
FAST & ACCURATE RANDOMIZED ALGORITHMS
FOR LINEAR SYSTEMS AND EIGENVALUE PROBLEMS∗

YUJI NAKATSUKASA† AND JOEL A. TROPP‡

Abstract. This paper develops a new class of algorithms for general linear systems and eigen-
value problems. These algorithms apply fast randomized sketching to accelerate subspace projection
methods, such as GMRES and Rayleigh–Ritz. This approach offers great flexibility in designing the
basis for the approximation subspace, which can improve scalability in many computational environ-
ments. The resulting algorithms outperform the classic methods with minimal loss of accuracy. For
model problems, numerical experiments show large advantages over MATLAB’s optimized routines,
including a 100× speedup over gmres and a 10× speedup over eigs.

Key words. Eigenvalue problem, linear system, numerical linear algebra, Petrov–Galerkin
method, projection method, randomized algorithm, Rayleigh–Ritz, sketching, subspace embedding

AMS subject classifications. 65F10, 65F15, 65F25

1. Introduction. Arguably, the most exciting recent development in numeri-
cal linear algebra (NLA) is the advent of new randomized algorithms that are fast,
scalable, robust, and reliable. For example, many practitioners have adopted the
“randomized SVD” and its relatives [20, 26] to compute truncated singular value de-
compositions of large matrices. Randomized preconditioning [36, 3] allows us to solve
highly overdetermined least-squares problems faster than any classical algorithm.

In spite of these successes, we have made less progress on other core challenges
from NLA, especially problems involving nonsymmetric square matrices. This paper
exposes a new class of algorithms for solving general linear systems and eigenvalue
problems. Our framework enhances subspace projection methods [37, 38], such as
GMRES and the Rayleigh–Ritz process, with the modern technique of randomized
sketching [41, 52, 26]. This approach allows us to accelerate the existing methods
by incorporating approximation subspaces that are easier to construct. The resulting
algorithms are faster than their classical counterparts, without much loss of accuracy.
In retrospect, the marriage of these ideas appears foreordained.

1.1. Sketching a least-squares problem. The sketch-and-solve paradigm [41,
52, 26] is a basic tool for randomized matrix computations. The idea is to decrease the
dimension of a large problem by projecting it onto a random subspace and to solve the
smaller problem instead. The solution of this “sketched problem” sometimes serves
in place of the solution to the original computational problem.

For a typical example, consider the n× d overdetermined least-squares problem

(1.1) minimizey∈Cd ‖My − f‖2,

where M ∈ Cn×d is a tall matrix with n � d. Draw a random sketching matrix
S ∈ Cs×n with sketch dimension s = 2d, say. Then solve the s× d sketched problem

(1.2) minimizey∈Cd ‖S(My − f)‖2.

For a carefully designed sketching matrix S, the whole sketch-and-solve process may
be significantly faster than solving (1.1) directly. See section 2 for details.

∗Submitted to the editors DATE.
Funding: JAT acknowledges ONR BRC N00014-1-18-2363 and NSF FRG 1952777.
†Mathematical Institute, University of Oxford, Oxford, UK (nakatsukasa@maths.oxford.ac.uk).
‡Computing and Mathematical Sciences, Caltech, Pasadena, CA, USA (jtropp@cms.caltech.edu).

1

mailto:nakatsukasa@maths.oxford.ac.uk
mailto:jtropp@cms.caltech.edu

2 Y. NAKATSUKASA AND J. A. TROPP

We can compare the residual norms of the solution ŷ to the sketched problem (1.2)
and the solution y? to the original problem (1.1). The sketching method ensures that

(1.3) ‖My? − f‖2 ≤ ‖Mŷ − f‖2 ≤ Const · ‖My? − f‖2.

Provided that the original problem has a tiny residual, the solution to the sketched
problem also yields a tiny residual!

1.2. Solving linear systems by sketched GMRES. Now, suppose that we
wish to solve the (nonsymmetric) linear system

(1.4) Find x ∈ Cn : Ax = f where A ∈ Cn×n and f ∈ Cn.

All algorithms in this paper access the matrix via products: x 7→ Ax. Our approach
builds on a classic template, called a subspace projection method [37], which casts the
linear system as a variational problem. We can treat this formulation by sketching.
Let us summarize the ideas; a full exposition appears in sections 3 and 4.

1.2.1. Sketched GMRES. For the moment, suppose that we have acquired a
tall matrix B ∈ Cn×d, called a basis, with the property that range(B) contains a
good approximate solution to the linear system (1.4). That is, ABy ≈ f for some
y ∈ Cd. In addition, assume we have the reduced matrix AB ∈ Cn×d at hand.

At its heart, the GMRES algorithm [40, 39, 37] is a subspace projection method
that replaces the linear system (1.4) with the overdetermined least-squares problem

(1.5) minimizey∈Cd ‖ABy − f‖2.

The solution y? to (1.5) yields an approximate solution xB = By? to the linear
system (1.4). The residual norm ‖AxB − f‖2 reflects how well the basis B captures
a solution to the linear system.

The least-squares formulation (1.5) is a natural candidate for sketching. Draw a
sketching matrix S ∈ Cs×n with s = 2d, say, and sketch the problem:

(1.6) minimizey∈Cd ‖S(ABy − f)‖2.

The solution ŷ of the sketched problem (1.6) induces an approximate solution x̂ = Bŷ
to the linear system (1.4). According to (1.3), the residual norm ‖Ax̂−f‖2 is within a
constant factor of the original residual norm ‖AxB − f‖2. In summary, the sketched
formulation (1.6) is effective if and only if the subspace range(B) contains a good
solution of the linear system.

We refer to (1.6) as the sketched GMRES problem (sGMRES). For an unstruc-
tured basis B, the sGMRES approach is faster than solving the original least-squares
problem (1.5), both in theory and in practice. With careful implementation, sGM-
RES is reliable and robust, even when the conditioning of the reduced matrix AB
is poor. Indeed, it suffices that κ2(AB) < u−1 where u is the unit roundoff.1 As a
consequence, we have an enormous amount of flexibility in choosing the basis B.

1.2.2. Krylov subspaces. To make sGMRES work well, we must construct a
subspace that captures an approximate solution to the linear system. To that end,
consider a Krylov subspace of the form

(1.7) Kp(A,f) := span{f ,Af ,A2f , . . . ,Ap−1f}.

1The unit roundoff u ≈ 10−16 in standard IEEE double-precision arithmetic.

FAST RANDOMIZED SUBSPACE ALGORITHMS 3

100 200 400 1000 2000 3000
10

-10

10
-8

10
-6

10
-4

10
-2

GMRES

sGMRES

restart 10

restart 30

restart 100

100 200 400 1000 2000 3000
10

0

10
1

10
2

10
3

10
4

ti
m

e
(s

)

GMRES

sGMRES

restart 10

restart 30

restart 100

Fig. 1. GMRES versus sGMRES: Nonsymmetric linear system. These panels compare the
performance of MATLAB gmres (with and without restarting) against the sGMRES algorithm (where
the basis B is computed by partial orthogonalization against k = 4 previous vectors). The sparse
linear system Ax = f has dimension n = 921, 632. Left: Relative residual and the conditioning
κ2(AB) of the reduced matrix. Right: Total runtime including basis generation.

The Krylov subspace often contains an excellent approximate solution to the linear
system, even when the depth p� n. See [37, Chaps. 6 and 7].

For computations, we need an explicit basis for the Krylov subspace. Although it
is straightforward to form the monomial basis visible in (1.7), the condition number
may grow exponentially [7, 17], rendering the basis useless for numerical purposes.

Instead, we pursue other fast basis constructions that offer better conditioning.
For example, we may assemble a basis B = [b1, . . . , bd] ∈ Cn×d using the Arnoldi
process with k-partial orthogonalization. Define b0 = 0 and b1 = f/‖f‖2. For each
j = 2, . . . , d, we iteratively form

(1.8) bj = wj/‖wj‖2 where wj = (I− bj−1b
∗
j−1 − · · · − bj−kb

∗
j−k)(Abj−1).

It often suffices to take k = 2 or k = 4. Note that we obtain the reduced matrix AB
as a by-product of this computation.

1.2.3. Comparison with GMRES. The standard version of GMRES [40] ap-
plies the expensive Arnoldi process (with full orthogonalization) to build an orthonor-
mal basis for the Krylov subspace, and it exploits the structure of this basis to solve
the least-squares problem (1.5) efficiently.

In contrast, we propose to use a quick-and-dirty construction, such as Arnoldi
with k-partial orthogonalization, to obtain a basis for the Krylov subspace. Then we
solve the sGMRES least-squares problem (1.6) to produce an approximate solution
of the linear system. The sGMRES approach has lower arithmetic costs than classic
GMRES, while attaining similar accuracy:

GMRES: O(nd2) operations vs. sGMRES: O(d3 + nd log d) operations.

This expression assumes that k is a fixed constant.
As evidence of the benefits of sGMRES, Figure 1 depicts a 100× speedup for

a sparse nonsymmetric linear system with dimension n = 921, 632. In this case,
sGMRES is comparable in speed to restarted GMRES with restarting frequency 10,
whose convergence is significantly impaired. Section 8 provides more details on the
experimental setup, as well as further illustrations. For example, when applied to a

4 Y. NAKATSUKASA AND J. A. TROPP

sparse positive-definite linear system, sGMRES can produce residual norms about 5×
smaller than the conjugate gradient (CG) method after the same running time. Thus,
it can be argued that sGMRES combines the speed of CG with the generality and
robustness of GMRES.

1.3. Solving eigenvalue problems by sketched Rayleigh–Ritz. Similar
ideas apply to spectral computations. We pose the nonsymmetric eigenvalue problem

(1.9) Find nonzero x ∈ Cn and λ ∈ C : Ax = λx where A ∈ Cn×n.

As before, we access the matrix via products: x 7→ Ax. Typically, we seek a family
of eigenvectors associated with a particular class of eigenvalues (e.g., largest real
part, closest to zero). Let us outline a sketched subspace projection method for the
eigenvalue problem. Full details appear in sections 6 and 7.

1.3.1. Sketched Rayleigh–Ritz. As in subsection 1.2.1, suppose that we are
equipped with a basis B ∈ Cn×d and the reduced matrix AB ∈ Cn×d. The range of
the basis should contain approximate eigenpairs (x, λ) for which Ax ≈ λx. In this
setting, the most commonly employed strategy is the Rayleigh–Ritz (RR) method.

We begin with the classic variational formulation [33, Thm. 11.4.2] of RR:

(1.10) minimizeM∈Cd×d ‖AB −BM‖F.

The solution is M = B†AB. At this point, RR frames the d× d eigenvalue problem
My = θy. Each solution yields an approximate eigenpair (By, θ) of the matrix A.

Evidently, the least-squares problem (1.10) is ripe for sketching. Draw a sketching
matrix S ∈ Cs×n with s = 4d, say, and pass to the sketched RR problem:

(1.11) minimizeM∈Cd×d ‖S(AB −BM)‖F.

It is cheap to form a solution M̂ = (SB)†(SAB) to the sketched problem (1.11). As
before, we can frame an ordinary eigenvalue problem

(1.12) M̂y = (SB)†(SAB)y = θy.

For each solution (ŷ, θ̂), we obtain an approximate eigenpair (Bŷ, θ̂) of the original
matrix A. We will show—both theoretically and empirically—that the computed
eigenpairs are competitive with the eigenpairs obtained from RR.

We refer to (1.11) as the sketched Rayleigh–Ritz (sRR) formulation. Although
it demands a careful implementation, sRR is faster than the original least-squares
method (1.10) for an unstructured basis B. Moreover, sRR is robust, even when the
basis B has poor conditioning. Indeed, it suffices that κ2(B) < u−1.

1.3.2. Comparison with Arnoldi + Rayleigh–Ritz. We can also deploy the
Krylov subspace (1.7) for eigenvalue computations [33, 38]. In this case, we typically
use a random starting vector ω ∈ Cn to generate the subspace Kp(A;ω).

To solve a large nonsymmetric eigenvalue problem, one standard algorithm [38,
Sec. 6.2] applies the Arnoldi process (with full orthogonalization) to form an orthonor-
mal basis for the Krylov subspace, and it uses the structure of the basis to solve the
RR eigenvalue problem efficiently.

Instead, we propose to combine a fast construction of a Krylov subspace basis,
such as k-partial orthogonalization (1.8), with the sRR eigenvalue problem (1.12).
Asymptotically, this algorithm uses less arithmetic than the classic approach.

FAST RANDOMIZED SUBSPACE ALGORITHMS 5

0 500 1000 1500 2000
10

-15

10
-10

10
-5

eigs

sRR

100 200 500 1000 2000
10

0

10
1

10
2

10
3

ti
m

e
(s

)

eigs

sRR

Fig. 2. RR versus sRR: Nonsymmetric eigenvalue problem. These panels compare the
performance of MATLAB eigs against the sRR algorithm (where the basis B is computed by partial
orthogonalization against k = 10 previous vectors). The sparse eigenvalue problem Ax = λx has
dimension n = 106, and it arises from a trust-region subproblem in optimization. Left: Relative
residual for the right-most eigenpair and the conditioning κ2(B) of the basis. Right: Total runtime
including basis generation.

As evidence, Figure 2 highlights an eigenvalue problem from optimization where
sRR runs over 10× faster than the MATLAB eigs command. Even so, both methods
compute the desired eigenpair to the same accuracy. Section 8 describes the experi-
mental setup and provides further illustrations. For example, when applied to a sparse
symmetric eigenvalue problem, sRR can outperform standard implementations of the
Lanczos method in both speed and reliability.

1.3.3. Block Krylov subspaces. For eigenvalue problems, there is also a com-
pelling opportunity to explore alternative subspace constructions. For example, con-
sider the block Krylov subspace

(1.13) Kp(A,Ω) := span{Ω,AΩ,A2Ω, . . . ,Ap−1Ω} where Ω ∈ Cn×b.

We commonly generate the Krylov subspace from a random matrix Ω. The stan-
dard prescription recommends a small block size b and a large depth p, but recent
research [26, Sec. 11] has shown the value of a large block size b and a small depth p.

We must take care in constructing the block Krylov subspace. Partial orthogonal-
ization is only competitive when the block size b is a small constant. For larger b, the
Chebyshev recurrence offers an elegant way to form a basis B = [B1, . . . ,Bp] ∈ Cn×bp:

B1 = Ω; B2 = AΩ; Bi = 2ABi−1 −Bi−2 for i = 3, . . . , p.

We obtain the reduced matrix AB as a by-product. In practice, the Chebyshev
polynomials must be shifted and scaled to adapt to the spectrum of A.

1.4. Discussion. Our idea to combine subspace projection methods with sketch-
ing offers compelling advantages over the classic algorithms, especially in modern
computing environments. Nevertheless, it must be acknowledged that this approach
suffers from some of the same weaknesses as GMRES and RR. For example, when the
basis B is a Krylov subspace, these methods are limited by the approximation power
of Krylov subspaces.

With hindsight, our framework appears as an obvious application of the sketch-
and-solve paradigm for overdetermined least-squares problems. A critical reader may
even wonder whether this idea is actually novel. Let us respond to this concern.

6 Y. NAKATSUKASA AND J. A. TROPP

First, the sketch-and-solve methodology is typically used to design fast, low-
accuracy algorithms that have limited access to the problem data. Indeed, the osten-
sible purpose of sketching is to reduce the input data to a more manageable size. To
the best of our knowledge, the literature has not evaluated sketching for data-adaptive
problem formulations, such as the ones in this paper.

Second, we believe that we are the first authors to identify the natural connection
between sketching and subspace projection methods for linear algebra problems. In
the past, researchers in theoretical algorithms may have overlooked this opportunity
because they did not recognize that subspace projection algorithms are variational
methods. Meanwhile, numerical analysts who are familiar with the variational per-
spective may not have appreciated that sketching is compatible with accuracy.

Third, for our algorithms to be competitive, we must employ efficient construc-
tions of Krylov subspace bases. These ideas have a long history, but they are not
widespread. In the past, researchers presented these techniques as a way to postpone
expensive orthogonalization steps in parallel computing environments [23, 34]. In con-
trast, sketching sometimes allows us to eliminate the orthogonalization steps. Thus,
we can finally take full advantage of the potential of fast computational bases.

More broadly, orthogonal bases and transformations historically played an impor-
tant role because they guarantee backward stability. In contrast, we will demonstrate
that non-orthogonal bases can support fast and accurate matrix computations. We
believe that there are many other settings where this insight will be valuable.

1.5. Roadmap. In section 2, we give a rigorous treatment of sketching for least-
squares problems. Sections 3 to 5 develop and analyze the sGMRES method and
associated basis constructions. Sections 6 and 7 contain the analogous developments
for sRR. Computational experiments in section 8 confirm that these algorithms are
fast, robust, and reliable. Sections 9 and 10 describe extensions and prospects.

1.6. Notation. The symbol ∗ denotes the (conjugate) transpose of a vector or
matrix. We write ‖ · ‖2 for the `2 norm or the spectral norm, while ‖ · ‖F is the
Frobenius norm. The dagger † denotes the pseudoinverse. For a matrix M ∈ Cn×d,
define the largest singular value σmax(M) := σ1(M) and the minimum singular value
σmin(M) := σmin{n,d}(M). The condition number κ2(M) := σmax(M)/σmin(M).

2. Background: Subspace embeddings. A subspace embedding is a linear
map, usually from a high-dimensional space to a low-dimensional space, that preserves
the `2 norm of every vector in a given subspace. This definition is due to Sarlós [41];
see also [52, 26].

Definition 2.1 (Subspace embedding). Suppose that the columns of B ∈ Cn×d
span the subspace L ⊆ Cn. A matrix S ∈ Cs×n is called a subspace embedding for L
with distortion ε ∈ (0, 1) if

(2.1) (1− ε) · ‖By‖2 ≤ ‖SBy‖2 ≤ (1 + ε) · ‖By‖2 for all y ∈ Cd.

For matrix computations, we need to design subspace embeddings with several
extra properties. First, the subspace embedding S should be equipped with a fast
matrix–vector multiply so that we can perform the data reduction process efficiently.
Second, for a fixed (but unknown) subspace L, we want to draw a subspace embedding
at random to achieve (2.1) with high probability. Last, the embedding dimension s
for a randomized subspace embedding of a d-dimensional subspace should have the
optimal scaling s ≈ d/ε2. Owing to this relation, subspace embeddings are only

FAST RANDOMIZED SUBSPACE ALGORITHMS 7

appropriate in settings where a moderate distortion, say ε = 1/
√

2, is enough for
computational purposes.

Before turning to constructions in subsection 2.3, let us outline the applications
of subspace embeddings that we will use in this paper.

2.1. Sketching for least-squares problems. As discussed in subsection 1.1,
we can use a subspace embedding to reduce the dimension of an overdetermined least-
squares problem. This idea is also due to Sarlós [41]; it serves as the foundation for a
collection of methods called the sketch-and-solve paradigm [52, 26].

Fact 2.2 (Sketching for least-squares). Let M ∈ Cn×d be a matrix, and suppose
that S ∈ Cs×n is a subspace embedding for range([M ,f]) with distortion ε ∈ (0, 1).
For every vector y ∈ Cd, we have the two-sided inequality

(2.2) (1− ε) · ‖My − f‖2 ≤ ‖S(My − f)‖2 ≤ (1 + ε) · ‖My − f‖2.

In particular, the solution y? to the least-squares problem (1.1) and the solution ŷ to
the sketched least-squares problem (1.2) satisfy residual norm bounds

(2.3) ‖My? − f‖2 ≤ ‖Mŷ − f‖2 ≤
1 + ε

1− ε
· ‖My? − f‖2.

Equation (2.3) justifies the claim (1.3).

Remark 2.3 (Accurate sketch-and-solve methods?). The sketch-and-solve para-
digm has a poor reputation among numerical analysts because of a perception that it
yields results of deplorable accuracy. For least-squares problems, this criticism is valid
when the residual norm is large, which is often the case in data-fitting applications.
In contrast, we will apply the technique when the residual is small (say, 10−10), so we
can well afford a constant-factor loss.

2.2. Whitening the basis. Rokhlin & Tygert [36] observed that a subspace
embedding yields an inexpensive way to precondition an iterative algorithm for the
overdetermined least-squares problem. We can invoke the same idea to approximately
orthogonalize, or whiten, a given basis.

Fact 2.4 (Whitening). Let B ∈ Cn×d be a basis with full column rank. Let
S ∈ Cs×n be a subspace embedding for range(B) with distortion ε ∈ (0, 1). Compute
the QR factorization of the sketched basis, SB = UT . Then the whitened basis
B̄ = BT † satisfies

(2.4) κ2(B̄) =
σmax(B̄)

σmin(B̄)
≤ 1 + ε

1− ε
.

Furthermore, we have the condition number diagnostic

(2.5)
1− ε
1 + ε

· κ2(T) ≤ κ2(B) ≤ 1 + ε

1− ε
· κ2(T).

2.3. Constructing a subspace embedding. There are many performant con-
structions of fast randomized subspace embeddings that work for an unknown sub-
space of bounded dimension [26, Sec. 9]. Let us summarize two that are most relevant
for our purposes. In each case, for a subspace with dimension d, to obtain empirical
distortion ε ∈ (0, 1), we set the embedding dimension s = d/ε2.

8 Y. NAKATSUKASA AND J. A. TROPP

2.3.1. SRFTs. First, we introduce the subsampled random Fourier transform
(SRFT) [2, 53, 47, 26]. This subspace embedding2 takes the form

(2.6) S =

√
n

s
DFE ∈ Cs×n.

In this expression, D ∈ Cs×n is a diagonal projector onto s coordinates, chosen
independently at random, F ∈ Cn×n is the unitary discrete Fourier transform (DFT),
and E ∈ Cn×n is a diagonal matrix whose entries are independent Steinhaus3 random
variables. The cost of applying the matrix S to an n × d matrix is O(nd log d)
operations using the subsampled FFT algorithm [53].

2.3.2. Sparse maps. Next, we describe the sparse dimension reduction map [27,
31, 10, 11, 26], which is useful for sparse data and may require less data movement.
It takes the form

(2.7) S =
1√
s

[s1, . . . , sn] ∈ Cs×n.

The columns of S are statistically independent. Each column si has exactly ζ nonzero
entries, drawn from the Steinhaus distribution, placed in uniformly random coordi-
nates. For reliability, we can choose the sparsity level ζ = d2 log(1 + d)e. We can
apply S to a matrix M with O(ζ · nnz(M)) operations, but it may require a sparse
arithmetic library to achieve the best performance.

3. Solving linear systems with sGMRES. We return to the linear system

(3.1) Find x ∈ Cn : Ax = f where A ∈ Cn×n and f ∈ Cn.

This section elaborates on the sGMRES method outlined in subsection 1.2. Section 4
discusses methods for constructing the basis required by sGMRES. Section 5 combines
these ideas to obtain complete sGMRES algorithms.

3.1. Derivation of GMRES. We begin with a basis B ∈ Cn×d and the reduced
matrix AB ∈ Cn×d. Suppose that x0 ∈ Cn is an initial guess for the solution of (3.1)
with residual r0 := f −Ax0. Lacking prior information, we may take x0 = 0.

Consider the affine family of approximate solutions to (3.1) of the form x =
x0 + By where y ∈ Cd. Among this class, we may select a representative whose
residual r = f −Ax = r0 −ABy has the minimum `2 norm:

(3.2) minimizey∈Cd ‖ABy − r0‖2.

With some imprecision, we refer to (3.2) as the GMRES problem [40]. By calculus,
the least-squares problem (3.2) is equivalent to an orthogonality principle:

(3.3) Find y ∈ Cd : (AB)∗(ABy − r0) = 0.

We can stably solve (3.2) or (3.3) using a QR factorization of the reduced matrix [21,
Ch. 20]. The cost is O(nd2) arithmetic operations, assuming that the reduced ma-
trix AB is unstructured. Given a solution yB to either problem, we obtain a new
approximate solution xB = x0 + ByB with residual rB = f −AxB.

2For worst-case problems, a more elaborate SRFT construction may be needed [26, Sec. 9].
3A Steinhaus random variable is uniform on the complex unit circle {z ∈ C : |z| = 1}.

FAST RANDOMIZED SUBSPACE ALGORITHMS 9

The formulation (3.3) is called a Petrov–Galerkin method [37, Chap. 5] with ap-
proximation space x0 + range(B) and orthogonality space range(AB). The GMRES
algorithm [39, 40] is a particular instance where B is an orthonormal basis for a Krylov
subspace generated by r0. GMRES forms the basis B via the Arnoldi process (subsec-
tion 4.2), which involves d matvecs with A plus O(nd2) arithmetic. This reduces (3.2)
to a structured least-squares problem that can be solved in O(d2) operations.

3.2. Derivation and analysis of sGMRES. To develop the sGMRES method,
we just sketch the GMRES problem (3.2). Construct a subspace embedding S ∈ Cs×n
for range([AB, r0]) with distortion ε ∈ (0, 1). The sketched GMRES problem is

(3.4) minimizey∈Cd ‖S(ABy − r0)‖2.

Let ŷ ∈ Cd denote any solution of (3.4). Write x̂ = x0 + Bŷ and r̂ = f −Ax̂.
We have an a priori comparison of the GMRES (3.2) and sGMRES (3.4) residual

norms because of the relation (2.3):

(3.5) ‖AxB − f‖2 ≤ ‖Ax̂− f‖2 ≤
1 + ε

1− ε
· ‖AxB − f‖2.

Thus, sGMRES produces good solutions to (3.1) precisely when GMRES does. A
posteriori, we can diagnose the quality of the computed solution x̂ by examining the
sketched residual norm:

(3.6) r̂est := ‖S(ABŷ − r0)‖2 = (1± ε) · ‖Ax̂− f‖2.

The last display is a consequence of (2.2).
For both GMRES (3.2) and sGMRES (3.4), the fundamental challenge is to pro-

duce a basis B that captures an approximate solution to the linear system (3.1). We
return to this matter in section 4.

3.3. Implementation. Let us outline a numerically stable implementation of
sGMRES and describe some of the issues that arise.

The algorithm operates with either an SRFT (2.6) or a sparse embedding (2.7),
depending on which is more appropriate to the computational environment. We
recommend the embedding dimension s = 2(d + 1), which typically yields distortion
ε = 1/

√
2. In view of (3.5), the sGMRES residual norm is less than 6× the GMRES

residual norm, although the discrepancy is often smaller in practice.
To obtain the data for the sGMRES problem (3.4), we sketch the reduced matrix

(SAB ∈ Cs×d) and the right-hand side (Sr0 ∈ Cs) at a cost of O(nd log d) operations.
To solve (3.4), we compute a thin QR decomposition of the sketched matrix: SAB =
UT . A minimizer of the sGMRES problem is

(3.7) ŷ = (SAB)†(Sr0) = T †(U∗(Sr0)).

The sketched residual norm (3.6) admits the simple expression

(3.8) r̂est = ‖(I−UU∗)(Sr0)‖2.

The two preceding displays require O(d3) arithmetic since s = O(d). Last, we explic-
itly form the approximate solution x̂ = x0 + Bŷ at a cost of O(nd) operations.

In summary, given the basis B, the cost of forming and solving the sGMRES
problem (3.4) is O(d3 + nd log d) arithmetic. In contrast, for an unstructured basis,
the cost of solving the GMRES problem (3.2) is O(nd2) arithmetic. Section 5 contains
pseudocode for sGMRES, along with a more detailed accounting of the costs of forming
the basis and solving the least-squares problem.

10 Y. NAKATSUKASA AND J. A. TROPP

3.4. Stability. The classical stability result [21, Thm. 20.3] shows that standard
numerical methods for the least-squares problem (3.4) produce a solution with essen-
tially optimal residual as long as κ2(SAB) . u−1. According to (2.5), this condition
is equivalent to κ2(AB) . u−1.

Our computational work (section 8) confirms that sGMRES is reliable unless the
reduced matrix AB is very badly conditioned. In our experience, it suffices that
κ2(AB) ≤ 1014 in double-precision arithmetic. Therefore, we have wide latitude to
design bases that we can construct quickly; see section 4. We will provide evidence
that sGMRES with a fast basis construction is more efficient than GMRES with a
structured basis.

3.5. Restarting. Standard implementations of GMRES periodically restart [37,
Sec. 6.5.5]. That is, they use a basis B to compute an approximate solution xB to
the linear system (3.1) with the residual vector rB = r0−AxB. If the residual norm
‖rB‖2 exceeds an error tolerance, the residual vector rB is used to generate a new
basis, which is fed back to GMRES to construct another approximate solution. This
process is repeated until a solution of desired quality is obtained.

Restarting has a number of benefits for the process of basis construction. It allows
us to work with bases that have fewer columns, which limits the cost of storing the
basis. For orthogonal basis constructions, restarting reduces the cost of orthogonaliza-
tion. For non-orthogonal basis constructions, the restarting process helps control the
conditioning of the basis. On the other hand, restarted GMRES may not converge if
the bases are not rich enough (see Figure 1). As we will discuss in section 5, sGMRES
can help us manage all of these issues.

3.6. Preconditioning. For difficult linear systems where the matrix has badly
distributed eigenvalues, we may need a preconditioner P ∈ Cn×n to solve it success-
fully with either GMRES or sGMRES. The preconditioned system has the form

(3.9) P−1Ax = P−1f .

A good preconditioner has two features [37, Chaps. 9 and 10]. First, the matrix
P−1A has a more “favorable” eigenvalue spectrum than A. Second, we can solve
Pz = g efficiently. (Let us emphasize that we only interact with P−1 by solving
linear systems!) Although preconditioning is critical in practice, it is heavily problem
dependent, so we will not delve into examples.

We may derive sGMRES for the preconditioned system (3.9), following the same
pattern as before. Note that we employ the preconditioned matrix P−1A when we
construct the basis B and the reduced matrix P−1(AB). The details are routine.

3.7. Variations. There are many other subspace projection methods for solving
linear systems [37, Chap. 5]. We anticipate that some of these approaches may be
accelerated by sketching. For example, we can sketch the flexible GMRES method [37,
Chap. 9], which produces basis vectors that are not necessarily correlated.

4. Constructing a basis for sGMRES. As we have seen, the success of both
GMRES (3.2) and sGMRES (3.4) hinges on the approximation power of the basis.
Krylov subspaces are, perhaps, the most natural way to capture solutions to a linear
system when we access the matrix via products [37, Chaps. 6 and 7]. In this section,
we describe a number of ways to compute bases for Krylov subspaces. Although
these strategies are decades old, they deserve a fresh look because sGMRES has a
fundamentally different computational profile from GMRES.

FAST RANDOMIZED SUBSPACE ALGORITHMS 11

4.1. The single-vector Krylov subspace. Many iterative methods for solving
the linear system (3.1) implicitly search for solutions in the Krylov subspace

Kp(A; r) := span{r,Ar,A2r, . . . ,Ap−1r} = span{ϕ(A)r : deg(ϕ) ≤ p− 1}.

In this context, the generating vector r ∈ Cn is often the normalized residual r0/‖r0‖2,
defined by r0 = f −Ax0, where x0 is an approximate solution to (3.1). The function
ϕ ranges over polynomials with degree at most p− 1.

A basis B ∈ Cn×d for the Krylov subspace Kp(A; r) comprises a system of vectors
that spans the subspace. We can write

B = [b1, . . . , bd] where bj = ϕj(A)r for j = 1, . . . , d.

The filter polynomials (ϕj : j = 1, . . . , d) have degree at most p − 1, and they are
usually linearly independent (so d = p). In most cases, the polynomials are also
graded (deg(ϕj) = j−1), and they are constructed sequentially by a recurrence. This
process delivers the reduced matrix AB without any extra work.

For example, the monomial basis takes the form b1 = r and bj = Abj−1 for
j = 2, . . . , p. The associated polynomials are ϕj(t) = tj−1 for j = 1, . . . , p. For many
matrices A, the conditioning of the monomial basis for Kp(A; r) grows exponentially
with p, so it is inimical to numerical computation [17].

We will consider other constructions of Krylov subspace bases that are more
suitable in practice. Our aim is to control the resources used to obtain the basis,
including arithmetic, (working) storage, communication, synchronization, etc. We can
advance these goals by relaxing the requirement that the basis be well-conditioned,
which has historically been viewed as essential.

For theoretical analysis of the approximation power of Krylov subspaces in the
context of linear system solvers, see [37, Sec. 6.11].

4.2. The Arnoldi process. It is supremely natural to build an orthonormal
basis Q ∈ Cn×p for the Krylov subspace Kp(A; r) sequentially. This is called the
Arnoldi process [37, Sec. 6.3]. The initial vector q1 = r/‖r‖2. After j steps, the
method updates the partial basis Qj = [q1, . . . , qj] by appending the vector

qj+1 = wj+1/‖wj+1‖2 where wj+1 = (I−QjQ
∗
j)(Aqj).

The Arnoldi basis Qp ∈ Cn×p has the happy property that

AQp = QpHp + wpe
∗
p where Hp ∈ Cp×p is upper Hessenberg.

As a consequence, we can solve the least-squares problem (3.2) with B = Qp in O(p2)
time and produce the approximate solution xB in O(np) operations. This is how the
standard implementation of the GMRES algorithm operates [40].

The orthogonalization steps in the Arnoldi process are expensive. For p itera-
tions, they expend O(np2) arithmetic, and they may also involve burdensome inner-
products, communication, and synchronization. Robust implementations usually in-
corporate double Gram–Schmidt or Householder reflectors.

The literature contains many strategies for controlling the orthogonalization costs
in the Arnoldi process [37, Chap. 6]. sGMRES motivates us to reevaluate techniques
for building a nonorthogonal basis. For example, we can use k-partial orthogonaliza-
tion as in (1.8). Provided the reduced matrix AB is reasonably conditioned, we can
still obtain accurate solutions to the linear system via sGMRES (3.4).

12 Y. NAKATSUKASA AND J. A. TROPP

4.3. The Lanczos recurrence. For this subsection, assume A is Hermitian. In
this case, the Arnoldi process simplifies to a three-term recurrence [37, Sec. 6.6]:

qj+1 = wj+1/‖wj+1‖2 where wj+1 = (I− qjq
∗
j − qj−1q

∗
j−1)(Aqj).

The Lanczos basis Qp = [q1, . . . , qp] ∈ Cn×p has the remarkable property that

(4.1) AQp = QpJp + wpe
∗
p where Jp ∈ Cp×p is tridiagonal.

This allows us to solve the least-squares problem (3.2) with B = Qp in O(p) time,
and we construct the approximate solution xB with O(np) arithmetic. This is how
the MINRES algorithm operates [32].

For p iterations, the Lanczos recurrence costs just O(np) operations, but it has
complicated behavior in finite-precision arithmetic. This issue is not devastating when
Lanczos is used to solve linear systems, but it can present a more serious challenge
when solving eigenvalue problems [33, Chap. 13].

Although it is very efficient to solve the least-squares problem (3.2) by passing
to the tridiagonal matrix Jp, it is more reliable to sketch S(AQp) and to solve the
sketched problem (3.4) instead. The approach based on sketching is competitive with
MINRES when p� n.

The literature describes many approaches for maintaining the orthogonality of the
Lanczos basis, such as selective orthogonalization [33, Chap. 13]. Sketching allows us
to develop faster alternatives, such as omitting the extra orthogonalization. We can
also use the sketched basis vectors to obtain coarse estimates for inner products [4].
Indeed, (Sqi)

∗(SAqj) ≈ q∗iAqj for all i ≤ j, so we can choose to orthogonalize Aqj
only against the basis vectors qi where the inner product is nonnegligible.

4.4. The Chebyshev recurrence. In some settings, we may wish to avoid
the orthogonalization steps entirely because they involve expensive inner products
between basis vectors. We can achieve this goal by using other polynomial recurrences
to construct a Krylov subspace basis. This idea is attributed to Joubert & Carey [23].

For simplicity, suppose that the spectrum of A is contained in the axis-aligned
rectangle [c ± δx,±δy], and set % = max{δx, δy}. Then we can assemble a shifted-
and-scaled Chebyshev basis B ∈ Cn×p via the following recurrence [25, 23]. Let
b1 = r/‖r‖2 and b2 = (2%)−1(A− cI)b1. Then

(4.2) bj =
1

%

[
(A− cI)bj−1 −

δ2x − δ2y
4%

bj−2

]
for j = 3, . . . , p.

In practice, we also rescale each basis vector bj to have unit `2 norm after it has
played its role in the recurrence. The key theoretical fact is that the Chebyshev
basis tends to have a condition number that grows polynomially in p, rather than
exponentially. This claim depends on assumptions that the eigenvalues of the matrix
are equidistributed over an ellipse [16, 25, 23, 34].

To implement this procedure, we may first apply a few iterations of the Arnoldi
method (subsection 6.2) to estimate the spectrum of A. More generally, we find
a (transformed) ellipse that contains the spectrum. Then we adapt the Chebyshev
polynomials to this ellipse [34]. The overall cost of constructing a Chebyshev basis
for Kp(A; r) is O(np), and it involves no orthogonalization whatsoever.

4.5. Newton polynomials. The Newton polynomials provide another standard
construction of a nonorthogonal basis for the Krylov subspace [34]. Suppose that

FAST RANDOMIZED SUBSPACE ALGORITHMS 13

Algorithm 5.1 sGMRES + Arnoldi with k-partial orthogonalization

Input: Matrix A ∈ Cn×n, right-hand side f ∈ Cn, initial guess x ∈ Cn, basis dimension d, number
k of vectors for partial orthogonalization, stability tolerance tol = O(u−1).

Output: Approximate solution x̂ ∈ Cn to linear system (3.1) and estimated residual norm r̂est

1 function sGMRES
2 Draw subspace embedding S ∈ Cs×n with s = 2d+ 1 . SRFT or sparse map
3 Form residual and sketch: r = f −Ax and g = Sr
4 Normalize basis vector b1 = r/‖r‖2 and apply matrix m1 = Ab1
5 for j = 2, 3, 4, . . . , d do
6 Partial Arnoldi: wj = (I− bj−1b

∗
j−1 − · · · − bj−kb

∗
j−k)mj−1 . b−i = 0 for i ≥ 0

7 Normalize basis vector bj = wj/‖wj‖2 and apply matrix mj = Abj

8 Sketch reduced matrix: C = S[m1, . . . ,md]
9 Thin QR factorization: C = UT

10 if κ2(T) > tol then warning...
11 Either whiten B ← B/T , or compute new residual and restart (subsection 5.3)

12 Solve least-squares problem: ŷ = T \(U∗g)
13 Residual estimate: r̂est = ‖(I−UU∗)g‖2
14 Construct solution: x̂ = x + [m1, . . . ,mj]ŷ

Table 1
GMRES versus sGMRES: Arithmetic. This table compares the total arithmetic cost of

solving an n×n linear system using a d-dimensional basis via standard GMRES and via sGMRES.
For sGMRES, we consider both Arnoldi with k-partial orthogonalization and the Chebyshev basis.
Heuristically, the parameters k � d� n. Constant factors are suppressed.

Matrix access Form basis Sketch LS solve Form soln.
Std. GMRES dTmatvec nd2 — d2 nd
sGMRES-k dTmatvec ndk nd log d d3 nd
sGMRES-Cheb dTmatvec nd nd log d d3 nd

θ1, . . . , θp ∈ C are complex-valued shift parameters. Then we can build a basis B ∈
Cn×p for Kp(A; r) via the recurrence

b1 = r/‖r‖2 and bj = (A− θj−1I)bj−1 for j = 2, . . . , p.

The shifts θi are often chosen to be estimated eigenvalues of A, obtained from an
invocation of the Arnoldi method (subsection 6.2). The overall computational profile
of constructing the Newton basis is similar to constructing a Chebyshev basis.

4.6. Local orthogonalization. We can improve the conditioning of a computed
basis B ∈ Cn×d by local orthogonalization. Indeed, it is generally helpful to orthogo-
nalize subcollections of basis vectors, even if it proves too expensive to orthogonalize
all of the basis vectors. In particular, scaling each column to have unit `2 norm is
always appropriate. See Demmel’s paper [14] for an analysis.

5. sGMRES algorithms. This section presents complete algorithms for solving
the linear system (3.1) via sGMRES, including options for adaptive basis generation.

5.1. Basic implementation. Algorithm 5.1 contains pseudocode for a basic
implementation of sGMRES using the k-partial Arnoldi basis (1.8). We recommend
this version of the algorithm when the user lacks information about the spectrum of
A. Given bounds on the spectrum, one may replace the partial Arnoldi basis with a
Chebyshev basis (subsection 4.4). See Table 1 for a summary of the arithmetic costs.

14 Y. NAKATSUKASA AND J. A. TROPP

5.2. Iterative sGMRES. As noted, most methods for producing the Krylov
subspace basis are recursive. They generate the columns of B and the reduced matrix
AB in sequence. This observation suggests an iterative implementation of sGMRES.
We sketch the columns of the reduced matrix as they arrive, incrementally solving
the sGMRES problem (3.4) at each step.

Let dmax be the maximum allowable dimension of the Krylov subspace. Draw
and fix a randomized subspace embedding S ∈ Cs×n with embedding dimension
s = 2dmax + 1. As we compute each column Abj of the reduced matrix, we can
immediately form the sketch S(Abj) and update the QR decomposition:

(5.1) S(ABj) = UjTj where Bj = [b1, . . . , bj].

At each step, we obtain an approximate solution to the linear system:

(5.2) ŷj = T †j (U∗j (Sr0)) with r̂est,j = ‖(I−UjUj)
∗(Sr0)‖2.

Repeat this process until the estimated residual norm r̂est,j is sufficiently small or we
breach the threshold dmax for the size of the Krylov space. After d iterations, the
arithmetic costs of (5.1) and (5.2) match the non-sequential implementation (subsec-
tion 3.3) with a basis of size d.

5.3. Adaptive restarting. There is a further opportunity to design an adaptive
strategy for restarting. According to (2.5), the condition number κ2(Tj) is comparable
with κ2(ABj). When first κ2(Tj) > tol, we recognize that it is time to restart. We
generate the new Krylov subspace using the previous residual r̂j−1 = r0−ABj−1ŷj−1.
Alternatively, instead of restarting, we could approximately orthogonalize B by re-
placing it with BT−1, whose condition number is constant.

5.4. Storage-efficient versions. In situations where storage is at a premium,
we can even avoid storing the reduced matrix ABj by sketching its columns sequen-
tially and discarding them immediately after sketching. Once the estimated residual
norm r̂est,j is sufficiently small, we can construct the approximate solution

x̂j = x0 + ABj ŷj = x0 +
∑j

i=1
(ABj)i(ŷj)i

by iteratively regenerating the columns of the reduced matrix ABj and linearly com-
bining them on the fly. For some basis constructions (e.g., partial Arnoldi or Cheby-
shev), we only need to maintain a few columns of B and the j columns of S(ABj).
Unfortunately, this modification doubles the arithmetic cost associated with basis
generation (matvecs plus orthogonalization). A similar technique was used in [54].

5.5. Obtaining a solution with full accuracy. While the constant-factor loss
in sGMRES is unlikely to be an issue, we can obtain a solution with the same quality
as GMRES by using T as a preconditioner to solve (3.4) via an iterative method as
in [36, 3]. This method still requires κ2(AB) < u−1 to operate reliably.

6. The sketched Rayleigh–Ritz method. Let us turn to the nonsymmetric
eigenvalue problem

(6.1) Find nonzero x ∈ Cn and λ ∈ C : Ax = λx where A ∈ Cn×n.

We will provide an implementation and analysis of the sRR method outlined in sub-
section 1.3.1. Subsection 6.8 describes modifications for the symmetric eigenvalue
problem. Section 7 covers techniques for constructing the basis for sRR.

FAST RANDOMIZED SUBSPACE ALGORITHMS 15

6.1. The many faces of Rayleigh–Ritz. Let B ∈ Cn×d be a basis with full
rank, and let AB ∈ Cn×d be the reduced matrix. Rayleigh–Ritz is best understood
as a Galerkin method for computing eigenvalues [38, Sec. 4.3]. From the family x =
By 6= 0, we seek a residual r = Ax− θx orthogonal to range(B). More precisely,

(6.2) Find nonzero y ∈ Cd and θ ∈ C : B∗(ABy − θBy) = 0.

Rearranging, we see that (6.2) can be posed as an ordinary eigenvalue problem:

(6.3) M?y := B†(AB)y = θy where y 6= 0 and θ ∈ C.

Recall that eigenvalue problems are invariant under similarity transforms. In the
present context, the computed eigenpairs only depend on the range of B, so they
are invariant under the map B ← BT for a nonsingular T ∈ Cd×d. Therefore, if
Q ∈ Cn×d is an orthonormal basis for range(B), then we may pass to

(6.4) Q∗(AQ)z = θz where z 6= 0.

Given a solution (z, θ) to (6.4), we obtain an approximate eigenpair (Qz, θ) of the
matrix A. This is the most typical presentation of RR.

In contrast, consider the problem of minimizing the residual over the subspace:

(6.5) minimizey∈Cd,θ∈C ‖ABy − θBy‖2 subject to ‖By‖2 = 1.

This formulation is sometimes called a rectangular eigenvalue problem [8, 22]. Let
us emphasize that the RR method (6.3) does not solve the rectangular eigenvalue
problem. Nevertheless, for any eigenpair (y?, θ?) of the matrix M?, it holds that

(6.6) ‖ABy? − θ?By?‖2 = ‖(AB −BM?)y?‖2.

The matrix M? from (6.3) does solve a related variational problem [33, Thm. 11.4.2]:

(6.7) minimizeM∈Cd×d ‖AB −BM‖F.

These connections support the design and analysis of a sketched version of RR.

6.2. The Arnoldi method. The Arnoldi method is a classic algorithm [38,
Sec. 6.2] for eigenvalue problems based on RR. First, it invokes the Arnoldi process
(subsection 4.2) to build an orthonormal basis Q ∈ Cn×d for a Krylov subspace (gen-
erated by a random vector) at a cost of O(nd2) operations. This construction ensures
that Q∗AQ has upper Hessenberg form, so we can solve the eigenvalue problem (6.3)
with O(d2) operations by means of the QR algorithm [38, Chap. 7]. Each eigenpair
(y, θ) of (6.3) induces an approximate eigenpair (By, θ) of A, which we can form
with O(nd) operations.

6.3. Derivation of sRR. We can view the sRR method as a sketched version
of the matrix optimization problem (6.7). Consider a subspace embedding S ∈ Cs×n
for range([AB,B]) with distortion ε ∈ (0, 1). The sketched problem is

(6.8) minimizeM∈Cd×d ‖S(AB −BM)‖F.

The sRR method finds a solution M̂ ∈ Cd×d to this optimization problem. Then it
poses the ordinary eigenvalue problem

(6.9) M̂y = θy where y 6= 0.

16 Y. NAKATSUKASA AND J. A. TROPP

This computation yields up to d eigenpairs (ŷi, θ̂i) of the matrix M̂ . We obtain

approximate eigenpairs of A by the transformation (Bŷi, θ̂i).
Sketching allows us to obtain inexpensive a posteriori error bounds. For a com-

puted eigenpair (ŷ, θ̂) of M̂ , it is cheap to form the sketched residual:

(6.10) r̂est := r̂est(ŷ, θ̂) := ‖S(ABŷ − θ̂Bŷ)‖2/‖SBŷ‖2.

By definition, the subspace embedding S ensures that the true residual satisfies

(6.11)
1− ε
1 + ε

· r̂est ≤
‖ABŷ − θ̂Bŷ‖2

‖Bŷ‖2
≤ 1 + ε

1− ε
· r̂est.

In other words, we can diagnose when the sRR method has (or has not) produced a

high-quality approximate eigenpair (Bŷ, θ̂) of the original matrix A.

6.4. Implementation of sRR. To implement sRR, we may use either an SRFT
embedding (2.6) or a sparse embedding (2.7). We recommend the embedding dimen-
sion s = 4d, which typically results in distortion ε = 1/

√
2 for the range of [AB,B].

We first sketch the reduced matrix (SAB ∈ Cs×d) and the basis (SB ∈ Cs×d)
at a cost of O(nd log d) operations. Next, we compute a thin QR decomposition
SB = UT of the sketched basis. A minimizer of the sRR problem (6.8) is the matrix

(6.12) M̂ := (SB)†(SAB) = T−1(U∗(SAB)) ∈ Cd×d.

Afterward, we invoke the QR algorithm to solve the eigenvalue problem (6.9). Each
of the last three steps costs O(d3) operations.

Given a computed eigenpair (ŷ, θ̂), we can obtain the sketched residual value

r̂est(ŷ, θ̂) from (6.10) at a cost of O(d2) operations. If the residual estimate is suffi-

ciently small, we declare that (Bŷ, θ̂) is an approximate eigenpair of A. For maximum
efficiency, we present the approximate eigenvector x̂ = Bŷ ∈ Cn in factored form. If
we need the full vector x̂, it costs O(nd) operations. Ironically, if we extract a large
number of explicit eigenvectors, this last step dominates the cost of the computation.
Usually, the number of high-quality approximate eigenpairs is moderate.

In summary, given the basis B, if we use sRR to solve (6.1), the cost of report-
ing the factored form of d approximate eigenpairs is O(d3 + nd log d) operations. In
contrast, RR requires O(nd2) arithmetic with an unstructured basis. Our numerical
experience indicates that sRR is a robust alternative to RR so long as the condition
number of the basis κ2(B) ≤ 1014. This fact allows us to exploit fast basis construc-
tions; see section 7. See Algorithm 6.1 for a simple implementation of sRR with a
partial Arnoldi basis.

6.5. Stabilization. The output of sRR is almost identical to RR provided that
κ2(B) < u−1. This condition is very generous. In contrast, classical approaches
demand that B to be nearly orthogonal. For example, it is known [33, Ch. 13] that
the Lanczos algorithm produces accurate results when κ2(B) < 1 +

√
u.

If we see that the sketched basis SB is very badly conditioned (κ2(SB) & u−1),
then the condition number diagnostic (2.5) implies that the basis B is also very badly
conditioned. In this case, we can stabilize sRR by regularizing the basis. For example,
we may compute the truncated SVD:

SB = UΣV ∗ + E where ‖Σ‖2/‖E‖2 ≤ tol.

FAST RANDOMIZED SUBSPACE ALGORITHMS 17

Algorithm 6.1 sRR + Arnoldi with k-partial orthogonalization

Input: Matrix A ∈ Cn×n, initial vector b ∈ Cn, basis dimension d, number k of vector for partial
orthogonalization, stability tolerance tol = O(u−1), convergence tolerance τ .

Output: Approximate eigenpairs (xi, λi) such that Axi ≈ λixi and estimated residual norms r̂est,i.

1 function sRR
2 Draw subspace embedding S ∈ Cs×n with s = 4dmax . SRFT or sparse map
3 Starting vector: w1 = randn(n, 1)
4 Normalize basis vector b1 = w1/‖w1‖2 and apply matrix m1 = Ab1
5 for j = 2, 3, 4, . . . , d do
6 Partial Arnoldi: wj = (I− bj−1b

∗
j−1 − · · · − bj−kb

∗
j−k)mj−1 . b−i = 0 for i ≥ 0

7 Normalize bj = wj/‖wj‖2 and apply matrix mj = Abj

8 Sketch basis C = S[b1, . . . , bdmax] and reduced matrix D = S[m1, . . . ,mdmax].
9 Thin QR factorization: C = UT

10 if κ2(T) > tol then warning:
11 Either whiten B ← B/T , or stabilize and solve (6.13); see subsection 6.5

12 Solve eigenvalue problem: T−1U∗Dyi = λiyi for i = 1, . . . , d
13 Compute residual estimates ‖Dyi − λiCyi‖2/‖Cyi‖2. Let I be indices where residual is
< τ .

14 Compute xi = Byi for i ∈ I and output (xi, λi).

Then we use the QZ algorithm [18, §7.7] to solve the generalized eigenvalue problem4

(6.13) (U∗SAB)V z = θΣz.

Each solution yields an sRR eigenpair (V z, θ) and an associated approximate eigen-
pair (BV z, θ) of A. The asymptotic cost is the same as the basic implementation.

6.6. Why does sRR work? We will argue that RR and sRR solve eigenvalue
problems that are similar to a pair of nearby eigenvalue problems.

First, recall that SB = UT is the QR decomposition of the sketched basis.
Per (2.4), the whitened basis B̄ := BT−1 has conditioning κ2(B̄) ≤ (1 + ε)/(1− ε).
Now, consider the variational problem (6.7) with respect to the whitened basis B̄ and
its sketched version:

minimizeM ‖AB̄ − B̄M‖F with solution M̄? := B̄†AB̄;

minimizeM ‖S(AB̄ − B̄M)‖F with solution M̄ := (SB̄)†(SAB̄).

Since Q is an orthonormal basis for range(B̄), we recognize that M̄? is similar to
the RR matrix Q∗AQ. In view of (6.12) and the relations SB̄ = SBT−1 = U , the

sketched solution is similar to the sRR matrix M̂ :

M̄ = U∗(SAB)T−1 = TM̂T−1.

Eigenvalue problems are invariant under similarity, so it suffices to show M̄ ≈ M̄?.
To that end, we invoke (2.3) columnwise to obtain the comparison

(6.14) ‖AB̄ − B̄M̄?‖F ≤ ‖AB̄ − B̄M̄‖F ≤
1 + ε

1− ε
· ‖AB̄ − B̄M̄?‖F.

Using the definitions of M̄? and Q, we find that

‖AB̄ − B̄M̄?‖F = ‖(I−QQ∗)AB̄‖F ≤ σmax(B̄) · ‖(I−QQ∗)AQ‖F.

4When κ2(B) & u−1, numerical experiments suggest this approach is more stable than reducing
to a standard eigenvalue problem as in (6.12).

18 Y. NAKATSUKASA AND J. A. TROPP

From the last two displays, a short argument using the triangle inequality and the
conditioning of the whitened basis produces

‖M̄ − M̄?‖F ≤
1

σmin(B̄)
· ‖(M̄ − M̄?)B̄‖F ≤

2(1 + ε)

(1− ε)2
· ‖(I−QQ∗)AQ‖F.

Here is an interpretation. If range(Q) = range(B) is close to an invariant subspace
of A, then (I − QQ∗)AQ ≈ 0. In this case, M̄ ≈ M̄?. Therefore, sRR and RR
solve nearby eigenvalue problems, and we deduce that sRR is a backward stable
approximation to RR in exact arithmetic.

More generally, as long as range(B) contains an approximate eigenvector of A
with small residual, (6.11) shows that the same vector yields a comparably small resid-
ual for the sketched eigenproblem (6.9). Unfortunately, even in this case, there is no
guarantee that sRR will find an approximate eigenpair with a small residual. Indeed,
the behavior of classic RR is already complicated, with pathological examples [45,
p. 282]. Nevertheless, RR is known to provide excellent outputs in the vast majority
of cases; see [30, 38, 44] for the analysis.

6.7. sRR with a Krylov subspace basis. When B is a (graded) basis for a
Krylov subspace, the analysis of sRR simplifies further. In this case, the solutions
M? and M̂ to (6.7) and (6.8) differ only in the final column! To verify this point,
observe that (6.7) decouples into a family of d least-squares problems:

minimizemi∈Cd ‖Abi −Bmi‖F for i = 1, . . . , d

By construction, the vector Abi lies in the span of B for i = 1, . . . , d−1. Each of these
problems has a unique solution with zero residual. Thus, the sketched problem (6.8)
correctly identifies the exact solution. This fact illuminates the power of sRR.

6.8. The symmetric case. Consider the symmetric eigenvalue problem

(6.15) Ax = λx where A = A∗.

We can apply sRR directly to (6.15). Unfortunately, sRR is not guaranteed to (and in
fact does not always) return real eigenvalue estimates. At root, the sketched eigenvalue
problem (6.9) is not (similar to) a symmetric problem. Accordingly, the computed
eigenvectors need not be orthogonal. This is an inherent drawback.

Fortunately, for (6.15), sRR often computes eigenvalue estimates that are real (or
nearly real), and the associated eigenvectors tend to be nearly orthogonal. We can
anticipate this outcome when the whitened matrices satisfy M̄ ≈ M̄?. Indeed, the
eigenvalues of a symmetric matrix are well-conditioned under nonsymmetric pertur-
bations [24, 46]. As for the eigenvectors, if two approximate eigenpairs (x̂1, λ̂1) and

(x̂2, λ̂2) of a symmetric matrix A have small residuals and sufficient gap |λ̂1 − λ̂2|,
then it follows that x̂1, x̂2 are nearly orthogonal [33]. This forces the high-quality
eigenvectors computed by sRR to be nearly orthogonal.

For a real symmetric matrix A, our implementation of sRR simply extracts real
part of the computed eigenvalues and eigenvectors. When A is complex Hermitian, we
force the eigenvalues to be real (but not eigenvectors). The design of a fast algorithm
that respects symmetry remains an open problem.

7. Constructing a basis for sRR. The performance of RR and sRR depends
on the quality of the basis construction. For these problems, it is natural to con-
sider block Krylov bases generated by random vectors. As before, we can consider
nonorthogonal basis constructions. Owing to the overlap with the discussion of single-
vector Krylov spaces, our presentation here is more telegraphic.

FAST RANDOMIZED SUBSPACE ALGORITHMS 19

7.1. Block Krylov subspaces. For the eigenvalue problem (6.1), we can search
for solutions using sRR with a block Krylov subspace. Let Ω ∈ Cn×b be an initial
matrix; the dimension b is called the block size. Define

Kp(A; Ω) := span{Ω,AΩ, . . . ,Ap−1Ω} = span{ϕ(A)Ω : deg(ϕ) ≤ p− 1}.

Setting d = bp, we can express a basis B ∈ Cn×d for this subspace in the form

B = [B1, . . . ,Bp] = [ϕ1(A)Ω, . . . , ϕp(A)Ω].

For eigenvalue problems, the generating matrix Ω ∈ Cn×b may be drawn at random
from a standard normal distribution.5

Historically, the NLA literature has prescribed a small block size, say b ≤ 4, and
a large depth p. More recent research [26, Sec. 11] has identified an opportunity to
use a large block size b, say 10s or 100s, with a much smaller depth, say p ≤ 10.
This shift in perspective has already transformed the computational profile of block
Krylov subspaces, especially in modern computing environments. For instance, we can
parallelize the computation over the columns of Ω (or over the filter polynomials ϕi).
In combination with sRR, nonorthogonal basis constructions promise further benefits.
See [28, 49, 48] for theoretical analysis of block Krylov subspaces for low-rank matrix
approximation and symmetric eigenvalue problems.

Remark 7.1 (Other kinds of bases). There are other subspace projection methods
for solving eigenvalue problems that use bases other than Krylov subspaces. For
example, the Jacobi–Davidson method and the LOBPCG algorithm uses alternative
ideas to build a search space. These methods may also be combined with sRR.

7.2. Basis diagnostics and restarting. As with single-vector Krylov sub-
spaces, we can sketch basis vectors as they are generated to collect summary in-
formation about the quality of the basis. Indeed, if B ∈ Cn×d is a basis, then the
condition number of the sketched basis κ2(SB) serves as a proxy for κ2(B); see (2.5).
When the basis is poor, it can be important to use stabilized sRR (subsection 6.5).

It can also be effective to restart production of the Krylov subspace when the
quality of the basis starts to decline. For example, we may compute a basis for the
Krylov subspace Kp(A; Ω), and we can feed this basis to sRR to extract a matrix X
whose columns approximately span the desired invariant subspace of A. Then we pass
to the Krylov subspace Kp(A;X), and so forth. Randomized subspace iteration [20]
is a simple version of this technique.

Another possibility for restarting is to deflate converged eigenpairs by working
in their orthogonal complement. Convergence of Ritz pairs and loss of orthogonality
are known to be tightly linked [33, Ch. 11]. Felicitously, sRR is able to identify such
eigenpairs cheaply. Optimizing the sRR restarting strategy is left as future work.

7.3. Block monomial basis with orthogonalization. Although the mono-
mial basis is anathema for large-degree polynomials, we can still use it for shal-
low Krylov subspaces (say, when p < 5). In this case, we can assemble a basis
B = [B1, . . . ,Bp] for Kp(A; Ω) as follows. Set B1 = orth(Ω), and iterate

Bj = orth(Ωj) where Ωj = ABj−1 for j = 2, 3, . . . , p.

We acquire the reduced matrix AB as a by-product of this computation.

5In this context, we do not derive much computational benefit from fancier nonadaptive distri-
butions, such as SRFTs or sparse embeddings.

20 Y. NAKATSUKASA AND J. A. TROPP

The block monomial basis has been used in the “blanczos” method [35, 19, 28,
48, 26] for low-rank matrix approximation, but it requires an expensive full orthog-
onalization of B in the final step. When used as an input to sRR, it may not be
necessary to reorthogonalize the block monomial basis B.

7.4. Block Arnoldi with partial orthogonalization. We can mitigate the
rapid condition number growth of the block monomial basis by adding extra orthog-
onalization steps. For recurrence length k ∈ N, we set B1 = orth(Ω) and iterate

Bj = orth(Ωj) where Ωj = (I−Bj−1B
∗
j−1 − · · · −Bj−kB

∗
j−k)(ABj−1).

The resulting basis B = [B1, . . . ,Bp] serves as an input to sRR. The choice k = 1 or
k = 2 already improves substantially over the block monomial basis.

When A is Hermitian, the choice k = 2 corresponds to the block Lanczos method
without reorthogonalization [33, Chap. 13]. Historically, the reorthogonalization step
has been regarded as important for achieving robustness. If we use block Lanczos
with sRR, then we can often dispense with reorthogonalization.

As with sGMRES, in the unblocked case (b = 1), we recommend partial orthog-
onalization with a modest k as shown in Algorithm 6.1. However, for eigenvalue
computations, there is compelling reason to take the block size b � 1. As the block
size b increases, partial orthogonalization quickly becomes cumbersome.

7.5. Block Chebyshev recurrence. When computing block Krylov subspaces,
the cost of (partial) orthogonalization can be devastating. By employing other poly-
nomial recurrences, we can potentially eliminate all orthogonalization steps involv-
ing vectors of length n. In particular, the shifted-and-scaled Chebyshev recurrence
emerges as an appealing option.

Suppose that we have prior knowledge that the spectrum of A is contained in
the axis-aligned rectangle [c ± δx,±δy], and set % = max{δx, δy}. Then we can form
a block Chebyshev basis B = [B1, . . . ,Bp] for Kp(A; Ω) as follows.

B1 = Ω; B2 =
1

2%
(A− cI)Ω; Bj =

1

%

[
(A− cI)Bj−1 −

δ2x − δ2y
4%

Bj−2

]
.

To implement this procedure, we typically need to perform a coarse initial eigenvalue
computation (using sRR + block Arnoldi) to obtain a rough estimate for the spectrum
of A. For this purpose, a small block size b and depth p usually suffice. We may also
consider Chebyshev polynomials based on rotated ellipses, as in [34].

A remarkable feature of this approach is that we can compute the block Chebyshev
basis for Kp(A; Ω) with b(p − 1) matvecs plus O(nbp) operations. In contrast, it
requires O(n(bp)2) extra operations to produce a fully orthogonal basis. Beyond that,
the Chebyshev recurrence can be implemented efficiently in parallel or with SIMD
processors, and the lack of inner products and orthogonalization steps allows us to
evade communication and synchronization costs.

8. Computational experiments. This section presents some numerical exam-
ples that showcase the potential of sGMRES and sRR for solving large linear systems
and eigenvalue problems. All computations were performed in MATLAB version
2020a on a workstation with 256GB memory and 96 cores, each clocked at 3.3 GHz.

8.1. Solving linear systems with sGMRES. This subsection applies the
sGMRES method to solve symmetric and nonsymmetric linear systems.

FAST RANDOMIZED SUBSPACE ALGORITHMS 21

100 200 400 1000 2000 3000
10

-10

10
-8

10
-6

10
-4

10
-2

GMRES

sGMRES

restart 10

restart 30

restart 100

CG

100 200 400 1000 2000 3000
10

0

10
1

10
2

10
3

10
4

ti
m

e
(s

)

GMRES

restart 10

restart 30

restart 100

sGMRES

sGMRES-Cheb

CG

Fig. 3. sGMRES versus GMRES: Laplacian system. These panels compare the performance
of MATLAB gmres (with and without restarting) against the sGMRES algorithm (with 2-partial
orthogonalization or the Chebyshev basis). The sparse linear system Ax = f involves a 2D Laplacian
matrix with dimension n = 106. Left: Relative residual and conditioning κ2(AB) of the reduced
matrix associated with the partial Arnoldi basis. Right: Total runtime including basis generation.

8.1.1. Algorithm details. Our main implementation of sGMRES follows the
pseudocode in Algorithm 5.1 with minor changes to improve numerical stability. In
particular, we construct a basis using k-partial orthogonalization with small values
k ∈ {2, 4}, unless otherwise noted. In one example, we consider a Chebyshev basis,
as described in subsection 4.4. We do not whiten the basis or restart sGMRES. The
subspace embedding is based on an SRFT matrix (2.6) where F is a discrete cosine
transform (DCT2), so our sketch uses O(nd log n) operations rather than O(nd log d).

We do not report tests involving the more elaborate algorithms discussed in sec-
tion 5, because fine-tuning for optimal performance is outside the scope of this ex-
ploratory research.

8.1.2. A nonsymmetric linear system. This subsection offers details about
solving the nonsymmetric linear system, documented in Figure 1 of the introduction.
The matrix A is the sparse instance t2em with dimension n = 921, 632 from the Suite-
Sparse Matrix Collection [13]. The right-hand side is a random vector drawn from the
standard normal distribution. We compare sGMRES with the MATLAB command
gmres without restarting and with restarting frequencies {10, 30, 100}. Observe that
the k-partial Arnoldi basis leads to a reduced matrix AB whose condition number
grows quickly, but the condition number remains below the tolerance u−1 throughout
the computation. This property ensures that sGMRES is effective.

8.1.3. A symmetric linear system. We consider a symmetric test matrix A
with dimension n = 106, obtained by discretizing the 2D Laplacian.6 The matrix
is positive semidefinite with kernel e = [1, 1, . . . , 1]∗. We solve the Poisson problem
Ax = f where the right-hand side f is a standard normal random vector in the
orthogonal complement of e. For this problem, we would prefer CG over GMRES.

Figure 3 describes the progress of sGMRES where the basis is generated by k-
partial orthogonalization for k = 2 and where the basis is generated by the Chebyshev
recurrence (more below). We compare with the MATLAB commands pcg and gmres

without restart and with restart frequencies in {10, 30, 100}. For all methods, the

6To generate the matrix we used the code in https://www.mathworks.com/matlabcentral/
fileexchange/27279-laplacian-in-1d-2d-or-3d.

https://www.mathworks.com/matlabcentral/fileexchange/27279-laplacian-in-1d-2d-or-3d
https://www.mathworks.com/matlabcentral/fileexchange/27279-laplacian-in-1d-2d-or-3d

22 Y. NAKATSUKASA AND J. A. TROPP

initial solution x0 = 0.
For both versions of sGMRES, the cost of d iterations is 10% to 20% slower than d

iterations of CG. Nevertheless, for the same number d of iterations, sGMRES achieves
`2 residual norms that are about 5× smaller than CG. According to this metric,
the sGMRES method is more efficient than CG. As we saw for the nonsymmetric
problem, sGMRES is up to 6× faster than the restarted versions of GMRES, which
do not converge to high accuracy. Meanwhile, sGMRES achieves the same accuracy
as GMRES, but the sketched version is up to 100× faster after 3000 iterations.

The Laplacian matrix is a natural candidate for testing the Chebyshev basis
because we have prior knowledge about the spectrum. We use the fact that the
eigenvalues are real numbers in the interval [0, 8] to select the parameters for the
Chebyshev recurrence (subsection 4.4). The Chebyshev basis construction is slightly
faster than the k-partial Arnoldi construction because it requires no inner products or
orthogonalization steps. Even so, the quality of the Chebyshev basis is decent; after
3000 iterations, the reduced matrix has condition number κ2(AB) ≈ 108, which is
good enough for sGMRES to succeed. Figure 3 shows that the k-partial Arnoldi basis
is still better conditioned. This experiment is intriguing because the Chebyshev basis
can offer dramatic benefits in parallel computing environments [23, 34, 5, 9].

8.2. sGMRES: Hard examples. It is important to acknowledge that the sGM-
RES method is not always an effective tool for linear systems. In some cases, sGMRES
inherits its weaknesses from GMRES, but there are also new phenomena that arise.

First, there are linear systems where classic GMRES cannot produce a small
residual because the Krylov subspace does not have sufficient approximation power.
sGMRES cannot cure this debility. In these cases, preconditioning is critical.

Second, sGMRES is not especially useful for problems where the matrix–vector
multiply x 7→ Ax is costly relative to the other arithmetic. For example, when A is
dense, over 99% of the runtime of GMRES or sGMRES may be devoted to matvecs.

Third, and most seriously, there are linear systems where it is very difficult to
construct a numerically full-rank basis for the Krylov subspace without meticulous
orthogonalization. The rest of this subsection documents one such problem instance.

Consider the matrix FS 680 1 from Matrix Market, which is known to instigate
Krylov bases with bad behavior [34, Table 2]. In this case, the basis B and the
reduced matrix AB and their sketches SB and SAB have rapidly increasing con-
dition number. Once κ2(SAB) > u−1, numerical errors can cause sGMRES to fail,
even when GMRES is successful. See Figure 4 for an illustration, which shows that
increasing the extent k of partial orthogonalization does not help.

We can always monitor the conditioning of the reduced matrix AB inexpensively
by means of its sketch SAB. Unfortunately, we are not aware of a reliable mechanism
for controlling the conditioning, short of full orthogonalization. Indeed, k-partial
orthogonalization does not even guarantee monotone decrease of the condition number
as k increases. This issue remains a major challenge for sGMRES. The ideas from [4]
may be useful here.

8.3. Solving eigenvalue problems with sRR. This subsection studies the
performance of sRR for solving nonsymmetric and symmetric eigenvalue problems.

8.3.1. Algorithm details. Our implementation of sRR follows the pseudocode
in Algorithm 6.1 with minor changes to facilitate comparison with the MATLAB eigs

command. In particular, we focus on a single-vector Krylov subspace (b = 1), and
we use k-partial orthogonalization to form the basis. In one example, we consider a

FAST RANDOMIZED SUBSPACE ALGORITHMS 23

10 20 30 40 50 60 70 80 90 100

10
-10

10
-5

10
0

restart 10

sGMRES k=2

sGMRES k=4

sGMRES k=10

GMRES

0 20 40 60 80 100
10

0

10
5

10
10

10
15

10
20

sGMRES k=2

sGMRES k=4

sGMRES k=10

Fig. 4. sGMRES: Hard problems. For some linear systems, it is expensive to construct a
well-conditioned basis B for the Krylov subspace. When κ2(AB) > u−1, the sGMRES algorithm
may fail to match the GMRES algorithm. Left: Relative residual norms. Right: Conditioning
κ2(B) of the k-partial Arnoldi basis. When κ2(B) > u−1, the reported values are unreliable.

block Krylov subspace with a Chebyshev basis, as described in subsection 7.5. We do
not use restarting or stabilization, except as noted. The subspace embedding is based
on an SRFT matrix (2.6) where F is a discrete cosine transform (DCT2).

When using eigs, we set the option opts.p=r; opts.maxit=1; to suppress
restart. We set the flag opts.issym to reflect whether the problem is symmetric.

For eigenvalue computations, we anticipate that block Krylov subspaces can yield
significant advantages over single-vector Krylov subspaces. Some of these improve-
ments derive from higher-order BLAS. We can also take advantage of SIMD archi-
tectures, and we can reduce costs of communication and synchronization in parallel
computing environments.

8.3.2. Nonsymmetric eigenvalue problems. This section describes the non-
symmetric eigenvalue problem that forms the basis for Figure 2. This computation is
modeled on the trust-region subproblem (TRS) from optimization [12]:

(8.1) minimizex∈Rn

1

2
x∗Ax + g∗x subject to ‖x‖2 ≤ ∆.

This quadratic program can be reduced to a nonsymmetric eigenvalue problem [1]:

(8.2)

[
A ∆−2gg∗

−I A

]
x = λx.

To obtain a solution to (8.1), we extract a (scaled) eigenvector of (8.2) corresponding
to the right-most eigenvalue (which must be real).

We consider an instance of (8.2) where A is an n × n tridiagonal matrix with
equispaced values in [−1, 1] on the main diagonal and with 1s on the off-diagonals.
In this case, the block matrix admits a fast matrix–vector multiplication operation.
The vector g ∈ Rn is drawn from the standard normal distribution and scaled so that
‖g‖2 = 0.01. The constraint value ∆ = 1.

We solved (8.2) using sRR, as described in subsection 8.3.1. The Krylov subspace
was generated from the initial vector 0 ⊕ g. The results appear in Figure 2. The
modest loss of accuracy in sRR after 1500 iterations can be remedied by using the
stabilization process (subsection 6.5), which approximately doubles the runtime.

24 Y. NAKATSUKASA AND J. A. TROPP

0 2 4 6 8

eigenvalue

10
-6

10
-4

10
-2

sRR

eigs

100 200 500 1000 2000

10
1

10
2

10
3 eigs

sRR

Fig. 5. sRR versus RR: Symmetric eigenvalue problem. These panels compare the per-
formance of MATLAB eigs (without restarting) against the sRR algorithm (where the basis B is
computed by the Lanczos recurrence). The sparse, symmetric eigenvalue problem Ax = λx has
dimension n = 106, and it arises from a 2D Laplacian. Left: Relative residuals as a function of
computed eigenvalues after 2000 iterations. Right: Total runtime, including basis generation, and
condition κ2(B) of the basis.

8.3.3. Symmetric eigenvalue problems. Next, we present an example of a
symmetric eigenvalue problem. The matrix A is the 2D Laplacian matrix with dimen-
sion n = 106 that was introduced in subsection 8.1.3. The initial vector for the Krylov
subspace is drawn from the standard normal distribution, and it is shared between
sRR and eigs. We use the Lanczos recurrence (i.e., 2-partial orthogonalization) to
construct the subspace basis. For sRR, we report the real parts of the eigenvalues
and eigenvectors, as discussed in subsection 6.8.

Figure 5 displays the results of the experiment. We see that sRR identifies the
same eigenvalues as RR, and the sRR residual norms are within a small factor of
the RR residual norms. For 2000 iterations, sRR runs 12× faster than eigs. The
difference is likely because eigs enforces orthogonality to ensure that the Lanczos
method remains robust. In this instance, the Lanczos method constructs a basis that
is almost orthogonal, but sRR does not require this outcome to succeed.

When the Lanczos method is used to reduce the matrix to (partial) tridiagonal
form, it is critical that the Lanczos basis remain almost perfectly orthogonal. Loss of
orthogonality of the basis leads to ghost eigenvalues, which are repeated estimates of a
single eigenvalue [15, Ch. 7]. (Selective) orthogonalization is a traditional remedy [42,
43], but it can be costly. In our experience, sRR rarely produces ghost eigenvalues
because it does not need the basis to reduce the matrix to tridiagonal form.

8.3.4. Poorly conditioned bases and stabilization. When the computed
basis B is ill-conditioned, sRR may not produce reliable eigenvalues estimates. We
can stanch this loss by stabilization, as discussed in subsection 6.5.

Without loss of generality, we consider a diagonal matrix A. The dimension
n = 219, and the eigenvalues are ten randomly spaced numbers in [−1,−0.1], along
with 219 − 10 equispaced numbers in [0, 1]. Via the block Chebyshev recurrence
(subsection 7.5), we construct a (nonorthogonal) basis B ∈ Rn×(bp) for the block
Krylov subspace with block size b = 100 and increasing depth p. We then use classic
RR, sRR, and sRRstab (the stabilized version) to compute eigenpairs of A.

Figure 6 displays the results. The condition number κ2(B) of the basis grows with
the depth p of the block Krylov subspace. Even so, sRR computes accurate eigenpairs

FAST RANDOMIZED SUBSPACE ALGORITHMS 25

-1 -0.5 0 0.5 1

eigenvalue

10
-15

10
-10

10
-5

10
0

p=5, (B)=4e+02

p=10, (B)=3e+06

p=15,
(B

)=2e+10

p=20,
(B

)=
1e+14

p=30,
(B

)=9e+15

RR

sRR

sRRstab

200 300 500 1000 2000 3000

subspace dimension

10
0

10
1

10
2

10
3

ti
m

e
(s

)

RR

sRR

sRRstab

-0.2 0 0.2 0.4 0.6 0.8 1

eigenvalue

10
-2

10
-1

10
0

RR

sRR

sRRstab

Fig. 6. sRR: Ill-conditioned bases and stabilization. This diagram shows how eigenvalue
residuals improve with the depth p of a block Krylov–Chebyshev subspace B ∈ Rn×(bp) with block
size b = 100. Left: Residuals as a function of eigenvalue estimates, along with the condition
κ2(B) of the basis. Right: Runtime for eigenvalue extraction, excluding basis generation. Bottom:
Magnification of the left panel for p = 30 to illustrate (interior) eigenvalue estimates in [0, 1].

while κ2(B) . u−1. When the condition number of the basis is larger, sRRstab
produces more accurate estimates for both the extremal and interior eigenpairs of the
matrix A than RR. Excluding the cost of basis generation, sRR runs up to 15× faster
than classic RR. The stabilized algorithm also runs somewhat faster than RR.

9. Variations and extensions. The ideas underlying sRR can be adapted to
address a wide variety of eigenvalue and singular value computations.

9.1. Generalized eigenvalue problems. Consider the problem

(9.1) Find nonzero x ∈ Cn and λ ∈ C : Hx = λJx where H,J ∈ Cn×n.

Suppose that B ∈ Cn×d is a basis that captures approximate solutions to (9.1).
Following the development in subsection 6.1, the classic RR method can be interpreted
as a variational problem:

(9.2) minimizeM∈Cd×d ‖HB − JBM‖F.

Given a solution M? = (JB)†(HB) to (9.2), we pose the ordinary eigenvalue problem
M?y = θy. Each eigenpair (y, θ) induces an approximate solution (By, θ) to (9.1).

Given a subspace embedding S ∈ Cs×n for range([HB,JB]), we can pass to the
sketched problem

(9.3) minimizeM∈Cd×d ‖S(HB − JBM)‖F.

The solution M̂ = (SJB)†(SHB). Then frame the ordinary eigenvalue problem

M̂y = θy. Each eigenpair (ŷ, θ̂) induces an approximate solution (Bŷ, θ̂) to (9.1).

26 Y. NAKATSUKASA AND J. A. TROPP

Excluding basis generation, we can solve the generalized eigenvalue problem via
sketching with O(d3 + nd log d) operations. In contrast, the classic RR approach
typically requires O(nd2) operations.

9.2. Low-rank matrix approximation. The most successful application of
randomized matrix computation has been to approximate truncated singular value
decompositions efficiently [20, 26]. Using the new insights from our paper, we can
accelerate these algorithms by sketching. The resulting techniques share some genes
with sketch-based algorithms for low-rank matrix approximation [52, 50, 51, 29], but
they are different in spirit.

Let A ∈ Cm×n be a matrix. Let B ∈ Cn×d be a basis, and suppose that we
have access to the reduced matrix AB ∈ Cn×d. We can frame low-rank matrix
approximation as a variational problem:

(9.4) minimizeM∈Cd×d ‖ABM −A‖F.

The solution M? = (AB)†A produces the rank-d matrix approximation

Â = ABM? = (AB)(AB)†A = QQ∗A,

where Q ∈ Cn×d is an orthonormal basis for the range of AB. If we choose B at
random, we obtain the Halko et al. randomized SVD algorithm [20]. If we form an
adapted basis B by means of subspace iteration [35, 20] or block Krylov methods [35,
19, 28, 48], we obtain much better approximations, as described in the citations.

Let S ∈ Cs×n be an “affine space” embedding with s = 2d. (The SRFT (2.6) and
sparse map (2.7) both qualify.) We pose the sketched problem

(9.5) minimizeM∈Cd×d ‖S(ABM −A)‖F.

The solution M̂ = (SAB)†(SA) yields the rank-d matrix approximation

(9.6) Âsketch = (AB)(SAB)†(SA). [Unstable!]

This formula is completely unsuitable for practical computation, but it can be replaced
with a stable and efficient variant [29]. If we choose B to be a second sketching map,
we obtain the (low-accuracy) sketched SVD algorithms from [52, 50, 29].

Our work delivers the novel insight that using an adapted basis B in (9.6) leads to
a fast and accurate algorithm for low-rank matrix approximation. Excluding the cost
of basis generation, we can stably form the approximation in O(d3 + (m+ n)d log d)
operations. In contrast with sketched SVD algorithms, we attain errors similar to
randomized subspace iteration [20] or randomized block Krylov methods [28, 48].

10. Prospects. We believe that our framework for combining sketching with
subspace projection methods presents many exciting opportunities and challenges.
Let us close by highlighting some of the prospects.

First, aside from GMRES and RR, there are many subspace projection methods
that might benefit from sketching. For instance, there is an important class of al-
gorithms (BiCG, BiCGstab, CGS, QMR, etc.) for solving linear systems by means
of Lanczos biorthogonalization. These methods form Krylov subspaces with respect
to both A and A∗ using three-term recurrences, but they have complicated stability
properties. Perhaps, with sketching, we can improve the profile of these methods.

Second, our work suggests that traditional strategies for building high-dimensional
Krylov subspace bases merit a fresh look. For example, our experiments indicate that

FAST RANDOMIZED SUBSPACE ALGORITHMS 27

we can easily run thousands of iterations of sGMRES, whereas orthogonalization dom-
inates the cost of classic GMRES after, say, a few dozen iterations. One consequence
is that it would suffice to find a “mediocre” preconditioner for linear systems that
reduces the iteration complexity of sGMRES to 1000s of iterations, rather than the
historical goal of 10s of iterations. Other aspects of basis generation that deserve
further attention include restarting, deflation, and pruning.

Third, we believe that the performance advantages of sGMRES and sRR algo-
rithms would be maximized in modern computing environments where communication
and synchronization costs dominate computation [6]. For example, we can trivially
parallelize the computation of block Krylov subspaces. Likewise, sketching allows us
to perform approximate orthogonalization of distributed vectors by means of short
messages. While our experiments focused on a serial computing environment, there
are clear opportunities for efficient implementations on GPUs, multicore and parallel
processors, distributed and cloud computing systems, and so forth.

Finally, let us mention one remaining difficulty. At present, we lack a reliable
mechanism for guaranteeing that the condition number of basis B and the reduced
matrix AB do not explode. Partial orthogonalization is a practical approach that
often works well, but it can fail. It would be valuable to identify strategies for inex-
pensively producing computational bases that are numerically full rank.

Acknowledgments. The authors would like to thank Alice Cortinovis, Ethan
Epperly, Ilse Ipsen, Gunnar Martinsson, Maike Meier, Florian Schaefer for valuable
discussions and feedback.

REFERENCES

[1] S. Adachi, S. Iwata, Y. Nakatsukasa, and A. Takeda, Solving the trust-region subproblem
by a generalized eigenvalue problem, SIAM J. Optim., 27 (2017), pp. 269–291.

[2] N. Ailon and B. Chazelle, The fast Johnson-Lindenstrauss transform and approximate
nearest neighbors, SIAM J. Comput., 39 (2009), pp. 302–322, https://doi.org/10.1137/
060673096.

[3] H. Avron, P. Maymounkov, and S. Toledo, Blendenpik: Supercharging LAPACK’s least-
squares solver, SIAM J. Sci. Comp, 32 (2010), pp. 1217–1236.

[4] O. Balabanov and L. Grigori, Randomized Gram-Schmidt process with application to GM-
RES, arXiv:2011.05090, (2020).

[5] G. Ballard, E. Carson, J. Demmel, M. Hoemmen, N. Knight, and O. Schwartz, Commu-
nication lower bounds and optimal algorithms for numerical linear algebra, Acta Numerica,
23 (2014), pp. 1–155.

[6] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz, Minimizing communication in nu-
merical linear algebra, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 866–901.

[7] B. Beckermann, The condition number of real Vandermonde, Krylov and positive definite
Hankel matrices, Numer. Math., 85 (2000), pp. 553–577.

[8] G. Boutry, M. Elad, G. H. Golub, and P. Milanfar, The generalized eigenvalue problem
for nonsquare pencils using a minimal perturbation approach, SIAM J. Matrix Anal. Appl.,
27 (2005), pp. 582–601.

[9] T. Chen and E. Carson, Predict-and-recompute conjugate gradient variants, SIAM J. Sci.
Comp, 42 (2020), pp. A3084–A3108.

[10] K. L. Clarkson and D. P. Woodruff, Low-rank approximation and regression in input
sparsity time, Journal of the ACM, 63 (2017), pp. 1–45.

[11] M. B. Cohen, Nearly tight oblivious subspace embeddings by trace inequalities, in Proceedings
of the twenty-seventh annual ACM-SIAM symposium on Discrete algorithms, SIAM, 2016,
pp. 278–287.

[12] A. R. Conn, N. I. M. Gould, and P. L. Toint, Trust Region Methods, vol. 1, SIAM, Philadel-
phia, PA, USA, 2000.

[13] T. A. Davis and Y. Hu, The University of Florida sparse matrix collection, ACM Trans. Math.
Soft., 38 (2011), pp. 1–25.

https://doi.org/10.1137/060673096
https://doi.org/10.1137/060673096

28 Y. NAKATSUKASA AND J. A. TROPP

[14] J. Demmel, The condition number of equivalence transformations that block diagonalize matrix
pencils, SIAM J. Numer. Anal., 20 (1983), pp. 599–610.

[15] J. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, USA, 1997.
[16] W. Gautschi, The condition of orthogonal polynomials, Math. Comp., 26 (1972), pp. 923–924,

https://doi.org/10.2307/2005876.
[17] W. Gautschi, The condition of polynomials in power form, Math. Comp., 33 (1979), pp. 343–

352, https://doi.org/10.2307/2006047.
[18] G. H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins University

Press, 4th ed., 2012.
[19] N. Halko, P.-G. Martinsson, Y. Shkolnisky, and M. Tygert, An algorithm for the princi-

pal component analysis of large data sets, SIAM J. Sci. Comput., 33 (2011), pp. 2580–2594,
https://doi.org/10.1137/100804139.

[20] N. Halko, P.-G. Martinsson, and J. A. Tropp, Finding structure with randomness: Prob-
abilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53
(2011), pp. 217–288.

[21] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, PA, USA,
second ed., 2002.

[22] S. Ito and K. Murota, An algorithm for the generalized eigenvalue problem for nonsquare
matrix pencils by minimal perturbation approach, SIAM J. Matrix Anal. Appl., 37 (2016),
pp. 409–419.

[23] W. D. Joubert and G. F. Carey, Parallelizable restarted iterative methods for nonsymmetric
linear systems. Part I: Theory, Center for Numerical Analysis CNA-251, University of
Texas at Austin, May 1991.

[24] W. Kahan, Spectra of nearly Hermitian matrices, Proc. Amer. Math. Soc., 48 (1975), pp. 11–
17.

[25] T. A. Manteuffel, The Tchebychev iteration for nonsymmetric linear systems, Numer. Math.,
28 (1977), pp. 307–327, https://doi.org/10.1007/BF01389971.

[26] P.-G. Martinsson and J. A. Tropp, Randomized numerical linear algebra: Foundations and
algorithms, Acta Numerica, (2020), pp. 403––572.

[27] X. Meng and M. W. Mahoney, Low-distortion subspace embeddings in input-sparsity time
and applications to robust linear regression, in STOC’13—Proceedings of the 2013 ACM
Symposium on Theory of Computing, ACM, New York, 2013, pp. 91–100, https://doi.org/
10.1145/2488608.2488621.

[28] C. Musco and C. Musco, Stronger and faster approximate singular value decomposition via
the block Lanczos method, in Advances in Neural Information Processing Systems (NIPS
2015), 2014, pp. 14243–14253. Available at http://arXiv.org/abs/1504.05477.

[29] Y. Nakatsukasa, Fast and stable randomized low-rank matrix approximation,
arXiv:2009.11392, (2020).

[30] Y. Nakatsukasa, Sharp error bounds for Ritz vectors and approximate singular vectors, Math.
Comp., 89 (2020), pp. 1843–1866.

[31] J. Nelson and H. L. Nguyên, Osnap: Faster numerical linear algebra algorithms via sparser
subspace embeddings, in 2013 ieee 54th annual symposium on foundations of computer
science, IEEE, 2013, pp. 117–126.

[32] C. C. Paige and M. A. Saunders, Solution of sparse indefinite systems of linear equations,
SIAM J. Numer. Anal., 12 (1975), pp. 617–629.

[33] B. N. Parlett, The Symmetric Eigenvalue Problem, SIAM, Philadelphia, 1998.
[34] B. Philippe and L. Reichel, On the generation of Krylov subspace bases, Appl. Numer. Math.,

62 (2012), pp. 1171–1186.
[35] V. Rokhlin, A. Szlam, and M. Tygert, A randomized algorithm for principal component

analysis, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 1100–1124.
[36] V. Rokhlin and M. Tygert, A fast randomized algorithm for overdetermined linear least-

squares regression, Proc. Natl. Acad. Sci., 105 (2008), pp. 13212–13217.
[37] Y. Saad, Iterative methods for sparse linear systems, Society for Industrial and Applied Math-

ematics, Philadelphia, PA, second ed., 2003, https://doi.org/10.1137/1.9780898718003.
[38] Y. Saad, Numerical methods for large eigenvalue problems, vol. 66 of Classics in Applied

Mathematics, SIAM, Philadelphia, PA, 2011, https://doi.org/10.1137/1.9781611970739.
ch1. Revised edition of the 1992 original.

[39] Y. Saad and M. H. Schultz, Conjugate gradient-like algorithms for solving nonsymmetric
linear systems, Math. Comp., 44 (1985), pp. 417–424, https://doi.org/10.2307/2007961.

[40] Y. Saad and M. H. Schultz, GMRES - A generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Stat. Comp., 7 (1986), pp. 856–869.

[41] T. Sarlos, Improved approximation algorithms for large matrices via random projections,

https://doi.org/10.2307/2005876
https://doi.org/10.2307/2006047
https://doi.org/10.1137/100804139
https://doi.org/10.1007/BF01389971
https://doi.org/10.1145/2488608.2488621
https://doi.org/10.1145/2488608.2488621
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1137/1.9781611970739.ch1
https://doi.org/10.1137/1.9781611970739.ch1
https://doi.org/10.2307/2007961

FAST RANDOMIZED SUBSPACE ALGORITHMS 29

in 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06),
IEEE, 2006, pp. 143–152.

[42] H. D. Simon, Analysis of the symmetric Lanczos algorithm with reorthogonalization methods,
Linear Algebra Appl., 61 (1984), pp. 101–131.

[43] H. D. Simon, The Lanczos algorithm with partial reorthogonalization, Math. Comp., 42 (1984),
pp. 115–142.

[44] G. W. Stewart, A generalization of Saad’s theorem on Rayleigh-Ritz approximations, Linear
Algebra Appl., 327 (1999), pp. 115–119.

[45] G. W. Stewart, Matrix Algorithms Volume II: Eigensystems, SIAM, Philadelphia, 2001.
[46] G. W. Stewart and J.-G. Sun, Matrix Perturbation Theory (Computer Science and Scientific

Computing), Academic Press, 1990.
[47] J. A. Tropp, Improved analysis of the subsampled randomized Hadamard transform, Advances

in Adaptive Data Analysis, 3 (2011), pp. 115–126.
[48] J. A. Tropp, Analysis of randomized block Krylov methods, ACM Technical Report 2018-02,

California Institute of Technology, 2018.
[49] J. A. Tropp, Randomized block krylov methods for approximating extreme eigenvalues,

arXiv:2110.00649, (2021).
[50] J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher, Practical sketching algorithms for

low-rank matrix approximation, SIAM J. Matrix Anal. Appl., 38 (2017), pp. 1454–1485.
[51] J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher, Streaming low-rank matrix ap-

proximation with an application to scientific simulation, SIAM J. Sci. Comp, 41 (2019),
p. A2430–A2463.

[52] D. P. Woodruff, Sketching as a tool for numerical linear algebra, Foundations and Trends®
in Theoretical Computer Science, 10 (2014), pp. 1–157.

[53] F. Woolfe, E. Liberty, V. Rokhlin, and M. Tygert, A fast randomized algorithm for the
approximation of matrices, Appl. Comput. Harmon. Anal., 25 (2008), pp. 335–366.

[54] A. Yurtsever, J. A. Tropp, O. Fercoq, M. Udell, and V. Cevher, Scalable semidefinite
programming, SIAM J. Math. Data Sci., 3 (2021), pp. 171–200, https://doi.org/10.1137/
19M1305045.

https://doi.org/10.1137/19M1305045
https://doi.org/10.1137/19M1305045

	Introduction
	Sketching a least-squares problem
	Solving linear systems by sketched GMRES
	Sketched GMRES
	Krylov subspaces
	Comparison with GMRES

	Solving eigenvalue problems by sketched Rayleigh–Ritz
	Sketched Rayleigh–Ritz
	Comparison with Arnoldi + Rayleigh–Ritz
	Block Krylov subspaces

	Discussion
	Roadmap
	Notation

	Background: Subspace embeddings
	Sketching for least-squares problems
	Whitening the basis
	Constructing a subspace embedding
	SRFTs
	Sparse maps

	Solving linear systems with sGMRES
	Derivation of GMRES
	Derivation and analysis of sGMRES
	Implementation
	Stability
	Restarting
	Preconditioning
	Variations

	Constructing a basis for sGMRES
	The single-vector Krylov subspace
	The Arnoldi process
	The Lanczos recurrence
	The Chebyshev recurrence
	Newton polynomials
	Local orthogonalization

	sGMRES algorithms
	Basic implementation
	Iterative sGMRES
	Adaptive restarting
	Storage-efficient versions
	Obtaining a solution with full accuracy

	The sketched Rayleigh–Ritz method
	The many faces of Rayleigh–Ritz
	The Arnoldi method
	Derivation of sRR
	Implementation of sRR
	Stabilization
	Why does sRR work?
	sRR with a Krylov subspace basis
	The symmetric case

	Constructing a basis for sRR
	Block Krylov subspaces
	Basis diagnostics and restarting
	Block monomial basis with orthogonalization
	Block Arnoldi with partial orthogonalization
	Block Chebyshev recurrence

	Computational experiments
	Solving linear systems with sGMRES
	Algorithm details
	A nonsymmetric linear system
	A symmetric linear system

	sGMRES: Hard examples
	Solving eigenvalue problems with sRR
	Algorithm details
	Nonsymmetric eigenvalue problems
	Symmetric eigenvalue problems
	Poorly conditioned bases and stabilization

	Variations and extensions
	Generalized eigenvalue problems
	Low-rank matrix approximation

	Prospects
	References

