Designing Structured Tight Frames
via an Alternating Projection Method

Joel A. Tropp,Student Member, IEEHNderjit S. Dhillon, Member, IEEE
Robert W. Heath JrMember, IEEEand Thomas Strohmer

Abstract— Tight frames, also known as general Welch-Bound- mutual inner products. Thus arises a design problem: How do
Equality sequences, generalize orthonormal systems. Numer-you build a structured tight frame?
ous applications—including communications, coding, and sparse
approximation—require finite-dimensional tight frames that pos- A. Contributions
sess additional structural properties. This paper proposes an
alternating projection method that is versatile enough to solve ~ To address the design question, this article proposes a
a huge class of inverse eigenvalue problems, which includes thenumerical method based on alternating projection that builds
frame design problem. To apply this method, one only needs to oy our work in [2], [3]. The algorithm alternately finds the

solve a matrix nearness problem that arises naturally from the ; ; .
design specifications. ThFe)refore, it is fast and easyyto developneare_St t.lght frame to a given ensemble of structured vectors;
versions of the algorithm that target new design problems. then it finds the ensemble of structured vectors nearest to
Alternating projection will often succeed even if algebraic con- the tight frame; and it repeats the proceskinfinitum This
structions are unavailable. technigue is analogous to the method of projection on convex
To demonstrate that alternating projection is an effective tool ggtg (POCS) [4], [5], except that the class of tight frames is

for frame design, the article studies some important structural : . -
properties in detail. First, it addresses the most basic design nonconvex, which complicates the analysis significantly. Nev

problem: constructing tight frames with prescribed vector norms. grtheless, our aIternaFing pr_ojection _algorithm affords §ir_np|e

Then, it discusses equiangular tight frames, which are natural implementations, and it provides a quick route to solve difficult

dictionaries for sparse approximation. Last, it examines tight frame design problems. We argue that similar techniques apply
frames whose individual vectors have low peak-to-average-power tq g huge class of inverse eigenvalue problems.

ratio (PAR), which is a valuable property for CDMA applica- This article demonstrates the elegance and effectiveness of
tions. Numerical experiments show that the proposed algorithm

succeeds in each of these three cases. The appendices investigal@€ alternating projection approach with several examples that
the convergence properties of the algorithm. are motivated by applications. First, we address the most basic
Index Terms— Algorithms, code division multiaccess, eigenval- frame design problem: building tight frames with prescribed

ues and eigenfunctions, extremal problems, frames, geometry, VECtOr norms. This p_roblem arises when constructing signa-
inverse problems, sequences ture signatures for direct-spread, synchronous code division

multiaccess (DS-CDMA) systems [6]-[8]. Second, we discuss
equiangular tight frames, which have the property that each

I. INTRODUCTION ; .
IGHT FRAMES id | lizati ; pair of distinct vectors meets at the same (acute) angle.
I provide a natur_a g_enera|zat|on O Orpese frames have many applications in coding and com-
thonormal systems, and they arise in numerous practi

. ; g nications [9]-[12], and they also form natural dictionaries
and theoretical contexts [1]. There is no shortage of tig

r sparse approximation [13]-[15]. Third, we examine tight
frames, and applications will generally require that the vect P bp [13}-{15] d

- i . mes whose individual vectors have low peak-to-average-
comprising the frame have some kind of additional structur: ower ratio (PAR), which is another valuable property for DS-
For example, it might be necessary for the vectors to h

o . MA signatures [3]. Our experiments show that alternating
specific Euclidean norms, or perhaps they should have s jection outperforms some algorithms that were specifically
Typeset on October 8, 2004. designed to solve these problems.
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frames. In the former case, the finite model plays only anverse eigenvalue problems, and matrix nearness problems are
auxiliary role in the approximate computation of an infiniteestablished. This provides a natural segue to the alternating
dimensional tight frame [1]. In the latter case, the problemprojection algorithm. Afterward, we apply the basic algorithm
under consideration is already finite-dimensional, thus it dots design three different types of structured frames, in order
not involve discretization issues. In this paper, we considef increasing implementation difficulty. Section IV discusses

only finite-dimensional tight frames. tight frames with prescribed column norms; Section V covers
equiangular tight frames; and Section VI constructs tight
B. Previous Work frames whose individual vectors have low peak-to-average-

- . . Lo power ratio. Each of these sections contains numerical ex-
At root, finite-dimensional frame design is an algebrait . . .
i : .periments. The body of the paper concludes with Section VI,
problem. It boils down to producing a structured matrix , . . T . .
: . . . : which discusses the method, its limitations, and its extensions.
with certainspectralproperties, which may require elaborate . ; .
: ! : . The back matter contains the bulk of the analysis. Appendix
discrete and combinatorial mathematics. In the past, m?st

design methods have employed these techniques. To apprecia?ffers a tutorial on point-to-set maps, and Appendix Il

the breadth of this literature, one might peruse Sarwat agﬁles this theory to obtain a rigorous characterization of

recent survey paper about tight frames comprised of ump—e algorithm’s convergence behavior. The first appendix also

norm vectors [16]. The last few years have also seen soﬁ%mams a brief survey of the alternating projection literature.

essentially algebraic algorithms that can construct tight frames
with nonconstant vector norms [7], [17], [18]. Il. TIGHT FRAMES
When algebraic methods work, they work brilliantly. A This section offers a terse introduction to the properties of
numerical approach like alternating projection can hardly hopight frames that are essential for our method. For more details,
to compete with the most profound insights of engineers asde [1], for example.
mathematicians. On the other hand, algebraic and combina-
toric tools are not always effective. For example, we migi;g‘_ Frames
require a structured tight frame for a vector space whose N o
dimension is not a prime-power. Even in these situations, -6t @ and 5 be positive dcpnstants. Ainite frame for
alternating projection will often succeed. Moreover, it caH'® cjgmplek Hilbert sgace(C is a sequence ofV vectors
help researchers develop the insight necessary for completifg Jn=1 drawn fromC¢ that satisfies a generalized Parseval
an algebraic construction. The power of alternating projectiG@ndition:
comes from replacing the difficult algebra with a simple ana- N
lytic question: How does one find an ensemble of structured @ [vlls < > [(v,@,)[> < 8 [v[; forallweC’ (1)
vectors nearest to a given tight frame? This minimization n=1
problem can usually be dispatched with standard tools, sugke denote the Euclidean inner product with), and we write
as differential calculus or Karush—Kuhn—Tucker theory. ||H2 for the associated norm. The numbersind 3 are called
The literature does not offer many other numerical aghe lower andupper frame boundsThe number of vectors in
proaches to frame design. It appears that most current @le frame may be no smaller than the dimension of the space
gorithms can be traced to the discovery by Rupf-Massg@ye., N > d).
[6] and Viswanath—Anantharam [7] that tight frames with If it is possible to takex = 3, then we have &ight frameor
prescribed column norms are the optimal sequences for Qgra-tight frame When the frame vectors all have unit norm,
CDMA systems. This application prompted a long series k., ||z, ||, = 1, the system is called anit-norm frame Unit-
papers, including [19]-[23], that describe iterative methods fabrm tight frames are also known &gelch-Bound-Equality
constructing tight frames with prescribed column norms. Thesequenceg12], [24]. Tight frames with nonconstant vector
techniques are founded on an oblique characterization of tigitrms have also been callegneral Welch-Bound-Equality
frames as the minimizers of a quantity caltetal squared cor- sequence§7].
relation (TSC). It is not clear how one could generalize these
methods to solve dlff(_-:-rent type_s of frame design problenﬁ: Associated Matrices
Moreover, the alternating projection approach that we proposé
significantly outperforms at least one of the TSC-minimization Form ad x N matrix with the frame vectors as its columns:
algorithms. Two of the algebraic methods that we mentioned
above, [7] and [18], were also designed with the DS-CDMA
application in mind, while the third algebraic method [17This matrix is referred to as thfeame synthesis operatobut
comes from thesoi-disantframe community. We are not awarewe will usually identify the synthesis operator with the frame

X:[wl Ty XT3 ... ch].

of any other numerical methods for frame design. itself.
Two other matrices arise naturally in connection with the
C. Outline frame. We define th&ram matrixas G & X*X. (The symbol

Section Il continues with a short introduction to tight indicates conjugate transposition of matrices and vectors.)

frames- Then, in SeCt'on. ll, we state two formal frame 1y work with complex vectors for complete generality. The adaptations
design problems. Connections among frame design problemsyeal vectors are transparent.



The diagonal entries of the Gram matrix equal the squarédfollows that a tight frame with squared column norms
norms of the frame vectors, and the off-diagonal entries of the, ..., cy exists if and only if (4) holds. For an arbitrary
Gram matrix equal the inner products between distinct franset of column norms, the frames that are “closest” to being
vectors. The Gram matrix is always Hermitian and positiight have been characterized in [7], [26].
semi-definite, and it has rank

The positive—definite matrixXX* is usuaIIy called thérame I11. DESIGN VIA ALTERNATING PROJECTIONS

operator Since This section begins with formal statements of two frame

. . N ) design problems. Next, we establish a connection with inverse
V(XX o= [(v,2,)| eigenvalue problems. It becomes clear that an alternating
n=1 projection algorithm offers a simple and natural approach to
we can rewrite (1) as general inverse eigenvalue problems, including both frame
* * design problems. We then solve the matrix nearness prob-
v*(XX*) v | | g |
a < e <p. (2) lems that arise when implementing the proposed algorithm.

The section concludes with a discussion of the algorithm’s

That is, any Rayleigh quotient &X* must lie betweem and %onvergence properties.

S. It follows from the Rayleigh—Ritz Theorem [25, p. 176] tha

each eigenvalue of the frame operator lies in the intdrvab].
When the frame i-tight, the condition (2) is equivalent toA. Structured Tight Frames

the statement thaXX* = «/l4. Three other characterizations Define the collection ofl x N a-tight frames:

of an a-tight frame follow immediately.

Proposition 1: A d x N frame X is a-tight if and only if Lo = AX € CPN XX = ala}. (5)

it satisfies one (hence all) of the following conditions. We fix the tightness parameter for simplicity. It is easy to
1) All d nonzero singular values of equal/a. extend our methods to situations where the tightness is not
2) All d nonzero eigenvalues of the Gram mat' X predetermined, and one can apply similar ideas to construct
equala. frames with prescribed upper and lower frame bounds, viz.

3) The rows ofa~'/2 X form an orthonormal family. the parameters: and 3 in (1). It is worth noting that%, is

These properties undergird our method for constructing tighésentially a Stiefel manifold, which consists of all setsiof
frames. It is now clear that the being a tight frame &pactral orthonormal vectors itV [27].

requirement on the matrix. Let . denote a closédcollection ofd x N matrices that
possess some structural property. In the sequel, we will explore
C. Norms of Frame Vectors several different structural constraints that have arisen in elec-

Throughout this article, we will denote the squared norrr%g.cal engineering contexts. Section IV cpnsuders tight frames
with specified column norms, and Section VI shows how to

of the frame vectors as . S
_ construct tight frames whose individual vectors have a low
en = Hwn”g . peak-to-average-power ratio. Many other structural properties

. - . . . are possible.
There is an intimate relationship between the tightness paramsx P

. . Each constraint se¥ raises a basic question.
eter of ana-tight frame and the norms of its columns. The q
computation is straightforward: Problem 1: Find a matrix in.¥ that is minimally distant
N from 2., with respect to a given norm.

N
_ * * _ 2
ad=TrXX"=Tr X"X = Z lnllz = ZC"' () I the two sets intersect, any solution to this problem is
_ n=1 _ n=1 ~a structured tight frame. Otherwise, the problem requests a
The notationTr (-) represents the matrix trace operator, whicktructured matrix that is “most nearly tight” A symmetric

sums the diagonal entries of its argument. problem is to find a tight frame that is “most nearly structured.”
A related point is that one cannot construct a tight frame

with an arbitrary set of cg_lumn norms. Accqrdl_ng to the S(?h_urE—;_ Structured Gram Matrices

Horn Theorem, a Hermitian matrix can exist if and only if its i ) )

diagonal entries majoriZéts eigenvalues [25, pp. 193—-197]. If If the structural constraints restrict the inner products be-

X is adx N tight frame, thel nonzero eigenvalues of its Gramtween frame vectors, it may be more natural to work with

matrix all equaly”, ¢, /d. Meanwhile, the diagonal entries ofGram matrices. Define a collection that contains the Gram

the Gram matrix ares, . .., cy. In this case, the majorization Matrices of alld x N a-tight frames:
condition is equivalent to the system of inequalities
a N y a 7, = {GeC"N.G=G*and
1 .
0< e, < : ch for eachk = 1,...,N.  (4) G has eigenvalue&y, ..., «,0,...,0)}. (6)
n=1 d

2The literature equivocates about the direction of the majorization relation.3We equipC¢*~N andCN >N with the topology induced by the Frobenius
We adopt the sense used by Horn and Johnson [25, p. 192]. norm, which is identical with every other norm topology [25, p. 273].



The set¥, is essentially a Grassmannian manifold, whichny type of inverse eigenvalue problem. The most general
consists ofi-dimensional subspaces @f¥ [28]. One may also treatment of alternating projection in the IEP literature is
identify the matrices irn4, as rankd orthogonal projectors, probably [37], but the authors do not offer a serious analysis
scaled bya. (An orthogonal projector can be defined as aof their algorithm’s behavior.
idempotent, Hermitian matrix. The rank of a projector equals Here is the basic idea behind alternating projection. We
the dimension of its range.) seek a point of intersection between the set of matrices that
Let 2# be a closed collection ofV x N Hermitian ma- satisfy a structural constraint and the set of matrices that
trices that possess some structural property. In Section 34tisfy a spectral constraint. An alternating projection begins
for example, we will consider equiangular tight frames. That a matrix in the first set, from which it computes a matrix
Gram matrices of these frames have off-diagonal entries with minimal distance in the second set. Then the algorithm
identical moduli, and it is an important challenge to construcéverses the roles of the two sets and repeats the process
them. indefinitely. Alternating projection is easy to apply, and it is
Once again, a fundamental question arises. usually globally convergent in a weak sense, as we show later.

Problem 2: Find a matrix in%,, that is minimally distant

from 7 with respect to a given norm. D. Altemating Projections

Let us continue with a formal presentation of the generic
If the two sets intersect, any solution to this problem will ligyternating projection method for solving inverse eigenvalue
in the intersection. Otherwise, the problem requests a tighfoblems. Suppose that we have two collectiof#s, and
frame whose Gram matrix is “most nearly structured.” We dg, of matrices with identical dimensions. Of course, we
not mention the problem of producing a matrix.## that is are imagining that one collection of matrices incorporates a
nearest ta%, because it is not generally possible to factor gpectral constraint while the other collection incorporates a

matrix in 7 to obtain a frame with dimensiongx N. structural constraint. To ensure that the algorithm is well-
posed, assume that one collection is closed and the other is
C. Inverse Eigenvalue Problems compact.
Algorithm 1 (Alternating Projection):

We view Problems 1 and 2 agverse eigenvalue problemsINPUT_
(IEPs). As Chu explains in [29], an IEP is an inquiry about ' ) o ) ) _ )
structured matrices with prescribed spectral properties. Thes@ AN (arbitrary) initial matrix Yo with appropriate dimen-
spectral properties may include restrictions on eigenvalues, sions , i
eigenvectors, singular values, or singular vectors. According® 1he number of iterations/
to Proposition 1, the defining characteristic of a tight frame [QUTPUT. o -
its spectrum, so frame design is an IEP. o Amatrix Y in ¢ and a matrixZ in &
In the study of IEPs, the two fundamental questions aRROCEDURE
solvability and computability The former problem is to find 1) nitialize j = 0.
necessary or sufficient conditions under which a given IEP2) Find a matrixZ; in % such that
has a solution. The latter problem is how to produce a matrix _
that has given spectral properties and simultaneously satisfies Zj € arg e 1Z = Yillg-
a structural constraint. The solvability and computability of
some classical IEPs have been studied extensively by th63
matrix analysis community, although many open problems still )
remain. The articles [29], [30] survey this literature. Yj41 €arg min | Y — Z; ||,
Although specific IEPs may require carefully tailored nu- yew
merical methods, there are a few general tools available. Oné) Increment; by one.
scheme is the coordinate-free Newton method, which hasb) Repeat Steps 2—4 unfil= J.
been explored in [31]-[33]. Newton-type algorithms do not 6) LetY =Y; andZ = Z; ;.
apply to all problems, and they only converge locally. Another A solution to the optimization problem in Step 2 is called a
general method is the projected gradient approach develogediectionof Y; onto 2 in analogy with the case whet® is a
by Chu and Driessel in [34]. This technique involves numericihear subspace. Step 3 computes the projectiafi;ainto %'
integration of a matrix differential equation, which relies omn a Hilbert space, it can be shown geometrically that a given
advanced software that may not be readily available. Anothgsint has a unique projection onto each closed, convex set.
problem with Newton methods and projected gradient methoBsojections onto general sets may not be uniquely determined,
is that they may not handle repeated singular values well. Thigich fiercely complicates the analysis of Algorithm 1.
shortcoming makes them a poor candidate for constructingvon Neumann, in 1933, was the first to consider alternating
tight frames, which have only two distinct singular values. projection methods. He showed that#f and 2 are closed,
This article concentrates on alternating projection, whidimear subspaces of a Hilbert space, then alternating projection
has occasionally been used to solve inverse eigenvalue probrverges to the point i N 2 nearest toYy [38]. In
lems (in [35] and [36], for example). But alternating projectiod959, Cheney and Goldstein demonstrated that alternating
has not been recognized as a potential method for solvipmpjection between two compact, convex subsets of a Hilbert

We use||-||r to indicate the Frobenius norm.
Find a matrixYj; in % such that



space always yields a point in one set at minimal distance frahe Frobenius norm, a nearesttight frame to Z is given
the opposite set [4]. These two results inspired the applicatiby o UV*. Note that UV* is the unitary part of a polar
of Algorithm 1 to the inverse eigenvalue problems, Problenfactorization ofZ.

1 and 2. Of course, the constraint sets that we consider aréssume in addition thaZ has full row-rank. Thernx UV*
generallynot convex. For a more extensive discussion of this the unique a-tight frame closest t&Z. Moreover, one may
literature on alternating projection, turn to Appendix I-G.  computeUV* using the formula(Zz*)~1/2 Z.

To implement the alternating projection algorithm, one must  Proof: The proof of this well-known result is similar to
first solve the minimization problems in Steps 2 and 3. Fahat of Theorem 3, which appears below. See also pp. 431-432
obvious reasons, these optimizations are called ntfarix of [25]. Classical references on related problems include [44],
nearness problemassociated witt# and 2. Already there [45]. The formula for the polar factor may be verified with a
is an extensive literature on matrix nearness problems. Sdeect calculation. ]
for example, the articles [39]-[41], the survey [42], and many It is also straightforward to compute a matrix4f, nearest
sections of the book [25]. Section llI-F exhibits solutions tto an arbitrary Hermitian matrix. This theorem appears to be
the nearness problems associated with the spectral constraiotgel, so we provide a short demonstration.

Z, and¥,,. Even when it is necessary to solve a new nearnessTheorem 3:Suppose tha¥Z is an N x N Hermitian matrix
problem, this task often reduces to an exercise in differentialth a eigenvalue decompositiddAU*, where the entries of
calculus. This is one of the great advantages of Algorithm A.are arranged in algebraically nonincreasing order.l,gbe

In this article, we will always measure the distance betweghe N x d matrix formed from the firstl columns ofU. Then
matrices using the Frobenius noir| because it facilitates o« U;U,;" is a matrix in, that is closest t&Z with respect to
the solution of matrix nearness problems. Of course, one cotifed Frobenius norm. This closest matrix is unique if and only
develop a formally identical algorithm using other normsf )\, strictly exceeds\;. ;.

metrics, or divergences. Proof: Given an Hermitian matrix4, let A(A) denote

Since the constraint sets are generally nonconvex, alterriie vector of its eigenvalues, arranged in algebraically nonin-

ing projection may not converge as well as one might wisbreasing order.

This explains why we have chosen to halt the algorithm after We must minimize||Z — a G| over all ranke orthogonal

a fixed number of steps instead of waiting fo¥; — Y 1]  projectorsG. In consequence of the Wielandt—-Hoffman The-

to decline past a certain threshold. Indeed, it is theoreticallyem [25, p. 368], the objective function is bounded below.

possible that the sequence of iterates will not converge in

norm. In practice, it appears that norm convergence always 1Z = aGllp 2 [|A(Z) = aA(6)];

occurs. Section 1lI-G provides a skeletal discussion of theguality obtains if and only ifZ and G are simultaneously

theoretical convergence of alternating projection. We do ngfagonalizable by the same unitary matrix.

flesh out the analysis until Appendices | and Il because asyppose that Z has eigenvalue decomposition

proper treatment requires some uncommon mathematics. (/ (diag A(Z)) U*. A rank< orthogonal projector of
dimension N hasd eigenvalues equal to one afd&V — d)

E. Application to Problems 1 and 2 eigenvalues equal to zero. Therefore, one minimizer of the
To solve Problem 1, we propose an alternating projecti@piective function is the matrix
between the structural constraint sef and the spectral G=U(l4 ® Oy_g) U".

constraint setZ,,. Two matrix nearness problems arise. In the

next subsection, we demonstrate how to find a tight frame i®rm a matrixU; by extracting the firstd columns of U.
2., nearest to an arbitrary matrix. Sections IV and VI contaiiheén our minimizer may be expressed more simplyGas-
detailed treatments of two different structural constraints. UsUs". That is, G is the orthogonal projector onto d-

To solve Problem 2, we alternate between the spectgimensional subspace spanned by eigenvectors corresponding
constraint%, and the structural constrain#’. In the next to thed algebraically largest eigenvalues Bf This subspace
subsection, we show how to produce a matrix4p that is iS uniquely determined if and only if thé-th and(d + 1)-st
nearest to an arbitrary matrix. In Section V, we analyze a spigenvalues of are distinct. The orthogonal projector onto a
cific structural constraing?’. After performing the alternating subspace is unique, and the uniqueness claim follows.m
projection, it may still be necessary to extract a tight frame It may be valuable to know that there are specialized algo-
from the output Gram matrix. This is easily accomplishedthms for performing the calculations required by Theorems
with a rank-revealing QR factorization or with an eigenvalué and 3. For example, Higham has developed stable numerical
decomposition. Refer to [43, Sec. 5.4 and Ch. 8] for detailgnethods for computing the polar factor of a matrix [46],

[47] that are more efficient than computing a singular value

E. Nearest Tight Frames decomposition or applying the formulgz*)~1/2 Z.

Standard tools of numerical linear algebra can be used to .
calculate an-tight frame that is closest to an arbitrary matriy®: Basic Convergence Results
in Frobenius norm. It should be clear that alternating projection never increases
Theorem 2:Let N > d, and suppose that thex N matrix the distance between successive iterates. This does not mean
Z has singular value decompositidh>V/*. With respect to that it will locate a point of minimal distance between the



constraint sets. It can be shown, however, that Algorithm 1 liswe fix the squared column norms &fto becy,...,cn, @

globally convergent in a weak sense. short algebraic manipulation shows that minimizing the TSC
Define the distance between a poMtand a set?” via is equivalent to solving
: — i _ in||SS* — al
dist(M, %) = inf [|Y — M. min [[$5* =l

Theorem 4 (Global Convergence of Algorithm 1t 2 Wherea = 3, ¢,/d. In words, minimizing the TSC is
and % be closed sets, one of which is bounded. Suppogguwalent to finding a frame with prescribed column norms
that alternating projection generates a sequence of iterdfd@t i closest in Frobenius norm to a tight frame [52].

{(Y;.,Z;)}. This sequence has at least one accumulation point!/n comparison, alternating projection affords an elegant way
to produce many tight frames with specified column norms. It

focuses on the essential property of a tight frame—its singular
values—to solve the problem. In this special case, we provide
1Y = Z||, = lim [|Y; — Zjl - a cpm_plete accounting of _the behavior of t_he alternating

j—oo projection. Moreover, experiments show that it outperforms
some of the other iterative algorithms that were developed
specifically for this problem.

« Every accumulation point lies i x 2.
« Every accumulation pointY, Z) satisfies

« Every accumulation pointY’, Z) satisfies
|Y - 7HF =dist(Y, Z) = dist(Z,%).

For a proof of Theorem 4, turn to Appendix lI-A. In somé/'\' Constraint Sets and Nearness Problems
special cases, it is possible to develop stronger convergencéhe algorithm will alternate between the set of matrices
results and characterizations of the fixed points. We wilith fixed column norms and the set of tight frames with an
mention these results where they are relevant. The convergeappropriate tightness parameter.
of Algorithm 1 is geometric at best [48]-[51]. This is the major Let the positive numbers;,...,cy denote the squared
shortfall of alternating projection methods. column norms that are desired. We do not require that these

Note that the sequence of iterates may have many acowmbers satisfy the majorization inequalities given in (4),
mulation points. Moreover, the last condition does not impiglthough one cannot hope to find a tight frame if these
that the accumulation pointY, Z) is a fixed point of the inequalities fail. In that case, we would seek a matrix with the
alternating projection. So what are the potential accumulatiprescribed column norms that is closest to being a tight frame.
points of a sequence of iterates? Since the algorithm neWerthe DS-CDMA application, the column norms depend on
increases the distance between successive iterates, the s#ietisers’ power constraints [6], [7].
accumulation points includes every pair of matricegirk 2 In light of (3), the relation between the tightness parameter
that lie at minimal distance from each other. It is therefor@nd the column norms, it is clear thatmust equab ¢, /d.
reasonable to claim that the algorithm tries to solve Problemibbe spectral constraint set becomes
Land2. 2 X € CUN XX = (3, en/d) la}-

IV. PRESCRIBEDCOLUMN NORMS Given an arbitaryl x N matrix, one may compute the closest
tight frame in 2, using Theorem 2.

As a first illustration of alternating projection, let us con- The structural constraint set contains matrices with the
sider the most basic frame design problem: How does ORgrrect column norms.

build a tight frame with prescribed column norms? o )
This question has arisen in the context of constructing S Z{S e CPN ¢ lsnlly = cn}
optimal signature sequences for direct-spread synchron?tu

S . .
code-division multiple-access (DS-CDMA) channels. There 'S s_tralghtfp rwa_rd to sol_ve the matrix nearness problem
associated with this collection.

are some finite algorithms available that yield a small numberProposition 5: Let Z be an arbitrary matrix with columns

of solutions to the problem [7], [18]. These methods exploj T ; . X )
the connection between frames and the Schur—Horn Theor z”}'. A matrix in & is closest toZ in Frobenius norm if and
nly if it has the columns

They work by applying plane rotations to an initial tight framé&
to adjust its column norms while maintaining its tightness. | enza/llzally, zn #0
Casazza and Leon have also developed a finite method that Sn = Cn Uy, z, =0

seems different in spirit [17]. wherew,, represents an arbitrary unit vector. If the columns of

To construct larger collections of frames, some autho? are all nonzero, then the solution to the nearness problem
have proposed iterative algorithms [19]—-[23]. These techniques ' P

attempt to minimize théotal squared correlatiofTSC) of an IS unique.

- . . ; : Proof: We must minimize||S — Z|| over all matrices
initial matrix subject to constraints on its column norms. Thg from .. Sauare and rewrite this obiective function:
TSC of a matrix is defined as >4 J '

N
TSC(S) = [[S*SI7 = [(Sm, sn)[*. IS = ZI[z =" llsn — 2all3-
n=1

m,n



We can minimize each summand separately. Fix an index matrix whose columns are chosen uniformly at random from

and expand thex-th term usingHang = Cp. the surface of the unit sphere, the algorithm returns
S
180 — Znll3 = ¢ + | Z0]l5 — 2 /En Re <" zn>. B 0.1519  0.4258 —0.7778 0.0160 —0.9258
HS"”2 S= 0.9840 —0.6775 0.1882 0.3355 —0.3024 | .
If z, # 0, the unique maximizer oRe (u, z,,) over all unit —0.0926  0.5998  0.5997 0.9419  —0.2269

VeCctors isu = z,/ ||z, If z, = 0, then every unit vector

u maximizes the inner product. Each column norm of the displayed matrix equals one to

machine precision, and the singular values are identical in their
first eight digits. In all the numerical examples, the algorithm

B. Convergence Results was terminated on the condition thig$; 1 — S;[|, < 1075
In this setting, alternating projection converges in a fairlynplemented in Matlab, the computation took 65 iterations,
strong sense. which lasted 0.0293 seconds on a 1.6 GHz machine.

Theorem 6:Let S, have full rank and nonzero columns, and Now let us construct a tight frame fdR® whose five
suppose that the alternating projection generates a sequerggors have norms 0.75, 0.75, 1, 1.25, and 1.25. With random
of iterates{(S;, X;)}. This sequence possesses at least omtialization, we obtain
accumulation point, saysS, X).

« Both S and X have full rank and nonzero columns. _ —0.1223  0.1753 —0.7261 0.0128 —1.0848

« The pair(S, X) is a fixed point of the alternating projec- S = 0.7045 —-0.6786  0.6373 0.0972 —0.6145 | .

tion. In other words, if we applied the algorithm foor —0.2263  0.2670  0.2581 1.2461 -—0.0894
to X every pair of iterates would equéb, X).

. The accumulation point satisfies The column norms are correct to machine precision, and the

singular values are identical to seven digits. The computation
1S = X||p = Lm [IS; = X;ll - took 100 iterations, which lasted 0.0487 seconds.
Iee Next we examine a case where the column norms do not
« The component sequences are asymptotically regular, igstisfy the majorization condition. Suppose that we seek a
“nearly tight” frame with column norms 0.5, 0.5, 1, 1, and
2. Random initialization yields
« Either the component sequences both converge in norm,

1Sj41 = Sjllp = 0 and [ Xj11 — Xjl[p — 0.

Joi Sl =0 et %Xl -0 s [T H han Snm e
or the set of accumulation points forms a continuum. —0.2127 02329  0.4189  0.9649 -0.3754
Proof: See Appendix II-C. [ ]

In the present case, it is also possible to characteri

completely the fixed points of the algorithm that lie .

Proposition 7: A full-rank matrix S from .~ is a fixed point
of the alternating projection betweeri and 2., if and only if
the columns of5 are all eigenvectors d85*. That is,55*S =

SA, whereA € CNV*¥ is diagonal and positive with no more

thand distinct entries.

Proof: Refer to Appendix II-D.
Many of the fixed points in” do not lie at minimal

Ige column norms are all correct, but, as predicted, the frame
IS not tight. Nevertheless, the last vector is orthogonal to the
first four vectors, which form a tight frame for their span.
This is an optimal solution to the frame design problem. The
calculation required 34 iterations over 0.0162 seconds.

Of course, alternating projection can produce complex-
valued tight frames, as well as larger frames in higher-
dimensional spaces. Such ensembles are too large to display
in these columns. To give a taste of the algorithm’s general

distance from;,, so they are not solutions to Problem 1.performanc:e, we have compared it with our implementation of

Nevertheless, the fixed points still have a tremendous amogﬁ? Ulum}{S_Y."’lteS a]gonthm .[2.(3.]'I.T0 gonstrr]uclt “”.'t;”"m?tﬂﬁﬂt
of structure. Each fixed point can be written as a union of tig pmes ot various sizes, we infialized each aigoritnm wi €
frames for mutually orthogonal subspacesGsf, and the set same random matrix. Then we plotted the comparative execu-
of fixed points is identical with the set of critical points of theUon times. Figure 1 shows the results for 64 real dimensions,

TSC functional subject to the column norm constraint [ZSEnd Figure 2 shows the resuilts for 64 complex dimensions.

[52]. The Ulukus—Yates algorithm, another iterative metho ote the different scales on the time axes.

for designing tight frames with specified column norms, ha%s Eﬁh algorithms lpt?rfolrm slowly WE.G?]T IS imaltlhbeca(ljgf?e it
identical fixed points [20]. ight frames are relatively scarce, which makes them difficu

to find. Indeed, it is known that (modulo rotations) there exists
. a unique tight frame ofd+ 1) vectors ind-dimensional space
C. Numerical Examples [53, p. 13]. Another reason that the alternating projection
We offer a few simple examples to illustrate that thalgorithm performs better as the problem grows is that a
algorithm succeeds, and we provide some comparisons watbilection of N uniformly random unit-vectors converges
the Ulukus—Yates algorithm. almost surely to a tight frame d€ tends to infinity [54, Thm.
Suppose first that we wish to construct a unit-norm tighi]. It is therefore perplexing that the Ulukus—Yates algorithm
frame forR? consisting of five vectors. Initialized withaax 5 performs more and more slowly. One might attribute this



2 Comparative Execution Times in Real Dimension d =64 equiangular tight frames. The underlying intuition is that these
frames will contain vectors maximally separated in space.

Define anequiangular tight frameo be a unit-norm tight

1 frame in which each pair of columns has the sahsolutein-

ner product. Since we are considering unit-norm tight frames,

the absolute inner product between two frame vectors equals

|1 the cosine of the acute angle between the one-dimensional

subspaces spanned by the two vectors. For this reason are

the frames called equiangular. One can show that each inner

product in an equiangular tight frame has modulus

20

.
o
T

Execution Time (sec)

10r

N —d

FEVIm -y @

It is a remarkable fact thaveryensemble ofV unit vectors
o . in d dimensions contains a pair whose absolute inner product
% s 00 20 0 60 180 0 Strictly exceeds:, unlessthe vectors form an equiangular tight
Number of vectors (N) frame. Unfortunately, equiangular tight frames only exist for
Fig. 1. Comparison of alternating projection with the Ulukus-Yates algorithrl;_fa‘re Combmatlonsloi andN' In eartlcmar’ a rgal equiangular
in 64 real dimensions. tight frame can exist only ifV < 5 d (d+1), while a complex
equiangular tight frame requires that < d? [12, Thm. 2.3].
Comparative Execution Times in Complex Dimension d =64 The paper [55] also contains detailed necessary conditions on

70 T T T T

real equiangular tight frames and on equiangular tight frames
—<— Ulukus-Yates algorithm

over finite alphabets.

One can view equiangular tight frames as a special type
of Grassmannian frameln finite dimensions, Grassmannian
frames are unit-norm frames whose largest absolute inner
product is minimal for a givend and N [12]. Their name
1 is motivated by the fact that they correspond with sphere
packings in the Grassmannian manifold of all one-dimensional
41 subspaces of a vector space [28]. Grassmannian frames have
applications in coding theory and communications engineering
1 [9]-[12]. They also provide a natural set of vectors to use for
sparse approximation [13]—-[15].

In general, it is torturous to design Grassmannian frames.
Not only is the optimization difficult, but there is no general
procedure for deciding when a frame solves the optimization

60 8 N o S 160 20 problem unless it meets a known lower bound. Most of the

current research has approached the design problem with
Fig. 2. Comparison of alternating projection with the Ulukus-Yates algorith@algebraic tools. A notable triumph of this type is the con-
in 64 complex dimensions. struction of Kerdock codes ové, andZ, due to Calderbank
et al. [56]. Other explicit constructions are discussed in the
. ) articles [10], [12]. In the numerical realm, Sloane has used
behaylor to the fact that the algorithm does not act to equallmeS Gosset software to produce and study sphere packings in
the singular values of the frame. real Grassmannian spaces [57]. Sloane’s algorithms have been
extended to complex Grassmannian spaces in [58]. We are not
V. EQUIANGULAR TIGHT FRAMES aware of any other numerical methods.
In this article, we will construct equiangular tight frames for

60 ¥ 4

50~

40

30

Execution Time (sec)
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In this section, we will consider a”?me design problem th?éal and complex vector spaces using alternating projection.
leads to a simple structural constraint on the Gram matrl,f

. s . . he method can easily be extended to compute Grassmannian
The goal of the alternating projection will be to design & y P

: : . mes and packings in Grassmannian manifolds, but that is
;}th?vt\)llaerdGram matrix, from which the frame may be extracte‘,jgsother paper for another day [59, Ch. 7].

A tight frame is a generalization of an orthonormal basis ]
because they share the Parseval property. But orthonorfalConstraint Sets and Nearness Problems
bases have other characteristics that one may wish to extendlhe signal of an equiangular tight frame is that each inner
In particular, every orthonormal basis exquiangular That product between distinct vectors has the same modulus. Since
is, each pair of distinct vectors has the same inner produttte Gram matrix of a tight frame displays all of the inner
namely zero. This observation suggests that one seek praducts, it is more natural to construct the Gram matrix of an



equiangular tight frame than to construct the frame synthe§ls Numerical Examples
matrix directly. Therefore, the algorithm will alternate between First |et us illustrate just how significant a difference there

spectrum and the collection of Hermitian matrices that haygre s the Gram matrix of a six-vector, unit-norm tight frame
sufficiently small off-diagonal entries. for R3:

Since we are working with unit-norm tight frames, the
tightness parametesr must equalN/d. This leads to the 1.0000  0.2414 —0.6303  0.5402 —0.3564 —0.3543

spectral constraint set 0.2414  1.0000 —0.5575 —0.4578  0.5807 —0.2902
—0.6303 —0.5575  1.0000  0.2947  0.3521 —0.2847
det NXN .~ _ ~* 0.5402 —0.4578  0.2947  1.0000 —0.2392 —0.5954
Yo ={GeC 1 G =G" and —0.3564  0.5807  0.3521 —0.2392  1.0000 —0.5955
G has eigenvalueéN/d,...,N/d,0,...,0)}. —0.3543  —0.2902 —0.2847 —0.5954 —0.5955  1.0000

N————’
. 4 Notice that the inner-products between vectors are quite dis-
Theorem 3 shows how to find a matrix i, nearest to an parate, ranging in magnitude between 0.2392 and 0.6303.
arbitrary Hermitian matrix. These inner products correspond to acute angle®aP and

In an equiangular tight frame, each vector has unit norm by ge | fact, this tight frame is pretty tame; the largest inner
no two vectors have inner product larger thanTherefore, nrodycts in a unit-norm tight frame can be arbitrarily close

we define the structural constraint set to on¢. The Gram matrix of a six-vector, equiangular tight
3 H H .
H, def (He CVXN . H = H*, frame forRR* looks quite different:
diag H =1 and max |hmn| < i} 1.0000  0.4472 —0.4472 04472 —0.4472 —0.4472

) _ 0.4472  1.0000 —0.4472 —0.4472  0.4472 —0.4472

It may seem more natural to require that the off-diagonal —0.4472 —0.4472  1.0000  0.4472  0.4472 —0.4472
entries have modulus exactly equal 4o but our experience | 0-4472 04472 0.4472  1.0000 —0.4472  —0.4472
o hat th ¢ f lati ks bett habs 04472 04472 04472 —0.4472  1.0000 —0.4472
indicates that the present formulation works better, perhaps 4472 04472 —0.4472 —0.4472 —0.4472  1.0000
becauses?,, is convex. The following proposition shows how
to produce the nearest matrix i#;,. Every pair of vectors meets at an acute angl&dfl°. The

Proposition 8: Let Z be an arbitrary matrix. With respectvectors in this frame can be interpreted as the diagonals of an

to Frobenius norm, the unique matrix i}, closest toZ has icosahedron [28, Table 1].

a unit diagonal and off-diagonal entries that satisfy We have used alternating projection to compute equiangu-
Zom i |2mn| < o and lar tight f_rames, both_real and complex, in dimen_si_o_ns_ two
Bomn el agzmn  otherwise. through six. The algorithm performed poorly when initialized

with random vectors, which led us to adopt a more sophis-
ticated approach. We begin with many random vectors and
winnow this collection down by repeatedly removing whatever

B. Convergence Results vector has the largest inner product against another vector. It

The general convergence result, Theorem 4, applies to {ﬁefaSt and easy to design starting points in this manner, yet

. C . € results are impressive. These calculations are summarized
alternating projection betwee#i, and.’,. We also obtain a in Table | P
local convergence result. :

Theorem 9:Assume that the alternating projection betweetn ﬁ‘:t]?mat'ng C?rOject!on ctan :ﬁcate heyew Ireatl' (_aqwangéllar
4, and #, generates a sequence of iterates;, H,)}, ight frame in dimensions two through six; algebraic consider-

and suppose that there is an iteratioh during which ations eliminate all the remaining values®f[55, Thm. A and

1G; — Hsllp < N/(dv2). Then the sequence of iteratesThm' 6.1]. Moreover, the method computes these ensembles

possesses at least one accumulation point,(&ayd). very efhmeptly. For gxample, the glgorlthm producgd a Ssix-
) o vector, equiangular tight frame fd° after a single trial. In
» The accumulation point lies i, x .77,.

== : : , this case, 70 iterations lasting 0.4573 seconds were sufficient
« The pair(G, H) is a fixed point of the alternating pro- . . . ; .
. : . .. - - to determine the first eight decimal places of the inner prod-
jection. In other words, if we applied the algorithm o

— . = ucts.
orto H, every lterate .WOUId. egua(l& H). In the complex case, the algorithm was able to compute
o The accumulation point satisfies

R every equiangular tight frame that we know of. Unfortunately,
|G —H||p = lim [|G; — Hjllp . no one has yet developed necessary conditions on the existence
e of complex, equiangular tight frames aside from the upper
found, N < d2, and so we have been unable to rule out
|Gjs1 — Gjllp =0 and ||Hj;1 — Hj|lz — 0. the existence of other ensembles. Some of the computations

Either the component sequences both converge in nan{ogressed quite smoothly. After 1000 iterations and 18.75
seconds, alternating projection delivered a collection of 25

We usei to denote the imaginary unit.
Proof: The argument is straightforward.

« The component sequences are asymptotically regular, i

16, =G| —0 and |[H; —H]. =0,
. . . 4To see this, consider a tight frame that contains two copies of an
or the set of accumulation points forms a continuum. grthonormal basis, where one copy is rotated away from the other by an

Proof: See Appendix II-B. B arbitrarily small angle.
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Nl2 3 ‘fl 5 6l N2 3 ff 5 6 different because it only involves individual signatures. Con-
TR ® . _Iror ventionally, the uplink PAR has not received attention because
4|CcC R R . .|l21|. . . C . most systems use binary spreading sequences, which always
S| o R R .20 .. have unit PAR. If general sum-capacity-optimal sequences are
6 R . R R 23|. . . . . . . ;
7 c ¢ wrll2al > - T to be used in real systems, then PAR side constraints should
8 . C dl2s .. . LoCo. be included in the design problem. Therefore, we will consider
190 c . i C %g how to construct tight frames whose columns have prescribed
1 ) c cllasl = 0 norms and low peak-to-average-power ratios.
2. . . cll29/. . . . . As discussed in Section IV, many algorithms have already
ﬁ S 22 o been developed for constructing tight frames with prescribed
R | N vector norms, such as [7], [19], [20], [22]. Unfortunately, these
6. . C . RI33]. . . . . methods cannot accept additional constraints on the vectors,
A I T | AT and thus they are not suitable for finding tight frames whose
8. . . . 3. .. : -
Y | Y o vectors have low PAR. We show that alternating projection
provides a way to produce these ensembles. The PAR problem
TABLE | makes an interesting test case because it induces a matrix
EQUIANGULAR TIGHT FRAMES nearness problem that is considerably more challenging than

those we have examined in previous sections.
The notationsR and C respectively indicate that alternating projection was
able to compute a real, or complex, equiangular tight frame. Note that every

real equiangular tight frame is automatically a complex equiangular tight Constraint Sets and Matrix Nearness Problems
frame. One period (.) means that no real equiangular tight frame exists, and

two periods (..) mean that no equiangular tight frame exists at all. The PAR in a digital communication system is funda-
mentally related to the analog waveforms that are generated.
From the perspective of sequence design, it usually suffices to

vectors in five dimensions whose inner products were identiggjnsider the PAR defined directly from the discrete sequence.

in the first eight decimal places. On the other hand, it tookhe discrete PAR of a vector is the quantity
5000 iterations and 85.75 seconds to produce 21 vectors in

X . . . 2
five dimensions whose inner products reached the same level PAR(z) & e
of accuracy. Even worse, we were unable to locate the 31- > lzm|?/d

vector equiangular tight frame i68° until we had performed
d g g P NRte thatl < PAR(z) < d. The lower extreme corresponds to

two dozen random trials that lasted several minutes each. . . - .
is some consolation that the authors of [58, Table I] indicaEeveCtor whose entries have identical modulus, while the upper

their algorithm could not compute this ensemble at all. ound is attained only by (scaled) canonical basis vectors.

It seems clear that some equiangular tight frames are muctPUPPOSe that we require the columns of the frame to have
easier to find than others. We have encountered less succgkidred norme;, ..., cy. In the DS-CDMA application, these
at constructing equiangular tight frames in higher dimensior%l.meers depend on the users’ power constraints [6], [_7]' It
But we have neither performed extensive experiments nor hdglows from (3) thata = 3, c./d. The spectral constraint
we attempted to fine-tune the method. set becomes

P EAX € CPN L XX* = (3, en/d) la}-
VI. PEAK-TO-AVERAGE-POWER RATIO

: L : .Theorem 2 delivers the solution to the associated matrix
Finally, let us present a situation in which the matrix

nearness problem is much more difficult hearness problem.
. . " . Let p denote the upper bound on the PAR of the frame
As we have mentioned, tight frames with prescribed VeCtg‘ements Then the structural constraint set will be
norms coincide with signature sequences that maximize sum '
capacity in the uplink of direct-spread, synchronous code .7 i {5 C**VN : PAR(s,) < p and ||sn||§ =cp}.
division multiple access (DS-CDMA) systems [6]-[8]. Un-
fortunately, general tight frames can have properties that &&/€n an arbitrary matrixZ, we must compute the nearest
undesirable in practice. In particular, the individual framglement of.”. Since the structural constraint on each column
vectors may have larggeak-to-average-power rati(PAR). is independent and the Frobenius norm is separable, each
The PAR of an analog signal measures how the largest vakfdumn yields an independent optimization problem. For each
of the signal compares with its average power. Signals wi@lumn z, of the input matrix, we claim that the following
large PAR require higher dynamic range on the analog-t@LgOfithm returnss,,, the corresponding column of a nearest
digital converters and the digital-to-analog converters. Th&yatrix S from ..
may also require more linear (and thus higher cost) powerAlgorithm 2 (Nearest Vector with Low PAR):
amplifiers. In DS-CDMA systems, the PAR is normally of NPUT.
concern only in the downlink (see, e.g., [60]), where linear « An input vectorz from C¢
combinations of signatures can conspire to have tremendous A positive humbere, the squared norm of the solution
peak power. On the uplink, the PAR problem is fundamentally  vector
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o A number p from [1,d], which equals the maximum We have reached a much more straightforward optimization
permissible PAR problem. Given a nonnegative vecterwith unit norm, we
OUTPUT: must solve

d .
« A vector s from C* that solves max (s, z) subjectto (s,s)=cand0 < s, <4,
S

. . 2
- . < =c. . . . :
e ls ==l subj.to PAR(s) < p and s, = ¢ Observe that every point of the feasible set is a regular point,

PROCEDURE i.e., the gradients of the constraints are linearly independent.
1) Scalez to have unit norm; defing — m and Therefore, Karush-Kuhn-Tucker (KKT) theory will furnish
initialize k — 0. ' ' necessary conditions on an optimizer [61, Sec. 28].

2) Let.# index (d — k) components of with least mag- Ve form the Lagrangian function
nitude. If this set is not uniquely determined, increment _ 1 B
k and repeat Step 2. L(s, A\ p,v) =—(s,2) + 3 A((s,8) — ¢)

3) If 2, = 0 for eachm in .#, a solution vector is —(s,n) +(s—01,v).
s={ VR whenmeand om0 the lower and upper boundesoMean
§ el arg zm whenm ¢ .# Y comespona © [ower and upp undss iy
o while, the multiplier\ is unrestricted because it is associated
4) Otherwise, let with the equality constraint.
152 The first-order KKT necessary condition on a regular local
y = /0_72. maximums* is that
Z'm,e//{ |Zm| 0= (VS L)(S*,A*,H*,V*) g
5) If vz, > ¢ for anym in .#, incrementt and return to = —z+ s — pt 4, (8)
Step 2. . .
6) The unique solution vector is where 7, > 0 only if s, = 0 andv; > 0 only if
sy, = d. Notice that one of.}, or v}, must be zero because
. { 7 Zm whenm € .#, and they correspond to mutually exclusive constraints. The second-
1 arg zm . .
del 8 whenm ¢ . . order KKT necessary condition on a regular local maximum

When p = 1, the output of the algorithm is a vectoris that
with unimodular entries that have the same phase as the
corresponding entries of. On the other hand, when = d, .7
the output vector equals. We now prove that the algorithm =Ny y
is correct.

Proof: We must solve the optimization problem

0<y" (VZL)(s" N\ u* vy

for every vectory in the subspace of first-order feasible
variations. This subspace is nontrivial, 56 > 0.

min|[s — z|2 subjectto PAR(s) < p and |s|5 = c. Solve (8) to obtain
S
Let us begin with some major simplifications. First, rewrite Nt =z+p v
the PAR constraint by enforcing the norm requirement a'Wheneveru* ~ 0 both s* — 0 and v* — 0. This
. . . .y m ! m m -
rearranging to obtain the equivalent condition combination is impossible becausg, > 0. Therefore, we
max |s,,| < \/cp/d. may eliminatep* to reach
m

In the rest of the argument, the symbdolill abbreviate the A8t =z-v0

quantity \/cp/d. The PAR constraint becomegs,,| < 6 for The cases\* = 0 and \* > 0 require separate consideration.

eachm =1,...,d. o _ If \* =0, it is clear thatv* = z. Sincevy, > 0 only if
Now, expand the objective function and enforce the norgy — 5 we must haves®, = § wheneverz,, > 0. Suppose
constraint again to obtain that £ components ofs* equal §. The remaining(d — k)

components are not uniquely determined by the optimization

in[c— 2 2} . .
e {C Re {s,2) + ||z[l; problem. From the many solutions, we choose one such that

S

Observe that it is necessary and sufficient to minimize the PR

second term. It follows that the optimizer does not depend on sy =1/ p for m wherez,, = 0.

the scale of the input vectar. So take||z||, = 1 without loss B

of generality. This formula ensures that* has the correct norm and that

Next, note that the PAR constraint and the norm cofone of its entries exceeds
straint do not depend on the phases of the components ifVhenA* > 0, the solution has the form
s. Therefore, the components of an optimalmust have
the same phases as the components of the input vector
In consequence, we may assume that bsttand z are where~ is positive and the operatdy]; truncates toj the
nonnegative real vectors. components of its argument that exceedt is clear that the

st =[yz]s,
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largest components of are all truncated at the same timecolumn. Let us apply our algorithm to calculate a unit-PAR,
We only need to determinehich components these are. unit-norm tight frame:
To that end, observe thay — ||[yz];]l, is a strictly

increasing function on0, d/zmin|, Where z,;, IS the least
9 M0, 0/ Zumin] i 1345 + 56151 .1672+ .5526i  .4439 + .3692i

positive component of. For at most one value of, therefore, 5410 — 20170  —.0303 + 57661 —.5115 4 .2679i
does the vectofy z]; have normy/c. If this norm value were —.5768 +.0252i —.2777 — .5062i —.2303 + .5294i
not attained, then\* would equal zero. Let be the number 3358 + 46961 4737 + .3300i .0944 + .5696i
of entries ofs* that equaly, and suppose tha# indexes the —.5432 — 19561 —.3689 — .4442i .5747 4 .0554i
remaining(d — k) components. Then 1258 4 .56351 —.0088 — .57731 .4132 + .4033i
c=Is* 5 =k +42 D |zl Indeed, each of the columns has unit PAR and unit norm. The
me.H singular values of the matrix are identical to eight decimal

Recall thaty is positive. Therefore, is impossible that? > ¢. Places. The calculation required 78 iterations lasting 0.1902

When k62 = ¢, it follows that z,, = 0 for eachm in .#. Seconds.

Otherwise,z,, must be nonzero for some in .#. Then the  Alternating projection can also compute tight frames whose
value ofy must be columns have unit PAR but different norms. For example, if

we request the column norms 0.75, 0.75, 1, 1, 1.25, and 1.25,

§ = c—kd? the algorithm yields
=/ 5.
Zme/{ |Zm‘

| .3054 + .3070i .1445 4 .4082i .3583 + .4527i
4295 — .0549i1 1235 4 .41501  —.5597 4 .1418i
—.4228 — .0936i —.0484 — .4303i .0200 + .5770i

B. Convergence —.4264 +.38931 42524 .5831i  .3622 + .6242i
For the alternating projection between the PAR constraint —-5393 —.2060i —.4425 —.5701i  .7165 — .0863i
. 2585+ 51621 —.2894 — .6611i  .1291 + .7101i

set and the set af-tight frames, we have not proven a more

elaborate convergence theorem than the basic result, Theorem

4, because it is not easy to guarantee that the solution to {A8€ can check that the column norms, PAR and singular
PAR matrix nearness problem is unique. We have been aMfues all satisfy the design requirements to eight or more
to provide a sufficient condition on the fixed points of thdecimal places. The computation took 84 iterations over

iteration that lie in the PAR constraint sef. Note that similar 0-1973 seconds. _
fixed points arose in Section IV. Less stringent constraints on the PAR pose even less trouble.

Theorem 10:A sufficient condition for a full-rank matrix For example, we might like to construct a tight frame whose
S from .7 to be a fixed point of the alternating projection bePAR is bounded by two and whose columns have norms 0.75,
tween.# and 2, is that the columns of are all eigenvectors 0-75, 1, 1, 1.25 and 1.25. Itis
of SS*. That is,S5*S = SA, whereA € CV*¥ is diagonal

and positive, with no more thag distinct entries. 0617 + 13200 0184 + 27641  .4299 4 .3593i
Proof. Refer to Appendix II-E. ] 4256 — 10311  —.0558 + .59381  —.5920 + .4974i
—.5912 + .0025 —.1304 — 33631 —.0807 + .2857i

. —.1382+ .2511i  .6847 +.74361  .2933 + .6939i

C. Numerical Examples — 4306 — 26501 —.2095 — .3072i  .7317 + .0928i

Let us demonstrate that alternating projection can indeed 0852 +.80931  —.3504 —.52891  .2918 + .6048i

produce tight frames whose columns have specified PAR

and specified norm. We will produce complex tight framefhe computer worked for 0.0886 seconds, during which it
because, in the real case, PAR constraints can lead to a discpetdormed 49 iterations. As usual, the singular values match to
optimization problem. The experiments all begin with theight decimal places. It is interesting to observe that the frame

initial 3 x 6 matrix exceeds the design specifications. The respective PAR values
of its columns are 1.8640, 1.8971, 1.7939, 1.9867, 1.9618, and
0748 +.3609i 0392 + 45581  .5648 + .3635i 1.0897.

5861 — .056701 —.2029 4 .80241 —.5240 + .4759i
—.7112 4 .1076i —.2622 — .1921i —.1662 4 .1416i

—.2567 + .4463i .7064 + .6193i .1586 + .68251

—.1806 — .10151 —.1946 — .1889i  .5080 4 .02261 |. ) ) o
0202 + .8316i  .0393 — .2060i  .2819 + .4135i As advertised, we have developed an alternating projection

method for solving frame design problems, and we have
The respective PAR values of its columns are 1.5521, 2.05%tovided ample evidence that it succeeds. In this section,
1.5034, 2.0760, 2.6475, and 1.4730. we discuss some implementation issues and some of the
Unit-PAR tight frames are probably the most interestinijmitations of the algorithm. We conclude with a collection
example. In each column of a unit-PAR tight frame, the entries related problems that one can also solve with alternating
share an identical modulus, which depends on the norm of thejection.

VIl. DISCUSSION
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A. The Starting Point alphabets. It is straightforward to solve the matrix nearness

For alternating projection to succeed, it is essential to chod¥@Pleém associated with a finite alphabet, and it can be shown

a good starting point. Here are a few general strategies tif3@t the algorithm always converges in norm to a fixed point.
may be useful. But the algorithm never once yielded a tight frame. This failure

The simplest method is to seledf vectors uniformly at ig hardly surprising;_discrgte constraints are some of the most
random from the surface of the unit sphereGA and form d|ff|cult. to deql with in optimization. It may be possible to use
them into an initial matrix. Although this technique sometime@nnéaling to improve the performance of the algorithm. This
works, it is highly probable that there will be pairs of stronglyvould be a valuable direction for future research.
correlated vectors, and it is usually preferable for the frame
to contain dissimilar vectors. Nevertheless, a collection & Related Problems
random vectors converges almost surely to a tight frame asMVe have permitted a great deal of freedom in the selection
more vectors are added [54, Thm. 1]. of the structural constraint set, but we only considered the

A more practical idea is to select many vectors, 8ayN, spectral constraints that arise naturally in connection with
and then use a clustering algorithm—such as Lloyd—Max [62jght frames. Nevertheless, alternating projection offers a
sphericalk-means [63] or diametrical clustering [64]—to sepstraightforward method for addressing other inverse eigenvalue
arate these vectors inf§¥ clusters. The cluster representativeproblems. For example, one might try to construct general
will usually be much more diverse than vectors chosen tames with prescribed lower and upper frame bounds,
random. A related approach would select many random vectarsd 3. Instead of forcing the Gram matrix to be a raghk-
and then greedily remove vectors that are highly correlatedthogonal projector, one might impose only a rank constraint
with the remaining vectors. This method seems to furnisit a constraint on its condition number. To implement the
excellent starting points for constructing equiangular tigl@gorithm, it would only be necessary to solve the matrix
frames. One might also build up a collection of random vectonearness problem associated with these spectral constraints.
by allowing a new vector to join only if it is weakly correlated One can also use alternating projection to construct positive
with the current members. semi-definite (PSD) matrices that have certain structural prop-

Another technique is to start with a tight frame that hagrties. Higham, for example, has used a corrected alternating
been developed for another application. By rotating the frarpgojection to produce the correlation matrix nearest to an input
at random, it is possible to obtain many different startingatrix [36]. (A correlation matrixis a PSD matrix with a
points that retain some of the qualities of the original frame. it diagonal.) Since the PSD matrices form a closed, convex
particular, equiangular tight frames make excellent initializerset, it is possible to prove much more about the behavior of

It is also possible to choose a collectiondfvectors from alternating algorithms.

a larger frame forC?. Similarly, one might truncate some We have also had good success using alternating projection

coordinates from a frame in a higher-dimensional space. tth compute sphere packings in real and complex projective

particular, one might truncate an orthonormal basisddrto spaces. These methods can be extended to produce sphere

retain onlyd coordinates. See [65], for example, which usegackings in real and complex Grassmannian manifolds [59]. It

the Fourier transform matrix in this manner. seems clear that alternating projection has a promising future
for a new generation of problems.

B. Limitations APPENDIX |

Alternating projection cannot alleviate all the pain of frame POINT-TO-SET MAPS

design. While preparing this report, we encountered severak, ngerstand the convergence of the algorithms, we rely

difficulties. L _on some basic results from the theory of point-to-set maps.
A theoretical irritation is the lack of a proof that alternatlngtangwm,s book [68] is a good basic reference with applica-

projection converges in norm. No general proof is possiblgyns 1o mathematical programming. More advanced surveys

as the counterexample in [66] makes clear. Neverthelessiyit),qe [69], [70]. de Leeuw presents statistical applications

would be comforting to develop sufficient conditions thaf, [50]. We have drawn from all these sources here.
guarantee the convergence of alternating projections between

nonconvex sets. The results of [66] are the best that we knQW puint-to-set Maps
of. We would also like to develop conditions that can ensure Let 7 and % b bi h f #is th
convergence to a pair of points at minimal distance. Here, the et an e arbifrary sets. Thpower setof 2° is the

. - . wog’
most general results are probably due to Geisnd Tusady coI.Iectlon of all subsets ofZ, gnd Itis Qenoted b= ;‘
[67]. point-to-set magfrom # to & is a functionQ) : % — 2<.

In words, {2 maps each point of/” to a subset ofZ".

Another major inconvenience is that alternating projectio Th | diff ¢ ¢ bini :
converges at a geometric rate (or worse) [48]-[51]. For large ere are several different ways of combining point-to-set

. z . W
problems, it can be painful to wait on the solution. A aps. Take two mapg,,. : & — 2% and{),, : 2 — 27.

interesting topic for future research would be a method € co_mposmon of these maps carries a pgirb a subset
acceleration. of % via the rule

A more specific disappointment was the inability of alter- (R 0 Qy2)(y) = U Qo (2).
nating projection to construct tight frames over small finite 2€Qy.(y)
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This definition can be extended in the obvious way to a longEr Iterative Algorithms

e 'V
composition of maps. Now, supposk,, maps# t02”. The  zangwill was apparently the first to recognize that many
Cartesian product d?,, and(2,,. is the point-to-set map from ,-qcedures in mathematical programming find their most

U x ¥ 10V x Z given by natural expression in the language of point-to-set maps [68].
An algorithmic mapor algorithm is simply a functionf :
(Quw X Qy2) (u, y) = Quo (1) X Qy=(y). % — 2% . Given an initial pointy, of %, an algorithmic map

generates a sequence of iterates according to the rule

B. Topological Properties Yj+1 € Qy; ).

Suppose that the underlying sets are endowed with topofPPose thatf : % — R, is a continuous, nonnegative
g|es (e} that we may Speak of Convergence_ A rﬂaﬂ — funCtlon We Say that the algo”thr@ |S m0n0t0n|CW|th
2% is closedat the pointy in % whenever the statementsi€Spect tof when
y; — U, z; € Qy;), andz; — z together imply that € Q(y). cQ imolies < .

One may interpret this definition as saying that the(¥@t) is : ) P 1z = 1)

“bigger” than the sets in the sequenf®(y;)}. On the other An algorithmstrictly monotonicwith respect tof is a mono-
hand, the mag? is openat i in % whenever the statementstonic algorithm for which

y; — gy and Z € Q(y) together imply the existence of a B i B
number.J and a sequence of poins; } such that;; — z and z€Q(y) and f(z) = fly)  imply 2=y

zj € Q(y;) for all j > J. More or less, this statement meang angwill showed that a closed, monotonic algorithm converges
that the set2(y) is “smaller” than the sets in the sequencg, g weak sense to a generalized fixed point. We present a
{Q(y;)}. A map that is both open and closediats said t0  streamlined version of his result.

be continuousat y. We call 2 an open map closed mapor Theorem 12 (Zangwill [68, p. 91])Let Q be a closed al-
continuous mapvhenever it has the corresponding propertyorithmic map on a compact sé¥, and assume tha® is

for every point in%'. monotonic with respect to a continuous, nonnegative function

Finite Cartesian products and finite compositions of open Suppose that the algorithm generates a sequence of iterates
maps are open. Finite Cartesian products of closed maps fue.

closed. IfQ,. : & — 2% andQ.,, : 2 — 2” areclosedand | e sequence has at least one accumulation poifi.in
% is compact, then the compositidf,., o ©2,..) is closed. . Each accumulation poirg satisfiesf(7) = lim; f(y;).
« Each accumulation pointis a generalized fixed point of
the algorithm.

C. Fixed Points R. R. Meyer subsequently extended Zangwill's Theorem
to provide a more satisfactory convergence result for strictly
monotonic algorithms. One version of his result follows.
For reference, a sequendg,} in a normed space is called
asymptotically regulawhen |ly;+1 — y;|| — 0.
dTheorem 13 (Meyer [66])Let # be a compact subset of

a normed space, and assume tais a closed algorithm on
% that it is strictly monotonic with respect to the continuous,
nonnegative functiorf. Suppose thaf) generates a sequence
of iterates{y;}. In addition to the conclusions of Zangwill's
Theorem, the following statements hold.

Minimizing functions leads to a special type of point-to-set « Each accumulation point of the sequence is a (strong)

Suppose thaf) is a point-to-set map fror# to itself. Let
y be a point of# for which Q(y) = {y}. Theny is called
a fixed pointof the map. In contrast, ageneralized fixed
point of Q is a point for whichy € Q(y). When we wish
to emphasize the distinction, we may refer to a regular fixe
point as astrongor classicalfixed point.

D. Infimal Maps

map. Suppose thgt: # x Z — R, is a real-valued function fixed point of the algorithm.
of two variables, and le©2 be a point-to-set map fror® to « The sequence of iterates is asymptotically regular. In
% . Associated withf and 2 is aninfimal mapdefined by consequence, it has a continuum of accumulation points,
or it converges in norm.
M*(y) = arg ggl)i{l)f(y,z). « In case that the fixed points &2 on each isocontour
z Yy

of f form a discrete set, then the sequence of iterates

If f(y,-) attains no minimal value of¥(y), thenM=(y) = 0, CONVErges in norm.

the empty set. Under mild conditions, infimal maps are closed.ynder additional (burdensome) hypotheses, it is possible to
Theorem 11 (Dantzig-Folkman-Shapiro [71]) © is con- prove norm convergence. A simple consequence of Meyer's
tinuous aty and f(y,-) is continuous orf2(y), then M* is  Theorem is that an algorithnf, strictly monotonic with
closed aty. respect tof, converges in norm if the fixed points éf on
In particular, the constant ma@ : y — 2 is continuous each isocontour off form a discrete set. There is also a
wheneverZ is closed. So minimizing a continuous functiorstriking convergence theorem due to Opial [72], a proof of
over a fixed, closed set always yields a closed infimal mapwhich appears in the recent paper [73].
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F. Alternating Projection Since M* yields the unique minimizer of f with its first

An alternating projection can be interpreted as a kind gfgument fixed, the first equality implies that=(y) = {z}.
monotonic algorithm. Suppose thit: % x 2 — R, is a -ikewise, the second equality yields\/, o M*)(y) = {y}.

continuous function. Therfi induces two natural infimal maps, 1Nt is, ©(y,2) = {(y,2)}. An application of Meyers
Theorem completes the argument. ]
def . . . . . .
M, (z) = argmin f(y, 2) and This result is a special case of a theorem of Fiorot and
yew . .
- _ Huard [74]. In Appendix I, we will translate the language of
M*(y) = arg min f(y,2). these corollaries into more familiar terms.

If % and.Z are closed, then Theorem 11 shows that the maps
M, and M* are both closed. G. Literature on Alternating Projection

We interpret alternating projection as an algorithm on the | jke most good ideas, alternating projection has a long biog-
product space?” x 2 equipped with the usual product topolyaphy and several aliases, includialiernating minimization
ogy. Given an initial iteratey, from &, alternating projection gyccessive approximatipsuccessive projectiorand projec-
generates a sequence of iterafeg;, z;)} via the rules tion on convex setJ his section offers agsunt of the research
on alternating projection, but it makes no pretension to be
comprehensive. Deutsch has written more detailed surveys,
for eachj > 0. Formally, this algorithm can be written asincluding [51], [75], [76].
the composition of two sub-algorithm&,, and,,, that are  According to Deutsch [75], alternating projection first ap-
defined as peared in a set of mimeographed lecture notes, written by John
. von Neumann in 1933. von Neumann proved that the alter-
Qo 2 (y2) = {yh x M*(y)  and nating projection between two closed subspaces of a Hilbert
Qtro : (Y, 2) = My(2) x {z}. space converges pointwise to the orthogonal projector onto
dof ) ) their intersection [38]. Apparently, this theorem was not very
It follows that{ = Qgo 0o is @ close_d algorithm Wheneverwe” advertised, because many other authors have discovered
¥ and2 are compact. Both sub-algorithms decrease the valye, jonendently, including Aronszajn [48] and Wiener [77]. It
of f,soit sh(_)uld also be clear thatis monoton|c with respect was shown by Aronszajn [48] and Kayalar—Weinert [49] that
to f. Zangwill's Theorem tenders a basic convergence resu&)th sequences of iterates converge geometrically with a rate
Corollary 14: Let " and 2" be compact. Suppose that the,, 5 -y equal to the squared cosine of the (Friedrichs) principal
alt(_arnatmg projection betwee¥ and 2 generates a sequenceang|e between the two subspaces.
of iterates{(y;, z;)}- It is natural to extend the alternating projection between
« The sequence has at least one accumulation point.  two subspaces by cyclically projecting onto several subspaces.
« Each accumulation point of the sequence lieg/inc 2°.  Halperin demonstrated that, in a Hilbert space, the cyclic pro-
» Each accumulation point is a generalized fixed point géction among a finite number of closed subspaces converges

zj € M*(y;) and y;41 € My(z;)

the algorithm. o o o pointwise to the orthogonal projector onto their intersection
- Each accumulation point(y, z) satisfies f(y.z) = [78]. The convergence is geometric [79]. Optimal bounds on
lim; f(y;, %) the rate of convergence can be computed with techniques of

If the infimal mapsM, and M* are single-valued, we canxu and Zikatonov [80]. Bauschket al. study methods for

achieve a much more satisfactory result, accelerating cyclic projection in the recent paper [81].

Corollary 15: Let % and 2 be compact subsets of a It will come as no surprise that researchers have also
normed spacé and assume that the infimal mags and studied alternating projection between subspaces of a Banach

M?# are single-valued. Suppose that the alternating pl’OjE‘CtiBPIace' Unaware of von Neumann's work, D|I|perto and Straus
betweer? and % generates a sequence of iterafés;, z;)} introduced an alternating method for computing the best sup-
W REAN .

In addition to the conclusions of Corollary 14, we have thgorm approximation of a bivariate continuous function as the
following sum of two univariate continuous functions, and they proved

. o . , . some weak convergence results [82]. The norm convergence

- Each ac_:cumulatm_n point is a classical fixed point of thgf the sequence of iterates remained open until the work

_?_I:]ernat|ng proje?t.'fn't . toticall | of Aumann [83]. M. Golomb extended the Diliberto—Straus

* The sequence Of nerates |s.ahsymp otically reguiar. al'?orithm to other best-approximation problems [84]. For more

* h € sequence o |;erates e'lt Er converges In norm ofdksmation on alternating algorithms in Banach spaces, see

Pas ?_ CO\?\}mL.]uT 0 agct:mur?tlontﬁol[nii. laorith . the monograph of Cheney and Light [85].

_ Frook. € Just need 1o show that the algonthm 1S Anqiher fruitful generalization is to consider projection
strictly mono_tomc W'th. r(_aspect 9. Suppo;e thay (y, z) = onto convex subsets. The projector—oximity map—onto
f(€2(y, 2)). Since the '”f.".“a' maps never increase the Valtéle closed, convex subset of a Hilbert space is well-defined,
of f, we have the equalities because each point has a unique best approximation from

that set. The basic result, due to Cheney and Goldstein, is
— MZ ) - 1 . 1

1(y,2) = fy, W) ; ; that the alternating projection between two closed, convex

= J((My o M*)(y), M*(y)) = f(y,2))-  subsets of a Hilbert space will converge to a pair of points
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at minimal distance from each other, so long as one setpgescribed norms. This problem will require a longer siege,
compact [4]. Dykstra [86], [87] and Han [88] independentiyput it too will yield to our onslaught. The convergence results
developed a cyclic projection technique that, given a poirthat we develop here are all novel.

can compute its best approximation from the intersection of
a finite number of closed, convex sets in a Hilbert spacg.
Their algorithm requires a correction to each projection. Their
method is closely related to earlier optimization techniques!n this section, we establish the convergence of the basic
of Hildreth [89] and Bregman [5]. Details of this connectiorflternating projection algorithm that appears in Section I1I-D.
appear in the book [90] and the article [91]. Tseng develof¥!r main burden is to translate the language of point-to-set
a very important extension of the Dykstra—Han algorithm ifmaps into more familiar terms.

[92]. To date, the most detailed treatment of projection on Theorem 16 (Global Convergencelet % and 2 be
convex sets is probably the survey article [93]. closed sets, one of which is bounded. Suppose that alternating

Most of the work on alternating projection has involved thgrojection generates a sequence of itergte$, Z;) }. This se-
Euclidean distance, but it is possible to develop results feHence possesses at least one accumulation poingYsay).
other divergence measures. In particular, Geignd Tusady o The accumulation point lies i x Z.
have shown that alternate minimization of the Kullback— « The accumulation point satisfies
Leibler divergence can be used to find a pair of minimally —
distant points contained within two convex sets of probability H Y- ZHF = jhjgo 15 = Zillg -
measures [67].

There has been some research on alternating projectio
between nonconvex sets, but the theoretical results so far are HV _ 7“ = dist(Y, %) = dist(Z, %).
limited. Fiorot and Huard have applied the theorems of Zang- ¥
will and Meyer to obtain weak convergence results for a class Proof: Assume without loss of generality th&t is the
of block relaxation schemes that include alternating and cycliompact set, while? is merely closed. We must establish that
projection onto non-convex sets [74]. Combettes and Trussek have all the compactness necessary to apply Corollary 14.
have developed a technique which inflates the non-convexWithout loss of generality, assume the € #. If § =
sets into convex sets; they offer some qualified convergent¥, — 2y ||, then subsequent iterates always satisfy
results [94]. Cadzow has also demonstrated empirically that
cyclic projections among nonconvex sets can effectively solve 1Y; = Zillg <96 and
some signal enhancement problems [95]. More research in this Yit1 — Zjllp < 0.
direction would be valuable.

Alternating projection has found application to many diffe
ent problems, of which we offer a (small) selection. The most M ={Y e¥ :dist(Y, Z) < 6} and
famqus example from these pages must.be the Blahut'—Arlmoto % —{Ze ¥ dist(Z,%) < 5.
algorithm for computing channel capacity and rate-distortion
functions [96], [97]. In the field of signal restoration andsince # is compact,%; is compact because it is a closed
recovery, we mention the work of Landau—Miranker [98], Geksubset of a compact set. On the other ha##§l,is compact
chberg [99], Youla—Webb [100], Cadzow [95], and Donohobecause it is the intersection of the closed €twith a
Stark [101]. Cetin, Gerek, and Yardimci show that projectiosompact set, namely the collection of matrices within a fixed
on convex sets can compute multi-dimensional equirippiistance of#% .
filters [102]. Xu and Zikatonov discuss how alternating pro- We may apply Corollary 14. Each of the conclusions
jection can be used to solve the linear systems that ariseginthe corollary has a straightforward analogue among the
the discretization of partial differential equations [80]. In theonclusions of the present theorem. The only question that
matrix analysis community, alternating projection has beeﬁay remain is what it means for a pair of matriqez’ 7)
used as a computational method for solving inverse eigenvatdebe a generalized fixed point of the alternating projection.
problems [35], [37] and for solving matrix nearness problems generalized fixed point of an algorithm is a point which
[36], [103]. In statistics, one may view the Expectation MaxXs a possible successor of itself. In the present case, a pair of
imization (EM) algorithm as an alternating projection [104]matrices can succeed itself if and only if the second component
de Leeuw has discussed other statistical applications in [503. a potential successor of the fiestd the first component is

a potential successor of the second. The mafrban succeed
APPENDIX I the matrix Y if and only if

Basic Convergence Proof

p The accumulation point satisfies

r‘_rhus, we may restrict our attention to the sets

CONVERGENCE ANDFIXED POINTS Hf_VH —dist(V %)
F ’ :

Armed with the theory of the last appendix, we are finally
girded to attack the convergence of Algorithm 1. The resul
on point-to-set maps will allow us to dispatch this dragon Hy_fH = dist(Z,%).
quickly. Then we will turn our attention to the convergence of ¥ ’
the algorithm in the special case that the frame vectors haliis observation completes the proof. ]

kewise, Y can succeed if and only if



17

Since the collection ofe-tight frames and the collection of The only point that may require clarification is what it takes
their Gram matrices are both compact, the theorem has tfoo a pair of matricegY', Z) to be a classical fixed point of the
immediate corollaries. alternating projection. A classical fixed point of an algorithm is

Corollary 17: If 2, is the collection okx-tight frames, and the only possible successor of itself. In the case of alternating
.7 is a closed set of matrices, then Theorem 16 applies wiphojection, the matrixZ must be the unique successor of the

Y =97 and ZZ,. Y, and the matrixY’ must be the unique successorf This
Corollary 18: If ¢, contains the Gram matrices of alt observation completes the argument. ]

tight frames, and’# is a closed set of Hermitian matrices, Due to the peculiar structure of the spectral constraint

then Theorem 16 applies with’ = ¥, and 2 = 7. sets 2, and ¥,, the solutions to the associated matrix

nearness problems are often unique. Therefore, the alternating
projection algorithms that we have considered in this paper

B. Stronger Convergence Results ; !
) L , sometimes have better performance than the basic convergence
Meyer's Theorem suggests that it might be possible Q¢ 1t Theorem 16. would predict

provide a stronger convergence result for Algorithm 1 if we We remind the reader that
can ensure that the matrix nearness problems have unique
solutions. In many cases, the nearness problems are uniquely?;, & {X e C™N . XX* = aly}, and
soluble whenever the iterates get sufficiently close together. @ 9 (GeCVN.G=¢*
. . . (o N - k)
This provides a local convergence result that is much stronger

o : and G has eigenvalue&y, ..., ,0,...,0)}.
than Zangwill's Theorem allows. First, we prove a general 9 so“ ) )}

version of this result. Afterward, we show that it applies d
to an alternating projection that involves one of the spectrehe uniqueness of the matrix nearness problems will follow
constraint sets?, or %,. from the Wielandt—Hoffman Theorem, a powerful result from
Recall that the distance between a mathixand a set””  matrix analysis.
is defined as Theorem 20 (Wielandt—Hoffman [25, p. 368 and p. 419]):
dist(M, %) dof Lop IM = Y|, Suppose tha!A and B are N ><_N Hermitian matrices, and
Ye¥ let the vectorsA\(A) and A(B) list the eigenvalues oA and

Theorem 19:Let % and 2 be closed sets of matrices, oneB in algebraically nonincreasing order. Then

of which is compact. Suppose that the alternating projection _ B
betweer?” and.Z generates a sequence of iterae¥;, Z;)}, IAA) = AB)ll; < |4 = Bllp
and assume that the matrix nearness problems Suppose instead thadt and B ared x N rectangular matrices
) with d < N, and leto(A) ando(B) list the largest singular
oin [|Y — M| values ofA and B in nonincreasing order. Then
gy 112 = Ml lo(A) = a(B)ll, < 1A~ B, ©)
have unique solutions for any matrid in the sequence of Note that if we solving matrix nearness problems with respect
iterates. Then we reach the fO"OWing conclusions. to the Spectra| norm, Wey|’s Theorem would allow us to
« The sequence of iterates possesses at least one accymoride stronger bounds [25, p. 367].
lation point, say(Y, Z). Corollary 21 (Local Convergence with Constraigk,,):
« The accumulation point lies i x Z. Let .7 be a closed set offi x N matrices for which the

« The pair(Y, Z) is a fixed point of the alternating projec-associated matrix nearness problem
tion. In other words, if we applied the algorithm 6 or .
to Z every iterate would equdlY’, Z). a8 15 = Mg

The accumulation point satisfies . . .
* P has a unique solution whenevdist(M,.) < e. Imagine

Y = Z||, = lim [|Y; = Zj|- that the alternating projection betweeti and 2, generates
e a sequence of iteratggS;, X;)} in which
« The component sequences are asymptotically regular, i.e., )
|S; — Xjl|p < min{e,a} for some index/J.
1Yier = Yillp = 0 and |21 = Zjllp = 0. Then the conclusions of Theorem 19 are in force.
o Either the component sequences both converge in norm, Proof: According to Theorem 2, the matrix ifi,, nearest
|Y; = Y|, —0 and |z *7HF -0, toa _mgtrixl\/l is u_ni_que S0 ang as/ has full r_ank. Ad x N_
matrix is rank-deficient only if itgl-th largest singular value is
or the set of accumulation points forms a continuum. zero. Observe that the largessingular values of each matrix
Proof: The argument in the proof of Theorem 16 showm %2, all equala > 0. According to the Wielandt—Hoffman
that we are performing an alternating minimization betweerheorem, any matrix sufficiently close &, cannot be rank-
two compact sets. The hypotheses of the theorem guarardeécient. More preciselylist(M, Z,,) < « implies thatM
that each iterate is uniquely determined by the previous iterabas full rank, which in turn shows thd? has a unique best
Corollaries 14 and 15 furnish the stated conclusions. approximation in.2,.

e
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Define the constraint sets Suppose thab, is a full-rank matrix drawn from¢’, and
dof , perform an alternating projection between the sgtand 2

¥ =7 Ncloswels; :j > J}  and to obtain sequencesS;} and {X;}. Proposition 23 of the
¥ = 2, Nclosure{X; : j > J}. sequel shows that the sequercg } lies in a compact subset
of . whose elements have full rank, while the sequence
éXj} lies in a compact subset o7 whose elements have
Rdnzero columns. By an appeal to the matrix nearness results,
Theorem 2 and Proposition 5, we see that each iterate is
uniquely determined by its predecessor. We may therefore
apply Corollary 15.

In this subsection, we complete the foregoing argument
by demonstrating that the iterates are well-behaved. In the
next subsection, we classify the full-rank fixed points of the

min |H — M|, alternating projection betwee&’ and 2.
Hexnt Set ¢min = min, ¢,, and define the diagonal matrig
has a unique solution whenevdist(M, ") < e. Imagine whose entries arg/cy, ..., /cn.
that the alternating projection betweé&fy and .># generates  Proposition 23: Assume that the initial iterat§, is a full
a sequence of iteratggG;, H;)} in which rank matrix from.”. For every positive indey,
IG; — Hjllp < min{e,a/v2}  for some index. 2 thfmil;c‘;?ﬁ:;na?]zrm of each column 2 is at least
Then the conclusions of Theorem 19 are in force. 2) the smallest singular value & is at least,/cin-
Proof: Theorem 3 indicates that the matrixd), nearest The matrices that satisfy these bounds form compact subsets
to a matrix M is unique so long as itd-th and (d + 1)-st of 27 and.”.
eigenvalues are distinct. Imagine th&t is a matrix whose Proof: Assume thatj > 0, and make the inductive
d-th and (d + 1)-st eigenvalues both equal Since thed-th assumption that5; has full rank. First, we bound the top
and (d + 1)-st eigenvalue of a matrix i/, area and zero, singular value ofS; by exploiting the relationship between
the Wielandt—Hoffman Theorem shows that the singular values of a matrix and its Frobenius norm. Since
, ) s s C lists the column norms a;;, it follows that||S; |2 = ||C|[3.
dist(M, %) 2 (a —7)" + 7% The squared Frobenius norm 6f also equals the sum of its
Varying 7, the minimum value of the right-hand sidedd/2. squared singular values. It is immediate that the maximum
Therefore,dist(M,%,) < «/+/2 implies that thed-th and singular value ofS; satisfies
(d + 1)-st eigenvalues oM are distinct. In consequenc#/ Tmax(S51)2 < || CII . (11)
has a unique best approximation frafy.
As before, define the constraint sets

Note that? is closed and that” is compact. We will apply
Theorem 19 to the tail of the sequence of iterates, beginni
with indexJ. Forj > J, each matrixS; is close enough t&
and each matriX; is close enough t& that we can ensure
the matrix nearness problems have unique solutions. =
Corollary 22 (Local Convergence with Constraigt,):
Let ¢ be a closed set ofV x N matrices for which the
associated matrix nearness problem

Next we use this relation to estimate the column norm& of
Let S; have singular value decompositidi>V*, and write

¥ = A Ncloswe{H; :j>J}  and the n-th columns ofS; and X; ass,, andz,,. On account of
¥ =49, Nclosure{G; : j > J}. the fact thatX; = (S;S5;)~'/*S;, we have

The set# is closed, and% is compact. We will apply znll, = H(5j5j*)_1/2 snl,

Theorem 19 to the tail of the sequence of iterates, beginning _ H Us—1uU* s H

with indexJ. Forj > J, each matrixH; is close enough t& iz

and each matrixG; is close enough t& that we can ensure > Vemin/Omax(55), 12)

the matrix nearness problems have unique solutions. B since the norm o8, is at least,/cyi,. Introducing the bound
(11) into inequality (12) yields the first part of the proposition.
C. Specified Column Norms Now, we show that the smallest singular value $f,,
.nremains well away from zero. Defing; to be the diagonal
[atrix that lists the column norms of;. Note that, sinceX;

projection between the set aftight frames and the collection . b o of . o | :
of matrices with specified column norms. is a submatrix of a unitary matrix, its column norms cannot

. exceed one, and so every entry Bf ! must be at least one.
Letcq,...,cn be positive numbers that denote the squar(vi y y bf

L . ‘e can now express the matrix if nearest taX; with the
column norms we desire in the frame. Without loss of gens b w J

o =x. 71 i
ety e assume it 30, /d 1 10 sveamine the TS L T 1L wen oo ot e smefen,
proofs. Then the structural constraint set is g g+l q d

smallest eigenvalue ;157 ;. We will apply the Rayleigh—
S E S e CN . ||Sn||§ =cn} (10) Ritz Theorem [25, p. 176] to provide a lower bound on this

) ) eigenvalue. Letw be any nonzerogd-dimensional vector, and
Since the tightness parameterof the frame equals one, We¢, . the Rayleigh quotient

define the set of 1-tight frames as

v*(Si11Si v v(XGTICT X v

27 EAX e CVN XX =g} prew = pre
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Make the substitutiorw = X;*wv, and observe that theE. Fixed Points Il
w*w = v*(X;X]) v = v*v since the matrixXX; has orthonor-

] " >~ Proposition 24 allows us to provide a partial characterization
mal rows. Therefore, the Rayleigh quotient satisfies

of the fixed points of any alternating projection between the
* * w(T—1 271 set of a-tight framesZ,, and any structural constraint sét
V(SO _ wiT T )w. that contains matrices with fixed column norms. This result
vty wrw applies even if the matrices i# have additional properties.
It follows that the smallest eigenvalue &, is no less  Proposition 25: Suppose that the column norms of matrices
than the smallest eigenvalue @ 'C*T,'. But this matrix in 2 are fixed. A sufficient condition for a full-rank matri
is diagonal with entries no smaller than,;,. Its smallest in 2 to be a fixed point of the alternating projection between
eigenvalue is no less than,;,. We conclude % and %, is that the columns of are all eigenvectors of
ZZ*. That is,ZZ*Z = ZA, where A is a positive, diagonal
Jmin(5j+1) Z V Cmin,

matrix with no more thanl distinct entries.

o Proof: Let . be the set defined in (10), and 1&f be

and the second part of the proposition is complete. a closed subset of”. Suppose that the matriX in % is a
Finally, we must make the compactness argument. We hgxg.q point of the alternating projection betwesfi and 2,

shown that the squared singular values of an iteSateust lie  5nq |et X be the matrix in.2,, closest toZ. It follows that
in the closed interval,/cumin, || C||p]. The minimum squared 7 is the (unique) matrix in closest toX. In particular, Z
singular value of a matrix is a continuous function of thg the matrix in% closest toX. Therefore,Z is also a fixed
matrix entries, which follows from conclusion (9) of thepoint of the alternating projection betwee¥ and 2. An
Wielandt—-Hoffman Theorem. Therefore, the matrices Who%%peal to Proposition 24 completes the proof. -
smallest singular value lies in this interval form a closed set.
We discover that the intersection of this set with the compact
set.” is compact. The same type of argument implies that the
sequence X;} lies in a compact subset of; whose matrices [1] O. ChristensenAn introduction to frames and Riesz baseoston:

have column norms bounded away from zero. ] Birkhauser, 2003.
y [2] J. A. Tropp, R. W. Heath, and T. Strohmer, “Optimal CDMA signature

sequences, inverse eigenvalue problems and alternating projection,” in
Proceedings of the 2003 IEEE International Symposium on Information
Theory Yokohama, July 2003, p. 407.

[3] J. A. Tropp, |. S. Dhillon, R. W. Heath, and T. Strohmer, “CDMA sig-

It remains to characterize the fixed points of the alternating  nature sequences with low peak-to-average-power ratio via alternating
projection,” in Proceedings of the 37th Annual Asilomar Conference

projection between the set of matrices with fixed column on Signals, Systems and Computévsnterrey, Nov, 2003,

norms and the set af-tight frames. [4] E. W. Cheney and A. A. Goldstein, “Proximity maps for convex sets,”
Proposition 24: The full-rank stationary points of an alter- Proc. Amer. Math. Sogvol. 10, no. 3, pp. 448-450, June 1959.
nating projection betweer’ and 2, are precisely those full- [ L M. Bregman, "The relaxation method of finding the common point
: . of convex sets and its application to the solution of problems in convex
rank matricesS from . whose columns are all eigenvectors programming,”"USSR Comput. Math. Math. Physol. 7, no. 3, pp.
of SS*. That is, S5*S = SA, where/A € CN*V is diagonal 200-217, 1967.
and positive with at mosd distinct values.

[6] M. Rupf and J. L. Massey, “Optimum sequence multisets for syn-
. o . chronous code-division multiple-access chann¢EEZE Trans. Inform.
Proof: As before, we takev = 1 for simplicity. Define Theory vol. 40, no. 4, pp. 1261-1266, July 1994.
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o . . . no. 6, pp. 1984-1991, Sept. 1999.
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