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Abstract— Wideband analog signals push contemporary
analog-to-digital conversion systems to their performance limits.
In many applications, however, sampling at the Nyquist rate
is inefficient because the signals of interest contain only a
small number of significant frequencies relative to the ban-
dlimit, although the locations of the frequencies may not be
known a priori. For this type of sparse signal, other sampling
strategies are possible. This paper describes a new type of
data acquisition system, called a random demodulator, that is
constructed from robust, readily available components. Let K
denote the total number of frequencies in the signal, and let
W denote its bandlimit in Hz. Simulations suggest that the
random demodulator requires just O(K log(W/K)) samples per
second to stably reconstruct the signal. This sampling rate is
exponentially lower than the Nyquist rate of W Hz. In contrast
with Nyquist sampling, one must use nonlinear methods, such
as convex programming, to recover the signal from the samples
taken by the random demodulator. This paper provides a detailed
theoretical analysis of the system’s performance that supports the
empirical observations.

Index Terms— analog-to-digital conversion, compressive sam-
pling, sampling theory, signal recovery, sparse approximation

Dedicated to the memory of Dennis M. Healy.

I. INTRODUCTION

THE Shannon sampling theorem is one of the founda-
tions of modern signal processing. For a continuous-time

signal f whose highest frequency is less than W/2 Hz, the
theorem suggests that we sample the signal uniformly at a
rate of W Hz. The values of the signal at intermediate points
in time are determined completely by the cardinal series

f(t) =
∑

n∈Z
f
( n
W

)
sinc (Wt− n) . (1)

In practice, one typically samples the signal at a somewhat
higher rate and reconstructs with a kernel that decays faster
than the sinc function [1, Ch. 4].

This well-known approach becomes impractical when the
bandlimit W is large because it is challenging to build sam-
pling hardware that operates at a sufficient rate. The demands
of many modern applications already exceed the capabilities
of current technology. Even though recent developments in
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Fig. 1. Block diagram for the random demodulator. The components include
a random number generator, a mixer, an accumulator, and a sampler.

analog-to-digital converter (ADC) technologies have increased
sampling speeds, state-of-the-art architectures are not yet ad-
equate for emerging applications, such as ultrawideband and
radar systems because of the additional requirements on power
consumption [2]. The time has come to explore alternative
techniques [3].

A. The Random Demodulator

In the absence of extra information, Nyquist-rate sampling
is essentially optimal for bandlimited signals [4]. Therefore,
we must identify other properties that can provide additional
leverage. Fortunately, in many applications, signals are also
sparse. That is, the number of significant frequency compo-
nents is often much smaller than the bandlimit allows. We can
exploit this fact to design new kinds of sampling hardware.

This paper studies the performance of a new type of
sampling system—called a random demodulator—that can be
used to acquire sparse, bandlimited signals. Figure 1 displays
a block diagram for the system, and Figure 2 describes the
intuition behind the design. In summary, we demodulate the
signal by multiplying it with a high-rate pseudonoise sequence,
which smears the tones across the entire spectrum. Then
we apply a lowpass anti-aliasing filter, and we capture the
signal by sampling it at a relatively low rate. As illustrated
in Figure 3, the demodulation process ensures that each tone
has a distinct signature within the passband of the filter. Since
there are few tones present, it is possible to identify the tones
and their amplitudes from the low-rate samples.

The major advantage of the random demodulator is that
it bypasses the need for a high-rate ADC. Demodulation is
typically much easier to implement than sampling, yet it
allows us to use a low-rate ADC. As a result, the system
can be constructed from robust, low-power, readily available
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Fig. 2. Action of the demodulator on a pure tone. The demodulation process
multiplies the continuous-time input signal by a random square wave. The
action of the system on a single tone is illustrated in the time domain (left)
and the frequency domain (right). The dashed line indicates the frequency
response of the lowpass filter. See Figure 3 for an enlargement of the filter’s
passband.

Fig. 3. Signatures of two different tones. The random demodulator furnishes
each frequency with a unique signature that can be discerned by examining
the passband of the antialiasing filter. This image enlarges the pass region
of the demodulator’s output for two input tones (solid and dashed). The two
signatures are nearly orthogonal when their phases are taken into account.

components even while it can acquire higher-bandlimit signals
than traditional sampling hardware.

We do pay a price for the slower sampling rate: It is no
longer possible to express the original signal f as a linear
function of the samples, à la the cardinal series (1). Rather, f is
encoded into the measurements in a more subtle manner. The
reconstruction process is highly nonlinear, and must carefully
take advantage of the fact that the signal is sparse. As a result,
signal recovery becomes more computationally intensive. In
short, the random demodulator uses additional digital pro-
cessing to reduce the burden on the analog hardware. This
tradeoff seems acceptable, as advances in digital computing
have outpaced those in analog-to-digital conversion.

B. Results

Our simulations provide striking evidence that the ran-
dom demodulator performs. Consider a periodic signal with
a bandlimit of W/2 Hz, and suppose that it contains K
tones with random frequencies and phases. Our experiments
below show that, with high probability, the system acquires
enough information to reconstruct the signal after sampling
at just O(K log(W/K)) Hz. In words, the sampling rate is
proportional to the number K of tones and the logarithm of
the bandwidth W . In contrast, the usual approach requires

sampling at W Hz, regardless of K. In other words, the ran-
dom demodulator operates at an exponentially slower sampling
rate! We also demonstrate that the system is effective for
reconstructing simple communication signals.

Our theoretical work supports these empirical conclusions,
but it results in slightly weaker bounds on the sampling
rate. We have been able to prove that a sampling rate of
O(K logW + log3W ) suffices for high-probability recovery
of the random signals we studied experimentally. This analysis
also suggests that there is a small startup cost when the number
of tones is small, but we did not observe this phenomenon in
our experiments. It remains an open problem to explain the
computational results in complete detail.

The random signal model arises naturally in numerical
experiments, but it does not provide an adequate description
of real signals, whose frequencies and phases are typically far
from random. To address this concern, we have established
that the random demodulator can acquire all K-tone signals—
regardless of the frequencies, amplitudes, and phases—when
the sampling rate is O(K log6W ). In fact, the system does not
even require the spectrum of the input signal to be sparse; the
system can successfully recover any signal whose spectrum
is well-approximated by K tones. Moreover, our analysis
shows that the random demodulator is robust against noise
and quantization errors.

This work focuses on input signals drawn from a specific
mathematical model, framed in Section II. Many real signals
have sparse spectral occupancy, even though they do not meet
all of our formal assumptions. We propose a device, based on
the classical idea of windowing, that allows us to approximate
general signals by signals drawn from our model. Therefore,
our recovery results for the idealized signal class extend to
signals that we are likely to encounter in practice.

In summary, we believe that these empirical and theoretical
results, taken together, provide compelling evidence that the
demodulator system is a powerful alternative to Nyquist-rate
sampling for sparse signals.

C. Outline

In Section II, we present a mathematical model for the
class of sparse, bandlimited signals. Section III describes the
intuition and architecture of the random demodulator, and it
addresses the nonidealities that may affect its performance. In
Section IV, we model the action of the random demodulator
as a matrix. Section V describes computational algorithms
for reconstructing frequency-sparse signals from the coded
samples provided by the demodulator. We continue with an
empirical study of the system in Section VI, and we offer
some theoretical results in Section VII that partially explain
the system’s performance. Section VIII discusses a windowing
technique that allows the demodulator to capture nonperi-
odic signals. We conclude with a discussion of potential
technological impact and related work in Sections IX and
Section X. Appendices I, II and III contain proofs of our signal
reconstruction theorems.



3

II. THE SIGNAL MODEL

Our analysis focuses on a class of discrete, multitone signals
that have three distinguished properties:
• Bandlimited. The maximum frequency is bounded.
• Periodic. Each tone has an integral frequency in Hz.
• Sparse. The number of active tones is small in compar-

ison with the bandlimit.
Our work shows that the random demodulator can recover
these signals very efficiently. Indeed, the number of samples
per unit time scales directly with the sparsity, but it increases
only logarithmically in the bandlimit.

At first, these discrete multitone signals may appear simpler
than the signals that arise in most applications. For example,
we often encounter signals that contain nonharmonic tones
or signals that contain continuous bands of active frequencies
rather than discrete tones. Nevertheless, these broader signal
classes can be approximated within our model by means of
windowing techniques. We address this point in Section VIII.

A. Mathematical Model

Consider the following mathematical model for a class of
discrete multitone signals. Let W/2 be a positive integer that
exceeds the highest frequency present in the continuous-time
signal f . Fix a number K that represents the number of active
tones. The model contains each signal of the form

f(t) =
∑

ω∈Ω
aω e−2πiωt for t ∈ [0, 1). (2)

Here, Ω is a set of K integer-valued frequencies that satisfies

Ω ⊂ {0,±1,±2, . . . ,±(W/2− 1),W/2},

and
{aω : ω ∈ Ω}

is a set of complex-valued amplitudes. We focus on the case
where the number K of active tones is much smaller than the
bandwidth W .

To summarize, the signals of interest are bandlimited be-
cause they contain no frequencies above W/2 cycles per
second; periodic because the frequencies are integral; and
sparse because the number of tones K �W .

Let us emphasize several conceptual points about this
model:
• We have normalized the time interval to one second for

simplicity. Of course, it is possible to consider signals at
another time resolution.

• We have also normalized frequencies. To consider signals
whose frequencies are drawn from a set equally spaced
by ∆, we would change the effective bandlimit to W/∆.

• The model also applies to signals that are sparse and
bandlimited in a single time interval. It can be extended
to signals where the model (2) holds with a different
set of frequencies and amplitudes in each time interval
[0, 1), [1, 2), [2, 3), . . . . These signals are sparse not in
the Fourier domain but rather in the short-time Fourier
domain [5, Ch. IV].

B. Information Content of Signals

According to the sampling theorem, we can identify signals
from the model (2) by sampling for one second at W Hz.
Yet these signals contain only R = O(K log(W/K)) bits of
information. In consequence, it is reasonable to expect that we
can acquire these signals using only R digital samples.

Here is one way to establish the information bound.
Stirling’s approximation shows that there are about
exp{K log(W/K) + O(K)} ways to select K distinct
integers in the range {1, 2, . . . ,W}. Therefore, it takes
O(K log(W/K)) bits to encode the frequencies present in the
signal. Each of the K amplitudes can be approximated with
a fixed number of bits, so the cost of storing the frequencies
dominates.

C. Examples

There are many situations in signal processing where we
encounter signals that are sparse or locally sparse in frequency.
Here are some basic examples:

• Communications signals, such as transmissions with a
frequency hopping modulation scheme that switches a
sinusoidal carrier among many frequency channels ac-
cording to a predefined (often pseudorandom) sequence.
Other examples include transmissions with narrowband
modulation where the carrier frequency is unknown but
could lie anywhere in a wide bandwidth.

• Acoustic signals, such as musical signals where each
note consists of a dominant sinusoid with a progression
of several harmonic overtones.

• Slowly varying chirps, as used in radar and geophysics,
that slowly increase or decrease the frequency of a
sinusoid over time.

• Smooth signals that require only a few Fourier coeffi-
cients to represent.

• Piecewise smooth signals that are differentiable except
for a small number of step discontinuities.

We also note several concrete applications where sparse
wideband signals are manifest. Surveillance systems may
acquire a broad swath of Fourier bandwidth that contains
only a few communications signals. Similarly, cognitive radio
applications rely on the fact that parts of the spectrum are
not occupied [6], so the random demodulator could be used to
perform spectrum sensing in certain settings. Additional poten-
tial applications include geophysical imaging, where two- and
three-dimensional seismic data can be modeled as piecewise
smooth (hence, sparse in a local Fourier representation) [7],
as well as radar and sonar imaging [8], [9].

III. THE RANDOM DEMODULATOR

This section describes the random demodulator system
that we propose for signal acquisition. We first discuss the
intuition behind the system and its design. Then we address
some implementation issues and nonidealities that impact its
performance.
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A. Intuition

The random demodulator performs three basic actions:
demodulation, lowpass filtering, and low-rate sampling. Refer
back to Figure 1 for the block diagram. In this section, we
offer a short explanation of why this approach allows us to
acquire sparse signals.

Consider the problem of acquiring a single high-frequency
tone that lies within a wide spectral band. Evidently, a low-
rate sampler with an antialiasing filter is oblivious to any
tone whose frequency exceeds the passband of the filter. The
random demodulator deals with the problem by smearing the
tone across the entire spectrum so that it leaves a signature
that can be detected by a low-rate sampler.

More precisely, the random demodulator forms a (periodic)
square wave that randomly alternates at or above the Nyquist
rate. This random signal is a sort of periodic approximation
to white noise. When we multiply a pure tone by this random
square wave, we simply translate the spectrum of the noise, as
documented in Figure 2. The key point is that translates of the
noise spectrum look completely different from each other, even
when restricted to a narrow frequency band, which Figure 3
illustrates.

Now consider what happens when we multiply a frequency-
sparse signal by the random square wave. In the frequency
domain, we obtain a superposition of translates of the noise
spectrum, one translate for each tone. Since the translates are
so distinct, each tone has its own signature. The original signal
contains few tones, so we can disentangle them by examining
a small slice of the spectrum of the demodulated signal.

To that end, we perform lowpass filtering to prevent aliasing,
and we sample with a low-rate ADC. This process results in
coded samples that contain a complete representation of the
original sparse signal. We discuss methods for decoding the
samples in Section V.

B. System Design

Let us present a more formal description of the random
demodulator shown in Figure 1. The first two components
implement the demodulation process. The first piece is a
random number generator, which produces a discrete-time
sequence ε0, ε1, ε2 . . . of numbers that take values ±1 with
equal probability. We refer to this as the chipping sequence.
The chipping sequence is used to create a continuous-time
demodulation signal pc(t) via the formula

pc(t) = εn, t ∈
[
n

W
,
n+ 1
W

)
and n = 0, 1, . . . ,W − 1.

In words, the demodulation signal switches between the levels
±1 randomly at the Nyquist rate of W Hz. Next, the mixer
multiplies the continuous-time input f(t) by the demodulation
signal pc(t) to obtain a continuous-time demodulated signal

y(t) = f(t) · pc(t), t ∈ [0, 1).

Together these two steps smear the frequency spectrum of the
original signal via the convolution

Y (ω) = (F ∗ Pc)(ω).

See Figure 2 for a visual.
The next two components behave the same way as a

standard ADC, which performs lowpass filtering to prevent
aliasing and then samples the signal. Here, the lowpass filter
is simply an accumulator that sums the demodulated signal
y(t) for 1/R seconds. The filtered signal is sampled instan-
taneously every 1/R seconds to obtain a sequence {ym} of
measurements. After each sample is taken, the accumulator is
reset. In summary,

ym = R

∫ (m+1)/R

m/R

y(t) dt, m = 0, 1, . . . , R− 1.

This approach is called integrate-and-dump sampling. Finally,
the samples are quantized to a finite precision. (In this work,
we do not model the final quantization step.)

The fundamental point here is that the sampling rate R is
much lower than the Nyquist rate W . We will see that R
depends primarily on the number K of significant frequencies
that participate in the signal.

C. Implementation and Nonidealities

Any reasonable system for acquiring continuous-time sig-
nals must be implementable in analog hardware. The sys-
tem that we propose is built from robust, readily available
components. This subsection briefly discusses some of the
engineering issues.

In practice, we generate the chipping sequence with a
pseudorandom number generator. It is preferable to use pseu-
dorandom numbers for several reasons: they are easier to
generate; they are easier to store; and their structure can be
exploited by digital algorithms. Many types of pseudorandom
generators can be fashioned from basic hardware components.
For example, the Mersenne twister [10] can be implemented
with shift registers. In some applications, it may suffice just
to fix a chipping sequence in advance.

The performance of the random demodulator is unlikely
to suffer from the fact that the chipping sequence is not
completely random. We have been able to prove that if the
chipping sequence consists of `-wise independent random
variables (for an appropriate value of `), then the demodulator
still offers the same guarantees. Alon et al. have demonstrated
that shift registers can generate a related class of random
variables [11].

The mixer must operate at the Nyquist rate W . Nevertheless,
the chipping sequence alternates between the levels ±1, so the
mixer only needs to reverse the polarity of the signal. It is
relatively easy to perform this step using inverters and mul-
tiplexers. Most conventional mixers trade speed for linearity,
i.e., fast transitions may result in incorrect products. Since
the random demodulator only needs to reverse polarity of the
signal, nonlinearity is not the primary nonideality. Instead, the
bottleneck for the speed of the mixer is the settling times of
inverters and multiplexors, which determine the length of time
it takes for the output of the mixer to reach steady state.

The sampler can be implemented with an off-the-shelf
ADC. It suffers the same types of nonidealities as any ADC,
including thermal noise, aperture jitter, comparator ambiguity,
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and so forth [12]. Since the random demodulator operates at a
relatively low sampling rate, we can use high-quality ADCs,
which exhibit fewer problems.

In practice, a high-fidelity integrator is not required. It
suffices to perform lowpass filtering before the samples are
taken. It is essential, however, that the impulse response of
this filter can be characterized very accurately.

The net effect of these nonidealities is much like the
addition of noise to the signal. The signal reconstruction
process is very robust, so it performs well even in the presence
of noise. Nevertheless, we must emphasize that, as with any
device that employs mixed signal technologies, an end-to-end
random demodulator system must be calibrated so that the
digital algorithms are aware of the nonidealities in the output
of the analog hardware.

IV. RANDOM DEMODULATION IN MATRIX FORM

In the ideal case, the random demodulator is a linear system
that maps a continuous-time signal to a discrete sequence of
samples. To understand its performance, we prefer to express
the system in matrix form. We can then study its properties
using tools from matrix analysis and functional analysis.

A. Discrete-Time Representation of Signals

The first step is to find an appropriate discrete representation
for the space of continuous-time input signals. To that end,
note that each (1/W )-second block of the signal is multiplied
by a random sign. Then these blocks are aggregated, summed,
and sampled. Therefore, part of the time-averaging performed
by the accumulator commutes with the demodulation process.
In other words, we can average the input signal over blocks
of duration 1/W without affecting subsequent steps.

Fix a time instant of the form tn = n/W for an integer n.
Let xn denote the average value of the signal f over a time
interval of length 1/W starting at tn. Thus,

xn =
∫ tn+1/W

tn

f(t) dt

=
∑
ω∈Ω

aω

[
e−2πiω/W − 1

2πiω

]
e−2πiωtn (3)

with the convention that, for the frequency ω = 0, the
bracketed term equals 1/W . Since |ω| ≤ W/2, the bracket
never equals zero. Absorbing the brackets into the amplitude
coefficients, we obtain a discrete-time representation xn of the
signal f(t):

xn =
∑
ω∈Ω

sω e−2πinω/W for n = 0, 1, . . . ,W − 1

where

sω = aω

[
e−2πiω/W − 1

2πiω

]
.

In particular, a continuous-time signal that involves only the
frequencies in Ω can be viewed as a discrete-time signal
comprised of the same frequencies. We refer to the complex
vector s as an amplitude vector, with the understanding that
it contains phase information as well.

The nonzero components of the length-W vector s are listed
in the set Ω. We may now express the discrete-time signal x
as a matrix–vector product. Define the W ×W matrix

F =
1√
W

[
e−2πinω/W

]
n,ω

where

n = 0, 1, . . . ,W − 1 and

ω = 0,±1, . . . ,±
(
W

2
− 1
)
,
W

2
.

The matrix F is a simply a permuted discrete Fourier trans-
form (DFT) matrix. In particular, F is unitary and its entries
share the magnitude W−1/2.

In summary, we can work with a discrete representation

x = Fs

of the input signal.

B. Action of the Demodulator

We view the random demodulator as a linear system acting
on the discrete form x of the continuous-time signal f .

First, we consider the effect of random demodulation on
the discrete-time signal. Let ε0, ε1, . . . , εW−1 be the chipping
sequence. The demodulation step multiplies each xn, which is
the average of f on the nth time interval, by the random sign
εn. Therefore, demodulation corresponds to the map x 7→Dx
where

D =


ε0

ε1

. . .
εW−1


is a W ×W diagonal matrix.

Next, we consider the action of the accumulate-and-dump
sampler. Suppose that the sampling rate is R, and assume
that R divides W . Then each sample is the sum of W/R
consecutive entries of the demodulated signal. Therefore, the
action of the sampler can be treated as an R ×W matrix H
whose rth row has W/R consecutive unit entries starting in
column rW/R+ 1 for each r = 0, 1, . . . , R− 1. An example
with R = 3 and W = 12 is

H =

 1 1 1 1
1 1 1 1

1 1 1 1

 .
When R does not divide W , two samples may share

contributions from a single element of the chipping sequence.
We choose to address this situation by allowing the matrix
H to have fractional elements in some of its columns. An
example with R = 3 and W = 7 is

H =

 1 1
√

1/3√
2/3 1

√
2/3√
1/3 1 1

 .
We have found that this device provides an adequate approxi-
mation to the true action of the system. For some applications,
it may be necessary to exercise more care.
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In summary, the matrix M = HD describes the action of
the hardware system on the discrete signal x. Each row of the
matrix yields a separate sample of the input signal.

The matrix Φ = MF describes the overall action of the
system on the vector s of amplitudes. This matrix Φ has a
special place in our analysis, and we refer to it as a random
demodulator matrix.

C. Prewhitening

It is important to note that the bracket in (3) leads to
a nonlinear attenuation of the amplitude coefficients. In a
hardware implementation of the random demodulator, it may
be advisable to apply a prewhitening filter to preserve the
magnitudes of the amplitude coefficients. On the other hand,
prewhitening amplifies noise in the high frequencies. We leave
this issue for future work.

V. SIGNAL RECOVERY ALGORITHMS

The Shannon sampling theorem provides a simple linear
method for reconstructing a bandlimited signal from its time
samples. In contrast, there is no linear process for reconstruct-
ing the input signal from the output of the random demodulator
because we must incorporate the highly nonlinear sparsity
constraint into the reconstruction process.

Suppose that s is a sparse amplitude vector, and let y = Φs
be the vector of samples acquired by the random demodulator.
Conceptually, the way to recover s is to solve the mathematical
program

ŝ = arg min ‖v‖0 subject to Φv = y (4)

where the `0 function ‖·‖0 counts the number of nonzero
entries in a vector. In words, we seek the sparsest amplitude
vector that generates the samples we have observed. The
presence of the `0 function gives the problem a combinatorial
character, which may make it computationally difficult to solve
completely.

Instead, we resort to one of the signal recovery algorithms
from the sparse approximation or compressive sampling lit-
erature. These techniques fall in two rough classes: convex
relaxation and greedy pursuit. We describe the advantages and
disadvantages of each approach in the sequel.

This work concentrates on convex relaxation methods be-
cause they are more amenable to theoretical analysis. Our
purpose here is not to advocate a specific algorithm but rather
to argue that the random demodulator has genuine potential
as a method for acquiring signals that are spectrally sparse.
Additional research on algorithms will be necessary to make
the technology viable. See Section IX-C for discussion of how
quickly we can perform signal recovery with contemporary
computing architectures.

A. Convex Relaxation

The problem (4) is difficult because of the unfavorable
properties of the `0 function. A fundamental method for
dealing with this challenge is to relax the `0 function to the `1
norm, which may be viewed as the convex function “closest”

to `0. Since the `1 norm is convex, it can be minimized subject
to convex constraints in polynomial time [13].

Let s be the unknown amplitude vector, and let y = Φs be
the vector of samples acquired by the random demodulator.
We attempt to identify the amplitude vector s by solving the
convex optimization problem

ŝ = arg min ‖v‖1 subject to Φv = y. (5)

In words, we search for an amplitude vector that yields the
same samples and has the least `1 norm. On account of the
geometry of the `1 ball, this method promotes sparsity in the
estimate ŝ.

The problem (5) can be recast as a second-order cone
program. In our work, we use an old method, iteratively
reweighted least squares (IRLS), for performing the optimiza-
tion [14, 173ff]. It is known that IRLS converges linearly for
certain signal recovery problems [15]. It is also possible to
use interior-point methods, as proposed by Candès et al. [16].

Convex programming methods for sparse signal recovery
problems are very powerful. Second-order methods, in partic-
ular, seem capable of achieving very good reconstructions of
signals with wide dynamic range. Recent work suggests that
optimal first-order methods provide similar performance with
lower computational overhead [17].

B. Greedy Pursuits

To produce sparse approximate solutions to linear systems,
we can also use another class of methods based on greedy
pursuit. Roughly, these algorithms build up a sparse solution
one step at a time by adding new components that yield the
greatest immediate improvement in the approximation error.
An early paper of Gilbert and Tropp analyzed the performance
of an algorithm called Orthogonal Matching Pursuit for simple
compressive sampling problems [18]. More recently, work
of Needell and Vershynin [19], [20] and work of Needell
and Tropp [21] has resulted in greedy-type algorithms whose
theoretical performance guarantees are analogous with those
of convex relaxation methods.

In practice, greedy pursuits tend to be effective for problems
where the solution is ultra-sparse. In other situations, convex
relaxation is usually more powerful. On the other hand, greedy
techniques have a favorable computational profile, which
makes them attractive for large-scale problems.

C. Impact of Noise

In applications, signals are more likely to be compressible
than to be sparse. (Compressible signals are not sparse but
can be approximated by sparse signals.) Nonidealities in the
hardware system lead to noise in the measurements. Fur-
thermore, the samples acquired by the random demodulator
are quantized. Modern convex relaxation methods and greedy
pursuit methods are robust against all these departures from
the ideal model. We discuss the impact of noise on signal
reconstruction algorithms in Section VII-B.

In fact, the major issue with all compressive sampling
methods is not the presence of noise per se. Rather, the process
of compressing the signal’s information into a small number
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of samples inevitably decreases the signal-to-noise ratio. In
the design of compressive sampling systems, it is essential to
address this issue.

VI. EMPIRICAL RESULTS

We continue with an empirical study of the minimum
measurement rate required to accurately reconstruct signals
with the random demodulator. Our results are phrased in terms
of the Nyquist rate W , the sampling rate R, and the sparsity
level K. It is also common to combine these parameters into
scale-free quantities. The compression factor R/W measures
the improvement in the sampling rate over the Nyquist rate,
and the sampling efficiency K/R measures the number of
tones acquired per sample. Both these numbers range between
zero and one.

Our results lead us to an empirical rule for the sampling
rate necessary to recover random sparse signals using the
demodulator system:

R ≈ 1.7K log(W/K + 1). (6)

The empirical rate is similar to the weak phase transition
threshold that Donoho and Tanner calculated for compressive
sensing problems with a Gaussian sampling matrix [22]. The
form of this relation also echoes the form of the information
bound developed in Section II-B.

A. Random Signal Model

We begin with a stochastic model for frequency-sparse
discrete signals. To that end, define the signum function

sgn (reiθ) def=

{
0, r = 0,
eiθ, r > 0.

The model is described in the following box:

Model (A) for a random amplitude vector s

Frequencies: Ω is a uniformly random set
of K frequencies from
{0,±1, . . . ,±(W/2−1),W/2}

Amplitudes: |sω| is arbitrary for each ω ∈ Ω
sω = 0 for each ω /∈ Ω

Phases: sgn (sω) is i.i.d. uniform on the unit cir-
cle for each ω ∈ Ω

In our experiments, we set the amplitude of each nonzero
coefficient equal to one because the success of `1 minimization
does not depend on the amplitudes.

B. Experimental Design

Our experiments are intended to determine the minimum
sampling rate R that is necessary to identify a K-sparse signal
with a bandwidth of W Hz. In each trial, we perform the
following steps:
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Fig. 4. Sampling rate as a function of signal bandwidth. The sparsity is fixed
at K = 5. The solid discs mark the lowest sampling rate R that achieves
successful reconstruction with probability 0.99. The solid line denotes the
linear least-squares fit R = 1.69K log(W/K + 1) + 4.51 for the data.

1) Input Signal. A new amplitude vector s is drawn at
random according to Model (A) in Section VI-A. The
amplitudes all have magnitude one.

2) Random demodulator. A new random demodulator Φ
is drawn with parameters K, R, and W . The elements of
the chipping sequence are independent random variables,
equally likely to be ±1.

3) Sampling. The vector of samples is computed using the
expression y = Φs.

4) Reconstruction. An estimate ŝ of the amplitude vector
is computed with IRLS.

For each triple (K,R,W ), we perform 500 trials. We
declare the experiment a success when s = ŝ to machine
precision, and we report the smallest value of R for which the
empirical failure probability is less than 1%.

C. Performance Results

We begin by evaluating the relationship between the signal
bandwidth W and the sampling rate R required to achieve a
high probability of successful reconstruction. Figure 4 shows
the experimental results for a fixed sparsity of K = 5 as
W increases from 128 to 2048 Hz, denoted by solid discs.
The solid line shows the result of a linear regression on the
experimental data, namely

R = 1.69K log(W/K + 1) + 4.51.

The variation about the regression line is probably due to
arithmetic effects that occur when the sampling rate does not
divide the bandlimit.

Next, we evaluate the relationship between the sparsity K
and the sampling rate R. Figure 5 shows the experimental
results for a fixed chipping rate of W = 512 Hz as the sparsity
K increases from 1 to 64. The figure also shows that the linear
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Fig. 5. Samping rate as a function of sparsity. The bandlimit is fixed at
W = 512 Hz. The solid discs mark the lowest sampling rate that achieves
successful reconstruction with probability 0.99. The solid line denotes the
linear least-squares fit R = 1.71K log(W/K + 1) + 1.00 for the data.

regression give a close fit for the data.

R = 1.71K log(W/K + 1) + 1.00

is the empirical trend.

The regression lines from these two experiments suggest
that successful reconstruction of signals from Model (A)
occurs with high probability when the sampling rate obeys
the bound

R ≥ 1.7K log(W/K + 1). (7)

Thus, for a fixed sparsity, the sampling rate grows only
logarithmically as the Nyquist rate increases. We also note that
this bound is similar to those obtained for other measurement
schemes that require fully random, dense matrices [23].

Finally, we study the threshold that denotes a change from
high to low probability of successful reconstruction. This type
of phase transition is a common phenomenon in compressive
sampling. For this experiment, the chipping rate is fixed at
W = 512 Hz, while the sparsity K and sampling R rate vary.
We record the probability of success as the compression factor
R/W and the sampling efficiency K/R vary.

The experimental results appear in Figure 6. Each pixel in
this image represents the probability of success for the cor-
responding combination of system parameters. Lighter pixels
denote higher probability. The dashed line,

K

R
=

0.68
log(W/K + 1)

,

describes the relationship among the parameters where the
probability of success drops below 99%. The numerical pa-
rameter was derived from a linear regression without intercept.

For reference, we compare the random demodulator with a
benchmark system that obtains measurements of the amplitude
vector s by applying a matrix Φ whose entries are drawn
independently from the standard Gaussian distribution. As
the dimensions of the matrix grow, `1 minimization methods
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Fig. 6. Probability of success as a function of sampling efficiency and
compression factor. The shade of each pixel indicates the probability of
successful reconstruction for the corresponding combination of parameter
values. The solid line marks the theoretical threshold for a Gaussian matrix;
the dashed line traces the 99% success isocline.

exhibit a sharp phase transition from success to failure. The
solid line in Figure 6 marks the location of the precipice, which
can be computed analytically with methods from [22].

D. Example: Analog Demodulation

We constructed these empirical performance trends using
signals drawn from a synthetic model. To narrow the gap
between theory and practice, we performed another experiment
to demonstrate that the random demodulator can successfully
recover a simple communication signal from samples taken
below the Nyquist rate.

In the amplitude modulation (AM) encoding scheme, the
transmitted signal fAM(t) takes the form

fAM(t) = A cos(2πωct) · (m(t) + C) , (8)

where m(t) is the original message signal, ωc is the carrier
frequency, and A,C are fixed values. When the original
message signal m(t) has K nonzero Fourier coefficients, then
the cosine-modulated signal has only 2K+ 2 nonzero Fourier
coefficients.

We consider an AM signal that encodes the message ap-
pearing in Figure 7(a). The signal was transmitted from a
communications device using carrier frequency ωc = 8.2 KHz,
and the received signal was sampled by an ADC at a rate of
32 KHz. Both the transmitter and receiver were isolated in a
lab to produce a clean signal; however, noise is still present on
the sampled data due to hardware effects and environmental
conditions.

We feed the received signal into a simulated random de-
modulator, where we take the Nyquist rate W = 32 KHz and
we attempt a variety of sampling rates R. We use IRLS to
reconstruct the signal from the random samples, and we per-
form AM demodulation on the recovered signal to reconstruct
the original message. Figures 7(b)–(d) display reconstructions
for a random demodulator with sampling rates R = 16 KHz,
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8 KHz, and 3.2 KHz, respectively. To evaluate the quality
of the reconstruction, we measure the signal-to-noise ratio
(SNR) between the message obtained from the received signal
fAM and the message obtained from the output of the random
demodulator. The reconstructions achieve SNRs of 27.8 dB,
22.3 dB, and 20.9 dB, respectively.

These results demonstrate that the performance of the ran-
dom demodulator degrades gracefully as the SNR decreases.
Note, however, that the system will not function at all unless
the sampling rate is sufficiently high that we stand below the
phase transition.

VII. THEORETICAL RECOVERY RESULTS

We have been able to establish several theoretical guaran-
tees on the performance of the random demodulator system.
First, we focus on the setting described in the numerical
experiments, and we develop estimates for the sampling rate
required to recover the synthetic sparse signals featured in
Section VI-C. Qualitatively, these bounds almost match the
system performance we witnessed in our experiments. The
second set of results addresses the behavior of the system for a
much wider class of input signals. This theory establishes that,
when the sampling rate is slightly higher, the signal recovery
process will succeed—even if the spectrum is not perfectly
sparse and the samples collected by the random demodulator
are contaminated with noise.

A. Recovery of Random Signals

First, we study when `1 minimization can reconstruct ran-
dom, frequency-sparse signals that have been sampled with
the random demodulator. The setting of the following theorem
precisely matches our numerical experiments.

Theorem 1 (Recovery of Random Signals): Suppose that
the sampling rate

R ≥ C
[
K logW + log3W

]
and that R divides W . The number C is a positive, universal
constant.

Let s be a random amplitude vector drawn according to
Model (A). Draw an R ×W random demodulator matrix Φ,
and let y = Φs be the samples collected by the random
demodulator.

Then the solution ŝ to the convex program (5) equals s,
except with probability O(W−1).

We have framed the unimportant technical assumption that
R divides W to simplify the lengthy argument. See Ap-
pendix II for the proof.

Our analysis demonstrates that the sampling rate R scales
linearly with the sparsity level K, while it is logarithmic in
the bandlimit W . In other words, the theorem supports our
empirical rule (6) for the sampling rate. Unfortunately, the
analysis does not lead to reasonable estimates for the leading
constant. Still, we believe that this result offers an attractive
theoretical justification for our claims about the sampling
efficiency of the random demodulator.

The theorem also suggests that there is a small startup cost.
That is, a minimal number of measurements is required before

the demodulator system is effective. Our experiments were
not refined enough to detect whether this startup cost actually
exists in practice.

B. Uniformity and Stability

Although the results described in the last section provide
a satisfactory explanation of the numerical experiments, they
are less compelling as a vision of signal recovery in the
real world. Theorem 1 has three major shortcomings. First,
it is unreasonable to assume that tones are located at random
positions in the spectrum, so Model (A) is somewhat artificial.
Second, typical signals are not spectrally sparse because
they contain background noise and, perhaps, irrelevant low-
power frequencies. Finally, the hardware system suffers from
nonidealities, so it only approximates the linear transformation
described by the matrix M . As a consequence, the samples
are contaminated with noise.

To address these problems, we need an algorithm that
provides uniform and stable signal recovery. Uniformity means
that the approach works for all signals, irrespective of the
frequencies and phases that participate. Stability means that the
performance degrades gracefully when the signal’s spectrum
is not perfectly sparse and the samples are noisy. Fortunately,
the compressive sampling community has developed several
powerful signal recovery techniques that enjoy both these
properties.

Conceptually, the simplest approach is to modify the convex
program (5) to account for the contamination in the sam-
ples [24]. Suppose that s ∈ CW is an arbitrary amplitude
vector, and let ν ∈ CR be an arbitrary noise vector that is
known to satisfy the bound ‖ν‖2 ≤ η. Assume that we have
acquired the dirty samples

y = Φs+ ν.

To produce an approximation of s, it is natural to solve the
noise-aware optimization problem

ŝ = arg min ‖v‖1 subject to ‖Φv − y‖2 ≤ η. (9)

As before, this problem can be formulated as a second-
order cone program, which can be optimized using various
algorithms [24].

We have established a theorem that describes how the
optimization-based recovery technique performs when the
samples are acquired using the random demodulator system.
An analogous result holds for the CoSaMP algorithm, a
greedy pursuit method with superb guarantees on its run-
time [21].

Theorem 2 (Recovery of General Signals): Suppose that
the sampling rate

R ≥ CK log6W

and that R divides W . Draw an R×W random demodulator
matrix Φ. Then the following statement holds, except with
probability O(W−1).

Suppose that s is an arbitrary amplitude vector and ν is a
noise vector with ‖ν‖2 ≤ η. Let y = Φs + ν be the noisy
samples collected by the random demodulator.
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Fig. 7. Simulated acquisition and reconstruction of an AM signal. (a) Message reconstructed from signal sampled at Nyquist rate W = 32 KHz. (b) Message
reconstructed from the output of a simulated random demodulator running at sampling rate R = 16 KHz (SNR = 27.8 dB). (c) Reconstruction with R = 8
KHz (SNR = 22.3 dB). (d) Reconstruction with R = 3.2 KHz (SNR = 20.9 dB).

Then every solution ŝ to the convex program (9) approxi-
mates the target vector s:

‖ŝ− s‖2 ≤ C max
{
η,

1√
K
‖s− sK‖1

}
, (10)

where sK is a best K-sparse approximation to s with respect
to the `1 norm.

The proof relies on the restricted isometry property (RIP)
of Candès–Tao [25]. To establish that the random demodulator
verifies the RIP, we adapt ideas of Rudelson–Vershynin [26].
Turn to Appendix III for the argument.

Theorem 2 is not as easy to grasp as Theorem 1, so we must
spend some time to unpack its meaning. First, observe that
the sampling rate has increased by several logarithmic factors.
Some of these factors are probably parasitic, a consequence of
the techniques used to prove the theorem. It seems plausible
that, in practice, the actual requirement on the sampling rate
is closer to

R ≥ CK log2W.

This conjecture is beyond the power of current techniques.

The earlier result, Theorem 1, suggests that we should draw
a new random demodulator each time we want to acquire a sig-
nal. In contrast, Theorem 2 shows that, with high probability, a
particular instance of the random demodulator acquires enough
information to reconstruct any amplitude vector whatsoever.
This aspect of Theorem 2 has the practical consequence that
a random chipping sequence can be chosen in advance and
fixed for all time.

Theorem 2 does not place any specific requirements on the
amplitude vector, nor does it model the noise contaminating
the signal. Indeed, the approximation error bound (10) holds
generally. That said, the strength of the error bound depends
substantially on the structure of the amplitude vector. When s
happens to be K-sparse, then the second term in the maximum
vanishes. So the convex programming method still has the
ability to recover sparse signals perfectly.

When s is not sparse, we may interpret the bound (10)
as saying that the computed approximation is comparable
with the best K-sparse approximation of the amplitude vector.
When the amplitude vector has a good sparse approximation,
then the recovery succeeds well. When the amplitude vector
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does not have a good approximation, then signal recovery
may fail completely. For this class of signal, the random
demodulator is not an appropriate technology.

Initially, it may seem difficult to reconcile the two norms
that appear in the error bound (10). In fact, this type of mixed-
norm bound is structurally optimal [27], so we cannot hope
to improve the `1 norm to an `2 norm. Nevertheless, for an
important class of signals, the scaled `1 norm of the tail is
essentially equivalent to the `2 norm of the tail.

Let p ∈ (0, 1). We say that a vector s is p-compressible
when its sorted components decay sufficiently fast:

|s|(k) ≤ k
−1/p for k = 1, 2, 3, . . . . (11)

Harmonic analysis shows that many natural signal classes
are compressible [28]. Moreover, the windowing scheme of
Section VIII results in compressible signals.

The critical fact is that compressible signals are well ap-
proximated by sparse signals. Indeed, it is straightforward to
check that

‖s− sK‖1 ≤
1

1/p− 1
·K1−1/p

‖s− sK‖2 ≤
1√

2/p− 1
·K1/2−1/p.

Note that the constants on the right-hand side depend only on
the level p of compressibility.

For a p-compressible signal, the error bound (10) reads

‖ŝ− s‖2 ≤ C max
{
η,K1/2−1/p

}
.

We see that the right-hand side is comparable with the `2 norm
of the tail of the signal. This quantitive conclusion reinforces
the intuition that the random demodulator is efficient when the
amplitude vector is well approximated by a sparse vector.

C. Extension to Bounded Orthobases

We have shown that the random demodulator is effective
at acquiring signals that are spectrally sparse or compressible.
In fact, the system can acquire a much more general class of
signals. The proofs of Theorem 1 and Theorem 2 indicate that
the crucial feature of the sparsity basis F is its incoherence
with the Dirac basis. In other words, we exploit the fact
that the entries of the matrix F have small magnitude. This
insight allows us to extend the recovery theory to other sparsity
bases with the same property. We avoid a detailed exposition.
See [29] for more discussion of this type of result.

VIII. WINDOWING

We have shown that the random demodulator can acquire
periodic multitone signals. The effectiveness of the system for
a general signal f depends on how closely we can approximate
f on the time interval [0, 1) by a periodic multitone signal. In
this section, we argue that many common types of nonperiodic
signals can be approximated well using windowing techniques.
In particular, this approach allows us to capture nonharmonic
sinusoids and multiband signals with small total bandwidth.
We offer a brief overview of the ideas here, deferring a detailed
analysis for a later publication.

A. Nonharmonic Tones

First, there is the question of capturing and reconstructing
nonharmonic sinusoids, signals of the form

f(t) = aω′e−2πiω′t/W , ω′ /∈ Z.

It is notoriously hard to approximate f on [0, 1) using
harmonic sinusoids, because the coefficients aω in (2) are
essentially samples of a sinc function. Indeed, the signal fK ,
defined as the best approximation of f using K harmonic
frequencies, satisfies only

‖f − fK‖L2[0,1) . K−1/2, (12)

a painfully slow rate of decay.
There is a classical remedy to this problem. Instead of

acquiring f directly, we acquire a smoothly windowed version
of f . To fix ideas, suppose that ψ is a window function that
vanishes outside the interval [0, 1). Instead of measuring f ,
we measure g = ψ · f . The goal is now to reconstruct this
windowed signal g.

As before, our ability to reconstruct the windowed signal
depends on how well we can approximate it using a periodic
multitone signal. In fact, the approximation rate depends on the
smoothness of the window. When the continuous-time Fourier
transform ψ̂ decays like ω−r for some r ≥ 1, we have that gK ,
the best approximation of g using K harmonic frequencies,
satisfies

‖g − gK‖L2[0,1) . K−r+1/2,

which decays to zero much faster than the error bound (12).
Thus, to achieve a tolerance of ε, we need only about
ε−1/(r−1/2) terms.

In summary, windowing the input signal allows us to closely
approximate a nonharmonic sinusoid by a periodic multitone
signal; g will be compressible as in (11). If there are multiple
nonharmonic sinusoids present, then the number of harmonic
tones required to approximate the signal to a certain tolerance
scales linearly with the number of nonharmonic sinusoids.

B. Multiband Signals

Windowing also enables us to treat signals that occupy a
small band in frequency. Suppose that f is a signal whose
continuous-time Fourier transform f̂ vanishes outside an in-
terval of length B. The Fourier transform of the windowed
signal g = ψ · f can be broken into two pieces. One part is
nonzero only on the support of f̂ ; the other part decays like
ω−r away from this interval. As a result, we can approximate
g to a tolerance of ε using a multitone signal with about
B + ε−1/(r−1/2) terms.

For a multiband signal, the same argument applies to
each band. Therefore, the number of tones required for the
approximation scales linearly with the total bandwidth.

C. A Vista on Windows

To reconstruct the original signal f over a long period of
time, we must multiply the signal with overlapping shifts of
a window ψ. The window needs to have additional properties
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for this scheme to work. Suppose that the set of half-integer
shifts of ψ form a partition of unity, i.e.,∑

k
ψ(t− k/2) = 1, t ∈ R.

After measuring and reconstructing gk(t) = ψ(t − k/2) ·
f(t) on each subinterval, we simply add the reconstructions
together to obtain a complete reconstruction of f .

This windowing strategy relies on our ability to measure the
windowed signal ψ·f . To accomplish this, we require a slightly
more complicated system architecture. To perform the win-
dowing, we use an amplifier with a time-varying gain. Since
subsequent windows overlap, we will also need to measure
gk and gk+1 simultaneously, which creates the need for two
random demodulator channels running in parallel. In principle,
none of these modifications diminishes the practicality of the
system.

IX. DISCUSSION

This section develops some additional themes that arise
from our work. First, we discuss the SNR performance and
SWAP profile of the random demodulator system. Afterward,
we present a rough estimate of the time required for signal
recovery using contemporary computing architectures. We
conclude with some speculations about the technological im-
pact of the device.

A. SNR Performance

A significant benefit of the random demodulator is that
we can control the SNR performance of the reconstruction
by optimizing the sampling rate of the back-end ADC, as
demonstrated in Section VI-D. When input signals are spec-
trally sparse, the random demodulator system can outperform
a standard ADC by a substantial margin.

To quantify the SNR performance of an ADC, we consider
a standard metric, the effective number of bits (ENOB), which
is roughly the actual number of quantization levels possible at
a given SNR. The ENOB is calculated as

ENOB = (SNR− 1.76)/6.02, (13)

where the SNR is expressed in dB. We estimate the ENOB
of a modern ADC using the information in Walden’s 1999
survey [12].

When the input signal has sparsity K and bandlimit W , we
can acquire the signal using a random demodulator running
at rate R, which we estimate using the relation (7). As noted,
this rate is typically much lower than the Nyquist rate. Since
low-rate ADCs exhibit much better SNR performance than
high-rate ADCs, the demodulator can produce a higher ENOB.

Figure 8 charts how much the random demodulator im-
proves on state-of-the-art ADCs when the input signals are
assumed to be sparse. The first panel, Figure 8(a), compares
the random demodulator with a standard ADC for signals with
the sparsity K = 106 as the Nyquist rate W varies up to
1012 Hz. In this setting, the clear advantages of the random
demodulator can be seen in the slow decay of the curve. The
second panel, Figure 8(b), estimates the ENOB as a function
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Fig. 8. ENOB for random demodulator versus a standard ADC. The solid
lines represent state-of-the-art ADC performance in 1999. The dashed lines
represent the random demodulator performance using an ADC running at
the sampling rate R suggested by our empirical work. (a) Performance as a
function of the bandlimit W with fixed sparsity K = 106. (b) Performance
as a function of the sparsity K with fixed bandlimit W = 108. Note that the
performance of a standard ADC does not depend on K.

of the sparsity K when the bandlimit is fixed at W = 108 Hz.
Again, a distinct advantage is visible. But we stress that this
improvement is contingent on the sparsity of the signal.

Although this discussion suggests that the SNR behavior of
the random demodulator represents a clear improvement over
traditional ADCs, we have neglected some important factors.
The estimated performance of the demodulator does not take
into account SNR degradations due to the chain of hardware
components upstream of the sampler. These degradations are
caused by factors such as the nonlinearity of the multiplier
and jitter of the pseudorandom modulation signal. Thus, it
is critical to choose high-quality components in the design.
Even under this constraint, the random demodulator may have
a more attractive feasibility and cost profile than a high-rate
ADC.
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B. Power Consumption

In some applications, the power consumption of the signal
acquisition system is of tantamount importance. One widely
used figure of merit for ADCs is the quantity

2ENOBfs
Pdiss

,

where fs is the sampling rate and Pdiss is the power dissipation
[30]. We propose a slightly modified version of this figure of
merit to compare compressive ADCs with conventional ones:

FOM =
2ENOB−1W

Pdiss(R)
,

where we simply replace the sampling rate with the acquisition
bandlimit W/2 and express the power dissipated as a function
of the actual sampling rate. For the random demodulator,

FOM ≈ 2ENOB−1W

Pdiss(1.7K log(W/K))

on account of (7). The random demodulator incurs a penalty
in the effective number of bits for a given signal, but it may
require significantly less power to acquire the signal. This
effect becomes pronounced as the bandlimit W becomes large,
which is precisely where low-power ADCs start to fade.

C. Computational Resources Needed for Signal Recovery

Recovering randomly demodulated signals in real-time
seems like a daunting task. This section offers a back-of-the-
envelope calculation that supports our claim that current digital
computing technology is nearly adequate to achieve real-time
recovery rates for signals with frequency components in the
gigahertz range.

The computational cost of a sparse recovery algorithm
is dominated by repeated application of the system matrix
Φ and its transpose, in both the case where the algorithm
solves a convex optimization problem (Section V-A) or per-
forms a greedy pursuit (Section V-B). Recently developed
algorithms [31], [32], [33], [21], [17] typically produce good
solutions with a few hundred applications of the system matrix.

For the random demodulator, the matrix Φ is a composition
of three operations:

1) a length-W discrete Fourier transform, which requires
O(W logW ) multiplications and additions (via an FFT),

2) a pointwise multiplication, which uses W multiplies, and
3) a calculation of block sums, which involves W addi-

tions.
Of these three steps, the FFT is by far the most expensive.
Roughly speaking, it takes several hundred FFTs to recover a
sparse signal with Nyquist rate W from measurements made
by the random demodulator.

Let us fix some numbers so we can estimate the amount
of computational time required. Suppose that we want the
digital back-end to output 230 (or, about 1 billion) samples
per second. Assume that we compute the samples in blocks of
size 214 = 16, 384 and that we use 200 FFTs for each block.
Since we need to recover 216 blocks per second, we have to
perform about 13 million 16K-point FFTs in one second.

This amount of computation is substantial, but it is not
entirely unrealistic. For example, a recent benchmark [34]
reports that the Cell processor performs a 16K-point FFT at
37.6 Gflops/s, which translates1 to about 1.5 × 10−5 s. The
nominal time to recover a single block is around 3 ms, so
the total cost of processing 216 blocks is around 200 s. Of
course, the blocks can be recovered in parallel, so this factor
of 200 can be reduced significantly using parallel or multicore
architectures.

The random demodulator offers an additional benefit. The
samples collected by the system automatically compress a
sparse signal into a minimal amount of data. As a result,
the storage and communication requirements of the signal
acquisition system are also reduced. Furthermore, no extra
processing is required after sampling to compress the data,
which decreases the complexity of the required hardware and
its power consumption.

D. Technological Impact

The easiest conclusion to draw from the bounds on SNR
performance is that the random demodulator may allow us to
acquire high-bandwidth signals that are not accessible with
current technologies. These applications still require high-
performance analog and digital signal processing technology,
so they may be several years (or more) away.

A more subtle conclusion is that the random demodulator
enables us to perform certain signal processing tasks using
devices with a more favorable size, weight, and power (SWAP)
profile. We believe that these applications will be easier to
achieve in the near future because suitable ADC and DSP
technology is already available.

X. RELATED WORK

Finally, we describe connections between the random de-
modulator and other approaches to sampling signals that
contain limited information.

A. Origins of Random Demodulator

The random demodulator was introduced in two earlier
papers [35], [36], which offer preliminary work on the system
architecture and experimental studies of the system’s behavior.
The current paper can be seen as an expansion of these
articles, because we offer detailed information on performance
trends as a function of the signal bandlimit, the sparsity, and
the number of samples. We have also developed theoretical
foundations that support the empirical results. This analysis
was initially presented by the first author at SampTA 2007.

B. Compressive Sampling

The most direct precedent for this paper is the theory of
compressive sampling. This field, initiated in the papers [16],
[37], has shown that random measurements are an efficient and
practical method for acquiring compressible signals. For the

1A single n-point FFT requires around 2.5n log2 n flops.
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most part, compressive sampling has concentrated on finite-
length, discrete-time signals. One of the innovations in this
work is to transport the continuous-time signal acquisition
problem into a setting where established techniques apply. In-
deed, our empirical and theoretical estimates for the sampling
rate of the random demodulator echo established results from
the compressive sampling literature regarding the number of
measurements needed to acquire sparse signals.

C. Comparison with Nonuniform Sampling

Another line of research [16], [38] in compressive sampling
has shown that frequency-sparse, periodic, bandlimited signals
can be acquired by sampling nonuniformly in time at an
average rate comparable with (15). This type of nonuniform
sampling can be implemented by changing the clock input to
a standard ADC. Although the random demodulator system
involves more components, it has several advantages over
nonuniform sampling.

First, nonuniform samplers are extremely sensitive to timing
jitter. Consider the problem of acquiring a signal with high-
frequency components by means of nonuniform sampling.
Since the signal values change rapidly, a small error in the
sampling time can result in an erroneous sample value. The
random demodulator, on the other hand, benefits from the
integrator, which effectively lowers the bandwidth of the input
into the ADC. Moreover, the random demodulator uses a
uniform clock, which is more stable to generate.

Second, the SNR in the measurements from a random
demodulator is much higher than the SNR in the measurements
from a nonuniform sampler. Suppose that we are acquiring a
single sinusoid with unit amplitude. On average, each sample
has magnitude 2−1/2, so if we take W samples at the Nyquist
rate, the total energy in the samples is W/2. If we take
R nonuniform samples the total energy will be on average
R/2. In contrast, if we take R samples with the random
demodulator, each sample has an approximate magnitude of√
W/R, so the total energy in the samples is about W . In

consequence, signal recovery using samples from the random
demodulator is more robust against additive noise.

D. Relationship with Random Convolution

As illustrated in Figure 2, the random demodulator can be
interpreted in the frequency domain as a convolution of a
sparse signal with a random waveform, followed by lowpass
filtering. An idea closely related to this—convolution with a
random waveform followed by subsampling—has appeared in
the compressed sensing literature [39], [40], [41], [42]. In fact,
if we replace the integrator with an ideal lowpass filter, so that
we are in essence taking R consecutive samples of the Fourier
transform of the demodulated signal, the architecture would be
very similar to that analyzed in [40], with the roles of time
and frequency reversed. The main difference is that [40] relies
on the samples themselves being randomly chosen rather than
consecutive (this extra randomness allows the same sensing
architecture to be used with any sparsity basis).

E. Multiband Sampling Theory

The classical approach to recovering bandlimited signals
from time samples is, of course, the well-known method
associated with the names of Shannon, Nyquist, Whittaker,
Kotel’nikov, and others. In the 1960s, Landau demonstrated
that stable reconstruction of a bandlimited signal demands a
sampling rate no less than the Nyquist rate [4]. Landau also
considered multiband signals, those bandlimited signals whose
spectrum is supported on a collection of frequency intervals.
Roughly speaking, he proved that a sequence of time samples
cannot stably determine a multiband signal unless the average
sampling rate exceeds the measure of the occupied part of the
spectrum [43].

In the 1990s, researchers began to consider practical sam-
pling schemes for acquiring multiband signals. The earliest
effort is probably a paper of Feng and Bresler, who assumed
that the band locations were known in advance [44]. See
also the subsequent work [45]. Afterward, Mishali and Eldar
showed that related methods can be used to acquire multiband
signals without knowledge of the band locations [46].

Researchers have also considered generalizations of the
multiband signal model. These approaches model signals as
arising from a union of subspaces. See, for example, [47],
[48] and their references.

F. Parallel Demodulator System

Very recently, it has been shown that a bank of random
demodulators can be used for blind acquisition of multiband
signals [49], [50]. This system uses different parameter settings
from the system described here, and it processes samples in a
rather different fashion. This work is more closely connected
with multiband sampling theory than with compressive sam-
pling, so we refer the reader to the papers for details.

G. Finite Rate of Innovation

Vetterli and collaborators have developed an alternative
framework for sub-Nyquist sampling and reconstruction,
called finite rate of innovation sampling, that passes an analog
signal f having K degrees of freedom per second through a
linear time-invariant filter and then samples at a rate above
2K Hz. Reconstruction is then performed by rooting a high-
order polynomial [51], [52], [53], [54]. While this sampling
rate is less than the O(K log(W/K)) required by the random
demodulator, a proof of the numerical stability of this method
remains elusive.

H. Sublinear FFTs

During the 1990s and the early years of the present decade,
a separate strand of work appeared in the literature on theoreti-
cal computer science. Researchers developed computationally
efficient algorithms for approximating the Fourier transform
of a signal, given a small number of random time samples
from a structured grid. The earliest work in this area was
due to Kushilevitz and Mansour [55], while the method was
perfected by Gilbert et al. [56], [57]. See [38] for a tutorial on
these ideas. These schemes provide an alternative approach to
sub-Nyquist ADCs [58], [59] in certain settings.
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APPENDIX I
THE RANDOM DEMODULATOR MATRIX

This appendix collects some facts about the random demod-
ulator matrix that we use to prove the recovery bounds.

A. Notation

Let us begin with some notation. First, we abbreviate
JW K = {1, 2, . . . ,W}. We write ∗ for the complex conjugate
transpose of a scalar, vector, or matrix. The symbol ‖·‖
denotes the spectral norm of a matrix, while ‖·‖F indicates the
Frobenius norm. We write ‖·‖max for the maximum absolute
entry of a matrix. Other norms will be introduced as necessary.
The probability of an event is expressed as P {·}, and we use
E for the expectation operator. For conditional expectation,
we use the notation EX Z, which represents integration with
respect to X , holding all other variables fixed. For a random
variable Z, we define its Lp norm

Ep(Z) = (E |Z|p)1/p
.

We sometimes omit the parentheses when there is no possibil-
ity of confusion. Finally, we remind the reader of the analyst’s
convention that roman letters c, C, etc. denote universal
constants that may change at every appearance.

B. Background

This section contains a potpourri of basic results that will
be helpful to us.

We begin with a simple technique for bounding the moments
of a maximum. Consider an arbitrary set {Z1, . . . , ZN} of
random variables. It holds that

Ep(maxj Zj) ≤ N1/p maxj Ep(Zj). (14)

To check this claim, simply note that

[E maxj |Zj |p]
1/p ≤

[
E
∑

j
|Zj |p

]1/p
=
[∑

j
E |Zj |p

]1/p
≤ [N ·maxj E |Zj |p]

1/p
.

In many cases, this inequality yields essentially sharp results
for the appropriate choice of p.

The simplest probabilistic object is the Rademacher random
variable, which takes the two values ±1 with equal likelihood.
A sequence of independent Rademacher variables is referred to
as a Rademacher sequence. A Rademacher series in a Banach
space X is a sum of the form∑∞

j=1
ξjxj

where {xj} is a sequence of points in X and {ξj} is an
(independent) Rademacher sequence.

For Rademacher series with scalar coefficients, the most
important result is the inequality of Khintchine. The following
sharp version is due to Haagerup [60].

Proposition 3 (Khintchine): Let p ≥ 2. For every sequence
{aj} of complex scalars,

Ep
∣∣∣∑

j
ξjaj

∣∣∣ ≤ Cp
[∑

j
|aj |2

]1/2
,

where the optimal constant

Cp =
[

p!
2p/2(p/2)!

]1/p

≤ 21/2pe−0.5√p.

This inequality is typically established only for real scalars,
but the real case implies that the complex case holds with the
same constant.

Rademacher series appear as a basic tool for studying
sums of independent random variables in a Banach space, as
illustrated in the following proposition [61, Lem. 6.3].

Proposition 4 (Symmetrization): Let {Zj} be a finite se-
quence of independent, zero-mean random variables taking
values in a Banach space X . Then

Ep
∥∥∥∑

j
Zj

∥∥∥
X
≤ 2 Ep

∥∥∥∑
j
ξjZj

∥∥∥
X
,

where {ξj} is a Rademacher sequence independent of {Zj}.
In words, the moments of the sum are controlled by the

moments of the associated Rademacher series. The advantage
of this approach is that we can condition on the choice of {Zj}
and apply sophisticated methods to estimate the moments of
the Rademacher series.

Finally, we need some facts about symmetrized random
variables. Suppose that Z is a zero-mean random variable
that takes values in a Banach space X . We may define the
symmetrized variable Y = Z−Z ′, where Z ′ is an independent
copy of Z. The tail of the symmetrized variable Y is closely
related to the tail of Z. Indeed,

P {‖Z‖X > 2 E ‖Z‖X + u} ≤ P {‖Y ‖X > u} . (15)

This relation follows from [61, Eqn. (6.2)] and the fact that
Med(Y ) ≤ 2 EY for every nonnegative random variable Y .

C. The Random Demodulator Matrix
We continue with a review of the structure of the random

demodulator matrix, which is the central object of our affec-
tion. Throughout the appendices, we assume that the sampling
rate R divides the bandlimit W . That is,

W/R ∈ Z.

Recall that the R×W random demodulator matrix Φ is defined
via the product

Φ = HDF .

We index the R rows of the matrix with the Roman letter r,
while we index the W columns with the Greek letters α, ω. It
is convenient to summarize the properties of the three factors.

The matrix F is a permutation of the W × W discrete
Fourier transform matrix. In particular, it is unitary, and each
of its entries has magnitude W−1/2.

The matrix D is a random W ×W diagonal matrix. The
entries of D are the elements ε1, . . . , εW of the chipping
sequence, which we assume to be a Rademacher sequence.
Since the nonzero entries of D are ±1, it follows that the
matrix is unitary.

The matrix H is an R×W matrix with 0–1 entries. Each
of its rows contains a block of W/R contiguous ones, and the
rows are orthogonal. These facts imply that

‖H‖ =
√
W/R. (16)
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To keep track of the locations of the ones, the following
notation is useful. We write

j ∼ r when (r − 1)W/R < j ≤ rW/R.

Thus, each value of r is associated with W/R values of j.
The entry hrj = 1 if and only if j ∼ r.

The spectral norm of Φ is determined completely by its
structure.

‖Φ‖ = ‖HDF ‖ = ‖H‖ =
√
W/R (17)

because F and D are unitary.
Next, we present notations for the entries and columns of

the random demodulator. For an index ω ∈ JW K, we write ϕω
for the ωth column of Φ. Expanding the matrix product, we
can express

ϕω =
∑W

j=1
εjfjωhj (18)

where fjω is the (j, ω) entry of F and hj is the jth column of
H . Similarly, we write ϕrω for the (r, ω) entry of the matrix
Φ. The entry can also be expanded as a sum

ϕrω =
∑

j∼r
εjfjω. (19)

Finally, given a set Ω of column indices, we define the
column submatrix ΦΩ of Φ whose columns are listed in Ω.

D. A Componentwise Bound

The first key property of the random demodulator matrix is
that its entries are small with high probability. We apply this
bound repeatedly in the subsequent arguments.

Lemma 5: Let Φ be an R×W random demodulator matrix.
When 2 ≤ p ≤ 4 logW , we have

Ep ‖Φ‖max ≤
√

6 logW
R

.

Furthermore,

P

{
‖Φ‖max >

√
10 logW

R

}
≤W−1.

Proof: As noted in (19), each entry of Φ is a Rademacher
series:

ϕrω =
∑

j∼r
εjfjω.

Observe that ∑
j∼r
|fjω|2 =

W

R
· 1
W

=
1
R
.

because the entries of F all share the magnitude W−1/2.
Khintchine’s inequality, Proposition 3, provides a bound on
the moments of the Rademacher series:

Ep |ϕrω| ≤
Cp√
R

where Cp ≤ 20.25e−0.5√p.
We now compute the moments of the maximum entry. Let

M = ‖Φ‖max = maxr,ω |ϕrω| .

Select q = max{p, 4 logW}, and invoke Hölder’s inequality.

EpM ≤ Eq maxr,ω |ϕrω| .

Inequality (14) yields

EpM ≤ (RW )1/q maxr,ω Eq |ϕrω| .

Apply the moment bound for the individual entries to reach

EpM ≤ Cq(RW )1/q

√
R

.

Since R ≤ W and q ≥ 4 logW , we have (RW )1/q ≤ e0.5.
Simplify the constant to discover that

EpM ≤ 21.25

√
logW
R

.

A numerical bound yields the first conclusion.
To obtain a probability bound, we apply Markov’s inequal-

ity, which is the standard device. Indeed,

P {M > u} = P {Mq > uq} ≤
[

EqM
u

]q
.

Choose u = e0.25 EqM to obtain

P

{
M > 21.25e0.25

√
logW
R

}
≤ e− logW = W−1.

Another numerical bound completes the demonstration.

E. The Gram Matrix

Next, we develop some information about the inner products
between columns of the random demodulator. Let α and ω
be column indices in JW K. Using the expression (18) for the
columns, we find that

〈ϕα, ϕω〉 =
∑W

j,k=1
εjεkηjkf

∗
jαfkω

where we have abbreviated ηjk = 〈hk, hj〉. Since ηjj = 1,
the sum of the diagonal terms is∑

j
f∗jαfjω =

{
1, α = ω

0, α 6= ω

because the columns of F are orthonormal. Therefore,

〈ϕα, ϕω〉 = δαω +
∑

j 6=k
εjεkηjkf

∗
jαfkω

where δαω is the Kronecker delta.
The Gram matrix Φ∗Φ tabulates these inner products. As

a result, we can express the latter identity as

Φ∗Φ = I +X

where
xαω =

∑
j 6=k

εjεkηjkf
∗
jαfkω.

It is clear that EX = 0, so that

E Φ∗Φ = I. (20)

We interpret this relation to mean that, on average, the columns
of Φ form an orthonormal system. This ideal situation cannot
occur since Φ has more columns than rows. The matrix X
measures the discrepancy between reality and this impossible
dream. Indeed, most of argument can be viewed as a collection
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of norm bounds on X that quantify different aspects of this
deviation.

Our central result provides a uniform bound on the entries
ofX that holds with high probability. In the sequel, we exploit
this fact to obtain estimates for several other quantities of
interest.

Lemma 6: Suppose that R ≥ 2 logW . Then

P

{
‖X‖max > C

√
logW
R

}
≤W−1.

Proof: The object of our attention is

M = ‖X‖max = max
α,ω

∣∣∣∑
j 6=k

εjεkηjkfjαf
∗
kω

∣∣∣ .
A random variable of this form is called a second-order
Rademacher chaos, and there are sophisticated methods avail-
able for studying its distribution. We use these ideas to develop
a bound on EpM for p = 2 logW . Afterward, we apply
Markov’s inequality to obtain the tail bound.

For technical reasons, we must rewrite the chaos before we
start making estimates. First, note that we can express the
chaos in a more symmetric fashion:

M = max
α,ω

∣∣∣∑
j 6=k

εjεk · ηjk · 1
2 (fjαf∗kω + fkαf

∗
jω)
∣∣∣ .

It is also simpler to study the real and imaginary parts of the
chaos separately. To that end, define

aαωjk =

{
ηjk · 1

2 Re(fjαf∗kω + fkαf
∗
jω), j 6= k

0, j = k

bαωjk =

{
ηjk · 1

2 Im(fjαf∗kω + fkαf
∗
jω), j 6= k

0, j = k

With this notation,

M ≤ max
α,ω

∣∣∣∑
j,k
εjεka

αω
jk

∣∣∣+ max
α,ω

∣∣∣∑
j,k
εjεkb

αω
jk

∣∣∣
def= MRe +MIm.

We focus on the real part since the imaginary part receives an
identical treatment.

The next step toward obtaining a tail bound is to decouple
the chaos. Define

Y = max
α,ω

∣∣∣∑
j,k
ε′jεka

αω
jk

∣∣∣
where {ε′j} is an independent copy of {εj}. Standard decou-
pling results [62, Prop. 1.9] imply that

EpMRe ≤ 4 Ep Y.

So it suffices to study the decoupled variable Y .
To approach this problem, we first bound the moments of

each random variable that participates in the maximum. Fix a
pair (α, ω) of frequencies. We omit the superscript α and ω
to simplify notations. Define the auxiliary random variable

Z = Zαω =
∣∣∣∑

j,k
ε′jεkajk

∣∣∣
Construct the matrix A = [ajk]. As we will see, the variation
of Z is controlled by spectral properties of the matrix A.

For that purpose, we compute the Frobenius norm and
spectral norm of A. Each of its entries satisfies

|ajk| ≤
1
W
ηjk =

1
W

(H∗H)jk

owing to the fact that the entries of F are uniformly bounded
by W−1/2. The structure of H implies that H∗H is a
symmetric, 0–1 matrix with exactly W/R nonzero entries in
each of its W rows. Therefore,

‖A‖F ≤
1
W
‖H∗H‖F =

1
W

√
W · W

R
=

1√
R
.

The spectral norm of A is bounded by the spectral norm of
its entrywise absolute value abs(A). Applying the fact (16)
that ‖H‖ =

√
W/R, we obtain

‖A‖ ≤ ‖abs(A)‖ ≤ 1
W
‖H∗H‖ =

1
W
‖H‖2 =

1
R
.

Let us emphasize that the norm bounds are uniform over all
pairs (α, ω) of frequencies. Moreover, the matrix B = [bjk]
satisfies identical bounds.

To continue, we estimate the mean of the variable Z. This
calculation is a simple consequence of Hölder’s inequality:

EZ ≤ (EZ2)1/2 =
[
E
∣∣∣∑

j
ε′j

(∑
k
εkajk

)∣∣∣2]1/2

=
[
E
∑

j

∣∣∣∑
k
εkajk

∣∣∣2]1/2

=
[∑

j,k
|ajk|2

]1/2
= ‖A‖F =

1√
R
.

Chaos random variables, such as Z, concentrate sharply
about their mean. Deviations of Z from its mean are controlled
by two separate variances. The probability of large deviation
is determined by

U = sup‖u‖2=1

∣∣∣∑
j,k
ujukajk

∣∣∣ ,
while the probability of a moderate deviation depends on

V = E sup‖u‖2=1

∣∣∣∑
j,k
ujεkajk

∣∣∣ .
To compute the first variance U , observe that

U = ‖A‖ ≤ 1
R
.

The second variance is not much harder. Using Jensen’s
inequality, we find

V = E
[∑

j

∣∣∣∑
k
εkajk

∣∣∣2]1/2

≤
[
E
∑

j

∣∣∣∑
k
εkajk

∣∣∣2]1/2

=
1√
R
.

We are prepared to appeal to the following theorem which
bounds the moments of a chaos variable [63, Cor. 2].

Theorem 7 (Moments of chaos): Let Z be a decoupled,
symmetric, second-order chaos. Then

Ep |Z − EZ| ≤ K [
√
pV + pU ]

for each p ≥ 1.
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Substituting the values of the expectation and variances, we
reach

Ep
[
Z − 1√

R

]
≤ K

[√
p

R
+
p

R

]
.

The content of this estimate is clearer, perhaps, if we split the
bound at p = R.

Ep
[
Z − 1√

R

]
≤

{
2K
√
p/R, p ≤ R

2Kp/R, p > R.

In words, the variable Z exhibits subgaussian behavior in the
moderate deviation regime, but its tail is subexponential.

We are now prepared to bound the moments of the max-
imum of the ensemble {Zαω}. When p = 2 logW ≤ R,
inequality (14) yields

Ep max
α,ω

[
Zαω −

1√
R

]
≤W 2/p max

α,ω
Ep
[
Zαω −

1√
R

]
≤ e · 2K

√
p

R
,

Recalling the definitions of Y and Zαω , we reach

Ep Y = Ep max
α,ω

Zαω ≤ C

√
logW
R

.

In words, we have obtained a moment bound for the decoupled
version of the real chaos MRe.

To complete the proof, remember that EpMRe ≤ 4 Ep Y .
Therefore,

EpMRe ≤ 4C

√
logW
R

.

An identical argument establishes that

EpMIm ≤ 4C

√
logW
R

.

Since M ≤MRe +MIm, it follows inexorably that

EpM ≤ 8C

√
logW
R

.

Finally, we invoke Markov’s inequality to obtain the tail
bound

P

{
M ≥ e0.5 · 8C

√
logW
R

}
≤ e−0.5p = W−1.

This endeth the lesson.

F. Column Norms and Coherence

Lemma 6 has two important and immediate consequences.
First, it implies that the columns of Φ essentially have unit
norm.

Theorem 8 (Column Norms): Suppose the sampling rate

R ≥ Cδ−2 logW.

An R×W random demodulator Φ satisfies

P
{

maxω
∣∣∣‖ϕω‖22 − 1

∣∣∣ ≥ δ} ≤W−1.

Lemma 6 also shows that the coherence of the random
demodulator is small. The coherence, which is denoted by µ,

bounds the maximum inner product between distinct columns
of Φ, and it has emerged as a fundamental tool for establishing
the success of compressive sampling recovery algorithms.
Rigorously,

µ = max
α 6=ω
|〈ϕα, ϕω〉| .

We have the following probabilistic bound.
Theorem 9 (Coherence): Suppose the sampling rate

R ≥ 2 logW.

An R×W random demodulator Φ satisfies

P

{
µ ≥ C

√
logW
R

}
≤W−1.

For a general R ×W matrix with unit-norm columns, we
can verify [64, Thm. 2.3] that its coherence

µ ≥ 1√
R

[
1− R

W

]
≈ 1√

R
.

Since the columns of the random demodulator are essentially
normalized, we conclude that its coherence is nearly as small
as possible.

APPENDIX II
RECOVERY FOR THE RANDOM PHASE MODEL

In this appendix, we establish Theorem 1, which shows that
`1 minimization is likely to recover a random signal drawn
from Model (A). Appendix III develops results for general
signals.

The performance of `1 minimization for random signals de-
pends on several subtle properties of the demodulator matrix.
We must discuss these ideas in some detail. In the next two
sections, we use the bounds from Appendix I to check that the
required conditions are in force. Afterward, we proceed with
the demonstration of Theorem 1.

A. Cumulative Coherence

The coherence measures only the inner product between
a single pair of columns. To develop accurate results on the
performance of `1 minimization, we need to understand the
total correlation between a fixed column and a collection of
distinct columns.

Let Φ be an R×W matrix, and let Ω be a subset of JW K.
The local 2-cumulative coherence of the set Ω with respect to
the matrix Φ is defined as

µ2(Ω) = max
α/∈Ω

[∑
ω∈Ω
|〈ϕα, ϕω〉|2

]1/2
.

The coherence µ provides an immediate bound on the cumu-
lative coherence:

µ2(Ω) ≤ µ
√
|Ω|.

Unfortunately, this bound is completely inadequate.
To develop a better estimate, we instate some additional

notation. Consider the matrix norm ‖·‖1→2, which returns
the maximum `2 norm of a column. Define the hollow Gram
matrix

G = Φ∗Φ− diag(Φ∗Φ),
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which tabulates the inner products between distinct columns
of Φ. Let RΩ be the W ×W orthogonal projector onto the
coordinates listed in Ω. Elaborating on these definitions, we
see that

µ2(Ω) = ‖RΩG(I−RΩ)‖1→2 ≤ ‖RΩG‖1→2 . (21)

In particular, the cumulative coherence µ2(Ω) is dominated by
the maximum column norm of G.

When Ω is chosen at random, it turns out that we can use
this upper bound to improve our estimate of the cumulative
coherence µ2(Ω). To incorporate this effect, we need the
following result, which is a consequence of Theorem 3.2 of
[65] combined with a standard decoupling argument (e.g., see
[66, Lem. 14]).

Proposition 10: Fix a W × W matrix G. Let R be an
orthogonal projector onto K coordinates, chosen randomly
from JW K. For p = 2 logW ,

Ep ‖RG‖1→2 ≤ 8
√

logW ‖G‖max + 2

√
K

W
‖G‖1→2 .

With these facts at hand, we can establish the following
bound.

Theorem 11 (Cumulative Coherence): Suppose the sam-
pling rate

R ≥ C
[
K logW + log3W

]
.

Draw an R×W random demodulator Φ. Let Ω be a random
set of K coordinates in JW K. Then

P
{
µ2(Ω) ≥ 1√

16 logW

}
≤ 3W−1.

Proof: Under our hypothesis on the sampling rate,
Theorem 9 demonstrates that, except with probability W−1,

‖G‖max ≤
c

logW
,

where we can make c as small as we like by increasing the
constant in the sampling rate. Similarly, Theorem 8 ensures
that

max
ω
‖ϕω‖2 ≤ 2,

except with probability W−1. We condition on the event F
that these two bounds hold. We have P {F c} ≤ 2W−1.

On account of the latter inequality and the fact (17) that
‖Φ‖ =

√
W/R, we obtain

‖G‖1→2 ≤ ‖Φ
∗Φ‖1→2 = max

ω
‖Φ∗Φeω‖2

= max
ω
‖Φ∗ϕω‖2 ≤ ‖Φ‖ ·max

ω
‖ϕω‖2 ≤ 2

√
W/R.

We have written eω for the ωth standard basis vector in CW .
Let RΩ be the (random) projector onto the K coordinates

listed in Ω. For p = 2 logW , relation (21) and Proposition 10
yield

Ep[µ2(Ω) |F ] ≤ Ep[‖RΩG‖1→2 |F ]

≤ 8
√

logW · c
logW

+ 2

√
K

W
· 2
√
W

R

≤ c′√
logW

under our assumption on the sampling rate. Finally, we apply
Markov’s inequality to obtain

P
{
µ2(Ω) >

c′e0.5

√
logW

∣∣F} ≤ e−0.5p = W−1.

By selecting the constant in the sampling rate sufficiently
large, we can ensure c′ is sufficiently small that

P
{
µ2(Ω) >

1√
16 logW

|F
}
≤W−1.

We reach the conclusion

P
{
µ2(Ω) >

1√
16 logW

}
≤W−1 + P {F c} ≤ 3W−1

when we remove the conditioning.

B. Conditioning of a Random Submatrix

We also require information about the conditioning of a
random set of columns drawn from the random demodulator
matrix Φ. To obtain this intelligence, we refer to the following
result, which is a consequence of [65, Thm. 1] and a decou-
pling argument.

Proposition 12: Let A be a W ×W Hermitian matrix, split
into its diagonal and off-diagonal parts: A = E+G. Draw an
orthogonal projector R onto K coordinates, chosen randomly
from JW K. For p = 2 logW ,

Ep ‖RAR‖ ≤ C
[

logW ‖A‖max

+

√
K logW
W

‖A‖1→2 +
K

W
‖A‖

]
+ ‖E‖ .

Suppose that Ω is a subset of JW K. Recall that ΦΩ is the
column submatrix of Φ indexed by Ω. We have the following
result.

Theorem 13 (Conditioning of a Random Submatrix):
Suppose the sampling rate

R ≥ C
[
K logW + log3W

]
.

Draw an R×W random demodulator, and let Ω be a random
subset of JW K with cardinality K. Then

P {‖Φ∗ΩΦΩ − I‖ ≥ 0.5} ≤ 3W−1.

Proof: Define the quantity of interest

Q = ‖Φ∗ΩΦΩ − I‖ .

Let RΩ be the random orthogonal projector onto the coordi-
nates listed in Ω, and observe that

Q = ‖RΩ(Φ∗Φ− I)RΩ‖ .

Define the matrix A = Φ∗Φ − I. Let us perform some
background investigations so that we are fully prepared to
apply Proposition 12.

We split the matrix

A = E +G,
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where E = diag(Φ∗Φ)−I andG = Φ∗Φ−diag(Φ∗Φ) is the
hollow Gram matrix. Under our hypothesis on the sampling
rate, Theorem 8 provides that

‖E‖ = max
ω

∣∣∣‖ϕω‖22 − 1
∣∣∣ ≤ 0.15,

except with probability W−1. It also follows that

‖diag(Φ∗Φ)‖ = max
ω
‖ϕω‖22 ≤ 1.15.

We can bound ‖G‖1→2 by repeating our earlier calculation
and introducing the identity (17) that ‖Φ‖ =

√
W/R. Thus,

‖G‖1→2 ≤ ‖Φ‖max
ω
‖ϕω‖2 ≤

√
1.15W
R

.

Since W/R ≥ 1, it also holds that

‖G‖ = ‖Φ∗Φ− diag(Φ∗Φ)‖ ≤ ‖Φ‖2 + 1.15 ≤ 2.15W
R

.

Meanwhile, Theorem 9 ensures that

‖G‖max ≤
c

logW
,

except with probability W−1. As before, we can make c as
small as we like by increasing the constant in the sampling
rate. We condition on the event F that these estimates are in
force. So P {F c} ≤ 2W−1.

Now, invoke Proposition 12 to obtain

Ep[Q |F ] ≤ C
[

logW · c
logW

+

√
K logW
W

·
√

1.15W
R

+
K

W
· 1.15W

R

]
+ 0.15

for p = 2 logW . Simplifying this bound, we reach

Ep[Q |F ] ≤ C

[
c +

√
C′K logW

R

]
+ 0.15.

By choosing the constant in the sampling rate R sufficiently
large, we can guarantee that

Ep[Q |F ] ≤ 0.3.

Markov’s inequality now provides

P
{
Q ≥ 0.3e0.5 |F

}
≤ e−0.5p = W−1.

Note that 0.3e0.5 < 0.5 to conclude that

P {Q ≥ 0.5} ≤W−1 + P {F c} ≤ 3W−1.

This is the advertised conclusion.

C. Recovery of Random Signals

The literature contains powerful results on the performance
of `1 minimization for recovery of random signals that are
sparse with respect to an incoherent dictionary. We have finally
acquired the keys we need to start this machinery. Our major
result for random signals, Theorem 1, is a consequence of the
following result, which is an adaptation of [67, Thm. 14].

Proposition 14: Let Φ be an R ×W matrix, and let Ω be
a subset of JW K for which

• µ2(Ω) ≤ (16 logW )−1/2, and
•
∥∥(Φ∗ΩΦΩ)−1

∥∥ ≤ 2.
Suppose that s is a vector that satisfies
• supp(s) ⊂ Ω, and
• sgn (sω) are i.i.d. uniform on the complex unit circle.

Then s is the unique solution to the optimization problem

min ‖v‖1 subject to Φv = Φs (22)

except with probability 2W−1.
Our main result, Theorem 1, is a corollary of this result.
Corollary 15: Suppose that the sampling rate satisfies

R ≥ C
[
K logW + log3W

]
.

Draw an R×W random demodulator Φ. Let s be a random
amplitude vector drawn according to Model (A). Then the
solution ŝ to the convex program (22) equals s except with
probability 8W−1.

Proof: Since the signal s is drawn from Model (A), its
support Ω is a uniformly random set of K components from
JW K. Theorem 11 ensures that

µ2(Ω) ≤ 1√
16 logW

,

except with probability 3W−1. Likewise, Theorem 13 guar-
antees

‖Φ∗ΩΦΩ − I‖ ≤ 0.5,

except with probability 3W−1. This bound implies that all the
eigenvalues of Φ∗ΩΦΩ lie in the range [0.5, 1.5]. In particular,∥∥(Φ∗ΩΦΩ)−1

∥∥ ≤ 2.

Meanwhile, Model (A) provides that the phases of the nonzero
entries of s are uniformly distributed on the complex unit
circle. We invoke Proposition 14 to see that the optimization
problem (22) recovers the amplitude vector s from the obser-
vations Φs, except with probability 2W−1. The total failure
probability is 8W−1.

APPENDIX III
STABLE RECOVERY

In this appendix, we establish much stronger recovery
results under a slightly stronger assumption on the sampling
rate. This work is based on the restricted isometry property
(RIP), which enjoys the privilege of a detailed theory.

A. Background

The RIP is a formalization of the statement that the sampling
matrix preserves the norm of all sparse vectors up to a
small constant factor. Geometrically, this property ensures that
the sampling matrix embeds the set of sparse vectors in a
high-dimensional space into the lower-dimensional space of
samples. Consequently, it becomes possible to recover sparse
vectors from a small number of samples. Moreover, as we will
see, this property also allows us to approximate compressible
vectors, given relatively few samples.

Let us shift to rigorous discussion. We say that an R×W
matrix Φ has the RIP of order N with restricted isometry
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constant δN ∈ (0, 1) when the following inequalities are in
force:∣∣∣∣∣‖Φx‖22 − ‖x‖22‖x‖22

∣∣∣∣∣ ≤ δN whenever ‖x‖0 ≤ N. (23)

Recall that the function ‖·‖0 counts the number of nonzero
entries in a vector. In words, the definition states that the sam-
pling operator produces a small relative change in the squared
`2 norm of an N -sparse vector. The RIP was introduced by
Candès and Tao in an important paper [25].

For our purposes, it is more convenient to rephrase the RIP.
Observe that the inequalities (23) hold if and only if∣∣∣∣x∗(Φ∗Φ− I)x

x∗x

∣∣∣∣ ≤ δN whenever ‖x‖0 ≤ N.

The extreme value of this Rayleigh quotient is clearly the
largest magnitude eigenvalue of any N×N principal submatrix
of Φ∗Φ− I.

Let us construct a norm that packages up this quantity.
Define

|||A||| = sup
|Ω|≤N

∥∥∥A∣∣
Ω×Ω

∥∥∥ .
In words, the triple-bar norm returns the least upper bound on
the spectral norm of any N × N principal submatrix of A.
Therefore, the matrix Φ has the RIP of order N with constant
δN if and only if

|||Φ∗Φ− I||| ≤ δN .

Referring back to (20), we may write this relation in the more
suggestive form

|||Φ∗Φ− E Φ∗Φ||| ≤ δN .

In the next section, we strive to achieve this estimate.

B. RIP for Random Demodulator

Our major result is that the random demodulator matrix
has the restricted isometry property when the sampling rate is
chosen appropriately.

Theorem 16 (RIP for Random Demodulator): Fix δ > 0.
Suppose that the sampling rate

R ≥ Cδ−2 ·N log6(W ).

Then an R × W random demodulator matrix Φ has the
restricted isometry property of order N with constant δN ≤ δ,
except with probability O(W−1).

There are three basic reasons that the random demodulator
matrix satisfies the RIP. First, its Gram matrix averages to the
identity. Second, its rows are independent. Third, its entries are
uniformly bounded. The proof shows how these three factors
interact to produce the conclusion.

In the sequel, it is convenient to write z⊗z for the rank-one
matrix zz∗. We also number constants for clarity.

Most of the difficulty of argument is hidden in a lemma due
to Rudelson and Vershynin [26, Lem. 3.6].

Lemma 17 (Rudelson–Vershynin): Suppose that {zr} is a
sequence of R vectors in CW where R ≤ W , and assume

that each vector satisfies the bound ‖zr‖∞ ≤ B. Let {ξr} be
an independent Rademacher series. Then

E
∣∣∣∣∣∣∣∣∣∑

r
ξrzr ⊗ zr

∣∣∣∣∣∣∣∣∣ ≤ β ∣∣∣∣∣∣∣∣∣∑
r
zr ⊗ zr

∣∣∣∣∣∣∣∣∣1/2 ,
where

β ≤ C1B
√
N log2(W ).

The next lemma employs this bound to show that, in
expectation, the random demodulator has the RIP.

Lemma 18: Fix δ ∈ (0, 1). Suppose that the sampling rate

R ≥ C2δ
−2 ·N log5W.

Let Φ be an R×W random demodulator. Then

E |||Φ∗Φ− I||| ≤ δ.

Proof: Let z∗r denote the rth row of Φ. Observe that
the rows are mutually independent random vectors, although
their distributions differ. Recall that the entries of each row are
uniformly bounded, owing to Lemma 5. We may now express
the Gram matrix of Φ as

Φ∗Φ =
∑R

r=1
zr ⊗ zr.

We are interested in bounding the quantity

E = E |||Φ∗Φ− I||| = E
∣∣∣∣∣∣∣∣∣∑

r
zr ⊗ zr − I

∣∣∣∣∣∣∣∣∣
= E

∣∣∣∣∣∣∣∣∣∑
r

(zr ⊗ zr − E z′r ⊗ z′r)
∣∣∣∣∣∣∣∣∣ ,

where {z′r} is an independent copy of {zr}.
The symmetrization result, Proposition 4, yields

E ≤ 2 E
∣∣∣∣∣∣∣∣∣∑

r
ξrzr ⊗ zr

∣∣∣∣∣∣∣∣∣ ,
where {ξr} is a Rademacher series, independent of every-
thing else. Conditional on the choice of {zr}, the Rudelson–
Vershynin lemma results in

E ≤ 2 E
(
β ·
∣∣∣∣∣∣∣∣∣∑

r
zr ⊗ zr

∣∣∣∣∣∣∣∣∣1/2) ,
where

β ≤ C1B
√
N log2W

and B = maxk,ω |ϕkω| is a random variable.
According to Lemma 5,

(Eβ2)1/2 ≤
√

6C1

√
N log5(W )

R
.

We may now apply the Cauchy–Schwarz inequality to our
bound on E to reach

E ≤ 2
√

6C1

√
N log5W

R

(
E
∣∣∣∣∣∣∣∣∣∑

r
zr ⊗ zr

∣∣∣∣∣∣∣∣∣)1/2

.

Add and subtract an identity matrix inside the norm, and
invoke the triangle inequality. Note that |||I||| = 1, and identify
a copy of E on the right-hand side:

E ≤

√
24C2

1N log5W

R

(
E
∣∣∣∣∣∣∣∣∣∑

r
zr ⊗ zr − I

∣∣∣∣∣∣∣∣∣+ |||I|||
)1/2

=

√
24C2

1N log5W

R
(E + 1)1/2.
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Solutions to the relation E ≤ γ(E + 1)1/2 obey E ≤ 2γ
whenever γ ≤ 1.

We conclude that

E ≤

√
C2N log5W

R

whenever the fraction is smaller than one. To guarantee that
E ≤ δ, then, it suffices that

R ≥ C2δ
−2 ·N log5W.

This point completes the argument.
To finish proving the theorem, it remains to develop a large

deviation bound. Our method is the same as that of Rudelson
and Vershynin: We invoke a concentration inequality for sums
of independent random variables in a Banach space. See [26,
Thm. 3.8], which follows from [61, Thm. 6.17].

Proposition 19: Let Y1, . . . , YR be independent, symmetric
random variables in a Banach space X , and assume each
random variable satisfies the bound ‖Yr‖X ≤ B almost surely.
Let Y = ‖

∑
r Yr‖X . Then

P {Y > C3 [uEY + tB]} ≤ e−u
2

+ e−t

for all u, t ≥ 1.
In words, the norm of a sum of independent, symmetric,

bounded random variables has a tail bound consisting of two
parts. The norm exhibits subgaussian decay with “standard de-
viation” comparable to its mean, and it exhibits subexponential
decay controlled by the size of the summands.

Proof: [Theorem 16] We seek a tail bound for the random
variable

Z =
∣∣∣∣∣∣∣∣∣∑

r
zr ⊗ zr − I

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∑

r
(zr ⊗ zr − E z′r ⊗ z′r)

∣∣∣∣∣∣∣∣∣ .
As before, z∗r is the rth row of Φ and z′r is an independent
copy of zr.

To begin, we express the constant in the stated sampling
rate as C = C2 · c−2, where c will be adjusted at the end of
the argument. Therefore, the sampling rate may be written as

R ≥ C2

(
cδ√

logW

)−2

N log5W.

Lemma 18 implies that

EZ ≤ cδ√
logW

≤ cδ.

As described in the background section, we can produce a
tail bound for Z by studying the symmetrized random variable

Y =
∣∣∣∣∣∣∣∣∣∑

r
(zr ⊗ zr − z′r ⊗ z′r)

∣∣∣∣∣∣∣∣∣
∼
∣∣∣∣∣∣∣∣∣∑

r
ξr(zr ⊗ zr − z′r ⊗ z′r)

∣∣∣∣∣∣∣∣∣ ,
where {ξr} is a Rademacher sequence independent of every-
thing. For future reference, use the first representation of Y to
see that

EY ≤ 2 EZ ≤ 2cδ√
logW

,

where the inequality follows from the triangle inequality and
identical distribution.

Observe that Y is the norm of a sum of independent,
symmetric random variables in a Banach space. The tail bound
of Proposition 19 also requires the summands to be bounded
in norm. To that end, we must invoke a truncation argument.
Define the (independent) events

Fr =
{

max
{
‖zr‖2∞ , ‖z′r‖

2
∞

}
≤ 10 logW

R

}
and

F =
⋂

r
Fr.

In other terms, F is the event that two independent random
demodulator matrices both have bounded entries. Therefore,

P {F c} ≤ 2W−1

after two applications of Lemma 5.
Under the event F , we have a hard bound on the triple-norm

of each summand in Y .

B = maxr |||zr ⊗ zr − z′r ⊗ z′r|||
≤ maxr (|||zr ⊗ zr|||+ |||z′r ⊗ z′r|||) .

For each r, we may compute

|||zr ⊗ zr||| = sup
|Ω|≤N

∥∥∥(zr ⊗ zr)
∣∣
Ω×Ω

∥∥∥
= sup
|Ω|≤N

∥∥zr∣∣Ω∥∥2

2
≤ N ‖zr‖2∞ ≤

10N logW
R

,

where the last inequality follows from F . An identical estimate
holds for the terms involving z′r. Therefore,

B ≤ 20N logW
R

.

Our hypothesized lower bound for the sampling rate R gives

B ≤ 20N logW · (cδ/
√

logW )2

C2N log5W
≤ cδ

logW
,

where the second inequality certainly holds if c is a sufficiently
small constant.

Now, define the truncated variable

Ytrunc =
∣∣∣∣∣∣∣∣∣∑

r
ξr(zr ⊗ zr − z′r ⊗ z′r)IFr

∣∣∣∣∣∣∣∣∣ .
By construction, the triple-norm of each summand is bounded
by B. Since Y and Ytrunc coincide on the event F , we have

P {Y > v} ≤ P {Y > v | F} · P {F}+ P {F c}
= P {Ytrunc > v | F} · P {F}+ P {F c}
= P {Ytrunc > v}+ P {F c}

for each v > 0. According to the contraction principle [61,
Thm. 4.4], the bound

Eξ Ytrunc ≤ Eξ Y

holds pointwise for each choice of {zr} and {z′r}. Therefore,

EYtrunc = Ezr,z′
r

Eξ Ytrunc ≤ Ezr,z′
r

Eξ Y = EY.

Recalling our estimate for EY , we see that

EYtrunc ≤
2cδ√
logW

.
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We now apply Proposition 19 to the symmetric variable
Ytrunc. The bound reads

P {Ytrunc > C3 (uEYtrunc + tB)} ≤ e−u
2

+ e−t.

Select u =
√

logW and t = logW , and recall the bounds on
EYtrunc and on B to obtain

P {Ytrunc > C3(2cδ + cδ)} ≤ 2W−1.

Using the relationship between the tails of Y and Ytrunc, we
reach

P {Y > 3C3cδ} ≤ P {Ytrunc > 3C3cδ}+ P {F c}
≤ 4W−1.

Finally, the tail bound for Y yields a tail bound for Z via
relation (15):

P {Z > 2 EZ + u} ≤ 2 P {Y > u} .

As noted, EZ ≤ cδ ≤ C3cδ. Therefore,

P {Z > 5C3cδ} ≤ P {Z > 2 EZ + 3C3cδ}
≤ 2 P {Y > 3C3cδ}
≤ 8W−1.

To complete the proof, we select c ≤ (5C3)−1.

C. Signal Recovery under the RIP

When the sampling matrix has the restricted isometry prop-
erty, the samples contain enough information to approximate
general signals extremely well. Candès, Romberg, and Tao
have shown that signal recovery can be performed by solv-
ing a convex optimization problem. This approach produces
exceptional results in theory and in practice [24].

Proposition 20: Suppose that Φ is an R ×W matrix that
verifies the RIP of order 2K with restricted isometry constant
δ2K ≤ c. Then the following statement holds. Consider an
arbitrary vector s in CW , and suppose we collect noisy
samples

y = Φs+ ν

where ‖ν‖2 ≤ η. Every solution ŝ to the optimization problem

min ‖v‖1 subject to ‖Φv − y‖2 ≤ η, (24)

approximates the target signal:

‖ŝ− s‖2 ≤ C max
{
η,

1√
K
‖s− sK‖1

}
,

where sK is a best K-sparse approximation to s with respect
to the `1 norm.

An equivalent guarantee holds when the approximation ŝ is
computed using the CoSaMP algorithm [21, Thm. A].

Combining Proposition 20 with Theorem 16, we obtain our
major result, Theorem 2.

Corollary 21: Suppose that the sampling rate

R ≥ CK log6W.

An R × W random demodulator matrix verifies the RIP of
order 2K with constant δ2K ≤ c, except with probability
O(W−1). Thus, the conclusions of Proposition 20 are in force.
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