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Designing Structured Tight Frames
via an Alternating Projection Method
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Abstract— Tight frames, also known as general Welch-Bound-
Equality sequences, generalize orthonormal systems. Numer-
ous applications—including communications, coding, and sparse
approximation—require finite-dimensional tight frames that pos-
sess additional structural properties. This paper proposes an
alternating projection method that is versatile enough to solve
a huge class of inverse eigenvalue problems, which includes the
frame design problem. To apply this method, one only needs to
solve a matrix nearness problem that arises naturally from the
design specifications. Therefore, it is fast and easy to develop
versions of the algorithm that target new design problems.
Alternating projection will often succeed even if algebraic con-
structions are unavailable.

To demonstrate that alternating projection is an effective tool
for frame design, the article studies some important structural
properties in detail. First, it addresses the most basic design
problem: constructing tight frames with prescribed vector norms.
Then, it discusses equiangular tight frames, which are natural
dictionaries for sparse approximation. Last, it examines tight
frames whose individual vectors have low peak-to-average-power
ratio (PAR), which is a valuable property for CDMA applica-
tions. Numerical experiments show that the proposed algorithm
succeeds in each of these three cases. The appendices investigate
the convergence properties of the algorithm.

Index Terms— Algorithms, code division multiaccess, eigenval-
ues and eigenfunctions, extremal problems, frames, geometry,
inverse problems, sequences

I. I NTRODUCTION

T IGHT FRAMES provide a natural generalization of or-
thonormal systems, and they arise in numerous practical

and theoretical contexts [1]. There is no shortage of tight
frames, and applications will generally require that the vectors
comprising the frame have some kind of additional structure.
For example, it might be necessary for the vectors to have
specific Euclidean norms, or perhaps they should have small
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mutual inner products. Thus arises a design problem: How do
you build a structured tight frame?

A. Contributions

To address the design question, this article proposes a
numerical method based on alternating projection that builds
on our work in [2], [3]. The algorithm alternately finds the
nearest tight frame to a given ensemble of structured vectors;
then it finds the ensemble of structured vectors nearest to
the tight frame; and it repeats the processad infinitum. This
technique is analogous to the method of projection on convex
sets (POCS) [4], [5], except that the class of tight frames is
nonconvex, which complicates the analysis significantly. Nev-
ertheless, our alternating projection algorithm affords simple
implementations, and it provides a quick route to solve difficult
frame design problems. We argue that similar techniques apply
to a huge class of inverse eigenvalue problems.

This article demonstrates the elegance and effectiveness of
the alternating projection approach with several examples that
are motivated by applications. First, we address the most basic
frame design problem: building tight frames with prescribed
vector norms. This problem arises when constructing signa-
ture signatures for direct-spread, synchronous code division
multiaccess (DS-CDMA) systems [6]–[8]. Second, we discuss
equiangular tight frames, which have the property that each
pair of distinct vectors meets at the same (acute) angle.
These frames have many applications in coding and com-
munications [9]–[12], and they also form natural dictionaries
for sparse approximation [13]–[15]. Third, we examine tight
frames whose individual vectors have low peak-to-average-
power ratio (PAR), which is another valuable property for DS-
CDMA signatures [3]. Our experiments show that alternating
projection outperforms some algorithms that were specifically
designed to solve these problems.

The appendices investigate the convergence properties of the
algorithm. Although alternating projection between subspaces
and convex sets has been studied in detail, very few results
are available for an alternating projection between two non-
convex sets. This paper provides a rigorous treatment of the
algorithm’s behavior in this general setting by means of the
theory of point-to-set maps. In particular, we establish a weak
global convergence result, and we show that, under additional
hypotheses, the algorithm exhibits stronger local convergence
properties.

Note that there is a major conceptual difference between the
use of finite models in the numerical calculation of infinite-
dimensional frames and the design of finite-dimensional
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frames. In the former case, the finite model plays only an
auxiliary role in the approximate computation of an infinite-
dimensional tight frame [1]. In the latter case, the problem
under consideration is already finite-dimensional, thus it does
not involve discretization issues. In this paper, we consider
only finite-dimensional tight frames.

B. Previous Work

At root, finite-dimensional frame design is an algebraic
problem. It boils down to producing a structured matrix
with certainspectralproperties, which may require elaborate
discrete and combinatorial mathematics. In the past, most
design methods have employed these techniques. To appreciate
the breadth of this literature, one might peruse Sarwate’s
recent survey paper about tight frames comprised of unit-
norm vectors [16]. The last few years have also seen some
essentially algebraic algorithms that can construct tight frames
with nonconstant vector norms [7], [17], [18].

When algebraic methods work, they work brilliantly. A
numerical approach like alternating projection can hardly hope
to compete with the most profound insights of engineers and
mathematicians. On the other hand, algebraic and combina-
toric tools are not always effective. For example, we might
require a structured tight frame for a vector space whose
dimension is not a prime-power. Even in these situations,
alternating projection will often succeed. Moreover, it can
help researchers develop the insight necessary for completing
an algebraic construction. The power of alternating projection
comes from replacing the difficult algebra with a simple ana-
lytic question: How does one find an ensemble of structured
vectors nearest to a given tight frame? This minimization
problem can usually be dispatched with standard tools, such
as differential calculus or Karush–Kuhn–Tucker theory.

The literature does not offer many other numerical ap-
proaches to frame design. It appears that most current al-
gorithms can be traced to the discovery by Rupf–Massey
[6] and Viswanath–Anantharam [7] that tight frames with
prescribed column norms are the optimal sequences for DS-
CDMA systems. This application prompted a long series of
papers, including [19]–[23], that describe iterative methods for
constructing tight frames with prescribed column norms. These
techniques are founded on an oblique characterization of tight
frames as the minimizers of a quantity calledtotal squared cor-
relation (TSC). It is not clear how one could generalize these
methods to solve different types of frame design problems.
Moreover, the alternating projection approach that we propose
significantly outperforms at least one of the TSC-minimization
algorithms. Two of the algebraic methods that we mentioned
above, [7] and [18], were also designed with the DS-CDMA
application in mind, while the third algebraic method [17]
comes from thesoi-disantframe community. We are not aware
of any other numerical methods for frame design.

C. Outline

Section II continues with a short introduction to tight
frames. Then, in Section III, we state two formal frame
design problems. Connections among frame design problems,

inverse eigenvalue problems, and matrix nearness problems are
established. This provides a natural segue to the alternating
projection algorithm. Afterward, we apply the basic algorithm
to design three different types of structured frames, in order
of increasing implementation difficulty. Section IV discusses
tight frames with prescribed column norms; Section V covers
equiangular tight frames; and Section VI constructs tight
frames whose individual vectors have low peak-to-average-
power ratio. Each of these sections contains numerical ex-
periments. The body of the paper concludes with Section VII,
which discusses the method, its limitations, and its extensions.

The back matter contains the bulk of the analysis. Appendix
I offers a tutorial on point-to-set maps, and Appendix II
applies this theory to obtain a rigorous characterization of
the algorithm’s convergence behavior. The first appendix also
contains a brief survey of the alternating projection literature.

II. T IGHT FRAMES

This section offers a terse introduction to the properties of
tight frames that are essential for our method. For more details,
see [1], for example.

A. Frames

Let α and β be positive constants. Afinite frame for
the complex1 Hilbert spaceCd is a sequence ofN vectors
{xn}N

n=1 drawn fromCd that satisfies a generalized Parseval
condition:

α ‖v‖2
2 ≤

N∑
n=1

|〈v,xn〉|2 ≤ β ‖v‖2
2 for all v ∈ Cd. (1)

We denote the Euclidean inner product with〈·, ·〉, and we write
‖·‖2 for the associated norm. The numbersα andβ are called
the lower andupper frame bounds. The number of vectors in
the frame may be no smaller than the dimension of the space
(i.e., N ≥ d).

If it is possible to takeα = β, then we have atight frameor
an α-tight frame. When the frame vectors all have unit norm,
i.e., ‖xn‖2 ≡ 1, the system is called aunit-norm frame. Unit-
norm tight frames are also known asWelch-Bound-Equality
sequences[12], [24]. Tight frames with nonconstant vector
norms have also been calledgeneral Welch-Bound-Equality
sequences[7].

B. Associated Matrices

Form ad×N matrix with the frame vectors as its columns:

X =
[
x1 x2 x3 . . . xN

]
.

This matrix is referred to as theframe synthesis operator, but
we will usually identify the synthesis operator with the frame
itself.

Two other matrices arise naturally in connection with the
frame. We define theGram matrixasG

def= X ∗X . (The symbol
∗ indicates conjugate transposition of matrices and vectors.)

1We work with complex vectors for complete generality. The adaptations
for real vectors are transparent.
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The diagonal entries of the Gram matrix equal the squared
norms of the frame vectors, and the off-diagonal entries of the
Gram matrix equal the inner products between distinct frame
vectors. The Gram matrix is always Hermitian and positive
semi-definite, and it has rankd.

The positive-definite matrixXX ∗ is usually called theframe
operator. Since

v∗(XX ∗)v =
N∑

n=1

|〈v,xn〉|2

we can rewrite (1) as

α ≤ v∗(XX ∗) v

v∗v
≤ β. (2)

That is, any Rayleigh quotient ofXX ∗ must lie betweenα and
β. It follows from the Rayleigh–Ritz Theorem [25, p. 176] that
each eigenvalue of the frame operator lies in the interval[α, β].

When the frame isα-tight, the condition (2) is equivalent to
the statement thatXX ∗ = α Id. Three other characterizations
of an α-tight frame follow immediately.

Proposition 1: A d × N frameX is α-tight if and only if
it satisfies one (hence all) of the following conditions.

1) All d nonzero singular values ofX equal
√

α.
2) All d nonzero eigenvalues of the Gram matrixX ∗X

equalα.
3) The rows ofα−1/2 X form an orthonormal family.
These properties undergird our method for constructing tight

frames. It is now clear that the being a tight frame is aspectral
requirement on the matrixX .

C. Norms of Frame Vectors

Throughout this article, we will denote the squared norms
of the frame vectors as

cn
def= ‖xn‖2

2 .

There is an intimate relationship between the tightness param-
eter of anα-tight frame and the norms of its columns. The
computation is straightforward:

α d = Tr XX ∗ = Tr X ∗X =
N∑

n=1

‖xn‖2
2 =

N∑
n=1

cn. (3)

The notationTr (·) represents the matrix trace operator, which
sums the diagonal entries of its argument.

A related point is that one cannot construct a tight frame
with an arbitrary set of column norms. According to the Schur–
Horn Theorem, a Hermitian matrix can exist if and only if its
diagonal entries majorize2 its eigenvalues [25, pp. 193–197]. If
X is ad×N tight frame, thed nonzero eigenvalues of its Gram
matrix all equal

∑
n cn/d. Meanwhile, the diagonal entries of

the Gram matrix arec1, . . . , cN . In this case, the majorization
condition is equivalent to the system of inequalities

0 ≤ ck ≤
1
d

N∑
n=1

cn for eachk = 1, . . . , N. (4)

2The literature equivocates about the direction of the majorization relation.
We adopt the sense used by Horn and Johnson [25, p. 192].

It follows that a tight frame with squared column norms
c1, . . . , cN exists if and only if (4) holds. For an arbitrary
set of column norms, the frames that are “closest” to being
tight have been characterized in [7], [26].

III. D ESIGN VIA ALTERNATING PROJECTIONS

This section begins with formal statements of two frame
design problems. Next, we establish a connection with inverse
eigenvalue problems. It becomes clear that an alternating
projection algorithm offers a simple and natural approach to
general inverse eigenvalue problems, including both frame
design problems. We then solve the matrix nearness prob-
lems that arise when implementing the proposed algorithm.
The section concludes with a discussion of the algorithm’s
convergence properties.

A. Structured Tight Frames

Define the collection ofd×N α-tight frames:

Xα
def= {X ∈ Cd×N : XX ∗ = α Id}. (5)

We fix the tightness parameterα for simplicity. It is easy to
extend our methods to situations where the tightness is not
predetermined, and one can apply similar ideas to construct
frames with prescribed upper and lower frame bounds, viz.
the parametersα andβ in (1). It is worth noting thatXα is
essentially a Stiefel manifold, which consists of all sets ofd
orthonormal vectors inCN [27].

Let S denote a closed3 collection ofd × N matrices that
possess some structural property. In the sequel, we will explore
several different structural constraints that have arisen in elec-
trical engineering contexts. Section IV considers tight frames
with specified column norms, and Section VI shows how to
construct tight frames whose individual vectors have a low
peak-to-average-power ratio. Many other structural properties
are possible.

Each constraint setS raises a basic question.

Problem 1: Find a matrix inS that is minimally distant
from Xα with respect to a given norm.

If the two sets intersect, any solution to this problem is
a structured tight frame. Otherwise, the problem requests a
structured matrix that is “most nearly tight.” A symmetric
problem is to find a tight frame that is “most nearly structured.”

B. Structured Gram Matrices

If the structural constraints restrict the inner products be-
tween frame vectors, it may be more natural to work with
Gram matrices. Define a collection that contains the Gram
matrices of alld×N α-tight frames:

Gα
def= {G ∈ CN×N : G = G∗ and

G has eigenvalues(α, . . . , α︸ ︷︷ ︸
d

, 0, . . . , 0)}. (6)

3We equipCd×N andCN×N with the topology induced by the Frobenius
norm, which is identical with every other norm topology [25, p. 273].
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The setGα is essentially a Grassmannian manifold, which
consists ofd-dimensional subspaces ofCN [28]. One may also
identify the matrices inGα as rank-d orthogonal projectors,
scaled byα. (An orthogonal projector can be defined as an
idempotent, Hermitian matrix. The rank of a projector equals
the dimension of its range.)

Let H be a closed collection ofN × N Hermitian ma-
trices that possess some structural property. In Section V,
for example, we will consider equiangular tight frames. The
Gram matrices of these frames have off-diagonal entries with
identical moduli, and it is an important challenge to construct
them.

Once again, a fundamental question arises.

Problem 2: Find a matrix inGα that is minimally distant
from H with respect to a given norm.

If the two sets intersect, any solution to this problem will lie
in the intersection. Otherwise, the problem requests a tight
frame whose Gram matrix is “most nearly structured.” We do
not mention the problem of producing a matrix inH that is
nearest toGα because it is not generally possible to factor a
matrix in H to obtain a frame with dimensionsd×N .

C. Inverse Eigenvalue Problems

We view Problems 1 and 2 asinverse eigenvalue problems
(IEPs). As Chu explains in [29], an IEP is an inquiry about
structured matrices with prescribed spectral properties. These
spectral properties may include restrictions on eigenvalues,
eigenvectors, singular values, or singular vectors. According
to Proposition 1, the defining characteristic of a tight frame is
its spectrum, so frame design is an IEP.

In the study of IEPs, the two fundamental questions are
solvability and computability. The former problem is to find
necessary or sufficient conditions under which a given IEP
has a solution. The latter problem is how to produce a matrix
that has given spectral properties and simultaneously satisfies
a structural constraint. The solvability and computability of
some classical IEPs have been studied extensively by the
matrix analysis community, although many open problems still
remain. The articles [29], [30] survey this literature.

Although specific IEPs may require carefully tailored nu-
merical methods, there are a few general tools available. One
scheme is the coordinate-free Newton method, which has
been explored in [31]–[33]. Newton-type algorithms do not
apply to all problems, and they only converge locally. Another
general method is the projected gradient approach developed
by Chu and Driessel in [34]. This technique involves numerical
integration of a matrix differential equation, which relies on
advanced software that may not be readily available. Another
problem with Newton methods and projected gradient methods
is that they may not handle repeated singular values well. This
shortcoming makes them a poor candidate for constructing
tight frames, which have only two distinct singular values.

This article concentrates on alternating projection, which
has occasionally been used to solve inverse eigenvalue prob-
lems (in [35] and [36], for example). But alternating projection
has not been recognized as a potential method for solving

any type of inverse eigenvalue problem. The most general
treatment of alternating projection in the IEP literature is
probably [37], but the authors do not offer a serious analysis
of their algorithm’s behavior.

Here is the basic idea behind alternating projection. We
seek a point of intersection between the set of matrices that
satisfy a structural constraint and the set of matrices that
satisfy a spectral constraint. An alternating projection begins
at a matrix in the first set, from which it computes a matrix
of minimal distance in the second set. Then the algorithm
reverses the roles of the two sets and repeats the process
indefinitely. Alternating projection is easy to apply, and it is
usually globally convergent in a weak sense, as we show later.

D. Alternating Projections

Let us continue with a formal presentation of the generic
alternating projection method for solving inverse eigenvalue
problems. Suppose that we have two collections,Y and
Z , of matrices with identical dimensions. Of course, we
are imagining that one collection of matrices incorporates a
spectral constraint while the other collection incorporates a
structural constraint. To ensure that the algorithm is well-
posed, assume that one collection is closed and the other is
compact.

Algorithm 1 (Alternating Projection):
INPUT:
• An (arbitrary) initial matrixY0 with appropriate dimen-

sions
• The number of iterations,J

OUTPUT:
• A matrix Y in Y and a matrixZ in Z

PROCEDURE:
1) Initialize j = 0.
2) Find a matrixZj in Z such that

Zj ∈ arg min
Z∈Z

‖Z − Yj‖F .

We use‖·‖F to indicate the Frobenius norm.
3) Find a matrixYj+1 in Y such that

Yj+1 ∈ arg min
Y∈Y

‖Y − Zj‖F .

4) Incrementj by one.
5) Repeat Steps 2–4 untilj = J .
6) Let Y = YJ andZ = ZJ−1.
A solution to the optimization problem in Step 2 is called a

projectionof Yj ontoZ in analogy with the case whereZ is a
linear subspace. Step 3 computes the projection ofZj ontoY .
In a Hilbert space, it can be shown geometrically that a given
point has a unique projection onto each closed, convex set.
Projections onto general sets may not be uniquely determined,
which fiercely complicates the analysis of Algorithm 1.

von Neumann, in 1933, was the first to consider alternating
projection methods. He showed that ifY andZ are closed,
linear subspaces of a Hilbert space, then alternating projection
converges to the point inY ∩ Z nearest toY0 [38]. In
1959, Cheney and Goldstein demonstrated that alternating
projection between two compact, convex subsets of a Hilbert
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space always yields a point in one set at minimal distance from
the opposite set [4]. These two results inspired the application
of Algorithm 1 to the inverse eigenvalue problems, Problems
1 and 2. Of course, the constraint sets that we consider are
generallynot convex. For a more extensive discussion of the
literature on alternating projection, turn to Appendix I-G.

To implement the alternating projection algorithm, one must
first solve the minimization problems in Steps 2 and 3. For
obvious reasons, these optimizations are called thematrix
nearness problemsassociated withY and Z . Already there
is an extensive literature on matrix nearness problems. See,
for example, the articles [39]–[41], the survey [42], and many
sections of the book [25]. Section III-F exhibits solutions to
the nearness problems associated with the spectral constraints
Xα andGα. Even when it is necessary to solve a new nearness
problem, this task often reduces to an exercise in differential
calculus. This is one of the great advantages of Algorithm 1.
In this article, we will always measure the distance between
matrices using the Frobenius norm‖·‖F because it facilitates
the solution of matrix nearness problems. Of course, one could
develop a formally identical algorithm using other norms,
metrics, or divergences.

Since the constraint sets are generally nonconvex, alternat-
ing projection may not converge as well as one might wish.
This explains why we have chosen to halt the algorithm after
a fixed number of steps instead of waiting for‖Yj − Yj+1‖F
to decline past a certain threshold. Indeed, it is theoretically
possible that the sequence of iterates will not converge in
norm. In practice, it appears that norm convergence always
occurs. Section III-G provides a skeletal discussion of the
theoretical convergence of alternating projection. We do not
flesh out the analysis until Appendices I and II because a
proper treatment requires some uncommon mathematics.

E. Application to Problems 1 and 2

To solve Problem 1, we propose an alternating projection
between the structural constraint setS and the spectral
constraint setXα. Two matrix nearness problems arise. In the
next subsection, we demonstrate how to find a tight frame in
Xα nearest to an arbitrary matrix. Sections IV and VI contain
detailed treatments of two different structural constraints.

To solve Problem 2, we alternate between the spectral
constraintGα and the structural constraintH . In the next
subsection, we show how to produce a matrix inGα that is
nearest to an arbitrary matrix. In Section V, we analyze a spe-
cific structural constraintH . After performing the alternating
projection, it may still be necessary to extract a tight frame
from the output Gram matrix. This is easily accomplished
with a rank-revealing QR factorization or with an eigenvalue
decomposition. Refer to [43, Sec. 5.4 and Ch. 8] for details.

F. Nearest Tight Frames

Standard tools of numerical linear algebra can be used to
calculate anα-tight frame that is closest to an arbitrary matrix
in Frobenius norm.

Theorem 2:Let N ≥ d, and suppose that thed×N matrix
Z has singular value decompositionUΣV ∗. With respect to

the Frobenius norm, a nearestα-tight frame toZ is given
by α UV ∗. Note that UV ∗ is the unitary part of a polar
factorization ofZ .

Assume in addition thatZ has full row-rank. Thenα UV ∗

is the uniqueα-tight frame closest toZ . Moreover, one may
computeUV ∗ using the formula(ZZ∗)−1/2 Z .

Proof: The proof of this well-known result is similar to
that of Theorem 3, which appears below. See also pp. 431–432
of [25]. Classical references on related problems include [44],
[45]. The formula for the polar factor may be verified with a
direct calculation.

It is also straightforward to compute a matrix inGα nearest
to an arbitrary Hermitian matrix. This theorem appears to be
novel, so we provide a short demonstration.

Theorem 3:Suppose thatZ is anN ×N Hermitian matrix
with a eigenvalue decompositionUΛU∗, where the entries of
Λ are arranged in algebraically nonincreasing order. LetUd be
theN ×d matrix formed from the firstd columns ofU. Then
α UdUd

∗ is a matrix inGα that is closest toZ with respect to
the Frobenius norm. This closest matrix is unique if and only
if λd strictly exceedsλd+1.

Proof: Given an Hermitian matrixA, let λ(A) denote
the vector of its eigenvalues, arranged in algebraically nonin-
creasing order.

We must minimize‖Z − α G‖F over all rank-d orthogonal
projectorsG . In consequence of the Wielandt–Hoffman The-
orem [25, p. 368], the objective function is bounded below.

‖Z − α G‖F ≥ ‖λ(Z )− α λ(G )‖2 .

Equality obtains if and only ifZ and G are simultaneously
diagonalizable by the same unitary matrix.

Suppose that Z has eigenvalue decomposition
U (diag λ(Z ))U∗. A rank-d orthogonal projector of
dimensionN has d eigenvalues equal to one and(N − d)
eigenvalues equal to zero. Therefore, one minimizer of the
objective function is the matrix

G = U (Id ⊕ 0N−d) U∗.

Form a matrixUd by extracting the firstd columns ofU.
Then our minimizer may be expressed more simply asG =
UdUd

∗. That is, G is the orthogonal projector onto ad-
dimensional subspace spanned by eigenvectors corresponding
to thed algebraically largest eigenvalues ofZ . This subspace
is uniquely determined if and only if thed-th and(d + 1)-st
eigenvalues ofZ are distinct. The orthogonal projector onto a
subspace is unique, and the uniqueness claim follows.

It may be valuable to know that there are specialized algo-
rithms for performing the calculations required by Theorems
2 and 3. For example, Higham has developed stable numerical
methods for computing the polar factor of a matrix [46],
[47] that are more efficient than computing a singular value
decomposition or applying the formula(ZZ∗)−1/2 Z .

G. Basic Convergence Results

It should be clear that alternating projection never increases
the distance between successive iterates. This does not mean
that it will locate a point of minimal distance between the
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constraint sets. It can be shown, however, that Algorithm 1 is
globally convergent in a weak sense.

Define the distance between a pointM and a setY via

dist(M,Y ) = inf
Y∈Y

‖Y −M‖F .

Theorem 4 (Global Convergence of Algorithm 1):Let Y
and Z be closed sets, one of which is bounded. Suppose
that alternating projection generates a sequence of iterates
{(Yj ,Zj)}. This sequence has at least one accumulation point.

• Every accumulation point lies inY ×Z .
• Every accumulation point(Y ,Z ) satisfies∥∥Y − Z

∥∥
F

= lim
j→∞

‖Yj − Zj‖F .

• Every accumulation point(Y ,Z ) satisfies∥∥Y − Z
∥∥

F
= dist(Y ,Z ) = dist(Z ,Y ).

For a proof of Theorem 4, turn to Appendix II-A. In some
special cases, it is possible to develop stronger convergence
results and characterizations of the fixed points. We will
mention these results where they are relevant. The convergence
of Algorithm 1 is geometric at best [48]–[51]. This is the major
shortfall of alternating projection methods.

Note that the sequence of iterates may have many accu-
mulation points. Moreover, the last condition does not imply
that the accumulation point(Y ,Z ) is a fixed point of the
alternating projection. So what are the potential accumulation
points of a sequence of iterates? Since the algorithm never
increases the distance between successive iterates, the set of
accumulation points includes every pair of matrices inY ×Z
that lie at minimal distance from each other. It is therefore
reasonable to claim that the algorithm tries to solve Problems
1 and 2.

IV. PRESCRIBEDCOLUMN NORMS

As a first illustration of alternating projection, let us con-
sider the most basic frame design problem: How does one
build a tight frame with prescribed column norms?

This question has arisen in the context of constructing
optimal signature sequences for direct-spread synchronous
code-division multiple-access (DS-CDMA) channels. There
are some finite algorithms available that yield a small number
of solutions to the problem [7], [18]. These methods exploit
the connection between frames and the Schur–Horn Theorem.
They work by applying plane rotations to an initial tight frame
to adjust its column norms while maintaining its tightness.
Casazza and Leon have also developed a finite method that
seems different in spirit [17].

To construct larger collections of frames, some authors
have proposed iterative algorithms [19]–[23]. These techniques
attempt to minimize thetotal squared correlation(TSC) of an
initial matrix subject to constraints on its column norms. The
TSC of a matrix is defined as

TSC(S) def= ‖S∗S‖2
F =

∑
m,n

|〈sm, sn〉|2.

If we fix the squared column norms ofS to be c1, . . . , cN , a
short algebraic manipulation shows that minimizing the TSC
is equivalent to solving

min
S
‖SS∗ − α Id‖F

where α =
∑

n cn/d. In words, minimizing the TSC is
equivalent to finding a frame with prescribed column norms
that is closest in Frobenius norm to a tight frame [52].

In comparison, alternating projection affords an elegant way
to produce many tight frames with specified column norms. It
focuses on the essential property of a tight frame—its singular
values—to solve the problem. In this special case, we provide
a complete accounting of the behavior of the alternating
projection. Moreover, experiments show that it outperforms
some of the other iterative algorithms that were developed
specifically for this problem.

A. Constraint Sets and Nearness Problems

The algorithm will alternate between the set of matrices
with fixed column norms and the set of tight frames with an
appropriate tightness parameter.

Let the positive numbersc1, . . . , cN denote the squared
column norms that are desired. We do not require that these
numbers satisfy the majorization inequalities given in (4),
although one cannot hope to find a tight frame if these
inequalities fail. In that case, we would seek a matrix with the
prescribed column norms that is closest to being a tight frame.
In the DS-CDMA application, the column norms depend on
the users’ power constraints [6], [7].

In light of (3), the relation between the tightness parameter
and the column norms, it is clear thatα must equal

∑
n cn/d.

The spectral constraint set becomes

Xα
def= {X ∈ Cd×N : XX ∗ = (

∑
n cn/d) Id}.

Given an arbitaryd×N matrix, one may compute the closest
tight frame inXα using Theorem 2.

The structural constraint set contains matrices with the
correct column norms.

S
def= {S ∈ Cd×N : ‖sn‖2

2 = cn}.

It is straightforward to solve the matrix nearness problem
associated with this collection.

Proposition 5: Let Z be an arbitrary matrix with columns
{zn}. A matrix in S is closest toZ in Frobenius norm if and
only if it has the columns

sn =
{

cn zn/ ‖zn‖2 , zn 6= 0
cn un, zn = 0

whereun represents an arbitrary unit vector. If the columns of
Z are all nonzero, then the solution to the nearness problem
is unique.

Proof: We must minimize‖S − Z‖F over all matrices
S from S . Square and rewrite this objective function:

‖S − Z‖2
F =

N∑
n=1

‖sn − zn‖2
2 .
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We can minimize each summand separately. Fix an indexn,
and expand then-th term using‖sn‖2

2 = cn.

‖sn − zn‖2
2 = cn + ‖zn‖2

2 − 2
√

cn Re
〈

sn

‖sn‖2

,zn

〉
.

If zn 6= 0, the unique maximizer ofRe 〈u,zn〉 over all unit
vectors isu = zn/ ‖zn‖2. If zn = 0, then every unit vector
u maximizes the inner product.

B. Convergence Results

In this setting, alternating projection converges in a fairly
strong sense.

Theorem 6:Let S0 have full rank and nonzero columns, and
suppose that the alternating projection generates a sequence
of iterates{(Sj ,Xj)}. This sequence possesses at least one
accumulation point, say(S ,X ).
• Both S andX have full rank and nonzero columns.
• The pair(S ,X ) is a fixed point of the alternating projec-

tion. In other words, if we applied the algorithm toS or
to X every pair of iterates would equal(S ,X ).

• The accumulation point satisfies∥∥S − X
∥∥

F
= lim

j→∞
‖Sj − Xj‖F .

• The component sequences are asymptotically regular, i.e.,

‖Sj+1 − Sj‖F → 0 and ‖Xj+1 − Xj‖F → 0.

• Either the component sequences both converge in norm,∥∥Sj − S
∥∥

F
→ 0 and

∥∥Xj − X
∥∥

F
→ 0,

or the set of accumulation points forms a continuum.
Proof: See Appendix II-C.

In the present case, it is also possible to characterize
completely the fixed points of the algorithm that lie inS .

Proposition 7: A full-rank matrixS from S is a fixed point
of the alternating projection betweenS andXα if and only if
the columns ofS are all eigenvectors ofSS∗. That is,SS∗S =
SΛ, whereΛ ∈ CN×N is diagonal and positive with no more
thand distinct entries.

Proof: Refer to Appendix II-D.
Many of the fixed points inS do not lie at minimal

distance fromXα, so they are not solutions to Problem 1.
Nevertheless, the fixed points still have a tremendous amount
of structure. Each fixed point can be written as a union of tight
frames for mutually orthogonal subspaces ofCd, and the set
of fixed points is identical with the set of critical points of the
TSC functional subject to the column norm constraint [23],
[52]. The Ulukus–Yates algorithm, another iterative method
for designing tight frames with specified column norms, has
identical fixed points [20].

C. Numerical Examples

We offer a few simple examples to illustrate that the
algorithm succeeds, and we provide some comparisons with
the Ulukus–Yates algorithm.

Suppose first that we wish to construct a unit-norm tight
frame forR3 consisting of five vectors. Initialized with a3×5

matrix whose columns are chosen uniformly at random from
the surface of the unit sphere, the algorithm returns

S =

24 0.1519 0.4258 −0.7778 0.0160 −0.9258
0.9840 −0.6775 0.1882 0.3355 −0.3024

−0.0926 0.5998 0.5997 0.9419 −0.2269

35 .

Each column norm of the displayed matrix equals one to
machine precision, and the singular values are identical in their
first eight digits. In all the numerical examples, the algorithm
was terminated on the condition that‖Sj+1 − Sj‖F < 10−8.
Implemented in Matlab, the computation took 65 iterations,
which lasted 0.0293 seconds on a 1.6 GHz machine.

Now let us construct a tight frame forR3 whose five
vectors have norms 0.75, 0.75, 1, 1.25, and 1.25. With random
initialization, we obtain

S =

24 −0.1223 0.1753 −0.7261 0.0128 −1.0848
0.7045 −0.6786 0.6373 0.0972 −0.6145

−0.2263 0.2670 0.2581 1.2461 −0.0894

35 .

The column norms are correct to machine precision, and the
singular values are identical to seven digits. The computation
took 100 iterations, which lasted 0.0487 seconds.

Next we examine a case where the column norms do not
satisfy the majorization condition. Suppose that we seek a
“nearly tight” frame with column norms 0.5, 0.5, 1, 1, and
2. Random initialization yields

S =

24 −0.1430 0.1353 −0.4351 −0.0941 −1.8005
0.4293 −0.4213 0.7970 −0.2453 −0.7857

−0.2127 0.2329 0.4189 0.9649 −0.3754

35.

The column norms are all correct, but, as predicted, the frame
is not tight. Nevertheless, the last vector is orthogonal to the
first four vectors, which form a tight frame for their span.
This is an optimal solution to the frame design problem. The
calculation required 34 iterations over 0.0162 seconds.

Of course, alternating projection can produce complex-
valued tight frames, as well as larger frames in higher-
dimensional spaces. Such ensembles are too large to display
in these columns. To give a taste of the algorithm’s general
performance, we have compared it with our implementation of
the Ulukus–Yates algorithm [20]. To construct unit-norm tight
frames of various sizes, we initialized each algorithm with the
same random matrix. Then we plotted the comparative execu-
tion times. Figure 1 shows the results for 64 real dimensions,
and Figure 2 shows the results for 64 complex dimensions.
Note the different scales on the time axes.

Both algorithms perform slowly whenN is small because
tight frames are relatively scarce, which makes them difficult
to find. Indeed, it is known that (modulo rotations) there exists
a unique tight frame of(d+1) vectors ind-dimensional space
[53, p. 13]. Another reason that the alternating projection
algorithm performs better as the problem grows is that a
collection of N uniformly random unit-vectors converges
almost surely to a tight frame asN tends to infinity [54, Thm.
1]. It is therefore perplexing that the Ulukus–Yates algorithm
performs more and more slowly. One might attribute this
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Fig. 1. Comparison of alternating projection with the Ulukus-Yates algorithm
in 64 real dimensions.
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Fig. 2. Comparison of alternating projection with the Ulukus-Yates algorithm
in 64 complex dimensions.

behavior to the fact that the algorithm does not act to equalize
the singular values of the frame.

V. EQUIANGULAR TIGHT FRAMES

In this section, we will consider a frame design problem that
leads to a simple structural constraint on the Gram matrix.
The goal of the alternating projection will be to design a
suitable Gram matrix, from which the frame may be extracted
afterward.

A tight frame is a generalization of an orthonormal basis
because they share the Parseval property. But orthonormal
bases have other characteristics that one may wish to extend.
In particular, every orthonormal basis isequiangular. That
is, each pair of distinct vectors has the same inner product,
namely zero. This observation suggests that one seek out

equiangular tight frames. The underlying intuition is that these
frames will contain vectors maximally separated in space.

Define anequiangular tight frameto be a unit-norm tight
frame in which each pair of columns has the sameabsolutein-
ner product. Since we are considering unit-norm tight frames,
the absolute inner product between two frame vectors equals
the cosine of the acute angle between the one-dimensional
subspaces spanned by the two vectors. For this reason are
the frames called equiangular. One can show that each inner
product in an equiangular tight frame has modulus

µ =

√
N − d

d (N − 1)
. (7)

It is a remarkable fact thateveryensemble ofN unit vectors
in d dimensions contains a pair whose absolute inner product
strictly exceedsµ, unlessthe vectors form an equiangular tight
frame. Unfortunately, equiangular tight frames only exist for
rare combinations ofd andN . In particular, a real equiangular
tight frame can exist only ifN ≤ 1

2 d (d+1), while a complex
equiangular tight frame requires thatN ≤ d2 [12, Thm. 2.3].
The paper [55] also contains detailed necessary conditions on
real equiangular tight frames and on equiangular tight frames
over finite alphabets.

One can view equiangular tight frames as a special type
of Grassmannian frame. In finite dimensions, Grassmannian
frames are unit-norm frames whose largest absolute inner
product is minimal for a givend and N [12]. Their name
is motivated by the fact that they correspond with sphere
packings in the Grassmannian manifold of all one-dimensional
subspaces of a vector space [28]. Grassmannian frames have
applications in coding theory and communications engineering
[9]–[12]. They also provide a natural set of vectors to use for
sparse approximation [13]–[15].

In general, it is torturous to design Grassmannian frames.
Not only is the optimization difficult, but there is no general
procedure for deciding when a frame solves the optimization
problem unless it meets a known lower bound. Most of the
current research has approached the design problem with
algebraic tools. A notable triumph of this type is the con-
struction of Kerdock codes overZ2 andZ4 due to Calderbank
et al. [56]. Other explicit constructions are discussed in the
articles [10], [12]. In the numerical realm, Sloane has used
his Gosset software to produce and study sphere packings in
real Grassmannian spaces [57]. Sloane’s algorithms have been
extended to complex Grassmannian spaces in [58]. We are not
aware of any other numerical methods.

In this article, we will construct equiangular tight frames for
real and complex vector spaces using alternating projection.
The method can easily be extended to compute Grassmannian
frames and packings in Grassmannian manifolds, but that is
another paper for another day [59, Ch. 7].

A. Constraint Sets and Nearness Problems

The signal of an equiangular tight frame is that each inner
product between distinct vectors has the same modulus. Since
the Gram matrix of a tight frame displays all of the inner
products, it is more natural to construct the Gram matrix of an
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equiangular tight frame than to construct the frame synthesis
matrix directly. Therefore, the algorithm will alternate between
the collection of Hermitian matrices that have the correct
spectrum and the collection of Hermitian matrices that have
sufficiently small off-diagonal entries.

Since we are working with unit-norm tight frames, the
tightness parameterα must equalN/d. This leads to the
spectral constraint set

Gα
def= {G ∈ CN×N : G = G∗ and

G has eigenvalues(N/d, . . . , N/d︸ ︷︷ ︸
d

, 0, . . . , 0)}.

Theorem 3 shows how to find a matrix inGα nearest to an
arbitrary Hermitian matrix.

In an equiangular tight frame, each vector has unit norm but
no two vectors have inner product larger thanµ. Therefore,
we define the structural constraint set

Hµ
def= {H ∈ CN×N : H = H∗,

diag H = 1 and max
m6=n

|hmn| ≤ µ}.

It may seem more natural to require that the off-diagonal
entries have modulus exactly equal toµ, but our experience
indicates that the present formulation works better, perhaps
becauseHµ is convex. The following proposition shows how
to produce the nearest matrix inHµ.

Proposition 8: Let Z be an arbitrary matrix. With respect
to Frobenius norm, the unique matrix inHµ closest toZ has
a unit diagonal and off-diagonal entries that satisfy

hmn =
{

zmn if |zmn| ≤ µ and
µ ei arg zmn otherwise.

We usei to denote the imaginary unit.
Proof: The argument is straightforward.

B. Convergence Results

The general convergence result, Theorem 4, applies to the
alternating projection betweenGα andHµ. We also obtain a
local convergence result.

Theorem 9:Assume that the alternating projection between
Gα and Hµ generates a sequence of iterates{(Gj ,Hj)},
and suppose that there is an iterationJ during which
‖GJ − HJ‖F < N/(d

√
2). Then the sequence of iterates

possesses at least one accumulation point, say(G ,H).
• The accumulation point lies inGα ×Hµ.
• The pair (G ,H) is a fixed point of the alternating pro-

jection. In other words, if we applied the algorithm toG
or to H, every iterate would equal(G ,H).

• The accumulation point satisfies∥∥G − H
∥∥

F
= lim

j→∞
‖Gj − Hj‖F .

• The component sequences are asymptotically regular, i.e.,

‖Gj+1 − Gj‖F → 0 and ‖Hj+1 − Hj‖F → 0.

• Either the component sequences both converge in norm,∥∥Gj − G
∥∥

F
→ 0 and

∥∥Hj − H
∥∥

F
→ 0,

or the set of accumulation points forms a continuum.
Proof: See Appendix II-B.

C. Numerical Examples

First, let us illustrate just how significant a difference there
is between vanilla tight frames and equiangular tight frames.
Here is the Gram matrix of a six-vector, unit-norm tight frame
for R3:

2666664
1.0000 0.2414 −0.6303 0.5402 −0.3564 −0.3543
0.2414 1.0000 −0.5575 −0.4578 0.5807 −0.2902

−0.6303 −0.5575 1.0000 0.2947 0.3521 −0.2847
0.5402 −0.4578 0.2947 1.0000 −0.2392 −0.5954

−0.3564 0.5807 0.3521 −0.2392 1.0000 −0.5955
−0.3543 −0.2902 −0.2847 −0.5954 −0.5955 1.0000

3777775.

Notice that the inner-products between vectors are quite dis-
parate, ranging in magnitude between 0.2392 and 0.6303.
These inner products correspond to acute angles of76.2◦ and
50.9◦. In fact, this tight frame is pretty tame; the largest inner
products in a unit-norm tight frame can be arbitrarily close
to one4. The Gram matrix of a six-vector, equiangular tight
frame forR3 looks quite different:

2666664
1.0000 0.4472 −0.4472 0.4472 −0.4472 −0.4472
0.4472 1.0000 −0.4472 −0.4472 0.4472 −0.4472

−0.4472 −0.4472 1.0000 0.4472 0.4472 −0.4472
0.4472 −0.4472 0.4472 1.0000 −0.4472 −0.4472

−0.4472 0.4472 0.4472 −0.4472 1.0000 −0.4472
−0.4472 −0.4472 −0.4472 −0.4472 −0.4472 1.0000

3777775.

Every pair of vectors meets at an acute angle of63.4◦. The
vectors in this frame can be interpreted as the diagonals of an
icosahedron [28, Table 1].

We have used alternating projection to compute equiangu-
lar tight frames, both real and complex, in dimensions two
through six. The algorithm performed poorly when initialized
with random vectors, which led us to adopt a more sophis-
ticated approach. We begin with many random vectors and
winnow this collection down by repeatedly removing whatever
vector has the largest inner product against another vector. It
is fast and easy to design starting points in this manner, yet
the results are impressive. These calculations are summarized
in Table I.

Alternating projection can locate every real, equiangular
tight frame in dimensions two through six; algebraic consider-
ations eliminate all the remaining values ofN [55, Thm. A and
Thm. 6.1]. Moreover, the method computes these ensembles
very efficiently. For example, the algorithm produced a six-
vector, equiangular tight frame forR3 after a single trial. In
this case, 70 iterations lasting 0.4573 seconds were sufficient
to determine the first eight decimal places of the inner prod-
ucts.

In the complex case, the algorithm was able to compute
every equiangular tight frame that we know of. Unfortunately,
no one has yet developed necessary conditions on the existence
of complex, equiangular tight frames aside from the upper
bound, N ≤ d2, and so we have been unable to rule out
the existence of other ensembles. Some of the computations
progressed quite smoothly. After 1000 iterations and 18.75
seconds, alternating projection delivered a collection of 25

4To see this, consider a tight frame that contains two copies of an
orthonormal basis, where one copy is rotated away from the other by an
arbitrarily small angle.
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d
N 2 3 4 5 6

3 R R .. .. ..
4 C R R .. ..
5 .. . R R ..
6 .. R . R R
7 .. C C . R
8 .. . C . .
9 .. C . . C
10 .. .. . R .
11 .. .. . C C
12 .. .. . . C
13 .. .. C . .
14 .. .. . . .
15 .. .. . . .
16 .. .. C . R
17 .. .. .. . .
18 .. .. .. . .
19 .. .. .. . .

d
N 2 3 4 5 6

20 .. .. .. . .
21 .. .. .. C .
22 .. .. .. . .
23 .. .. .. . .
24 .. .. .. . .
25 .. .. .. C .
26 .. .. .. .. .
27 .. .. .. .. .
28 .. .. .. .. .
29 .. .. .. .. .
30 .. .. .. .. .
31 .. .. .. .. C
32 .. .. .. .. .
33 .. .. .. .. .
34 .. .. .. .. .
35 .. .. .. .. .
36 .. .. .. .. C

TABLE I

EQUIANGULAR TIGHT FRAMES

The notationsR and C respectively indicate that alternating projection was
able to compute a real, or complex, equiangular tight frame. Note that every
real equiangular tight frame is automatically a complex equiangular tight
frame. One period (.) means that no real equiangular tight frame exists, and
two periods (..) mean that no equiangular tight frame exists at all.

vectors in five dimensions whose inner products were identical
in the first eight decimal places. On the other hand, it took
5000 iterations and 85.75 seconds to produce 21 vectors in
five dimensions whose inner products reached the same level
of accuracy. Even worse, we were unable to locate the 31-
vector equiangular tight frame inC6 until we had performed
two dozen random trials that lasted several minutes each. It
is some consolation that the authors of [58, Table I] indicate
their algorithm could not compute this ensemble at all.

It seems clear that some equiangular tight frames are much
easier to find than others. We have encountered less success
at constructing equiangular tight frames in higher dimensions.
But we have neither performed extensive experiments nor have
we attempted to fine-tune the method.

VI. PEAK-TO-AVERAGE-POWER RATIO

Finally, let us present a situation in which the matrix
nearness problem is much more difficult.

As we have mentioned, tight frames with prescribed vector
norms coincide with signature sequences that maximize sum
capacity in the uplink of direct-spread, synchronous code
division multiple access (DS-CDMA) systems [6]–[8]. Un-
fortunately, general tight frames can have properties that are
undesirable in practice. In particular, the individual frame
vectors may have largepeak-to-average-power ratio(PAR).

The PAR of an analog signal measures how the largest value
of the signal compares with its average power. Signals with
large PAR require higher dynamic range on the analog-to-
digital converters and the digital-to-analog converters. They
may also require more linear (and thus higher cost) power
amplifiers. In DS-CDMA systems, the PAR is normally of
concern only in the downlink (see, e.g., [60]), where linear
combinations of signatures can conspire to have tremendous
peak power. On the uplink, the PAR problem is fundamentally

different because it only involves individual signatures. Con-
ventionally, the uplink PAR has not received attention because
most systems use binary spreading sequences, which always
have unit PAR. If general sum-capacity-optimal sequences are
to be used in real systems, then PAR side constraints should
be included in the design problem. Therefore, we will consider
how to construct tight frames whose columns have prescribed
norms and low peak-to-average-power ratios.

As discussed in Section IV, many algorithms have already
been developed for constructing tight frames with prescribed
vector norms, such as [7], [19], [20], [22]. Unfortunately, these
methods cannot accept additional constraints on the vectors,
and thus they are not suitable for finding tight frames whose
vectors have low PAR. We show that alternating projection
provides a way to produce these ensembles. The PAR problem
makes an interesting test case because it induces a matrix
nearness problem that is considerably more challenging than
those we have examined in previous sections.

A. Constraint Sets and Matrix Nearness Problems

The PAR in a digital communication system is funda-
mentally related to the analog waveforms that are generated.
From the perspective of sequence design, it usually suffices to
consider the PAR defined directly from the discrete sequence.
The discrete PAR of a vectorz is the quantity

PAR(z) def=
maxm |zm|2∑

m |zm|2/d
.

Note that1 ≤ PAR(z) ≤ d. The lower extreme corresponds to
a vector whose entries have identical modulus, while the upper
bound is attained only by (scaled) canonical basis vectors.

Suppose that we require the columns of the frame to have
squared normsc1, . . . , cN . In the DS-CDMA application, these
numbers depend on the users’ power constraints [6], [7]. It
follows from (3) thatα =

∑
n cn/d. The spectral constraint

set becomes

Xα
def= {X ∈ Cd×N : XX ∗ = (

∑
n cn/d) Id}.

Theorem 2 delivers the solution to the associated matrix
nearness problem.

Let ρ denote the upper bound on the PAR of the frame
elements. Then the structural constraint set will be

S
def= {S ∈ Cd×N : PAR(sn) ≤ ρ and ‖sn‖2

2 = cn}.

Given an arbitrary matrixZ , we must compute the nearest
element ofS . Since the structural constraint on each column
is independent and the Frobenius norm is separable, each
column yields an independent optimization problem. For each
column zn of the input matrix, we claim that the following
algorithm returnssn, the corresponding column of a nearest
matrix S from S .

Algorithm 2 (Nearest Vector with Low PAR):
INPUT:

• An input vectorz from Cd

• A positive numberc, the squared norm of the solution
vector



11

• A number ρ from [1, d], which equals the maximum
permissible PAR

OUTPUT:
• A vector s from Cd that solves

min
s
‖s− z‖2 subj. to PAR(s) ≤ ρ and ‖s‖2

2 = c.

PROCEDURE:
1) Scalez to have unit norm; defineδ =

√
c ρ/d; and

initialize k = 0.
2) Let M index (d− k) components ofz with least mag-

nitude. If this set is not uniquely determined, increment
k and repeat Step 2.

3) If zm = 0 for eachm in M , a solution vector is

s =

{ √
c−k δ2

d−k whenm ∈ M , and

δ ei arg zm whenm /∈ M .

4) Otherwise, let

γ =

√
c− k δ2∑
m∈M |zm|2

.

5) If γ zm > δ for anym in M , incrementk and return to
Step 2.

6) The unique solution vector is

s =
{

γ zm whenm ∈ M , and
δ ei arg zm whenm /∈ M .

When ρ = 1, the output of the algorithm is a vector
with unimodular entries that have the same phase as the
corresponding entries ofz. On the other hand, whenρ = d,
the output vector equalsz. We now prove that the algorithm
is correct.

Proof: We must solve the optimization problem

min
s
‖s− z‖2

2 subject to PAR(s) ≤ ρ and ‖s‖2
2 = c.

Let us begin with some major simplifications. First, rewrite
the PAR constraint by enforcing the norm requirement and
rearranging to obtain the equivalent condition

max
m

|sm| ≤
√

c ρ/d.

In the rest of the argument, the symbolδ will abbreviate the
quantity

√
c ρ/d. The PAR constraint becomes|sm| ≤ δ for

eachm = 1, . . . , d.
Now, expand the objective function and enforce the norm

constraint again to obtain

min
s

[
c− 2 Re 〈s,z〉+ ‖z‖2

2

]
.

Observe that it is necessary and sufficient to minimize the
second term. It follows that the optimizer does not depend on
the scale of the input vectorz. So take‖z‖2 = 1 without loss
of generality.

Next, note that the PAR constraint and the norm con-
straint do not depend on the phases of the components in
s. Therefore, the components of an optimals must have
the same phases as the components of the input vectorz.
In consequence, we may assume that boths and z are
nonnegative real vectors.

We have reached a much more straightforward optimization
problem. Given a nonnegative vectorz with unit norm, we
must solve

max
s

〈s,z〉 subject to 〈s, s〉 = c and0 ≤ sm ≤ δ,

Observe that every point of the feasible set is a regular point,
i.e., the gradients of the constraints are linearly independent.
Therefore, Karush-Kuhn-Tucker (KKT) theory will furnish
necessary conditions on an optimizer [61, Sec. 28].

We form the Lagrangian function

L(s, λ,µ,ν) = −〈s,z〉+ 1
2 λ (〈s, s〉 − c)

− 〈s,µ〉+ 〈s− δ 1,ν〉 .

The Lagrange multipliersµ and ν are non-negative because
they correspond to the lower and upper bounds ons. Mean-
while, the multiplierλ is unrestricted because it is associated
with the equality constraint.

The first-order KKT necessary condition on a regular local
maximums? is that

0 = (∇s L)(s?, λ?,µ?,ν?)
= −z + λ? s? − µ? + ν?,

(8)

where µ?
m > 0 only if s?

m = 0 and ν?
m > 0 only if

s?
m = δ. Notice that one ofµ?

m or ν?
m must be zero because

they correspond to mutually exclusive constraints. The second-
order KKT necessary condition on a regular local maximum
is that

0 ≤ yT (∇2
s L)(s?, λ?,µ?,ν?) y

= λ? yT y

for every vectory in the subspace of first-order feasible
variations. This subspace is nontrivial, soλ? ≥ 0.

Solve (8) to obtain

λ?s? = z + µ? − ν?.

Wheneverµ?
m > 0, both s?

m = 0 and ν?
m = 0. This

combination is impossible becausezm ≥ 0. Therefore, we
may eliminateµ? to reach

λ? s? = z − ν?.

The casesλ? = 0 andλ? > 0 require separate consideration.
If λ? = 0, it is clear thatν? = z. Sinceν?

m > 0 only if
s?

m = δ, we must haves?
m = δ wheneverzm > 0. Suppose

that k components ofs? equal δ. The remaining(d − k)
components are not uniquely determined by the optimization
problem. From the many solutions, we choose one such that

s?
m =

√
c− k δ2

d− k
for m wherezm = 0.

This formula ensures thats? has the correct norm and that
none of its entries exceedsδ.

Whenλ? > 0, the solution has the form

s? = [γ z]δ ,

where γ is positive and the operator[·]δ truncates toδ the
components of its argument that exceedδ. It is clear that the
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largest components ofz are all truncated at the same time.
We only need to determinewhich components these are.

To that end, observe thatγ 7→ ‖[γ z]δ‖2 is a strictly
increasing function on[0, δ/zmin], where zmin is the least
positive component ofz. For at most one value ofγ, therefore,
does the vector[γ z]δ have norm

√
c. If this norm value were

not attained, thenλ? would equal zero. Letk be the number
of entries ofs? that equalδ, and suppose thatM indexes the
remaining(d− k) components. Then

c = ‖s?‖2
2 = k δ2 + γ2

∑
m∈M

|zm|2.

Recall thatγ is positive. Therefore, is impossible thatk δ2 > c.
When k δ2 = c, it follows that zm = 0 for eachm in M .
Otherwise,zm must be nonzero for somem in M . Then the
value ofγ must be

γ =

√
c− k δ2∑
m∈M |zm|2

.

B. Convergence

For the alternating projection between the PAR constraint
set and the set ofα-tight frames, we have not proven a more
elaborate convergence theorem than the basic result, Theorem
4, because it is not easy to guarantee that the solution to the
PAR matrix nearness problem is unique. We have been able
to provide a sufficient condition on the fixed points of the
iteration that lie in the PAR constraint setS . Note that similar
fixed points arose in Section IV.

Theorem 10:A sufficient condition for a full-rank matrix
S from S to be a fixed point of the alternating projection be-
tweenS andXα is that the columns ofS are all eigenvectors
of SS∗. That is,SS∗S = SΛ, whereΛ ∈ CN×N is diagonal
and positive, with no more thand distinct entries.

Proof: Refer to Appendix II-E.

C. Numerical Examples

Let us demonstrate that alternating projection can indeed
produce tight frames whose columns have specified PAR
and specified norm. We will produce complex tight frames
because, in the real case, PAR constraints can lead to a discrete
optimization problem. The experiments all begin with the
initial 3× 6 matrix

24 .0748 + .3609i .0392 + .4558i .5648 + .3635i
.5861− .0570i −.2029 + .8024i −.5240 + .4759i

−.7112 + .1076i −.2622− .1921i −.1662 + .1416i

−.2567 + .4463i .7064 + .6193i .1586 + .6825i
−.1806− .1015i −.1946− .1889i .5080 + .0226i

.0202 + .8316i .0393− .2060i .2819 + .4135i

35.

The respective PAR values of its columns are 1.5521, 2.0551,
1.5034, 2.0760, 2.6475, and 1.4730.

Unit-PAR tight frames are probably the most interesting
example. In each column of a unit-PAR tight frame, the entries
share an identical modulus, which depends on the norm of the

column. Let us apply our algorithm to calculate a unit-PAR,
unit-norm tight frame:

24 .1345 + .5615i .1672 + .5526i .4439 + .3692i
.5410− .2017i −.0303 + .5766i −.5115 + .2679i

−.5768 + .0252i −.2777− .5062i −.2303 + .5294i

−.3358 + .4696i .4737 + .3300i .0944 + .5696i
−.5432− .1956i −.3689− .4442i .5747 + .0554i

.1258 + .5635i −.0088− .5773i .4132 + .4033i

35.

Indeed, each of the columns has unit PAR and unit norm. The
singular values of the matrix are identical to eight decimal
places. The calculation required 78 iterations lasting 0.1902
seconds.

Alternating projection can also compute tight frames whose
columns have unit PAR but different norms. For example, if
we request the column norms 0.75, 0.75, 1, 1, 1.25, and 1.25,
the algorithm yields

24 .3054 + .3070i .1445 + .4082i .3583 + .4527i
.4295− .0549i .1235 + .4150i −.5597 + .1418i

−.4228− .0936i −.0484− .4303i .0200 + .5770i

−.4264 + .3893i .4252 + .5831i .3622 + .6242i
−.5393− .2060i −.4425− .5701i .7165− .0863i

.2585 + .5162i −.2894− .6611i .1291 + .7101i

35.

One can check that the column norms, PAR and singular
values all satisfy the design requirements to eight or more
decimal places. The computation took 84 iterations over
0.1973 seconds.

Less stringent constraints on the PAR pose even less trouble.
For example, we might like to construct a tight frame whose
PAR is bounded by two and whose columns have norms 0.75,
0.75, 1, 1, 1.25 and 1.25. It is

24 .0617 + .1320i .0184 + .2764i .4299 + .3593i
.4256− .1031i −.0558 + .5938i −.5920 + .4974i

−.5912 + .0025i −.1304− .3363i −.0807 + .2857i

−.1382 + .2511i .6847 + .7436i .2933 + .6939i
−.4306− .2650i −.2095− .3072i .7317 + .0928i

.0852 + .8093i −.3504− .5289i .2918 + .6048i

35.

The computer worked for 0.0886 seconds, during which it
performed 49 iterations. As usual, the singular values match to
eight decimal places. It is interesting to observe that the frame
exceeds the design specifications. The respective PAR values
of its columns are 1.8640, 1.8971, 1.7939, 1.9867, 1.9618, and
1.0897.

VII. D ISCUSSION

As advertised, we have developed an alternating projection
method for solving frame design problems, and we have
provided ample evidence that it succeeds. In this section,
we discuss some implementation issues and some of the
limitations of the algorithm. We conclude with a collection
of related problems that one can also solve with alternating
projection.
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A. The Starting Point

For alternating projection to succeed, it is essential to choose
a good starting point. Here are a few general strategies that
may be useful.

The simplest method is to selectN vectors uniformly at
random from the surface of the unit sphere inCd and form
them into an initial matrix. Although this technique sometimes
works, it is highly probable that there will be pairs of strongly
correlated vectors, and it is usually preferable for the frame
to contain dissimilar vectors. Nevertheless, a collection of
random vectors converges almost surely to a tight frame as
more vectors are added [54, Thm. 1].

A more practical idea is to select many vectors, say2 dN ,
and then use a clustering algorithm—such as Lloyd–Max [62],
sphericalk-means [63] or diametrical clustering [64]—to sep-
arate these vectors intoN clusters. The cluster representatives
will usually be much more diverse than vectors chosen at
random. A related approach would select many random vectors
and then greedily remove vectors that are highly correlated
with the remaining vectors. This method seems to furnish
excellent starting points for constructing equiangular tight
frames. One might also build up a collection of random vectors
by allowing a new vector to join only if it is weakly correlated
with the current members.

Another technique is to start with a tight frame that has
been developed for another application. By rotating the frame
at random, it is possible to obtain many different starting
points that retain some of the qualities of the original frame. In
particular, equiangular tight frames make excellent initializers.

It is also possible to choose a collection ofN vectors from
a larger frame forCd. Similarly, one might truncate some
coordinates from a frame in a higher-dimensional space. In
particular, one might truncate an orthonormal basis forCN to
retain onlyd coordinates. See [65], for example, which uses
the Fourier transform matrix in this manner.

B. Limitations

Alternating projection cannot alleviate all the pain of frame
design. While preparing this report, we encountered several
difficulties.

A theoretical irritation is the lack of a proof that alternating
projection converges in norm. No general proof is possible,
as the counterexample in [66] makes clear. Nevertheless, it
would be comforting to develop sufficient conditions that
guarantee the convergence of alternating projections between
nonconvex sets. The results of [66] are the best that we know
of. We would also like to develop conditions that can ensure
convergence to a pair of points at minimal distance. Here, the
most general results are probably due to Csiszár and Tusńady
[67].

Another major inconvenience is that alternating projection
converges at a geometric rate (or worse) [48]–[51]. For large
problems, it can be painful to wait on the solution. An
interesting topic for future research would be a method of
acceleration.

A more specific disappointment was the inability of alter-
nating projection to construct tight frames over small finite

alphabets. It is straightforward to solve the matrix nearness
problem associated with a finite alphabet, and it can be shown
that the algorithm always converges in norm to a fixed point.
But the algorithm never once yielded a tight frame. This failure
is hardly surprising; discrete constraints are some of the most
difficult to deal with in optimization. It may be possible to use
annealing to improve the performance of the algorithm. This
would be a valuable direction for future research.

C. Related Problems

We have permitted a great deal of freedom in the selection
of the structural constraint set, but we only considered the
spectral constraints that arise naturally in connection with
tight frames. Nevertheless, alternating projection offers a
straightforward method for addressing other inverse eigenvalue
problems. For example, one might try to construct general
frames with prescribed lower and upper frame bounds,α
and β. Instead of forcing the Gram matrix to be a rank-d
orthogonal projector, one might impose only a rank constraint
or a constraint on its condition number. To implement the
algorithm, it would only be necessary to solve the matrix
nearness problem associated with these spectral constraints.

One can also use alternating projection to construct positive
semi-definite (PSD) matrices that have certain structural prop-
erties. Higham, for example, has used a corrected alternating
projection to produce the correlation matrix nearest to an input
matrix [36]. (A correlation matrix is a PSD matrix with a
unit diagonal.) Since the PSD matrices form a closed, convex
set, it is possible to prove much more about the behavior of
alternating algorithms.

We have also had good success using alternating projection
to compute sphere packings in real and complex projective
spaces. These methods can be extended to produce sphere
packings in real and complex Grassmannian manifolds [59]. It
seems clear that alternating projection has a promising future
for a new generation of problems.

APPENDIX I
POINT-TO-SET MAPS

To understand the convergence of the algorithms, we rely
on some basic results from the theory of point-to-set maps.
Zangwill’s book [68] is a good basic reference with applica-
tions to mathematical programming. More advanced surveys
include [69], [70]. de Leeuw presents statistical applications
in [50]. We have drawn from all these sources here.

A. Point-to-Set Maps

Let Y andZ be arbitrary sets. Thepower setof Z is the
collection of all subsets ofZ , and it is denoted by2Z . A
point-to-set mapfrom Y to Z is a functionΩ : Y → 2Z .
In words,Ω maps each point ofY to a subset ofZ .

There are several different ways of combining point-to-set
maps. Take two mapsΩyz : Y → 2Z andΩzw : Z → 2W .
The composition of these maps carries a pointy to a subset
of W via the rule

(Ωzw ◦ Ωyz)(y) =
⋃

z∈Ωyz(y)

Ωzw(z).
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This definition can be extended in the obvious way to a longer
composition of maps. Now, supposeΩuv mapsU to 2V . The
Cartesian product ofΩuv andΩyz is the point-to-set map from
U × Y to V ×Z given by

(Ωuv × Ωyz)(u, y) = Ωuv(u)× Ωyz(y).

B. Topological Properties

Suppose that the underlying sets are endowed with topolo-
gies so that we may speak of convergence. A mapΩ : Y →
2Z is closed at the pointȳ in Y whenever the statements
yj → ȳ, zj ∈ Ω(yj), andzj → z̄ together imply that̄z ∈ Ω(ȳ).
One may interpret this definition as saying that the setΩ(ȳ) is
“bigger” than the sets in the sequence{Ω(yj)}. On the other
hand, the mapΩ is openat ȳ in Y whenever the statements
yj → ȳ and z̄ ∈ Ω(ȳ) together imply the existence of a
numberJ and a sequence of points{zj} such thatzj → z̄ and
zj ∈ Ω(yj) for all j ≥ J . More or less, this statement means
that the setΩ(ȳ) is “smaller” than the sets in the sequence
{Ω(yj)}. A map that is both open and closed atȳ is said to
be continuousat ȳ. We call Ω an open map, closed map, or
continuous mapwhenever it has the corresponding property
for every point inY .

Finite Cartesian products and finite compositions of open
maps are open. Finite Cartesian products of closed maps are
closed. IfΩyz : Y → 2Z andΩzw : Z → 2W are closed and
Z is compact, then the composition(Ωzw ◦ Ωyz) is closed.

C. Fixed Points

Suppose thatΩ is a point-to-set map fromY to itself. Let
y be a point ofY for which Ω(y) = {y}. Then y is called
a fixed pointof the mapΩ. In contrast, ageneralized fixed
point of Ω is a point for whichy ∈ Ω(y). When we wish
to emphasize the distinction, we may refer to a regular fixed
point as astrongor classicalfixed point.

D. Infimal Maps

Minimizing functions leads to a special type of point-to-set
map. Suppose thatf : Y ×Z → R+ is a real-valued function
of two variables, and letΩ be a point-to-set map fromY to
Z . Associated withf andΩ is an infimal mapdefined by

Mz(y) def= arg min
z∈Ω(y)

f(y, z).

If f(y, ·) attains no minimal value onΩ(y), thenMz(y) = ∅,
the empty set. Under mild conditions, infimal maps are closed.

Theorem 11 (Dantzig-Folkman-Shapiro [71]):If Ω is con-
tinuous atȳ and f(ȳ, ·) is continuous onΩ(ȳ), then Mz is
closed atȳ.

In particular, the constant mapΩ : y 7→ Z is continuous
wheneverZ is closed. So minimizing a continuous function
over a fixed, closed set always yields a closed infimal map.

E. Iterative Algorithms

Zangwill was apparently the first to recognize that many
procedures in mathematical programming find their most
natural expression in the language of point-to-set maps [68].
An algorithmic mapor algorithm is simply a functionΩ :
Y → 2Y . Given an initial pointy0 of Y , an algorithmic map
generates a sequence of iterates according to the rule

yj+1 ∈ Ω(yj).

Suppose thatf : Y → R+ is a continuous, nonnegative
function. We say that the algorithmΩ is monotonic with
respect tof when

z ∈ Ω(y) implies f(z) ≤ f(y).

An algorithmstrictly monotonicwith respect tof is a mono-
tonic algorithm for which

z ∈ Ω(y) andf(z) = f(y) imply z = y.

Zangwill showed that a closed, monotonic algorithm converges
in a weak sense to a generalized fixed point. We present a
streamlined version of his result.

Theorem 12 (Zangwill [68, p. 91]):Let Ω be a closed al-
gorithmic map on a compact setY , and assume thatΩ is
monotonic with respect to a continuous, nonnegative function
f . Suppose that the algorithm generates a sequence of iterates
{yj}.
• The sequence has at least one accumulation point inY .
• Each accumulation point̄y satisfiesf(ȳ) = limj f(yj).
• Each accumulation point̄y is a generalized fixed point of

the algorithm.
R. R. Meyer subsequently extended Zangwill’s Theorem

to provide a more satisfactory convergence result for strictly
monotonic algorithms. One version of his result follows.
For reference, a sequence{yj} in a normed space is called
asymptotically regularwhen‖yj+1 − yj‖ → 0.

Theorem 13 (Meyer [66]):Let Y be a compact subset of
a normed space, and assume thatΩ is a closed algorithm on
Y that it is strictly monotonic with respect to the continuous,
nonnegative functionf . Suppose thatΩ generates a sequence
of iterates{yj}. In addition to the conclusions of Zangwill’s
Theorem, the following statements hold.

• Each accumulation point of the sequence is a (strong)
fixed point of the algorithm.

• The sequence of iterates is asymptotically regular. In
consequence, it has a continuum of accumulation points,
or it converges in norm.

• In case that the fixed points ofΩ on each isocontour
of f form a discrete set, then the sequence of iterates
converges in norm.

Under additional (burdensome) hypotheses, it is possible to
prove norm convergence. A simple consequence of Meyer’s
Theorem is that an algorithmΩ, strictly monotonic with
respect tof , converges in norm if the fixed points ofΩ on
each isocontour off form a discrete set. There is also a
striking convergence theorem due to Opial [72], a proof of
which appears in the recent paper [73].
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F. Alternating Projection

An alternating projection can be interpreted as a kind of
monotonic algorithm. Suppose thatf : Y × Z → R+ is a
continuous function. Thenf induces two natural infimal maps,

My(z) def= arg min
y∈Y

f(y, z) and

Mz(y) def= arg min
z∈Z

f(y, z).

If Y andZ are closed, then Theorem 11 shows that the maps
My andMz are both closed.

We interpret alternating projection as an algorithm on the
product spaceY ×Z equipped with the usual product topol-
ogy. Given an initial iteratey0 from Y , alternating projection
generates a sequence of iterates{(yj , zj)} via the rules

zj ∈ Mz(yj) and yj+1 ∈ My(zj)

for eachj ≥ 0. Formally, this algorithm can be written as
the composition of two sub-algorithms,Ωto andΩfro, that are
defined as

Ωto : (y, z) 7→ {y} ×Mz(y) and

Ωfro : (y, z) 7→ My(z)× {z}.

It follows thatΩ def= Ωfro ◦Ωto is a closed algorithm whenever
Y andZ are compact. Both sub-algorithms decrease the value
of f , so it should also be clear thatΩ is monotonic with respect
to f . Zangwill’s Theorem tenders a basic convergence result.

Corollary 14: Let Y andZ be compact. Suppose that the
alternating projection betweenY andZ generates a sequence
of iterates{(yj , zj)}.
• The sequence has at least one accumulation point.
• Each accumulation point of the sequence lies inY ×Z .
• Each accumulation point is a generalized fixed point of

the algorithm.
• Each accumulation point(ȳ, z̄) satisfies f(ȳ, z̄) =

limj f(yj , zj).

If the infimal mapsMy andMz are single-valued, we can
achieve a much more satisfactory result.

Corollary 15: Let Y and Z be compact subsets of a
normed space, and assume that the infimal mapsMy and
Mz are single-valued. Suppose that the alternating projection
betweenY andZ generates a sequence of iterates{(yj , zj)}.
In addition to the conclusions of Corollary 14, we have the
following.

• Each accumulation point is a classical fixed point of the
alternating projection.

• The sequence of iterates is asymptotically regular.
• The sequence of iterates either converges in norm or it

has a continuum of accumulation points.
Proof: We just need to show that the algorithm is

strictly monotonic with respect tof . Suppose thatf(y, z) =
f(Ω(y, z)). Since the infimal maps never increase the value
of f , we have the equalities

f(y, z) = f(y, Mz(y))
= f((My ◦Mz)(y),Mz(y)) = f(Ω(y, z)).

Since Mz yields the unique minimizer of f with its first
argument fixed, the first equality implies thatMz(y) = {z}.
Likewise, the second equality yields(My ◦ Mz)(y) = {y}.
That is, Ω(y, z) = {(y, z)}. An application of Meyer’s
Theorem completes the argument.

This result is a special case of a theorem of Fiorot and
Huard [74]. In Appendix II, we will translate the language of
these corollaries into more familiar terms.

G. Literature on Alternating Projection

Like most good ideas, alternating projection has a long biog-
raphy and several aliases, includingalternating minimization,
successive approximation, successive projection, and projec-
tion on convex sets. This section offers a résuḿe of the research
on alternating projection, but it makes no pretension to be
comprehensive. Deutsch has written more detailed surveys,
including [51], [75], [76].

According to Deutsch [75], alternating projection first ap-
peared in a set of mimeographed lecture notes, written by John
von Neumann in 1933. von Neumann proved that the alter-
nating projection between two closed subspaces of a Hilbert
space converges pointwise to the orthogonal projector onto
their intersection [38]. Apparently, this theorem was not very
well advertised, because many other authors have discovered
it independently, including Aronszajn [48] and Wiener [77]. It
was shown by Aronszajn [48] and Kayalar–Weinert [49] that
both sequences of iterates converge geometrically with a rate
exactly equal to the squared cosine of the (Friedrichs) principal
angle between the two subspaces.

It is natural to extend the alternating projection between
two subspaces by cyclically projecting onto several subspaces.
Halperin demonstrated that, in a Hilbert space, the cyclic pro-
jection among a finite number of closed subspaces converges
pointwise to the orthogonal projector onto their intersection
[78]. The convergence is geometric [79]. Optimal bounds on
the rate of convergence can be computed with techniques of
Xu and Zikatonov [80]. Bauschkeet al. study methods for
accelerating cyclic projection in the recent paper [81].

It will come as no surprise that researchers have also
studied alternating projection between subspaces of a Banach
space. Unaware of von Neumann’s work, Diliberto and Straus
introduced an alternating method for computing the best sup-
norm approximation of a bivariate continuous function as the
sum of two univariate continuous functions, and they proved
some weak convergence results [82]. The norm convergence
of the sequence of iterates remained open until the work
of Aumann [83]. M. Golomb extended the Diliberto–Straus
algorithm to other best-approximation problems [84]. For more
information on alternating algorithms in Banach spaces, see
the monograph of Cheney and Light [85].

Another fruitful generalization is to consider projection
onto convex subsets. The projector—orproximity map—onto
a closed, convex subset of a Hilbert space is well-defined,
because each point has a unique best approximation from
that set. The basic result, due to Cheney and Goldstein, is
that the alternating projection between two closed, convex
subsets of a Hilbert space will converge to a pair of points
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at minimal distance from each other, so long as one set is
compact [4]. Dykstra [86], [87] and Han [88] independently
developed a cyclic projection technique that, given a point,
can compute its best approximation from the intersection of
a finite number of closed, convex sets in a Hilbert space.
Their algorithm requires a correction to each projection. Their
method is closely related to earlier optimization techniques
of Hildreth [89] and Bregman [5]. Details of this connection
appear in the book [90] and the article [91]. Tseng develops
a very important extension of the Dykstra–Han algorithm in
[92]. To date, the most detailed treatment of projection on
convex sets is probably the survey article [93].

Most of the work on alternating projection has involved the
Euclidean distance, but it is possible to develop results for
other divergence measures. In particular, Csiszár and Tusńady
have shown that alternate minimization of the Kullback–
Leibler divergence can be used to find a pair of minimally
distant points contained within two convex sets of probability
measures [67].

There has been some research on alternating projection
between nonconvex sets, but the theoretical results so far are
limited. Fiorot and Huard have applied the theorems of Zang-
will and Meyer to obtain weak convergence results for a class
of block relaxation schemes that include alternating and cyclic
projection onto non-convex sets [74]. Combettes and Trussell
have developed a technique which inflates the non-convex
sets into convex sets; they offer some qualified convergence
results [94]. Cadzow has also demonstrated empirically that
cyclic projections among nonconvex sets can effectively solve
some signal enhancement problems [95]. More research in this
direction would be valuable.

Alternating projection has found application to many differ-
ent problems, of which we offer a (small) selection. The most
famous example from these pages must be the Blahut–Arimoto
algorithm for computing channel capacity and rate-distortion
functions [96], [97]. In the field of signal restoration and
recovery, we mention the work of Landau–Miranker [98], Ger-
chberg [99], Youla–Webb [100], Cadzow [95], and Donoho–
Stark [101]. Çetin, Gerek, and Yardimci show that projection
on convex sets can compute multi-dimensional equiripple
filters [102]. Xu and Zikatonov discuss how alternating pro-
jection can be used to solve the linear systems that arise in
the discretization of partial differential equations [80]. In the
matrix analysis community, alternating projection has been
used as a computational method for solving inverse eigenvalue
problems [35], [37] and for solving matrix nearness problems
[36], [103]. In statistics, one may view the Expectation Max-
imization (EM) algorithm as an alternating projection [104].
de Leeuw has discussed other statistical applications in [50].

APPENDIX II
CONVERGENCE ANDFIXED POINTS

Armed with the theory of the last appendix, we are finally
girded to attack the convergence of Algorithm 1. The results
on point-to-set maps will allow us to dispatch this dragon
quickly. Then we will turn our attention to the convergence of
the algorithm in the special case that the frame vectors have

prescribed norms. This problem will require a longer siege,
but it too will yield to our onslaught. The convergence results
that we develop here are all novel.

A. Basic Convergence Proof

In this section, we establish the convergence of the basic
alternating projection algorithm that appears in Section III-D.
Our main burden is to translate the language of point-to-set
maps into more familiar terms.

Theorem 16 (Global Convergence):Let Y and Z be
closed sets, one of which is bounded. Suppose that alternating
projection generates a sequence of iterates{(Yj ,Zj)}. This se-
quence possesses at least one accumulation point, say(Y ,Z ).
• The accumulation point lies inY ×Z .
• The accumulation point satisfies∥∥Y − Z

∥∥
F

= lim
j→∞

‖Yj − Zj‖F .

• The accumulation point satisfies∥∥Y − Z
∥∥

F
= dist(Y ,Z ) = dist(Z ,Y ).

Proof: Assume without loss of generality thatY is the
compact set, whileZ is merely closed. We must establish that
we have all the compactness necessary to apply Corollary 14.

Without loss of generality, assume thatY0 ∈ Y . If δ =
‖Y0 − Z0‖F, then subsequent iterates always satisfy

‖Yj − Zj‖F ≤ δ and

‖Yj+1 − Zj‖F ≤ δ.

Thus, we may restrict our attention to the sets

Y1 = {Y ∈ Y : dist(Y ,Z ) ≤ δ} and

Z1 = {Z ∈ Z : dist(Z ,Y ) ≤ δ}.

Since Y is compact,Y1 is compact because it is a closed
subset of a compact set. On the other hand,Z1 is compact
because it is the intersection of the closed setZ with a
compact set, namely the collection of matrices within a fixed
distance ofY .

We may apply Corollary 14. Each of the conclusions
of the corollary has a straightforward analogue among the
conclusions of the present theorem. The only question that
may remain is what it means for a pair of matrices(Y ,Z )
to be a generalized fixed point of the alternating projection.
A generalized fixed point of an algorithm is a point which
is a possible successor of itself. In the present case, a pair of
matrices can succeed itself if and only if the second component
is a potential successor of the firstand the first component is
a potential successor of the second. The matrixZ can succeed
the matrixY if and only if∥∥Z − Y

∥∥
F

= dist(Y ,Z ).

Likewise, Y can succeedZ if and only if∥∥Y − Z
∥∥

F
= dist(Z ,Y ).

This observation completes the proof.
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Since the collection ofα-tight frames and the collection of
their Gram matrices are both compact, the theorem has two
immediate corollaries.

Corollary 17: If Xα is the collection ofα-tight frames, and
S is a closed set of matrices, then Theorem 16 applies with
Y = S andZ Xα.

Corollary 18: If Gα contains the Gram matrices of allα-
tight frames, andH is a closed set of Hermitian matrices,
then Theorem 16 applies withY = Gα andZ = H .

B. Stronger Convergence Results

Meyer’s Theorem suggests that it might be possible to
provide a stronger convergence result for Algorithm 1 if we
can ensure that the matrix nearness problems have unique
solutions. In many cases, the nearness problems are uniquely
soluble whenever the iterates get sufficiently close together.
This provides a local convergence result that is much stronger
than Zangwill’s Theorem allows. First, we prove a general
version of this result. Afterward, we show that it applies
to an alternating projection that involves one of the spectral
constraint setsXα or Gα.

Recall that the distance between a matrixM and a setY
is defined as

dist(M,Y ) def= inf
Y∈Y

‖M − Y ‖F .

Theorem 19:Let Y andZ be closed sets of matrices, one
of which is compact. Suppose that the alternating projection
betweenY andZ generates a sequence of iterates{(Yj ,Zj)},
and assume that the matrix nearness problems

min
Y∈Y

‖Y −M‖F

min
Z∈Z

‖Z −M‖F

have unique solutions for any matrixM in the sequence of
iterates. Then we reach the following conclusions.

• The sequence of iterates possesses at least one accumu-
lation point, say(Y ,Z ).

• The accumulation point lies inY ×Z .
• The pair(Y ,Z ) is a fixed point of the alternating projec-

tion. In other words, if we applied the algorithm toY or
to Z every iterate would equal(Y ,Z ).

• The accumulation point satisfies∥∥Y − Z
∥∥

F
= lim

j→∞
‖Yj − Zj‖F .

• The component sequences are asymptotically regular, i.e.,

‖Yj+1 − Yj‖F → 0 and ‖Zj+1 − Zj‖F → 0.

• Either the component sequences both converge in norm,∥∥Yj − Y
∥∥

F
→ 0 and

∥∥Zj − Z
∥∥

F
→ 0,

or the set of accumulation points forms a continuum.
Proof: The argument in the proof of Theorem 16 shows

that we are performing an alternating minimization between
two compact sets. The hypotheses of the theorem guarantee
that each iterate is uniquely determined by the previous iterate.
Corollaries 14 and 15 furnish the stated conclusions.

The only point that may require clarification is what it takes
for a pair of matrices(Y ,Z ) to be a classical fixed point of the
alternating projection. A classical fixed point of an algorithm is
the only possible successor of itself. In the case of alternating
projection, the matrixZ must be the unique successor of the
Y , and the matrixY must be the unique successor ofZ . This
observation completes the argument.

Due to the peculiar structure of the spectral constraint
sets Xα and Gα, the solutions to the associated matrix
nearness problems are often unique. Therefore, the alternating
projection algorithms that we have considered in this paper
sometimes have better performance than the basic convergence
result, Theorem 16, would predict.

We remind the reader that

Xα
def= {X ∈ Cd×N : XX ∗ = α Id}, and

Gα
def= {G ∈ CN×N : G = G∗,

andG has eigenvalues(α, . . . , α︸ ︷︷ ︸
d

, 0, . . . , 0)}.

The uniqueness of the matrix nearness problems will follow
from the Wielandt–Hoffman Theorem, a powerful result from
matrix analysis.

Theorem 20 (Wielandt–Hoffman [25, p. 368 and p. 419]):
Suppose thatA and B are N × N Hermitian matrices, and
let the vectorsλ(A) and λ(B) list the eigenvalues ofA and
B in algebraically nonincreasing order. Then

‖λ(A)− λ(B)‖2 ≤ ‖A− B‖F .

Suppose instead thatA andB ared×N rectangular matrices
with d ≤ N , and letσ(A) andσ(B) list the largestd singular
values ofA andB in nonincreasing order. Then

‖σ(A)− σ(B)‖2 ≤ ‖A− B‖F . (9)

Note that if we solving matrix nearness problems with respect
to the spectral norm, Weyl’s Theorem would allow us to
provide stronger bounds [25, p. 367].

Corollary 21 (Local Convergence with ConstraintXα):
Let S be a closed set ofd × N matrices for which the
associated matrix nearness problem

min
S∈S

‖S −M‖F

has a unique solution wheneverdist(M,S ) < ε. Imagine
that the alternating projection betweenS and Xα generates
a sequence of iterates{(Sj ,Xj)} in which

‖Sj − Xj‖F < min{ε, α} for some indexJ.

Then the conclusions of Theorem 19 are in force.
Proof: According to Theorem 2, the matrix inXα nearest

to a matrixM is unique so long asM has full rank. Ad×N
matrix is rank-deficient only if itsd-th largest singular value is
zero. Observe that the largestd singular values of each matrix
in Xα all equalα > 0. According to the Wielandt–Hoffman
Theorem, any matrix sufficiently close toXα cannot be rank-
deficient. More precisely,dist(M,Xα) < α implies thatM
has full rank, which in turn shows thatM has a unique best
approximation inXα.
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Define the constraint sets

Y
def= S ∩ closure{Sj : j ≥ J} and

Z
def= Xα ∩ closure{Xj : j ≥ J}.

Note thatY is closed and thatZ is compact. We will apply
Theorem 19 to the tail of the sequence of iterates, beginning
with indexJ . For j ≥ J , each matrixSj is close enough toZ
and each matrixXj is close enough toY that we can ensure
the matrix nearness problems have unique solutions.

Corollary 22 (Local Convergence with ConstraintGα):
Let H be a closed set ofN × N matrices for which the
associated matrix nearness problem

min
H∈H

‖H −M‖F

has a unique solution wheneverdist(M,H ) < ε. Imagine
that the alternating projection betweenGα and H generates
a sequence of iterates{(Gj ,Hj)} in which

‖Gj − Hj‖F < min{ε, α/
√

2} for some indexJ.

Then the conclusions of Theorem 19 are in force.
Proof: Theorem 3 indicates that the matrix inGα nearest

to a matrix M is unique so long as itsd-th and (d + 1)-st
eigenvalues are distinct. Imagine thatM is a matrix whose
d-th and(d + 1)-st eigenvalues both equalτ . Since thed-th
and (d + 1)-st eigenvalue of a matrix inGα are α and zero,
the Wielandt–Hoffman Theorem shows that

dist(M,Gα)2 ≥ (α− τ)2 + τ2.

Varying τ , the minimum value of the right-hand side isα2/2.
Therefore,dist(M,Gα) < α/

√
2 implies that thed-th and

(d + 1)-st eigenvalues ofM are distinct. In consequence,M
has a unique best approximation fromGα.

As before, define the constraint sets

Y
def= H ∩ closure{Hj : j ≥ J} and

Z
def= Gα ∩ closure{Gj : j ≥ J}.

The set Y is closed, andZ is compact. We will apply
Theorem 19 to the tail of the sequence of iterates, beginning
with indexJ . For j ≥ J , each matrixHj is close enough toZ
and each matrixGj is close enough toY that we can ensure
the matrix nearness problems have unique solutions.

C. Specified Column Norms

This section offers a detailed analysis of the alternating
projection between the set ofα-tight frames and the collection
of matrices with specified column norms.

Let c1, . . . , cN be positive numbers that denote the squared
column norms we desire in the frame. Without loss of gen-
erality, we assume thatα =

∑
n cn/d = 1 to streamline the

proofs. Then the structural constraint set is

S
def= {S ∈ Cd×N : ‖sn‖2

2 = cn}. (10)

Since the tightness parameterα of the frame equals one, we
define the set of 1-tight frames as

X1
def= {X ∈ Cd×N : XX ∗ = Id}.

Suppose thatS0 is a full-rank matrix drawn fromS , and
perform an alternating projection between the setsS andX1

to obtain sequences{Sj} and {Xj}. Proposition 23 of the
sequel shows that the sequence{Sj} lies in a compact subset
of S whose elements have full rank, while the sequence
{Xj} lies in a compact subset ofX1 whose elements have
nonzero columns. By an appeal to the matrix nearness results,
Theorem 2 and Proposition 5, we see that each iterate is
uniquely determined by its predecessor. We may therefore
apply Corollary 15.

In this subsection, we complete the foregoing argument
by demonstrating that the iterates are well-behaved. In the
next subsection, we classify the full-rank fixed points of the
alternating projection betweenS andX1.

Set cmin = minn cn, and define the diagonal matrixC
whose entries are

√
c1, . . . ,

√
cN .

Proposition 23: Assume that the initial iterateS0 is a full
rank matrix fromS . For every positive indexj,

1) the Euclidean norm of each column ofXj is at least√
cmin/ ‖C‖F; and

2) the smallest singular value ofSj is at least
√

cmin.
The matrices that satisfy these bounds form compact subsets
of X1 andS .

Proof: Assume thatj ≥ 0, and make the inductive
assumption thatSj has full rank. First, we bound the top
singular value ofSj by exploiting the relationship between
the singular values of a matrix and its Frobenius norm. Since
C lists the column norms ofSj , it follows that‖Sj‖2

F = ‖C‖2
F.

The squared Frobenius norm ofSj also equals the sum of its
squared singular values. It is immediate that the maximum
singular value ofSj satisfies

σmax(Sj)2 ≤ ‖C‖2
F . (11)

Next we use this relation to estimate the column norms ofXj .
Let Sj have singular value decompositionUΣV ∗, and write
the n-th columns ofSj andXj assn andxn. On account of
the fact thatXj = (SjSj

∗)−1/2Sj , we have

‖xn‖2 =
∥∥∥(SjSj

∗)−1/2 sn

∥∥∥
2

=
∥∥UΣ−1U∗ sn

∥∥
2

≥
√

cmin/σmax(Sj), (12)

since the norm ofsn is at least
√

cmin. Introducing the bound
(11) into inequality (12) yields the first part of the proposition.

Now, we show that the smallest singular value ofSj+1

remains well away from zero. DefineTj to be the diagonal
matrix that lists the column norms ofXj . Note that, sinceXj

is a submatrix of a unitary matrix, its column norms cannot
exceed one, and so every entry ofT−1

j must be at least one.
We can now express the matrix inS nearest toXj with the
formula Sj+1 = Xj T−1

j C . It is well known that the smallest
singular value ofSj+1 is equal to the square root of the
smallest eigenvalue ofSj+1S

∗
j+1. We will apply the Rayleigh–

Ritz Theorem [25, p. 176] to provide a lower bound on this
eigenvalue. Letv be any nonzero,d-dimensional vector, and
form the Rayleigh quotient

v∗(Sj+1S
∗
j+1) v

v∗v
=

v∗(XjT
−1
j C 2T−1

j X ∗j ) v

v∗v
.
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Make the substitutionw = Xj
∗ v, and observe that the

w∗w = v∗(XjX
∗
j ) v = v∗v since the matrixXj has orthonor-

mal rows. Therefore, the Rayleigh quotient satisfies

v∗(Sj+1S
∗
j+1) v

v∗v
=

w∗(T−1
j C 2T−1

j ) w

w∗w
.

It follows that the smallest eigenvalue ofSj+1 is no less
than the smallest eigenvalue ofT−1

j C 2T−1
j . But this matrix

is diagonal with entries no smaller thancmin. Its smallest
eigenvalue is no less thancmin. We conclude

σmin(Sj+1) ≥
√

cmin,

and the second part of the proposition is complete.
Finally, we must make the compactness argument. We have

shown that the squared singular values of an iterateSj must lie
in the closed interval[

√
cmin, ‖C‖F]. The minimum squared

singular value of a matrix is a continuous function of the
matrix entries, which follows from conclusion (9) of the
Wielandt–Hoffman Theorem. Therefore, the matrices whose
smallest singular value lies in this interval form a closed set.
We discover that the intersection of this set with the compact
setS is compact. The same type of argument implies that the
sequence{Xj} lies in a compact subset ofX1 whose matrices
have column norms bounded away from zero.

D. Fixed Points I

It remains to characterize the fixed points of the alternating
projection between the set of matrices with fixed column
norms and the set ofα-tight frames.

Proposition 24: The full-rank stationary points of an alter-
nating projection betweenS andXα are precisely those full-
rank matricesS from S whose columns are all eigenvectors
of SS∗. That is,SS∗S = SΛ, whereΛ ∈ CN×N is diagonal
and positive with at mostd distinct values.

Proof: As before, we takeα = 1 for simplicity. Define
the diagonal matrixT = T (S) whose entries are the column
norms of(SS∗)−1/2 S .

Suppose thatS is a full-rank fixed point of the algorithm.
Thus projectingS onto X1 and projecting back toS returns
S . Symbolically,

S = ((SS∗)−1/2 S) (T−1C ).

Define Λ = T−1C . Then the equation becomes
(SS∗)−1/2 S = SΛ−1. Due to the joint eigenstructure
of a positive-definite matrix and its positive-definite roots [25,
p. 405], it follows that(SS∗)S = SΛ2.

Conversely, suppose thatS has full rank and that(SS∗) S =
SΛ2 for some positive diagonal matrixΛ. Equivalently,
(SS∗) sn = λ2

n sn for eachn. It follows that

(SS∗)−1/2 sn = λ−1
n sn for eachn.

Take norms to see thattn = λ−1
n

√
cn. Combine these

equations into the matrix equationΛ = T−1C . Thus, S is
a fixed point of the algorithm.

E. Fixed Points II

Proposition 24 allows us to provide a partial characterization
of the fixed points of any alternating projection between the
set ofα-tight framesXα and any structural constraint setZ
that contains matrices with fixed column norms. This result
applies even if the matrices inZ have additional properties.

Proposition 25: Suppose that the column norms of matrices
in Z are fixed. A sufficient condition for a full-rank matrixZ
in Z to be a fixed point of the alternating projection between
Z and Xα is that the columns ofZ are all eigenvectors of
ZZ∗. That is,ZZ∗Z = ZΛ, whereΛ is a positive, diagonal
matrix with no more thand distinct entries.

Proof: Let S be the set defined in (10), and letZ be
a closed subset ofS . Suppose that the matrixZ in Z is a
fixed point of the alternating projection betweenS andXα,
and letX be the matrix inXα closest toZ . It follows that
Z is the (unique) matrix inS closest toX . In particular,Z
is the matrix inZ closest toX . Therefore,Z is also a fixed
point of the alternating projection betweenZ and Xα. An
appeal to Proposition 24 completes the proof.
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