

S (\bfitA ) = S (\bfitH 1) + S (\bfitH 2) + S (\bfitH 3) + \cdot \cdot \cdot .

In other words, we can process an innovation \bfitH i by forming S (\bfitH i) and adding it to
the current value of the sketch. This update can be performed efficiently when \bfitH i

is structured. It is a striking fact [43] that randomized linear sketches are essentially
the only mechanism for tracking a general data stream of the form (1.1).

1.1.3. Matrix approximation. After the updating process terminates, we need
to extract a low-rank approximation of the data matrix \bfitA from the sketch S (\bfitA ).

More precisely, we report a rank-r matrix \̂bfitA r, in factored form, that satisfies

(1.2) \| \bfitA  - \̂bfitA r\| 2 \approx min
rank\bfitB \leq r

\| \bfitA  - \bfitB \| 2,

where \| \cdot \| 2 is the Schatten 2-norm (also known as the Frobenius norm). We can also
exploit the sketch to compute an a posteriori estimate of the error:

err2(\̂bfitA r) \approx \| \bfitA  - \̂bfitA r\| 2.

This estimator helps us to select the precise rank r of the approximation.

D
ow

nl
oa

de
d 

02
/1

0/
20

 to
 1

31
.2

15
.1

43
.1

76
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A2432 J. A. TROPP, A. YURTSEVER, M. UDELL, AND V. CEVHER

1.1.4. Goals. Our objective is to design a sketch rich enough to support these
operations. Since a rank-r matrix has about 2r(m+n) degrees of freedom, the sketch
ideally should have size d = Θ(r(m + n)). We want to compute the approximation
using \scrO (r2(m + n)) floating-point operations, the cost of orthogonalizing r vectors.

Existing one-pass SVD algorithms (e.g., [74, 20, 35, 73, 15, 71, 69]) already meet
these desiderata. Nevertheless, there remains room for improvement [69, sect. 7.6].

1.1.5. Contributions. The main technical contribution of this paper is a new
sketch-based algorithm for computing a low-rank approximation of a matrix from
streaming data. The new algorithm is a hybrid of the methods from [71, Thm. 12]
and [69, Alg. 7] that improves on the performance of its predecessors. Here are the
key features of our work:

\bullet The new method can achieve a near-optimal relative approximation (1.2)
when the input matrix has a decaying singular value spectrum. In particular,
our approach is more accurate than existing methods, especially when the
storage budget is small. As a consequence, the new method delivers higher-
quality estimates of leading singular vectors when the associated singular
values are sufficiently separated (section 7).

\bullet The algorithm is accompanied by a priori error bounds that help us set the
parameters of the sketch reliably. The new method is less sensitive to the
choice of sketch parameters and to the truncation rank, as compared with
existing methods (sections 5 and 7).

\bullet Our toolkit includes an a posteriori error estimator for validating the quality
of the approximation. This estimator also provides a principled mechanism
for selecting the precise rank of the final approximation (section 6).

\bullet The method treats the two matrix dimensions symmetrically. As a conse-
quence, we can extend it to obtain an algorithm for low-rank Tucker approx-
imation of a tensor from streaming data. See our follow-up paper [65].

For scientific simulation and data analysis, these advances are significant because
they allow us to approximate the truncated singular value decomposition (SVD) of a
huge matrix accurately and with minimal resource usage.

Remark 1.1 (multiple passes). The algorithms in this paper may not be effective
for matrices that lack spectral decay. If it is possible to make several passes over the
data, we strongly recommend the randomized SVD algorithms from [35, 34].

1.2. Application to scientific simulation. As we have mentioned, it is often
desirable to reduce scientific data before we submit it for further processing. This
section outlines some of the techniques that are commonly used for this purpose, and
it argues that randomized linear sketching may offer a better solution.

1.2.1. Dynamical model for a simulation. In many cases, we can model a
simulation as a process that computes the state \bfita t+1 \in \BbbF m of a system at time t + 1
from the state \bfita t \in \BbbF m of the system at time t. We may collect the data generated
by the simulation into a matrix \bfitA = [\bfita 1, . . . ,\bfita n] \in \BbbF m\times n. In scientific applications,
it is common that this matrix has a decaying singular value spectrum.

The dimension m of the state typically increases with the resolution of the sim-
ulation, and it can be very big. The time horizon n can also be large, especially for
problems involving multiple time scales and for “stiff” equations that have high sen-
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STREAMING MATRIX APPROXIMATION A2433

sitivity to numerical errors. In some settings, we may not even know the time horizon
n or the dimension m of the state variable in advance.

1.2.2. On-the-fly compression via sketching. Let us explain how sketching
interacts with the dynamical model from subsection 1.2.1. For simplicity, assume that
the dimensions m and n of the data matrix \bfitA \in \BbbF m\times n are known. Draw and fix a
randomized linear sketching operator S : \BbbF m\times n \rightarrow \BbbF d.

We can view the dynamical model for the simulation as an instance of the data
stream (1.1):

\bfitA = \bfita 1e
\ast 
1 + \bfita 2e

\ast 
2 + \bfita 3e

\ast 
3 + \cdot \cdot \cdot .

Here, ei is the ith standard basis vector in \BbbF n. The sketch \bfitx = S (\bfitA ) \in \BbbF d evolves
as

\bfitx = S (\bfita 1e
\ast 
1) + S (\bfita 2e

\ast 
2) + S (\bfita 3e

\ast 
3) + \cdot \cdot \cdot .

Each time the simulation generates a new state \bfita t, we update the sketch \bfitx to reflect
the innovation \bfita te

\ast 
t to the data matrix \bfitA . We can exploit the fact that the innova-

tion is a rank-one matrix to ensure that this computation has negligible incremental
cost. After sketching the new state, we write it to external memory or simply dis-
card it. Once the simulation is complete, we can extract a provably good low-rank
approximation from the sketch, along with an error estimate.

1.2.3. Compression of scientific data: Current art. At present, compu-
tational scientists rely on several other strategies for data reduction. One standard
practice is to collect the full data matrix and then to compress it. Methods include
direct computation of a low-rank matrix or tensor approximation [76, 6] or fitting a
statistical model [18, 33, 47]. These approaches have high storage costs, and they
entail communication of large volumes of data.

There are also some techniques for compressing simulation output as it is gener-
ated. One approach is to store only a subset of the columns of the data matrix (“snap-
shots” or “checkpointing”) instead of keeping the full trajectory [32, 37]. Another
approach is to maintain a truncated SVD using a rank-one updating method [16, 77].
Both techniques have the disadvantage that they do not preserve a complete, consis-
tent view of the data matrix. The rank-one updating method also incurs a substantial
computational cost at each step.

1.2.4. Contributions. We believe that randomized linear sketching resolves
many of the shortcomings of earlier data reduction methods for scientific applica-
tions. We will show by example (section 7) that our new sketching algorithm can be
used to compress scientific data drawn from several applications:

\bullet We apply the method to a 430 megabyte (MB) data matrix from a direct
numerical simulation, via the Navier–Stokes equations, of vortex shedding
from a cylinder in a two-dimensional channel flow.

\bullet The method is used to approximate a 1.1 gigabyte (GB) temperature dataset
collected at a network of weather stations in the northeastern United States.

\bullet We can invoke the sketching algorithm as a module in an optimization algo-
rithm for solving a large-scale phase retrieval problem that arises in micro-
scopic imaging via Fourier ptychography. The full matrix would require over
5 GB of storage.

\bullet As a larger-scale example, we show that our methodology allows us to com-
pute an accurate truncated SVD of a sea surface temperature dataset, which

D
ow

nl
oa

de
d 

02
/1

0/
20

 to
 1

31
.2

15
.1

43
.1

76
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A2434 J. A. TROPP, A. YURTSEVER, M. UDELL, AND V. CEVHER

requires over 75 GB in double precision. This experiment is performed with-
out any adjustment of parameters or other retrospection.

These demonstrations support our assertion that sketching is a powerful tool for
managing large-scale data from scientific simulations and measurement processes. We
have written this paper to motivate computational scientists to consider sketching in
their own applications.

1.3. Roadmap. In section 2, we give a detailed presentation of the proposed
method and its relationship to earlier work. We provide an informative mathematical
analysis that explains the behavior of our algorithm (section 5), and we describe how
to construct a posteriori error estimates (section 6). We also discuss implementa-
tion issues (section 4), and we present extensive numerical experiments on real and
simulated data (section 7).

1.4. Notation. We use \BbbF for the scalar field, which is real \BbbR or complex \BbbC . The
symbol \ast refers to the (conjugate) transpose of a matrix or vector. The dagger \dagger 

denotes the Moore–Penrose pseudoinverse. We write \| \cdot \| p for the Schatten p-norm
for p \in [1,\infty ]. The map J\cdot Kr returns any (simultaneous) best rank-r approximation
of its argument with respect to the Schatten p-norms [36, sect. 6].

2. Sketching and low-rank approximation of a matrix. Let us describe
the basic procedure for sketching a matrix and for computing a low-rank approxi-
mation from the sketch. We discuss prior work in subsection 2.8. See section 4 for
implementation, section 5 for parameter selection, and section 6 for error estimation.

2.1. Dimension reduction maps. We will use dimension reduction to collect
information about an input matrix. Assume that d \leq N . A randomized linear
dimension reduction map is a random matrix \Xi \in \BbbF d\times N with the property that

(2.1) \BbbE \| \Xi \bfitu \| 22 = const \cdot \| \bfitu \| 22 for all \bfitu \in \BbbF N .

In other words, the map reduces a vector of dimension N to dimension d, but it still
preserves Euclidean distances on average. It is also desirable that we can store the
map \Xi and apply it to vectors efficiently. See section 3 for concrete examples.

2.2. The input matrix. Let \bfitA \in \BbbF m\times n be an arbitrary matrix that we wish
to approximate. In many applications where sketching is appropriate, the matrix is
presented implicitly as a sequence of linear updates; see subsection 2.4.

To apply sketching methods for low-rank matrix approximation, the user needs
to specify a target rank r0. The target rank r0 is a rough estimate for the final rank
of the approximation, and it influences the choice of the sketch size. We can exploit
a posteriori information to select the final rank; see subsection 6.5.

Remark 2.1 (unknown dimensions). For simplicity, we assume the matrix dimen-
sions are known in advance. The framework can be modified to handle matrices with
growing dimensions, such as a simulation with an unspecified time horizon.

2.3. The sketch. Let us describe the sketching operators we use to acquire data
about the input matrix. The sketching operators are parameterized by a “range”
parameter k and a “core” parameter s that satisfy

r0 \leq k \leq s \leq min\{ m,n\} ,

where r0 is the target rank. The parameter k determines the maximum rank of an
approximation. For now, be aware that the approximation scheme is more sensitive to
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STREAMING MATRIX APPROXIMATION A2435

the choice of k than to the choice of s. In subsection 5.4, we offer specific parameter
recommendations that are supported by theoretical analysis. In subsection 7.5, we
demonstrate that these parameter choices are effective in practice.

Independently, draw and fix four randomized linear dimension reduction maps:

(2.2)
\Upsilon \in \BbbF k\times m and \Omega \in \BbbF k\times n,

\Phi \in \BbbF s\times m and \Psi \in \BbbF s\times n.

These dimension reduction maps are often called test matrices. The sketch itself
consists of three matrices:

\bfitX := \Upsilon \bfitA \in \BbbF k\times n and \bfitY := \bfitA \Omega \ast \in \BbbF m\times k,(2.3)

\bfitZ := \Phi \bfitA \Psi \ast \in \BbbF s\times s.(2.4)

The first two matrices (\bfitX ,\bfitY ) capture the corange and the range of \bfitA . The core
sketch (\bfitZ ) contains fresh information that improves our estimates of the singular
values and singular vectors of \bfitA ; it is responsible for the superior performance of the
new method.

Remark 2.2 (prior work). Upadhyay’s paper [71, sect. 3] contains the insight that
a sketch of the form (2.3) and (2.4) can support better low-rank matrix approxima-
tions, but it proposes a reconstruction algorithm that is less effective. Related (but
distinct) sketches appear in the papers [74, 20, 35, 73, 23, 15, 70, 69].

2.4. Linear updates. In streaming data applications, the input matrix \bfitA \in 
\BbbF m\times n is presented as a sequence of linear updates of the form

(2.5) \bfitA \leftarrow \eta \bfitA + \nu \bfitH ,

where \eta , \nu \in \BbbF and the matrix \bfitH \in \BbbF m\times n.
In view of the construction (2.3) and (2.4), we can update the sketch (\bfitX ,\bfitY ,\bfitZ )

of the matrix \bfitA to reflect the innovation (2.5) by means of the formulae

(2.6)

\bfitX \leftarrow \eta \bfitX + \nu \Upsilon \bfitH ,

\bfitY \leftarrow \eta \bfitY + \nu \bfitH \Omega \ast ,

\bfitZ \leftarrow \eta \bfitZ + \nu \Phi \bfitH \Psi \ast .

When implementing these updates, it is worthwhile to exploit favorable structure in
the matrix \bfitH , such as sparsity or low rank.

Remark 2.3 (streaming model). For the linear update model (2.5), randomized
linear sketches are more or less the only way to track the input matrix [43]. There are
more restrictive streaming models (e.g., when the columns of the matrix are presented
in sequence) where it is possible to design other types of algorithms [26, 29].

Remark 2.4 (linearly transformed data). We can use sketching to track any ma-
trix that depends linearly on a data stream. Suppose that the input data \bfita \in \BbbR d,
and we want to maintain the matrix L (\bfita ) induced by a fixed linear map L : \BbbF d \rightarrow 
\BbbF m\times n. If we receive an update \bfita \leftarrow \eta \bfita + \nu \bfith , then the linear image evolves as
L (\bfita ) \leftarrow \eta L (\bfita ) + \nu L (\bfith ). This update has the form (2.5), so we can apply the
matrix sketch (2.3) and (2.4) to track L (\bfita ) directly. This idea has applications to
physical simulations where a known transform L exposes structure in the data [52].
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2.5. Optional step: Centering. Many applications require us to center the
data matrix to remove a trend, such as the temporal average. Principal component
analysis (PCA) also involves a centering step [42]. For superior accuracy, it is wise to
perform this operation before sketching the matrix.

As an example, let us explain how to compute and remove the mean value of
each row of the data matrix in the streaming setting. We can maintain an extra
vector \bfitmu \in \BbbF m that tracks the mean value of each row. To process an update of the
form (2.5), we first apply the steps

\bfith \leftarrow n - 1\bfitH e and \bfitH \leftarrow \bfitH  - \bfith e\ast and \bfitmu \leftarrow \eta \bfitmu + \nu \bfith .

Here, e \in \BbbF n is the vector of ones. Afterward, we update the sketches using (2.6).
The sketch now contains the centered data matrix, where each row has zero mean.

2.6. Computing truncated low-rank approximations. Once we have ac-
quired a sketch (\bfitX ,\bfitY ,\bfitZ ) of the input matrix \bfitA , we must produce a good low-rank
approximation. Let us outline the computations we propose. The intuition appears
below in subsection 2.7, and section 5 presents a theoretical analysis.

The first two components (\bfitX ,\bfitY ) of the sketch are used to estimate the corange
and the range of the matrix \bfitA . Compute thin QR factorizations:

(2.7)
\bfitX \ast =: \bfitP \bfitR 1, where \bfitP \in \BbbF n\times k,

\bfitY =: \bfitQ \bfitR 2, where \bfitQ \in \BbbF m\times k.

Both \bfitP and \bfitQ have orthonormal columns; discard the triangular parts \bfitR 1 and \bfitR 2.
The third sketch \bfitZ is used to compute the core approximation \bfitC , which describes

how \bfitA acts between range(\bfitP ) and range(\bfitQ ):

(2.8) \bfitC := (\Phi \bfitQ )\dagger \bfitZ ((\Psi \bfitP )\dagger )\ast \in \BbbF k\times k.

This step is implemented by solving a family of least-squares problems.
Next, form a rank-k approximation \̂bfitA of the input matrix \bfitA via

(2.9) \̂bfitA := \bfitQ \bfitC \bfitP \ast .

We refer to \̂bfitA as the “initial” approximation. It is important to be aware that the
initial approximation can contain spurious information (in the singular subspaces
associated with its smaller singular values).

To produce an approximation that is fully reliable, we must truncate the rank of
the initial approximation (2.9). For a truncation parameter r, we construct a rank-r

approximation by replacing \̂bfitA with its best rank-r approximation1 in Frobenius norm:

(2.10) J\̂bfitA Kr = \bfitQ J\bfitC Kr\bfitP \ast .

We refer to J\̂bfitA Kr as a “truncated” approximation. Subsection 6.5 outlines some ways
to use a posteriori information to select the truncation rank r.

The truncation (2.10) has an appealing permanence property: JJ\̂bfitA K\varrho Kr = J\̂bfitA Kr for
all \varrho \geq r. In other words, the rank-r approximation persists as part of all higher-rank
approximations. In contrast, some earlier reconstruction methods are unstable in the
sense that the rank-r approximation varies wildly with r; see subsection SM4.7.

1The formula (2.10) is an easy consequence of the Eckart--Young theorem [36, sect. 6] and the
fact that \bfitQ ,\bfitP have orthonormal columns.
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STREAMING MATRIX APPROXIMATION A2437

Remark 2.5 (extensions). We can form other structured approximations of \bfitA by

projecting \̂bfitA onto a set of structured matrices. See [69, sects. 5–6] for a discussion
of this idea in the context of another sketching technique. For brevity, we do not
develop this point further. See our paper [68] for a sketching and reconstruction
method designed specifically for positive-semidefinite (psd) matrices.

Remark 2.6 (prior work). The truncated approximation (2.10) is new, but it de-
pends on insights from our previous work [70, 69]. Upadhyay [71, Thm. 12] proposes
a different reconstruction formula for the same kind of sketch. The papers [74, 20,
35, 73, 23, 15, 71] describe other methods for low-rank matrix approximation from a
randomized linear sketch. The numerical work in section 7 demonstrates that (2.10)
matches or improves on earlier techniques.

2.7. Intuition. The approximations (2.9) and (2.10) are based on some well-
known insights from randomized linear algebra [35, sect. 1]. Since \bfitP and \bfitQ capture
the corange and range of the input matrix, we expect that

(2.11) \bfitA \approx \bfitQ (\bfitQ \ast \bfitA \bfitP )\bfitP \ast .

(See Lemma SM1.5 for justification.) We cannot compute the core matrix \bfitQ \ast \bfitA \bfitP 
directly from a linear sketch because \bfitP and \bfitQ are functions of \bfitA . Instead, we estimate
the core matrix using the core sketch \bfitZ . Owing to the approximation (2.11),

\bfitZ = \Phi \bfitA \Psi \ast \approx (\Phi \bfitQ )(\bfitQ \ast \bfitA \bfitP )(\bfitP \ast \Psi \ast ).

Transfer the outer matrices to the left-hand side to discover that the core approxima-
tion \bfitC , defined in (2.8), satisfies

(2.12) \bfitC = (\Phi \bfitQ )\dagger \bfitZ ((\Psi \bfitP )\dagger )\ast \approx \bfitQ \ast \bfitA \bfitP .

In view of (2.11) and (2.12), we arrive at the relations

\bfitA \approx \bfitQ (\bfitQ \ast \bfitA \bfitP )\bfitP \ast \approx \bfitQ \bfitC \bfitP \ast = \̂bfitA .

The error in the last relation depends on the error in the best rank-k approximation
of \bfitA . When \bfitA has a decaying spectrum, the rank-r truncation of \bfitA for r \ll k agrees
closely with the rank-r truncation of the initial approximation \̂bfitA . That is,

J\bfitA Kr \approx J\̂bfitA Kr = \bfitQ J\bfitC Kr\bfitP \ast .

Theorem 5.1 and Corollary 5.5 justify these heuristics completely for Gaussian di-
mension reduction maps. Subsection 6.5 discusses a posteriori selection of r.

2.8. Discussion of related work. Sketching algorithms are specifically de-
signed for the streaming model, that is, for data that is presented as a sequence of
updates. The sketching paradigm is attributed to [5, 4]; see the survey [53] for an
introduction and overview of early work.

Randomized algorithms for low-rank matrix approximation were proposed in the
theoretical computer science (TCS) literature in the late 1990s [56, 27]. Soon after,
numerical analysts developed practical versions of these algorithms [49, 74, 60, 35, 34].
For more background on the history of randomized linear algebra, see [35, 46, 73].

The paper [74] contains the first one-pass algorithm for low-rank matrix approxi-
mation; it was designed to control communication and arithmetic costs, rather than to
handle streaming data. The first general treatment of numerical linear algebra in the
streaming model appears in [20]. Recent papers on low-rank matrix approximation
in the streaming model include [15, 71, 26, 29, 69, 68].
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Algorithm 3.1 Dimension Reduction Map Class.

1 class DimRedux (\BbbF )  \triangleleft Dimension reduction map over field \BbbF 
2 function DimRedux(d,N)  \triangleleft Construct map \Xi : \BbbF N \rightarrow \BbbF d

3 function DimRedux.mtimes(DRmap, \bfitM )  \triangleleft Left action of map

4 function DimRedux.mtimes(\bfitM , DRmap\ast )  \triangleleft Right action of adjoint
5 return (DimRedux.mtimes(DRmap,\bfitM \ast ))\ast  \triangleleft Default behavior

2.8.1. Approaches from NLA. The nonlinear algebra (NLA) literature con-
tains a number of papers [74, 35, 69] on low-rank approximation from a randomized
linear sketch. These methods all compute the range matrix \bfitQ and the corange matrix
\bfitP using the randomized range finder [35, Alg. 4.1] encapsulated in (2.3) and (2.7).

The methods differ in how they construct a core matrix \̃bfitC so that \bfitA \approx \bfitQ \̃bfitC \bfitP .
Earlier papers reuse the range and corange sketches (\bfitX , \bfitY ) and the associated test
matrices (\Upsilon , \Omega ) to form \̃bfitC . Our new algorithm is based on an insight from [15, 71]
that the estimate \bfitC from (2.8) is more reliable because it uses a random sketch \bfitZ 
that is statistically independent from (\bfitX , \bfitY ). The storage cost of the additional
sketch is negligible when s2 \ll k(m + n).

The methods also truncate the rank of the approximation at different steps. The
older papers [74, 35] perform the truncation before estimating the core matrix (cf. sub-
section SM4.1.1). One insight from [69] is that it is beneficial to perform the truncation
after estimating the core matrix. Furthermore, an effective truncation mechanism is
to report a best rank-r approximation of the initial estimate. We have adopted the
latter approach.

2.8.2. Approaches from TCS. Most of the algorithms in the TCS litera-
ture [20, 73, 23, 15, 71] are based on a framework called “sketch-and-solve” that
is attributed to Sarlós [63]. The basic idea is that the solution to a constrained least-
squares problem (e.g., low-rank matrix approximation in Frobenius norm) is roughly
preserved when we solve the problem after randomized linear dimension reduction.

The sketch-and-solve framework sometimes leads to the same algorithms as the
NLA point of view; other times, it leads to different approaches. It would take us too
far afield to detail these derivations, but we give a summary of one such method [71,
Thm. 12] in subsection SM4.1.3. Unfortunately, sketch-and-solve algorithms are often
unsuitable for high-accuracy computations; see section 7 and [69, sect. 7] for evidence.

A more salient criticism is that the TCS literature does not attend to the issues
that arise if we want to use sketching algorithms in practice. We have expended a large
amount of effort to address these challenges, which range from parameter selection to
numerically sound implementation. See [69, sect. 1.7.4] for more discussion.

3. Randomized linear dimension reduction maps. In this section, we de-
scribe several randomized linear dimension reduction maps that are suitable for imple-
menting sketching algorithms for low-rank matrix approximation. See [44, 35, 73, 69,
66] for additional discussion and examples. The class template for a dimension reduc-
tion map appears as Algorithm 3.1; the algorithms for specific dimension reduction
techniques are postponed to the supplement.

3.1. Gaussian maps. The most basic dimension reduction map is simply a
Gaussian matrix. That is, \Xi \in \BbbF d\times N is a d \times N matrix with independent standard
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STREAMING MATRIX APPROXIMATION A2439

normal entries.2

Algorithm SM3.1 describes an implementation of Gaussian dimension reduction.
The map \Xi requires storage of dN floating-point numbers in the field \BbbF . The cost of
applying the map to a vector is \scrO (dN) arithmetic operations.

Gaussian dimension reduction maps are simple, and they are effective in random-
ized algorithms for low-rank matrix approximation [35]. We can also analyze their
behavior in full detail; see sections 5 and 6. On the other hand, it is expensive to draw
a large number of Gaussian random variables, and the cost of storage and arithmetic
renders these maps less appealing when the output dimension d is large.

Remark 3.1 (unknown dimension). Since the columns of a Gaussian map \Xi are
statistically independent, we can instantiate more columns if we need to apply \Xi to
a longer vector. Sparse maps (subsection 3.3) share this feature. This observation
is valuable in the streaming setting, where a linear update might involve coordinates
heretofore unseen, forcing us to enlarge the domain of the dimension reduction map.

Remark 3.2 (history). Gaussian dimension reduction has been used as an algo-
rithmic tool since the paper [40] of Indyk and Motwani. In spirit, this approach is
quite similar to the earlier theoretical work of Johnson and Lindenstrauss [41], which
performs dimension reduction by projection onto a random subspace.

3.2. Scrambled SRFT maps. Next, we describe a structured dimension re-
duction map, called a scrambled subsampled randomized Fourier transform (SSRFT).
We recommend this approach for practical implementations.

An SSRFT map takes the form3

\Xi = \bfitR \bfitF \Pi \bfitF \Pi \prime \in \BbbF d\times N .

The matrices \Pi ,\Pi \prime \in \BbbF N\times N are signed permutations,4 drawn independently and
uniformly at random. The matrix \bfitF \in \BbbF N\times N denotes a discrete cosine transform
(\BbbF = \BbbR ) or a discrete Fourier transform (\BbbF = \BbbC ). The matrix \bfitR \in \BbbF d\times N is a
restriction to d coordinates, chosen uniformly at random.

Algorithm SM3.2 presents an implementation of an SSRFT. The cost of storing
\Xi is just \scrO (N) numbers. The cost of applying \Xi to a vector is \scrO (N logN) arithmetic
operations, using the fast Fourier transform (FFT) or the fast cosine transform (FCT).
According to [74], this cost can be reduced to \scrO (N log d), but the improvement is
rarely worth the implementation effort.

In practice, SSRFTs behave slightly better than Gaussian matrices, even though
their storage cost does not scale with the output dimension d. On the other hand, the
analysis [3, 67, 13] is less complete than in the Gaussian case [35]. A proper implemen-
tation requires fast trigonometric transforms. Finally, the random permutations and
FFTs require data movement, which could be a challenge in the distributed setting.

Remark 3.3 (history). SSRFTs are inspired by the work of Ailon and Chazelle [3]
on fast Johnson–Lindstrauss transforms. For applications in randomized linear alge-
bra, see the papers [74, 44, 35, 67, 13].

2A real standard normal variable follows the Gaussian distribution with mean zero and variance
one. A complex standard normal variable takes the form g1 + ig2, where gi are independent real
standard normal variables.

3Empirical work suggests that it is not necessary to iterate the permutation and trigonometric
transform twice, but this duplication can increase reliability.

4A signed permutation matrix has precisely one nonzero entry in each row and column, and each
nonzero entry of the matrix has modulus one.
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3.3. Sparse sign matrices. Finally, we describe another type of randomized
dimension reduction map, called a sparse sign matrix. We recommend these maps for
practical implementations where data movement is a concern.

To construct a sparse sign matrix \Xi \in \BbbF d\times N , we fix a sparsity parameter \zeta in the
range 2 \leq \zeta \leq d. The columns of the matrix are drawn independently at random.
To construct each column, we take \zeta independent and identically distributed (i.i.d.)
draws from the uniform\{ z \in \BbbF : | z| = 1\} distribution, and we place these random
variables in p coordinates, chosen uniformly at random. Empirically, we have found
that \zeta = min\{ d, 8\} is a very reliable parameter selection in the context of low-rank
matrix approximation.5

Algorithm SM3.3 describes an implementation of sparse dimension reduction.
Since the matrix \Xi \in \BbbF d\times N has \zeta nonzeros per column, we can store the matrix with
\scrO (\zeta N log(1 + d/\zeta )) numbers via run-length coding. The cost of applying the map to
a vector is \scrO (\zeta N) arithmetic operations.

Sparse sign matrices can reduce data movement because the columns are gener-
ated independently and the matrices can be applied using (blocked) matrix multipli-
cation. They can also adapt to input vectors whose maximum dimension N may be
unknown, as discussed in Remark 3.1. One weakness is that we must use sparse data
structures and arithmetic to enjoy the benefit of these maps.

Remark 3.4 (history). Sparse dimension reduction maps are inspired by the work
of Achlioptas [2] on database-friendly random projections. For applications in ran-
domized linear algebra, see [21, 50, 54, 55, 12]. See [22] for a theoretical analysis in
the context of matrix approximation.

4. Implementation and costs. This section contains further details about the
implementation of the sketching and reconstruction methods from section 2, including
an account of storage and arithmetic costs. We combine the mathematical notation
from the text with MATLAB R2018b commands. The supplemental materials include
a MATLAB implementation of these methods.

4.1. Sketching and updates. Algorithms 4.1 and 4.2 contain the pseudocode
for initializing the sketch and for performing the linear update (2.5). They also include
optional code for maintaining an error sketch (section 6).

The sketch requires storage of four dimension reduction maps with size k \times m,
k\times n, s\times m, s\times n. We recommend using SSRFTs or sparse sign matrices to minimize
the storage costs associated with the dimension reduction maps.

The sketch itself consists of three matrices with dimensions k\times n, m\times k, and s\times s.
In general, the sketch matrices are dense, so they require k(m+n) + s2 floating-point
numbers in the field \BbbF .

The arithmetic cost of the linear update \bfitA \leftarrow \eta \bfitA + \tau \bfitH is dominated by the cost
of computing \Phi \bfitH and \bfitH \Psi . In practice, the innovation \bfitH is low-rank, sparse, or
structured. The precise cost of the update depends on how we exploit the structure
of \bfitH and the dimension reduction map.

4.2. The initial approximation. Algorithm 4.3 lists the pseudocode for com-
puting a rank-k approximation \̂bfitA of the matrix \bfitA contained in the sketch; see (2.9).

The method requires additional storage of k(m + n) numbers for the orthonor-
mal matrices \bfitP and \bfitQ , as well as \scrO (sk) numbers to form the core matrix \bfitC . The

5Empirical testing supports more aggressive choices, say, \zeta = 4 or even \zeta = 2 for very large
problems. On the other hand, the extreme \zeta = 1 is disastrous, so we have excluded it.
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Algorithm 4.1 Sketch Constructor. Implements (2.2)–(2.4) and (6.2).

Input: Field \BbbF ; input matrix dimensions m\times n; approximation sketch size parameters
k \leq s \leq min\{ m,n\} ; error sketch size parameter q

Output: Draw test matrices for the approximation (2.2) and the error estimate (6.1);
form the sketch (2.3), (2.4), and (6.2) of the zero matrix \bfitA = 0

1 class Sketch
2 local variables \Upsilon ,\Omega ,\Phi ,\Psi (DimRedux)
3 local variables \bfitX ,\bfitY ,\bfitZ (matrices)
4 local variables \Theta (GaussDR), \bfitW (matrix)  \triangleleft [opt] For error estimation

5 function Sketch(m,n, k, s, q; DR)  \triangleleft Constructor; DR is a DimRedux
6 \Upsilon \leftarrow DR(k,m)  \triangleleft Construct test matrix for range
7 \Omega \leftarrow DR(k, n)  \triangleleft Test matrix for corange
8 \Phi \leftarrow DR(s,m)  \triangleleft Test matrices for core
9 \Psi \leftarrow DR(s, n)

10 \Theta \leftarrow GaussDR(q,m)  \triangleleft [opt] Gaussian test matrix for error
11 \bfitX \leftarrow zeros(k, n)  \triangleleft Approximation sketch of zero matrix
12 \bfitY \leftarrow zeros(m, k)
13 \bfitZ \leftarrow zeros(s, s)
14 \bfitW \leftarrow zeros(q, n)  \triangleleft [opt] Error sketch of zero matrix

Algorithm 4.2 Linear Update to Sketch. Implements (2.5) and (6.3).

Input: Innovation \bfitH \in \BbbF m\times n; scalars \eta , \nu \in \BbbF 
Output: Modifies sketch to reflect linear update \bfitA \leftarrow \eta \bfitA + \nu \bfitH 

1 function Sketch.LinearUpdate(\bfitH ; \eta , \nu )
2 \bfitX \leftarrow \eta \bfitX + \nu \Upsilon \bfitH  \triangleleft Update range sketch
3 \bfitY \leftarrow \eta \bfitY + \nu \bfitH \Omega \ast  \triangleleft Update corange sketch
4 \bfitZ \leftarrow \eta \bfitZ + \nu (\Phi \bfitH )\Psi \ast  \triangleleft Update core sketch
5 \bfitW \leftarrow \eta \bfitW + \nu \Theta \bfitH  \triangleleft [opt] Update error sketch

arithmetic cost is usually dominated by the computation of the QR factorizations of
\bfitX \ast and \bfitY , which require \scrO (k2(m + n)) operations, plus communication. When the
parameters satisfy s \gg k, it is possible that the cost \scrO (ks(m + n)) of forming the
core matrix \bfitC will dominate; bear this in mind when setting the parameter s.

4.3. The truncated approximation. Algorithm 4.4 presents the pseudocode
for computing a rank-r approximation J\̂bfitA Kr of the matrix \bfitA contained in the sketch;
see (2.10). The parameter r is an input; the output is presented as a truncated SVD.

The working storage cost \scrO (k(m+n)) is dominated by the call to Algorithm 4.3.
Typically, the arithmetic cost is also dominated by the \scrO (ks(m+n)) cost of the call to
Algorithm 4.3. When s\gg k, we need to invoke a randomized SVD algorithm [35, 34]
to achieve this arithmetic cost, but an ordinary dense SVD sometimes serves.

5. A priori error bounds. It is always important to characterize the behavior
of numerical algorithms, but the challenge is more acute for sketching methods. In-
deed, we cannot store the stream of updates, so we cannot repeat the computation
with new parameters if it is unsuccessful. As a consequence, we must perform a priori
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Algorithm 4.3 Initial Approximation. Implements (2.9).

Output: Rank-k approximation of sketched matrix in the form \̂bfitA = \bfitQ \bfitC \bfitP \ast with
orthonormal \bfitQ \in \BbbF m\times k and \bfitP \in \BbbF n\times k and \bfitC \in \BbbF k\times k

1 function Sketch.InitialApprox( )
2 (\bfitQ ,\sim )\leftarrow qr(\bfitY , 0)  \triangleleft Compute orthogonal part of thin QR
3 (\bfitP ,\sim )\leftarrow qr(\bfitX \ast , 0)
4 \bfitC \leftarrow ((\Phi \bfitQ )\setminus \bfitZ )/((\Psi \bfitP )\ast )  \triangleleft Solve two least-squares problems
5 return (\bfitQ ,\bfitC ,\bfitP )

Algorithm 4.4 Truncated Approximation. Implements (2.10).

Input: Final rank r of the approximation
Output: Rank-r approximation of sketched matrix in the form \̂bfitA r = \bfitU \Sigma \bfitV \ast with

orthonormal \bfitU \in \BbbF m\times r and \bfitV \in \BbbF n\times r and nonnegative diagonal \Sigma \in \BbbR r\times r

1 function Sketch.TruncateApprox(r)
2 (\bfitQ ,\bfitC ,\bfitP )\leftarrow Sketch.InitialApprox( )
3 (\bfitU ,\Sigma ,\bfitV )\leftarrow svd(\bfitC )  \triangleleft Dense or randomized SVD
4 \Sigma \leftarrow \Sigma (1:r, 1:r)  \triangleleft Truncate SVD to rank r
5 \bfitU \leftarrow \bfitU (:, 1:r)
6 \bfitV \leftarrow \bfitV (:, 1:r)
7 \bfitU \leftarrow \bfitQ \bfitU  \triangleleft Consolidate unitary factors
8 \bfitV \leftarrow \bfitP \bfitV 
9 return (\bfitU ,\Sigma ,\bfitV )

theoretical analysis to be able to implement sketching algorithms with confidence.
In this section, we analyze the low-rank reconstruction algorithms in the ideal case

where all of the dimension reduction maps are standard normal. These results allow us
to make concrete recommendations for the sketch size parameters. Empirically, other
types of dimension reduction exhibit almost identical performance (subsection 7.4), so
our analysis also supports more practical implementations based on SSRFTs or sparse
sign matrices. The numerical work in section 7 confirms the value of this analysis.

5.1. Notation. For each integer r \geq 0, the tail energy of the input matrix is

\tau 2r+1(\bfitA ) := min
rank(\bfitB )\leq r

\| \bfitA  - \bfitB \| 22 = \| \bfitA  - J\bfitA Kr\| 22 =
\sum 

j>r
\sigma 2
j (\bfitA ),

where \sigma j returns the jth largest singular value of a matrix. The second identity
follows from the Eckart–Young theorem [36, sect. 6].

We also introduce parameters that reflect the field over which we are working:

(5.1) \alpha := \alpha (\BbbF ) :=

\Biggl\{ 
1, \BbbF = \BbbR ,
0, \BbbF = \BbbC ,

and \beta := \beta (\BbbF ) :=

\Biggl\{ 
1, \BbbF = \BbbR ,
2, \BbbF = \BbbC .

These quantities let us present real and complex results in a single formula.

5.2. Analysis of initial approximation. The first result gives a bound for the
expected error in the initial rank-k approximation \̂bfitA of the input matrix \bfitA .

D
ow

nl
oa

de
d 

02
/1

0/
20

 to
 1

31
.2

15
.1

43
.1

76
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STREAMING MATRIX APPROXIMATION A2443

Theorem 5.1 (initial approximation: error bound). Let \bfitA \in \BbbF m\times n be an ar-
bitrary input matrix. Assume the sketch size parameters satisfy s \geq 2k + \alpha . Draw
independent Gaussian dimension reduction maps (\Upsilon ,\Omega ,\Phi ,\Psi ), as in (2.2). Extract

a sketch (2.3) and (2.4) of the input matrix. Then the rank-k approximation \̂bfitA ,
constructed in (2.9), satisfies the error bound

(5.2) \BbbE \| \bfitA  - \̂bfitA \| 22 \leq 
s - \alpha 

s - k  - \alpha 
\cdot min
\varrho <k - \alpha 

k + \varrho  - \alpha 

k  - \varrho  - \alpha 
\cdot \tau 2\varrho +1(\bfitA ).

We postpone the proof to section SM1. The analysis is similar in spirit to the proof
of [69, Thm. 4.3], but it is somewhat more challenging.

Theorem 5.1 contains explicit and reasonable constants, so we can use it to design
algorithms that achieve a specific error tolerance. For example, suppose that r0 is the
target rank of the approximation. Then the choice

(5.3) k = 4r0 + \alpha and s = 2k + \alpha 

ensures that the expected error in the rank-k approximation \̂bfitA is within a constant
factor 10/3 of the optimal rank-r0 approximation:

\BbbE \| \bfitA  - \̂bfitA \| 22 \leq 10
3 \cdot \tau 

2
r0+1(\bfitA ).

In practice, we have found the parameter selection (5.3) can be effective for matrices
with a rapidly decaying spectrum. Note that, by taking k/r0 \rightarrow \infty and s/k \rightarrow \infty , we
can drive the leading constants in (5.2) to one.

The true meaning of Theorem 5.1 is more subtle. The minimum over \varrho indicates
that we can exploit decay in the spectrum of the input matrix by increasing the pa-
rameter k. This effect is more significant than the improvement we get from adjusting
the parameter s to reduce the first constant. In subsection 5.4, we use this insight to
recommend sketch size parameters for a given storage budget.

Remark 5.2 (parameter values). In Theorem 5.1, we have imposed the condition
s \geq 2k + \alpha because theoretical analysis and empirical work both suggest that the
restriction is useful in practice. The approximation (2.9) only requires that k \leq s.

Remark 5.3 (failure probability). Because of measure concentration effects, there
is a negligible probability that the error in the initial approximation is significantly
larger than the bound (5.2) on the expected error. This claim can be established with
techniques from [35, sect. 10]. See subsection 7.9 for numerical evidence.

Remark 5.4 (singular values and vectors). The error bound (5.2) indicates that

we can approximate singular values of \bfitA by singular values of \̂bfitA . In particular, an
application [11, Prob. III.6.13] of Lidskii’s theorem implies that\sum min\{ m,n\} 

j=1

\bigl[ 
\sigma j(\bfitA ) - \sigma j(\̂bfitA )

\bigr] 2 \leq \| \bfitA  - \̂bfitA \| 22.

We can also approximate the leading singular vectors of \bfitA by the leading singular
vectors of \̂bfitA . Precise statements are slightly complicated, so we refer the reader to [11,
Thm. VII.5.9] for a typical result on the perturbation theory of singular subspaces.

5.3. Analysis of truncated approximation. Our second result provides a
bound on the error in the truncated approximation J\̂bfitA Kr of the input matrix \bfitA .
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Corollary 5.5 (truncated approximation: error bound). Instate the assump-

tions of Theorem 5.1. Then the rank-r approximation J\̂bfitA Kr satisfies the error bound

\BbbE \| \bfitA  - J\̂bfitA Kr\| 2 \leq \tau r+1(\bfitA ) + 2

\biggl[ 
s - \alpha 

s - k  - \alpha 
\cdot min
\varrho <k - \alpha 

k + \varrho  - \alpha 

k  - \varrho  - \alpha 
\cdot \tau 2\varrho +1(\bfitA )

\biggr] 1/2
.

This statement is an immediate consequence of Theorem 5.1 and a general bound [69,
Prop. 6.1] for fixed-rank approximation. We omit the details.

Let us elaborate on Corollary 5.5. If the initial approximation \̂bfitA is accurate,
then the truncated approximation J\̂bfitA Kr attains similar accuracy. In particular, the
rank-r approximation can achieve a very small relative error when the input matrix
has a decaying spectrum. The empirical work in section 7 highlights the practical
importance of this phenomenon.

5.4. Theoretical guidance for sketch size parameters. If we allocate a
fixed amount of storage, how can we select the sketch size parameters (k, s) to achieve
superior approximations of the input matrix? Using the error bound from Theorem 5.1
and prior knowledge about the spectrum of the matrix, we can make some practical
recommendations. Subsection 7.5 offers numerical support for this analysis.

5.4.1. The storage budget. We have recommended using structured dimen-
sion reduction maps (\Upsilon ,\Omega ,\Phi ,\Psi ) so the storage cost for the dimension reduction
maps is a fixed cost that does not increase with the sketch size parameters (k, s).
Therefore, we may focus on the cost of maintaining the sketch (\bfitX ,\bfitY ,\bfitZ ) itself.

Counting dimensions, via (2.3) and (2.4), we see that the three approximation
sketch matrices require a total storage budget of

(5.4) T := k(m + n) + s2

floating-point numbers in the field \BbbF . How do we best expend this budget?

5.4.2. General spectrum. The theoretical bound Theorem 5.1 on the approxi-
mation error suggests that, lacking further information, we should make the parameter
k as large as possible. Indeed, the approximation error reflects the decay in the spec-
trum up to the index k. Meanwhile, the condition s \geq 2k +\alpha in Theorem 5.1 ensures
that the first fraction in the error bound cannot exceed 2.

Therefore, for a fixed storage budget T , we pose the optimization problem

(5.5) maximize k subject to s \geq 2k + \alpha and k(m + n) + s2 = T.

Up to rounding, the solution is

(5.6)

k\natural :=

\biggl\lfloor 
1

8

\Bigl( \sqrt{} 
(m + n + 4\alpha )2 + 16(T  - \alpha 2) - (m + n + 4\alpha )

\Bigr) \biggr\rfloor 
;

s\natural :=

\biggl\lfloor \sqrt{} 
T  - k\natural (m + n)

\biggr\rfloor 
.

The parameter choice (k\natural , s\natural ) is suitable for a wide range of examples.

5.4.3. Flat spectrum. Suppose we know that the spectrum of the input matrix
does not decay past a certain point: \sigma j(\bfitA ) \approx \sigma \^\varrho (\bfitA ) for j > \varrho . In this case, the
minimum value of the error (5.2) tends to occur when \varrho = \varrho .
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Algorithm 6.1 Randomized Error Estimator. Implements (6.4).

Input: Matrix approximation \̂bfitA out

Output: Randomized error estimate err22(\̂bfitA out) that satisfies (6.5)–(6.7)

1 function Sketch.ErrorEstimate(\̂bfitA out)
2 \beta \leftarrow 1 for \BbbF = \BbbR or \beta \leftarrow 2 for \BbbF = \BbbC 
3 err22 \leftarrow (\beta q) - 1 \| \bfitW  - \Theta \̂bfitA out\| 22
4 return err22

In this case, we can obtain a theoretically supported parameter choice (k\flat , s\flat ) by
numerical solution of the optimization problem

(5.7)
minimize

s - \alpha 

s - k  - \alpha 
\cdot k + \varrho  - \alpha 

k  - \varrho  - \alpha 
subject to s \geq 2k + \alpha , k \geq \varrho + \alpha + 1,

k(m + n) + s2 = T.

This problem admits a messy closed-form solution, or it can be solved numerically.

6. A posteriori error estimation. The a priori error bounds from Theorem 5.1
and Corollary 5.5 are essential for setting the sketch size parameters to make the re-
construction algorithm reliable. To evaluate whether the approximation was actually
successful, we need a posteriori error estimators.

For this purpose, Martinsson [48, sect. 14] has proposed to extract a very small
Gaussian sketch of the input matrix, independent from the approximation sketch.
Our deep understanding of the Gaussian distribution allows for a refined analysis of
error estimators computed from this sketch.

We adopt Martinsson’s idea to compute a simple estimate for the Frobenius norm
of the approximation error. Subsection 6.5 explains how this estimator helps us select
the precise rank r for the truncated approximation (2.10).

6.1. The error sketch. For a parameter q, draw and fix a standard Gaussian
dimension reduction map:

(6.1) \Theta \in \BbbF q\times m.

Along with the approximation sketch (2.3) and (2.4), we also maintain an error sketch:

(6.2) \bfitW := \Theta \bfitA \in \BbbF q\times n.

We can track the error sketch along a sequence (2.5) of linear updates:

(6.3) \bfitW \leftarrow \eta \bfitW + \nu \Theta \bfitH .

The cost of storing the test matrix and sketch is q(m + n) floating-point numbers.

6.2. A randomized error estimator. Suppose that we have computed an
approximation \̂bfitA out of the input \bfitA via any method.6 We can obtain a probabilistic
estimate for the squared Schatten 2-norm error in this approximation:

(6.4) err22(\̂bfitA out) :=
1

\beta q
\cdot \| \bfitW  - \Theta \̂bfitA out\| 22 =

1

\beta q
\cdot \| \Theta (\bfitA  - \̂bfitA out)\| 22.

6We assume only that the approximation \^\bfitA out does not depend on the matrices \bfTheta ,\bfitW .
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Recall that \beta = 1 for \BbbF = \BbbR and \beta = 2 for \BbbF = \BbbC .
The error estimator can be computed efficiently when the approximation is pre-

sented in factored form. To assess a rank-r approximation \̂bfitA out, the cost is typically
\scrO (qr(m + n)) arithmetic operations. See Algorithm 6.1 for pseudocode.

Remark 6.1 (prior work). The formula (6.4) is essentially a randomized trace
estimator; for example, see [39, 7, 61, 31]. Our analysis is similar to the work in these
papers. Methods for spectral norm estimation are discussed in [74, sect. 3.4] and in [35,
sects. 4.3–4.4]; these results trace their lineage to an early paper of Dixon [24]. The
paper [45] discusses bootstrap methods for randomized linear algebra applications.

6.3. The error estimator: Mean and variance. The error estimator delivers
reliable information about the squared Schatten 2-norm approximation error:

(6.5)

\BbbE 
\bigl[ 
err22(\̂bfitA out)

\bigr] 
= \| \bfitA  - \̂bfitA out\| 22,

Var
\bigl[ 
err22(\̂bfitA out)

\bigr] 
=

2

\beta q
\| \bfitA  - \̂bfitA out\| 44.

These results follow directly from the rotational invariance of the Schatten norms and
of the standard normal distribution. See subsection SM2.1.2.

6.4. The error estimator, in probability. We can also obtain bounds on the
probability that the error estimator returns an extreme value. These results justify
setting the size q of the error sketch to a constant. They are also useful for placing
confidence bands on the approximation error. See section SM2 for the proofs.

First, let us state a bound on the probability that the estimator reports a value
that is much too small. We have

(6.6) \BbbP \bfTheta 

\Bigl\{ 
err22(\̂bfitA out) \leq (1 - \varepsilon )\| \bfitA  - \̂bfitA out\| 22

\Bigr\} 
\leq [e\varepsilon (1 - \varepsilon )]

\beta q/2
for \varepsilon \in (0, 1).

For example, the error estimate is smaller than 0.1\times the true error value with prob-
ability less than 2 - \beta q.

Next, we provide a bound on the probability that the estimator reports a value
that is much too large. We have

(6.7) \BbbP \bfTheta 

\Bigl\{ 
err22(\̂bfitA out) \geq (1 + \varepsilon )\| \bfitA  - \̂bfitA out\| 22

\Bigr\} 
\leq 

\biggl[ 
e\varepsilon 

1 + \varepsilon 

\biggr]  - \beta q/2

for \varepsilon > 0.

For example, the error estimate exceeds 4\times the true error value with probability less
than 2 - \beta q.

Remark 6.2 (estimating normalized errors). We may wish to compute the er-

ror of an approximation \̂bfitA out on the scale of the energy \| \bfitA \| 22 in the input matrix.
To that end, observe that err22(0) is an estimate for \| \bfitA \| 22. Therefore, the ratio

err22(\̂bfitA out)/err22(0) gives a good estimate for the normalized error.

6.5. Diagnosing spectral decay. In many applications, our goal is to estimate
a rank-r truncated SVD of the input matrix that captures most of its spectral energy.
It is rare, however, that we can prophesy the precise value r of the rank. A natural
solution is to use the spectral characteristics of the initial approximation \̂bfitA , defined
in (2.9), to decide where to truncate. We can deploy the error estimator err22 to imple-
ment this strategy in a principled way and to validate the results. See subsections 7.9
and 7.10 for numerics.
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If we had access to the full input matrix \bfitA , we would compute the proportion of
tail energy remaining after a rank-r approximation:

(6.8) scree(r) :=

\biggl[ 
\tau r+1(\bfitA )

\| \bfitA \| 2

\biggr] 2
=

\biggl[ 
\| \bfitA  - J\bfitA Kr\| 2
\| \bfitA \| 2

\biggr] 2
.

A visualization of the function (6.8) is called a scree plot. A standard technique for
rank selection is to identify a “knee” in the scree plot. It is also possible to apply
quantitative model selection criteria to the function (6.8). See [42, Chap. 6] for an
extensive discussion.

We cannot compute (6.8) without access to the input matrix, but we can use the
initial approximation and the error estimator creatively. For r \ll k, the tail energy
\tau r+1(\̂bfitA ) of the initial approximation is a proxy for the tail energy \tau r+1(\bfitA ) of the
input matrix. This observation suggests that we consider the (lower) estimate

(6.9) scree(r) :=

\Biggl[ 
\tau r+1(\̂bfitA )

err2(0)

\Biggr] 2

=

\Biggl[ 
\| \̂bfitA  - J\̂bfitA Kr\| 2

err2(0)

\Biggr] 2

.

This function tracks the actual scree curve (6.8) when r \ll k. It typically underesti-
mates the scree curve, and the underestimate is severe for large r.

To design a more rigorous approach, notice that

| \tau r+1(\bfitA ) - \tau r+1(\̂bfitA )| \leq \| \bfitA  - \̂bfitA \| 2 \approx err2(\̂bfitA ).

The inequality requires a short justification; see subsection SM2.2. This bound sug-
gests that we consider the (upper) estimator

(6.10) scree(r) :=

\Biggl[ 
\tau r+1(\̂bfitA ) + err2(\̂bfitA )

err2(0)

\Biggr] 2

.

This function also tracks the actual scree curve (6.8) when r \ll k. It reliably overes-
timates the scree curve by a modest amount.

7. Numerical experiments. This section presents computer experiments that
are designed to evaluate the performance of the proposed sketching algorithms for
low-rank matrix approximation. We include comparisons with alternative methods
from the literature to argue that the proposed approach produces superior results.
We also explore some applications to scientific simulation and data analysis.

7.1. Alternative sketching and reconstruction methods. We compare the
proposed method (2.10) with three other algorithms that construct a fixed-rank ap-
proximation of a matrix from a random linear sketch:

1. The [HMT11] method [35, sect. 5.5, Rem. 5.4] is a simplification of the method
from Woolfe et al. [74, sect. 5.2], and they perform similarly. There are two
sketches, and the sketch size depends on one parameter k. The total storage
cost T = k(m + n).

2. The [TYUC17] method [69, Alg. 7] is a numerically stable and a more fully
realized implementation of a proposal due to Clarkson and Woodruff [20,
Thm. 4.9]. It involves two sketches, controlled by two parameters k, \ell . The
total storage cost T = km + \ell n.
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3. The [Upa16] method [71, sect. 3.3] simplifies a complicated approach from
Boutsidis, Woodruff, and Zhong [15, Thm. 12]. This algorithm involves three
sketches, controlled by two parameters k, s. The total storage cost T =
k(m + n) + s2.

4. Our new method (2.10) simultaneously extends [Upa16] and [TYUC17]. It
uses three sketches, controlled by two parameters k, s. The total storage cost
T = k(m + n) + s2.

See subsection SM4.1 for a more detailed description of these methods. In each
case, the storage budget neglects the cost of storing the dimension reduction maps
because this cost has lower order than the sketch when we use structured dimension
reduction maps. These methods have similar arithmetic costs, so we will not make a
comparison of runtimes. Storage is the more significant issue for sketching algorithms.
We do not include storage costs for an error estimator in the comparisons.

Our recent paper [69] demonstrates that several other methods ([73, Thm. 4.3,
display 2] and [23, sect. 10.1]) are uncompetitive, so we omit them.

7.2. Experimental setup. Our experimental design is quite similar to our pre-
vious papers [69, 68] on sketching algorithms for low-rank matrix approximation.

7.2.1. Procedure. Fix an input matrix \bfitA \in \BbbF n\times n and a truncation rank r.
Select sketch size parameters. For each trial, draw dimension reduction maps from
a specified distribution and form the sketch of the input matrix. Compute a rank-r
approximation \̂bfitA out using a specified reconstruction algorithm. The approximation
error is calculated relative to the best rank-r approximation error in Schatten p-norm:

(7.1) Sp relative error =
\| \bfitA  - \̂bfitA out\| p
\| \bfitA  - J\bfitA Kr\| p

 - 1.

We perform 20 independent trials and report the average error. Owing to measure
concentration effects, the average error is also the typical error; see subsection 7.9.

In all experiments, we work in double-precision arithmetic (i.e., 8 bytes per real
floating-point number). The body of this paper presents a limited selection of results.
Section SM4 contains additional numerical evidence. The supplementary materials
also include MATLAB code that can reproduce these experiments.

7.2.2. The oracle error. To make fair comparisons among algorithms, we can
fix the storage budget and identify the parameter choices that minimize the (average)
relative error (7.1) incurred over the repeated trials. We refer to the minimum as the
oracle error for an algorithm. The oracle error is not attainable in practice.

7.3. Classes of input matrices. As in our previous papers [68, 69], we consider
several different types of synthetic and real input matrices. See Figure SM1 for a plot
of the spectra of these input matrices.

7.3.1. Synthetic examples. We work over the complex field \BbbC . The matrix di-
mensions m = n = 103, and we introduce an effective rank parameter R \in \{ 5, 10, 20\} .
In each case, we compute an approximation with truncation rank r = 10.

1. Low-rank + noise: Let \xi \geq 0 be a signal-to-noise parameter. These matri-
ces take the form

\bfitA = diag(1, . . . , 1\underbrace{}  \underbrace{}  
R

, 0, . . . , 0) + \xi n - 1\bfitE \in \BbbC n\times n,
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where \bfitE = \bfitG \bfitG \ast for a standard normal matrix \bfitG \in \BbbF n\times n. We consider
several parameter values: LowRankLowNoise (\xi = 10 - 4), LowRankMedNoise
(\xi = 10 - 2), LowRankHiNoise (\xi = 10 - 1).

2. Polynomial decay: For a decay parameter p > 0, consider matrices

\bfitA = diag(1, . . . , 1\underbrace{}  \underbrace{}  
R

, 2 - p, 3 - p, . . . , (n - R + 1) - p) \in \BbbC n\times n.

We study three examples: PolyDecaySlow (p = 0.5), PolyDecayMed (p = 1),
PolyDecayFast (p = 2).

3. Exponential decay: For a decay parameter q > 0, consider matrices

\bfitA = diag(1, . . . , 1\underbrace{}  \underbrace{}  
R

, 10 - q, 10 - 2q, . . . , 10 - (n - R)q) \in \BbbC n\times n.

We consider the cases ExpDecaySlow (q = 0.01), ExpDecayMed (q = 0.1),
ExpDecayFast (q = 0.5).

Remark 7.1 (nondiagonal matrices). We have also performed experiments using
nondiagonal matrices with the same spectra. The results were essentially identical.

7.3.2. Application examples. Next, we present some low-rank data matrices
that arise in applications. The truncation rank r varies, depending on the matrix.

1. Navier--Stokes: We test the hypothesis, discussed in subsection 1.2, that
sketching methods can be used to perform on-the-fly compression of the out-
put of a PDE simulation. We have obtained a direct numerical simulation
(DNS) on a coarse mesh of the 2D Navier–Stokes equations for a low Reynolds
number flow around a cylinder. The simulation is started impulsively from
a rest state. Transient dynamics emerge in the first third of the simulation,
while the remaining time steps capture the limit cycle. Each of the veloc-
ity and pressure fields is centered around its temporal mean. This data is
courtesy of Beverley McKeon and Sean Symon.

The real m \times n matrix StreamVel contains streamwise velocities at m =
10, 738 points for each of n = 5, 001 time instants. The first 20 singular
values of the matrix decay by two orders of magnitude, and the rest of the
spectrum exhibits slow exponential decay.

2. Weather: We test the hypothesis that sketching methods can be used to
perform on-the-fly compression of temporal data as it is collected. We have
obtained a matrix that tabulates meteorological variables at weather stations
across the northeastern United States on days during the years 1981–2016.
This data is courtesy of William North.

The real m\times n matrix MinTemp contains the minimum temperature recorded
at each of m = 19, 264 stations on each of n = 7, 305 days. The first 10 singu-
lar values decay by two orders of magnitude, while the rest of the spectrum
has medium polynomial decay.

3. Sketchy decisions: We also consider matrices that arise from an optimiza-
tion algorithm for solving large-scale semidefinite programs [75]. In this ap-
plication, the data matrices are presented as a long series of rank-one updates,
and sketching is a key element of the algorithm.
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(a) MaxCut: This is a real positive-semidefinite (psd) matrix with m =
n = 2, 000 that gives a high-accuracy solution to the MaxCut SDP
for a sparse graph [30]. This matrix is effectively rank deficient with
R = 14, and the spectrum has fast exponential decay after this point.

(b) PhaseRetrieval: This is a complex psd matrix with m = n = 25, 921
that gives a low-accuracy solution to a phase retrieval SDP [38]. This
matrix is effectively rank deficient with R = 5, and the spectrum has
fast exponential decay after this point.

4. Sea surface temperature data: Finally, we use a moderately large climate
dataset to showcase our overall methodology. This data is provided by the
National Oceanic and Atmospheric Administration (NOAA); see [58, 59] for
details about the data preparation methodology.

The real m \times n matrix SeaSurfaceTemp consists of daily temperature es-
timates at m = 691, 150 regularly spaced points in the ocean for each of
n = 13, 670 days between 1981 and 2018.

7.4. Insensitivity to dimension reduction map. The proposed reconstruc-
tion method (2.10) is insensitive to the choice of dimension reduction map at the
oracle parameter values (subsection 7.2.2). As a consequence, we can transfer theo-
retical and empirical results for Gaussians to SSRFT and sparse dimension reduction
maps. See subsection SM4.3 for numerical evidence.

7.5. Approaching the oracle performance. We can almost achieve the oracle
error by implementing the reconstruction method (2.10) with sketch size parameters
chosen using the theory in subsection 5.4. This observation justifies the use of the the-
oretical parameters when we apply the algorithm. See subsection SM4.4 for numerical
evidence.

7.6. Comparison of reconstruction formulas: Synthetic examples. Let
us now compare the proposed rank-r reconstruction formula (2.10) with [HMT11],
[Upa16], and [TYUC17] on synthetic data.

Figure 1 presents the results of the following experiment. For synthetic matrices
with effective rank R = 10 and truncation rank r = 10, we compare the relative
error (7.1) achieved by each of the four algorithms as a function of storage. We use
Gaussian dimension reduction maps in these experiments; similar results are evident
for other types of maps. Results for effective rank R \in \{ 5, 20\} and Schatten \infty -norm
appear in subsection SM4.5. Let us make some remarks:

\bullet This experiment demonstrates clearly that the proposed approximation (2.10)
improves over the earlier methods for most of the synthetic input matrices,
almost uniformly and sometimes by orders of magnitude.

\bullet For input matrices where the spectral tail decays slowly (PolyDecaySlow,
LowRankLowNoise, LowRankMedNoise, LowRankHiNoise), the newly proposed
method (2.10) has identical behavior to [Upa16]. The new method is slightly
worse than [HMT11] in several of these cases.

\bullet For input matrices whose spectral tail decays more quickly (ExpDecaySlow,
ExpDecayMed, ExpDecayFast, PolyDecayMed, PolyDecayFast), the proposed
method improves dramatically over [HMT11] and [Upa16].

\bullet The new method (2.10) shows its strength over [TYUC17] when the storage
budget is small. It also yields superior performance in Schatten \infty -norm.
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Fig. 1. Comparison of reconstruction formulas: Synthetic examples. (Gaussian maps, effective
rank R = 10, approximation rank r = 10, Schatten 2-norm.) We compare the oracle error achieved
by the proposed fixed-rank approximation (2.10) against methods [HMT11], [Upa16], and [TYUC17]
from the literature. See subsection 7.2.2 for details.

These differences are most evident for matrices with slow spectral decay.

7.7. Comparison of reconstruction formulas: Real data examples. The
next set of experiments compares the behavior of the algorithms for matrices drawn
from applications.

Figure 2 contains the results of the following experiment. For each of the four
algorithms, we display the relative error (7.1) as a function of storage. We use sparse
dimension reduction maps, which is justified by the experiments in subsection 7.4.

We plot the oracle error (subsection 7.2.2) attained by each method. Since the
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Fig. 2. Comparison of reconstruction formulas: Real data examples. (Sparse maps, Schatten
2-norm.) We compare the relative error achieved by the proposed fixed-rank approximation (2.10)
against methods [HMT11], [Upa16], and [TYUC17] from the literature. Solid lines are oracle errors;
dashed lines are errors with ``natural"" parameter choices. (There is no dashed line for [HMT11].)
See subsection 7.7 for details.
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STREAMING MATRIX APPROXIMATION A2453

Fig. 3. Left singular vectors of StreamVel. (Sparse maps, approximation rank r = 10, storage
budget T = 48(m + n).) The columns of the matrix StreamVel describe the fluctuations of the
streamwise velocity field about its mean value as a function of time. From top to bottom, the panels
show the first nine computed left singular vectors of the matrix. The left-hand side is computed from
the sketch, while the right-hand side is computed from the exact flow field. The heatmap indicates
the magnitude of the fluctuation. See subsection 7.8 for details.D
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oracle error is not achievable in practice, we also chart the performance of each method
at an a priori parameter selection; see subsection SM4.6 for details.

As with the synthetic examples, the proposed method (2.10) improves over the
competing methods for all the examples we considered. This is true when we compare
oracle errors or when we compare the errors using theoretical parameter choices. The
benefits of the new method are least pronounced for the matrix MinTemp, whose
spectrum has medium polynomial decay. The benefits of the new method are quite
clear for the matrix StreamVel, which has an exponentially decaying spectrum. The
advantages are even more striking for the two matrices MaxCut and PhaseRetrieval,
which are effectively rank deficient.

In summary, we believe that the numerical work here supports the use of our new
method (2.10). The methods [HMT11] and [Upa16] cannot achieve a small relative
error (7.1), even with a large amount of storage. The method [TYUC17] can yield
small relative error, but it often requires more storage to achieve this goal—especially
at the a priori parameter choices.

7.8. Example: Flow-field reconstruction. Next, we elaborate on using sketch-
ing to compress the Navier–Stokes data matrix StreamVel. We compute the best
rank-10 approximation of the matrix via (2.10) using storage T = 48(m + n) and the
“natural” parameter choices (5.6). For this example, we can use plots of the flow field
to make visual comparisons.

Figure 3 illustrates the leading left singular vectors of the streamwise velocity field
StreamVel, as computed from the sketch and the full matrix. We see that the ap-
proximate left singular vectors closely match the actual left singular vectors, although
some small discrepancies appear in the higher singular vectors. See subsection SM4.7
for additional numerics. In particular, we find that the output from the algorithms
[HMT11] and [Upa16] changes violently when we adjust the truncation rank r.

We see that our sketching method leads to an excellent rank-10 approximation
of the matrix. In fact, the relative error (7.1) in Frobenius norm is under 9.2 \cdot 10 - 3.
While the sketch uses 5.8 MB of storage in double precision, the full matrix requires
409.7 MB. The compression rate is 70.6\times . Therefore, it is possible to compress the
output of the Navier–Stokes simulation automatically using sketching.

7.9. Rank truncation and a posteriori error estimation. This section uses
the Navier–Stokes data to explore the behavior of the error estimator (subsection 6.2).
We also demonstrate that it is important to truncate the rank of the approximation,
and we show that the error estimator can assist us.

Let us undertake a single trial of the following experiment with the matrix
StreamVel. For each sketch size parameter k \in \{ 1, 2, . . . , 128\} , set the other sketch
size parameter s = 2k + 1. Extract an error sketch with size q = 10. In each in-
stance, we use the formula (2.9) to construct an initial rank-k approximation \̂bfitA of
the data matrix \bfitA and the formula (2.10) to construct a truncated rank-r approxi-

mation J\̂bfitA Kr. The plots will be indexed with the sketch size parameter k or the rank
truncation parameter r, rather than the storage budget.

Figure 4 illustrates the need to truncate the rank of the approximation. Observe
that the singular values \sigma r(\̂bfitA ) of the rank-k approximation significantly underesti-
mate the singular values \sigma r(\bfitA ) of the matrix when r \approx k. As a consequence, the

Schatten-\infty error (7.1) in the rank-k approximation \̂bfitA , relative to the best rank-k
approximation of \bfitA , actually increases with k. In contrast, when r \ll k, the rank-r
truncation J\̂bfitA Kr can attain very small error, relative to the best rank-r approxima-
tion of \bfitA . In this instance, we achieve relative error below 10 - 4 across a range of
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Fig. 4. Why truncate? (StreamVel, sparse maps, s = 2k+1.) Figure 4a compares the singular

values \sigma r( \^\bfitA ) of the rank-k approximation \^\bfitA against the singular values \sigma r(\bfitA ) of the actual matrix

\bfitA . Figure 4b shows the Schatten-\infty relative error (7.1) in the truncated approximation J \^\bfitA Kr as a
function of rank r. The relative error in the (untruncated) rank-k approximation ( right endpoints
of series) increases with k, and it can reach 500\%. See subsection 7.9.

Table 1
A posteriori error evaluation of sea surface temperature approximations. This table lists the

lower and upper estimates for the true scree curve (6.8) of the matrix SeaSurfaceTemp. We truncate
at rank r = 5 (shaded).

\bfR \bfa \bfn \bfk \bfL \bfo \bfw \bfe \bfr \bfe \bfs \bft \bfi \bfm \bfa \bft \bfe (\bfsix .\bfnine ) \bfU \bfp \bfp \bfe \bfr \bfe \bfs \bft \bfi \bfm \bfa \bft \bfe (\bfsix .\bfone \bfzero )
(r) scree(r) scree(r)

1 2.5415 \cdot 10 - 2 5.2454 \cdot 10 - 2

2 2.1068 \cdot 10 - 3 1.3342 \cdot 10 - 2

3 1.2867 \cdot 10 - 3 1.1126 \cdot 10 - 2

4 5.8939 \cdot 10 - 4 8.8143 \cdot 10 - 3

5 3.9590 \cdot 10 - 4 8.0110 \cdot 10 - 3

6 3.0878 \cdot 10 - 4 7.6002 \cdot 10 - 3

7 2.5140 \cdot 10 - 4 7.3039 \cdot 10 - 3

8 2.1541 \cdot 10 - 4 7.1038 \cdot 10 - 3

9 1.8673 \cdot 10 - 4 6.9342 \cdot 10 - 3

10 1.6410 \cdot 10 - 4 6.7926 \cdot 10 - 3

parameters k by selecting r \leq k/4. Therefore, we can be confident about the quality
of our estimates for the first r singular vectors of \bfitA , given big enough spectral gaps.

Next, let us study the behavior of the error estimator (6.4). Figure 5 compares

the actual approximation error \| \bfitA  - \̂bfitA \| 22 and the empirical error estimate err22(\̂bfitA ) as
a function of the sketch size k. The other panels are scree plots. The baseline is the
actual scree function (6.8) computed from the input matrix. The remaining curves
are the lower (6.9) and upper (6.10) estimates for this curve. We see that the scree
estimators give good lower and upper bounds for the energy missed, while tracking the
shape of the baseline curve. As a consequence, we can use these empirical estimates
to select the truncation rank.

Last, we investigate the sampling distribution of the error in the randomized
matrix approximation and the sampling distribution of the error estimator. To do so,
we perform 1000 independent trials of the same experiment for select values of k and
with error sketch sizes q \in \{ 5, 10\} .

Figure 6 contains scatter plots of the actual approximation error \| \bfitA  - \̂bfitA out\| 22
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Fig. 5. Error estimation and scree plots. (StreamVel, sparse maps, s = 2k + 1.) For an

error sketch with size q = 10, Figure 5a compares the absolute error \| \bfitA  - \^\bfitA \| 22 in the rank-k

approximation versus the estimate err22(
\^\bfitA ). The other panels are scree plots of the actual proportion

of energy remaining (6.8) versus a computable lower estimate (6.9) and upper estimate (6.10). See
subsection 7.9.

versus the estimated approximation error err22(\̂bfitA out) for \̂bfitA out = \̂bfitA and \̂bfitA out = J\̂bfitA Kr.
The error estimators are unbiased, but they exhibit a lot of variability. Doubling the
error sketch size q reduces the spread of the error estimate by a factor of two. The
approximation errors cluster tightly, as we expect from concentration of measure. The
plots also highlight that the initial rank-k approximations are far from attaining the
minimal rank-k error, while the truncated rank-r approximations are more successful.

7.10. Example: Sea surface temperature data. Finally, we give a com-
plete demonstration of the overall methodology for the matrix SeaSurfaceTemp. Like
the matrix MinTemp, we expect that the sea surface temperature data has medium
polynomial decay, so it should be well approximated by a low-rank matrix.

1. Parameter selection. We fix the storage budget T = 48(m + n). The
natural parameter selection (5.6) yields k = 47 and s = 839. We use sparse
dimension reduction maps. The error sketch has size q = 10.

2. Data collection. We “stream” the data one year at a time to construct the
approximation and error sketches.
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STREAMING MATRIX APPROXIMATION A2457

(a) Rank-k approximation (k = 16) (b) Rank-r truncation (k = 16, r = 4)

(c) Rank-k approximation (k = 48) (d) Rank-r truncation (k = 48, r = 12)

(e) Rank-k approximation (k = 128) (f) Rank-r truncation (k = 128, r = 32)

Fig. 6. Sampling distributions of the approximation error and the error estimator. (StreamVel,
sparse maps, s = 2k + 1, Schatten 2-norm.) For error sketches with size q \in \{ 5, 10\} , the left-hand

side shows the sampling distribution of the error \| \bfitA  - \^\bfitA \| 22 in the rank-k approximation versus the

sampling distribution of the error estimator err22(
\^\bfitA ) for several values of k. The dashed line marks

the error in the best rank-k approximation of \bfitA . The right-hand side contains similar plots with \^\bfitA 
replaced by the rank-r truncation J \^\bfitA Kr. See subsection 7.9.
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Fig. 7. Empirical scree plot for SeaSurfaceTemp approximation. (Sparse maps, k = 48, s = 839,
q = 10.) The lower (6.9) and upper (6.10) approximations of the scree curve (6.8). The vertical
line marks the truncation rank r = 5. See subsection 7.10 and Table 1 for details.

3. Error estimates and rank truncation. Once the data is collected, we
compute the rank-k approximation \̂bfitA using the formula (2.9). We present
the empirical scree estimates (6.9) and (6.10) in Figure 7 and Table 1. These
values should bracket the unknown scree curve (6.8), while mimicking its
shape. By visual inspection, we set the truncation rank r = 5. We expect
that the rank-5 approximation captures all but 0.04% to 0.8% of the energy.

4. Visualization. Figure 8 illustrates the first five singular vector pairs of the
rank-r approximation of the matrix SeaSurfaceTemp. The first left singu-
lar vector can be interpreted as the mean temperature profile; a warming
trend is visible in the first right singular vector. The second pair reflects
the austral/boreal divide. The remaining singular vectors capture long-term
climatological features.

The total storage required for the approximation sketch and the error sketch is
4.09 \cdot 107 numbers. This stands in contrast to the mn = 9.09 \cdot 109 numbers appearing
in the matrix itself. The compression ratio is 222\times . Moreover, the computational
time required to obtain the approximation is modest because we are working with
substantially smaller matrices.

8. Conclusions. This paper exhibits a sketching method and a new reconstruc-
tion algorithm for low-rank approximation of matrices that are presented as a sequence
of linear updates (section 2). The algorithm is accompanied by a priori error bounds
that allow us to set algorithm parameters reliably (section 5), as well as an a poste-
riori error estimator that allows us to validate its performance and to select the final
rank of the approximation (section 6). We discuss implementation issues (sections 3
and 4), and we present numerical experiments to show that the new method improves
over existing techniques (subsections 7.6 and 7.7).

A potential application of these techniques is for on-the-fly-compression of large-
scale scientific simulations and data collection. Our experiments with a Navier–Stokes
simulation (subsection 7.8) and with sea surface temperature data (subsection 7.10)
both support this hypothesis. We hope that this work motivates researchers to inves-
tigate the use of sketching in new applications.

Acknowledgments. The authors wish to thank Beverley McKeon and Sean
Symon for providing the Navier–Stokes simulation data and visualization software.
William North contributed the weather data. The NOAA OI SST V2 high-resolution
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Fig. 8. Singular vectors of SeaSurfaceTemp. (Sparse maps, k = 48, s = 839, q = 10.) The left
column displays the first five left singular vectors. The heatmaps use white to represent zero; each
image is scaled independently. The right column displays the first five right singular vectors. The
horizontal axis marks the year (common era); the vertical axis is temperature (Celsius degrees). The
plots are scaled so that the largest peak in the time series equals the largest magnitude temperature
in the associated spatial component. See subsection 7.10.
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