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We study the Reynolds-number scaling and the geometric self-similarity of a gain-
based, low-rank approximation to turbulent channel flows, determined by the resolvent
formulation of McKeon & Sharma (J. Fluid Mech., vol. 658, 2010, pp. 336–382),
in order to obtain a description of the streamwise turbulence intensity from direct
consideration of the Navier–Stokes equations. Under this formulation, the velocity
field is decomposed into propagating waves (with single streamwise and spanwise
wavelengths and wave speed) whose wall-normal shapes are determined from the
principal singular function of the corresponding resolvent operator. Using the accepted
scalings of the mean velocity in wall-bounded turbulent flows, we establish that the
resolvent operator admits three classes of wave parameters that induce universal
behaviour with Reynolds number in the low-rank model, and which are consistent
with scalings proposed throughout the wall turbulence literature. In addition, it is
shown that a necessary condition for geometrically self-similar resolvent modes is
the presence of a logarithmic turbulent mean velocity. Under the practical assumption
that the mean velocity consists of a logarithmic region, we identify the scalings
that constitute hierarchies of self-similar modes that are parameterized by the critical
wall-normal location where the speed of the mode equals the local turbulent mean
velocity. For the rank-1 model subject to broadband forcing, the integrated streamwise
energy density takes a universal form which is consistent with the dominant near-wall
turbulent motions. When the shape of the forcing is optimized to enforce matching
with results from direct numerical simulations at low turbulent Reynolds numbers,
further similarity appears. Representation of these weight functions using similarity
laws enables prediction of the Reynolds number and wall-normal variations of the
streamwise energy intensity at high Reynolds numbers (Reτ ≈ 103–1010). Results
from this low-rank model of the Navier–Stokes equations compare favourably with
experimental results in the literature.
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1. Introduction
Understanding the behaviour of wall-bounded turbulent flows at high Reynolds

numbers has tremendous technological implications, for example, in air and water
transportation. This problem has received significant attention over the last two
decades especially in the light of full-field flow information revealed by direct
numerical simulations (DNS) at relatively small Reynolds numbers and high-Reynolds-
number experiments. Notwithstanding the recent developments, the highest Reynolds
numbers that are considered in DNS are an order of magnitude smaller than
experiments, which are in turn conducted at Reynolds numbers that are typically
two orders of magnitude smaller than most applications. This creates a critical demand
for model-based approaches that describe and predict the behaviour of turbulent flows
at technologically relevant Reynolds numbers.

Wall turbulence has been the topic of several reviews; see, for example, Robinson
(1991) and Adrian (2007) for structure of coherent motions, Gad-El-Hak &
Bandyopadhyay (1994) for turbulence statistics and scaling issues, Panton (2001) for
self-sustaining turbulence mechanisms, and Klewicki (2010), Marusic et al. (2010c)
and Smits, McKeon & Marusic (2011) for the latest findings and main challenges
in examining high-Reynolds-number wall turbulence. In the present study, special
attention is paid to scaling, universality, and geometric self-similarity of the turbulent
energy spectra at high Reynolds numbers. We also note that the energy spectra exhibit
clear signatures of coherent turbulent motions such as the near-wall streaks, the large-
scale motions (LSMs), and the very large-scale motions (VLSMs).

1.1. Overview of dominant coherent motions
In the interests of giving a brief overview of the energetically dominant coherent
motions in wall turbulence, we will review three classes of structure. The near-wall
system of quasi-streamwise streaks and counter-rotating vortices with streamwise
length and spanwise spacing of approximately 1000 and 100 inner (viscous) units,
centred at approximately 15 inner units above the wall, has been well-studied. These
ubiquitous features of wall turbulence are responsible for large production of turbulent
kinetic energy (Kline et al. 1967; Smith & Metzler 1983).

Another commonly observed feature of turbulent flows is the hairpin vortex. In
low-Reynolds-number flows, at least, packets of hairpin vortices have been observed to
extend from the wall to the edge of the boundary layer and constitute LSMs (Head
& Bandyopadhyay 1981; Adrian, Meinhart & Tomkins 2000; Adrian 2007), with
streamwise extent approximately 2–3 outer units (channel half-height, pipe radius, or
the boundary layer thickness).

VLSMs have been observed to reside in the logarithmic region of the turbulent
mean velocity, with lengths of approximately 10–15 outer units in boundary layers
and up to 30 outer units in channels and pipes (see, for example, Kim & Adrian
1999; Balakumar & Adrian 2007; Monty et al. 2007). The emergence of VLSMs was
originally attributed to alignment of LSMs (Kim & Adrian 1999). However, Smits
et al. (2011) concluded that this is unlikely since the detached LSMs are located
at a farther distance from the wall than the VLSMs and the attached LSMs have
much smaller width than VLSMs and are convected at different speeds. Recently, the
correlation between the envelope of small-scale activity and the large-scale velocity
signal (identified via filtering in spectral space), which has been interpreted as
an amplitude modulation of the small scales, has been investigated in detail, see
e.g. Hutchins & Marusic (2007b), Mathis, Hutchins & Marusic (2009a), Mathis et al.
(2009b), Chung & McKeon (2010) and Hutchins et al. (2011).
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1.2. Overview of scaling issues
In spite of recent advances in understanding the structure of wall turbulence, the
Reynolds-number scaling of the turbulent energy spectra and the energy intensities
remains an open area of research. The main experimental obstacle is maintaining
the necessary spatial resolution for measurement accuracy while achieving the high
Reynolds numbers required for large separation between the small and large turbulent
scales. For example, the available experiments are performed at relatively small
friction Reynolds numbers, Reτ ≈ O(104), with a notable exception of the atmospheric
surface layer measurements of e.g. Metzger & Klewicki (2001) (Reτ ≈ O(106)) that
are in turn generally contaminated by surface roughness effects. Most high-Reynolds-
number experiments suffer from spatial resolution issues in the inner region (see, for
example, Hutchins et al. 2009).

Significant experimental effort has been devoted to determining the behaviour of
the streamwise energy intensity at high Reynolds numbers since it dominates the
turbulent kinetic energy and is easier to measure relative to the wall-normal and
spanwise velocities. It is understood that both small and large scales contribute
to the streamwise energy intensity (Metzger & Klewicki 2001; Marusic & Kunkel
2003; Hutchins & Marusic 2007a; Marusic, Mathis & Hutchins 2010a). It is well-
known that a region of the streamwise wavenumber spectrum scales with inner units;
Marusic et al. (2010a) showed by filtering that the contribution of such scales to
the streamwise energy intensity, and therefore by extension also the streamwise
spectrum, is universal, i.e. independent of Reynolds number. On the other hand,
the large motions have been shown to scale in outer units (Kim & Adrian 1999);
Mathis et al. (2009a) proposed that the corresponding peak in streamwise intensity
occurs close to the geometric mean of the limits of the logarithmic region in the
turbulent mean velocity. The amplitude of this energetic peak increases with Reynolds
number and has a footprint down to the wall (Hutchins & Marusic 2007b). Using
data from experiments of canonical wall-bounded turbulent flows, Alfredsson, Örlü &
Segalini (2012) proposed a composite profile for the streamwise turbulence intensity
and showed the possibility of an outer peak at high Reynolds numbers. Note however,
that available data are not sufficiently well-resolved to determine unequivocally the
Reynolds-number scaling of either the inner or outer peaks of the streamwise energy
intensity (see, for example, Marusic et al. 2010a).

Theoretical approaches also offer insight into the scaling of the spectrum with
increasing Reynolds numbers, originating with the attached-eddy concepts described
by Townsend (1976). These eddies are attached in the sense that their height scales
with their distance from the wall, and they are geometrically self-similar since their
wall-parallel length scales are proportional to their height. Perry & Chong (1982)
developed these ideas to include hierarchies of geometrically self-similar attached
eddies in the logarithmic region of the turbulent mean velocity. They systematically
predicted that if the population density of the attached eddies inversely decreases with
their height, both the turbulent mean velocity and the wall-parallel energy intensities
exhibit logarithmic dependence on the distance from the wall. The logarithmic
behaviour of the mean velocity and the streamwise energy intensity was recently
confirmed using high-Reynolds-number experiments (Marusic et al. 2013). However,
the attached-eddy hypothesis does not predict the exact shape of the eddies or their
evolution in time.

Subsequent works by Perry and co-authors extended the attached-eddy formulation
beyond the logarithmic region; Marusic & Kunkel (2003) used empirical scaling
arguments concerning the effective forcing of the outer turbulence on the viscous
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region to propose a similarity expression for the streamwise energy intensity that
is valid throughout the zero-pressure boundary layer. Recently, Marusic, Mathis &
Hutchins (2010b) outlined an observationally based, predictive formulation for the
variation of the streamwise turbulent intensity up to the geometric mean of the
logarithmic region based on consideration of the correlation between large and small
scales. Most recently, Mizuno & Jiménez (2013) used DNS to show that self-similarity
of the velocity fluctuations is sufficient and seemingly important for reproducing a
logarithmic profile in the mean velocity. They also observed that the logarithmic
region can be maintained independent of the near-wall dynamics.

1.3. Review of previous model-based approaches
We seek in this work a description of the streamwise turbulence intensity for
all wall-normal locations arising from direct consideration, and modelling, of the
Navier–Stokes equations (NSE). There has been much work in this vein, highlighting
several important features of the NSE. We provide a brief review of the most relevant
literature here.

The critical role of linear amplification mechanism in promoting and maintaining
turbulent flows was highlighted in DNS of Kim & Lim (2000). In addition, it was
shown that nonlinearity plays an important role in regenerating the near-wall region
of turbulent shear flows through a self-sustaining process (Hamilton, Kim & Waleffe
1995; Waleffe 1997; Schoppa & Hussain 2002). More recently, significant effort has
been directed at identification and analysis of exact solutions of the NSE, such as
travelling waves and periodic orbits, see e.g. Waleffe (2003) and Wedin & Kerswell
(2004) and the review paper by Kerswell (2005).

It is understood that high sensitivity of the laminar flow to disturbances provides
alternative paths to transition that bypass linear instability; see, for example, Schmid
& Henningson (2001). Trefethen et al. (1993) showed that the high flow sensitivity
is related to non-normality of the coupled Orr–Sommerfeld and Squire operators; see
also Schmid (2007). These operators are coupled in the presence of mean shear and
spanwise-varying fluctuations. Physically, as originally explained by Landahl (1975), a
large streamwise disturbance is induced on the flow in response to lift-up of a fluid
particle by the wall-normal velocity such that its wall-parallel momentum is conserved.

Even in linearly stable flows, the high sensitivity can result in large transient
responses, meaning that the energy of certain initial perturbations significantly grows
before eventual decay to zero (Gustavsson 1991; Butler & Farrell 1992; Klingmann
1992; Reddy & Henningson 1993; Schmid & Henningson 1994). In addition, the high
sensitivity is responsible for high energy amplification, meaning that the velocity
fluctuations achieve a large variance at the steady state for the flow subject to
zero-mean stochastic disturbances (Farrell & Ioannou 1993b; Bamieh & Dahleh
2001; Jovanović & Bamieh 2005). The dominant structures that emerge from the
above transient growth and energy amplification analyses are reminiscent of the
streamwise streaks observed at the early stages of transition to turbulence (Matsubara
& Alfredsson 2001). They are characterized by infinitely long spanwise-periodic
regions of high and low streamwise velocity associated with pairs of counter-rotating
streamwise vortices that are separated by approximately 3.5 outer units.

It is believed that the NSE linearized around the turbulent mean velocity are stable
for all Reynolds numbers (Malkus 1956; Reynolds & Tiederman 1967). Early model-
based approaches extended the aforementioned sensitivity analyses of the laminar flow
to the turbulent channel flow and found dominance of streamwise streaks that are
spaced by 3 outer units, which is approximately the same as in the laminar flow. In
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addition to the outer-scaled dominant structures, Butler & Farrell (1993) and Farrell
& Ioannou (1993a) showed that the largest transient response over an eddy turnover
time of 80 inner units, associated with the near-wall cycle, is obtained for initial
perturbations that are infinitely long and have the same spanwise spacing as the
near-wall streaks, i.e. 100 inner units. The same streamwise and spanwise lengths were
obtained in flows subject to stochastic disturbances over a coherence time of 90 inner
units (Farrell & Ioannou 1998).

Reynolds & Hussain (1972) put forward a modified linear model to account for the
effect of background Reynolds stresses on the velocity fluctuations. They proposed to
augment the molecular viscosity by the turbulent eddy viscosity that is required to
maintain the mean velocity. This model yields two local optima for the structures with
largest transient growth (del Álamo & Jiménez 2006; Pujals et al. 2009) and energy
amplification (Hwang & Cossu 2010) without the need for confining the optimization
time. These peaks correspond to streamwise-elongated structures with a spacing of 80
inner units and 3–4 outer units and are in fair agreement with the spacing of near-
wall streaks and the very large-scale motions in real turbulent flows. The geometric
similarity of the optimal transient response to initial perturbations and the optimal
responses to harmonic and stochastic forcings was highlighted by Hwang & Cossu
(2010) using the linearized NSE with turbulent eddy viscosity. These authors found
that the streamwise-constant optimal responses scale with the spanwise wavelength
in the wall-normal direction for spanwise wavelengths between the inner- and outer-
scaled regions.

An exact representation of the NSE was introduced by McKeon & Sharma (2010)
in which: (i) a set of linear sub-systems describe extraction of energy from the mean
velocity at individual wavenumbers/frequencies; and (ii) the only source of coupling
between these sub-systems is the conservative nonlinear interaction of their outputs,
that determines both the input to the sub-systems and the turbulent mean velocity.
At its heart is the ability to analyse the flow of energy from the mean velocity to
all the velocity scales and identify the essential linear amplification and nonlinear
redistribution mechanisms that drive the turbulent flow. The input–output relationship
of the linear sub-systems can be described by transfer functions whose low-rank nature
in the wall-normal direction enables significant simplification of their analysis.

One of the main differences between the formulation of McKeon & Sharma (2010)
and other input–output analyses of laminar and turbulent flows (see, for example,
Jovanović & Bamieh 2005; Hwang & Cossu 2010) is parameterization of the waves
with wave speed rather than temporal frequency. The latter approaches showed
that the globally optimal transient growth and energy amplification takes place for
zero streamwise wavenumber and temporal frequency. Selecting the wave speed, as
emphasized by McKeon & Sharma (2010): (i) enables a systematic search for both
locally (in wall-normal direction) and globally optimal wave shapes and parameters;
(ii) removes the ambiguity about the wave speed corresponding to the globally optimal
waves by determining the limit of the ratio between zero streamwise wavenumber
and temporal frequency; and (iii) distinguishes between non-normality and critical
behaviour as the main linear amplification mechanisms.

McKeon & Sharma (2010) showed that the principal forcing and response directions
associated with the linear sub-systems are consistent with the dominant response
shapes in real turbulent pipe flows. In addition, the low-dimensional and sparse feature
of the resulting model enables development and utilization of compressive sampling
techniques for analysing the turbulent flow dynamics (Bourguignon et al. 2013).
This formulation has also proven useful for pre- and post-diction of experimental
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observations in turbulent pipe flow (McKeon, Sharma & Jacobi 2013; Sharma &
McKeon 2013).

1.4. Paper outline
In this paper, we identify the Reynolds-number scaling of a low-rank approximation to
turbulent channel flow and utilize it for predicting the streamwise energy intensity at
high Reynolds numbers. Our development is outlined as follows. In § 2, we briefly
review the resolvent formulation, highlight its low-rank nature, and show that a
rank-1 approximation captures the characteristics of the most energetic modes of
real turbulent channels. The stage is set for studying the energy density of fluctuations
using a minimum number of assumptions by considering a rank-1 model in the wall-
normal direction subject to broadband forcing in the wall-parallel directions and time.
Furthermore, a summary of the computational approach for determining the rank-1
model is provided.

Three classes of wave parameters for which the low-rank approximation of the
resolvent exhibits universal behaviour (independence) with Reynolds number are
identified in § 3. The requirement for universality highlights the role of wave speed
in distinguishing these classes. Each class of waves is characterized by a unique range
of wave speeds and a unique spatial scaling that emerge from the resolvent. For the
rank-1 model subject to broadband forcing, we reveal the universal streamwise energy
densities, and show that the peaks of these energy densities roughly agree with the
most energetic turbulent motions, i.e. the near-wall streaks, the VLSMs, and the LSMs.

In § 4, we show that the streamwise energy density of the rank-1 model with
broadband forcing can be optimally weighted as a function of wave speed to match
the intensity of simulations at low turbulent Reynolds numbers. The weight functions
are then formulated using similarity laws which, in conjunction with the universal
energy densities, enable prediction of the streamwise energy intensity at high Reynolds
numbers. The paper is concluded in § 5 and limitations and several future directions
are discussed.

2. Low-rank approximation to channel flow
An overview of the rationale for considering a low-rank approximation to turbulent

channel flow is presented in this section. We follow the development of McKeon &
Sharma (2010) for turbulent pipe flow, showing that equivalent results are obtained for
channels and highlighting the new observations.

The pressure-driven flow of an incompressible Newtonian fluid is governed by the
non-dimensional NSE and the continuity constraint

ut + (u ·∇)u+∇P= (1/Reτ )1u,
∇ ·u= 0,

}
(2.1)

where u(x, y, z, t) is the velocity vector, P(x, y, z, t) is the pressure, ∇ is the gradient
operator, and 1 = ∇ ·∇ is the Laplacian. The streamwise and spanwise directions, x
and z, are infinitely long, the wall-normal direction is finite, 0 6 y 6 2, and t denotes
time; see figure 1(a) for the geometry. The subscript t represents temporal derivative,
e.g. ut = ∂u/∂t. The Reynolds number Reτ = uτh/ν is defined based on the channel
half-height h, kinematic viscosity ν, and friction velocity uτ =√τw/ρ, where τw is the
shear stress at the wall, and ρ is the density. Velocity is normalized by uτ , spatial
variables by h, time by h/uτ , and pressure by ρu2

τ . The spatial variables are denoted by
+ when normalized by the viscous length scale ν/uτ , e.g. y+ = Reτy.
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FIGURE 1. (Colour online) (a) Pressure-driven channel flow. (b) Schematic of a two-
dimensional propagating wave with streamwise and spanwise wavelengths λx and λz and
streamwise speed c.

2.1. Decomposition in homogeneous directions
The velocity is decomposed using the Fourier transform in the homogeneous directions
and time

u(x, y, z, t)=
∫∫∫ ∞

−∞
û(y; κx, κz, ω) ei(κxx+κzz−ωt) dκx dκz dω, (2.2)

where the hat denotes a variable in the transformed domain, and the triplet (κx, κz, ω)
is the streamwise and spanwise wavenumbers and the temporal (angular) frequency.
The Fourier basis is optimal in the homogeneous wall-parallel directions. It is
also an appropriate basis in time under stationary conditions. For any (κx, κz, ω) 6=
0, û(y; κx, κz, ω) represents a propagating wave with streamwise and spanwise
wavelengths λx = 2π/κx and λz = 2π/κz and speed c = ω/κx in the streamwise
direction; see figure 1(b) for an illustration. Some special cases include standing
waves (c = 0), infinitely long waves (κx = 0), and infinitely wide waves (κz = 0).
In this study, we emphasize the eminent role of wave speed, a factor that was
highlighted by McKeon & Sharma (2010) while being predominantly neglected in
the previous studies, in determining the classes of propagating waves that are universal
with Reynolds number.

The turbulent mean velocity U(y) = [U(y) 0 0]T = û(y; 0, 0, 0) corresponds to
(κx, κz, ω) = 0 and is assumed to be known. Note that our main results, i.e. the
identified scalings in § 3, rely on the accepted scales of the turbulent mean velocity
and, otherwise, do not depend on the exact shape of U. McKeon & Sharma (2010)
avoided the closure problem for the mean velocity by using U(y) obtained in pipe flow
experiments, but note that the resolvent formulation could be used to determine the
mean velocity profile, a topic of ongoing work (see McKeon et al. 2013). Here,
we use a semi-empirical turbulent viscosity model, originally proposed for pipe
flow (Malkus 1956; Cess 1958) and extended to channel flow (Reynolds & Tiederman
1967), to determine U(y):

U(y)= Reτ

∫ y

0

1− ξ
1+ νT(ξ)

dξ, (2.3a)

νT(y)= 1
2

{
1+

(
κReτ

3
(2y− y2) (3− 4y+ 2y2)

{
1− e(|y−1|−1)Reτ /α

})2
}1/2

− 1
2
,

(2.3b)

where νT is normalized by ν, and the parameters α and κ appear in the van Driest
wall law and the von Kármán log law. These parameters are obtained by minimizing
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Nonlinearity coupling

FT IFT

FIGURE 2. For any triplet (κx, κz, ω), the operator H(κx, κz, ω) maps the forcing f̂ to the
response û. The different wavenumbers are coupled via the quadratic relationship between
f (x, y, z, t) and u(x, y, z, t). FT and IFT stand for Fourier transform and inverse Fourier
transform, respectively. The input–output map (shown with the dashed rectangle) is the main
focus of the present study.

the deviation between U(y) in (2.3) and the DNS-based turbulent mean velocity profile.
The α and κ obtained for Reτ = 186, 547 and 934 (Moarref & Jovanović 2012)
suggest that both of these values converge for large Reτ . We take α = 25.4 and
κ = 0.426 for all Reynolds numbers and note that these values are optimized for
Reτ = 2003 (del Álamo & Jiménez 2006; Pujals et al. 2009).

Following McKeon & Sharma (2010), the convective nonlinearity in (2.1) is
considered as a forcing term f = −(u · ∇)u that drives the velocity fluctuations,
see also figure 2. For any (κx, κz, ω) 6= 0, an equation for velocity fluctuations
û(y; κx, κz, ω) = [û v̂ ŵ]T around the turbulent mean velocity is obtained by
substituting (2.2) in (2.1), and using the orthonormality of the complex exponential
functions:

−iωû+ (U ·∇)û+ (û ·∇)U +∇p̂− (1/Reτ )1û= f̂ , (2.4a)

∇ · û= 0. (2.4b)

Here, ∇ = [iκx ∂y iκz]T, 1= ∂yy − κ2 with κ2 = κ2
x + κ2

z , and

f̂ (y; κx, κz, ω)= [f̂1 f̂2 f̂3]T =
∫∫∫

(κ′x,κ′z,ω′)6=(0,0,0)
(κ′x,κ′z,ω′)6=(κx,κz,ω)

(
û(y; κ ′x, κ ′z, ω′) ·∇

)
× û(y; κx − κ ′x, κz − κ ′z, ω − ω′) dκ ′x dκ ′z dω′. (2.5)

McKeon & Sharma (2010) implicitly accounted for the continuity constraint by
projecting the velocity field onto the divergence-free basis of Meseguer & Trefethen
(2003). Here, we use a standard choice of wall-normal velocity v̂ and wall-normal
vorticity η̂ = iκzû− iκxŵ as the state variables, ζ̂ (y; κx, κz, ω)= [v̂ η̂]T, to eliminate the
pressure term and the continuity constraint from (2.4) and obtain

− (iωI + A(κx, κz)) ζ̂ (y; κx, κz, ω)= C†(κx, κz) f̂ (y; κx, κz, ω), (2.6a)

û(y; κx, κz, ω)= C(κx, κz) ζ̂ (y; κx, κz, ω). (2.6b)

Here, A is the state operator, C maps the state vector to the velocity vector, and the
adjoint of C (denoted by C†) maps the forcing vector to the state vector. A, C, and C†
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are operators in y and parameterized by κx and κz:

A=
[
1−1

(
(1/Reτ )1

2 + iκx (U
′′ − U1)

)
0

−iκzU
′ (1/Reτ )1− iκxU

]
, (2.7a)

C = 1
κ2

iκx∂y −iκz

κ2 0
iκz∂y iκx

 , C† =
[
−iκx1

−1∂y κ21−1 −iκz1
−1∂y

iκz 0 −iκx

]
, (2.7b)

where 12 = ∂yyyy − 2κ2∂yy + κ4, and the prime denotes differentiation in y, e.g.
U′(y) = dU/dy. The input–output relationship between f̂ and û is obtained upon
elimination of ζ̂ from (2.6):

û(y; κx, κz, ω)= H(κx, κz, ω) f̂ (y; κx, κz, ω), (2.8a)

H(κx, κz, ω)= C(κx, κz)RA(κx, κz, ω)C
†(κx, κz), (2.8b)

where RA(κx, κz, ω)=−(iωI + A(κx, κz))
−1 is the resolvent of A:

RA =
[
1−1

(
iκx ((U − c)1− U′′)− (1/Reτ )1

2
)

0
iκzU

′ iκx(U − c)− (1/Reτ )1

]−1

. (2.9)

As illustrated in figure 2, the only source of coupling between propagating waves with
different wavenumbers is the quadratic dependence of f (x, y, z, t) on u(x, y, z, t). For
any wavenumber triplet, the input–output map from f̂ to û (shown by the dashed
rectangle) represents a sub-system of the full NSE.

2.2. Decomposition in the wall-normal direction
The transfer function H(κx, κz, ω) provides a large amount of information about the
input–output relationship between f̂ and û. Following the gain analysis of McKeon
& Sharma (2010), we use the Schmidt (singular value) decomposition to provide a
wall-normal basis based on the most highly amplified forcing and response directions:

û(y; κx, κz, ω)= H(κx, κz, ω) f̂ (y; κx, κz, ω)

=
∞∑

j=1

σj(κx, κz, ω) aj(κx, κz, ω) ψ̂ j(y; κx, κz, ω), (2.10a)

aj(κx, κz, ω)=
∫ 1

−1
φ̂
∗
j (y; κx, κz, ω) f̂ (y; κx, κz, ω) dy, (2.10b)

where σ1 > σ2 > · · · > 0 denote the singular values of H, and the singular functions

φ̂j = [f̂1j f̂2j f̂3j]T and ψ̂ j = [ûj v̂j ŵj]T are respectively the forcing and response
directions corresponding to σj. In principle, there is an infinite number of singular
values/modes because the wall-normal coordinate is continuous. For the discretized
equation, the total number of singular values/modes is twice the number of grid points
in y since the resolvent operator RA in (2.9) acts on a vector of two functions in y. As
highlighted by McKeon & Sharma (2010), the singular value decomposition effectively
demonstrates that there is a limited number of relatively highly amplified modes within
this total number of modes. Throughout this paper, we consistently refer to ψ̂ j as the
resolvent mode, and distinguish it from the real turbulent flow that, under stationary
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conditions, can be represented by a weighted sum of the resolvent modes. The latter
is denoted the weighted mode. Note that the resolvent modes were denoted response
modes in McKeon & Sharma (2010), McKeon et al. (2013) and Sharma & McKeon
(2013).

While the singular values of H are unique, additional treatment is necessary to
obtain unique singular functions. Unlike in a pipe, the singular values come in pairs
due to the wall-normal symmetry in the channel (which reflects itself in the resolvent
operator); see, for example, figure 4(a). For the modes with smaller streamwise
and spanwise wavelengths than the channel half-height, the singular values come in
equal pairs. Therefore, any linear combination of the corresponding singular functions
represents a legitimate singular function. For example, if the symmetric and anti-
symmetric modes are denoted by ψs and ψa where |ψs| = |ψa|, the singular function
given by ψd = ψs − ψa is zero in one half of the channel and twice ψs in the other
half. Clearly, ψd is also a singular function of the transfer function with the same
singular value as ψs and ψa. Physically, this means that the modes with lengths
and widths smaller than the channel half-height exhibit the potential to independently
evolve in either half of the channel provided that they are forced with a forcing (e.g.
disturbance) that is present only in one half of the channel. On the other hand, for
the modes with larger wavelengths than the channel half-height, the paired singular
values are different and the singular modes are either symmetric or anti-symmetric in
the opposite halves of the channel. Physically, these modes represent convective global
phenomena, meaning that they cannot take place independently in the opposite halves
of the channel. They convect with the same magnitude in the opposite halves of the
channel even though they can be of the same or opposite phase.

When the paired singular values are different, we obtain unique singular functions,
modulo a complex multiplicative constant of unit magnitude, by imposing an
orthonormality constraint on them:∫ 1

−1
φ̂
∗
j (y; κx, κz, ω) φ̂k(y; κx, κz, ω) dy=

∫ 1

−1
ψ̂
∗
j (y; κx, κz, ω) ψ̂ k(y; κx, κz, ω) dy= δjk,

(2.11)

where δ denotes the Kronecker delta. In the case where the paired singular values
are equal, we impose a symmetry/anti-symmetry constraint on the singular functions
in addition to the above orthonormality constraint. In other words, the corresponding
singular functions assume the same magnitude throughout the channel while being in
phase in one half of the channel and out of phase in the other half.

In this study, we select the unknown multiplicative constant (after
orthonormalization) such that ûj(ymax; κx, κz, ω) is a real number at the wall-normal
location ymax where the absolute value of ûj is the largest. This choice places the
maximum of uj(x, y, z, t; κx, κz, ω) at the origin x = z = t = 0. The channel symmetries
in the streamwise and spanwise directions can be used to obtain uj, vj, and wj in the
physical domain:

uj(x, y, z, t; κx, κz, ω)= 4 cos(κzz)Re
(
ûj(y; κx, κz, ω) ei(κxx−ωt)

)
, (2.12a)

vj(x, y, z, t; κx, κz, ω)= 4 cos(κzz)Re
(
v̂j(y; κx, κz, ω) ei(κxx−ωt)

)
, (2.12b)

wj(x, y, z, t; κx, κz, ω)=−4 sin(κzz) Im
(
ŵj(y; κx, κz, ω) ei(κxx−ωt)

)
, (2.12c)
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FIGURE 3. (Colour online) The principal velocity response ψ1(x, y, z, t; κx, κz, c) =
[u1 v1 w1]T for λ+x = 700, λ+z = 100, c = 10, and Reτ = 10 000 at t = 0. (a) The isosurfaces
of the streamwise velocity, u1, at 60 % of its maximum. (b) The streamwise velocity (u1,
contours) and the spanwise and wall-normal velocity (v1,w1, arrows) at x+ = λ+x /2. The
contours in (b) represent positive (thick solid) and negative (thin dashed) values from 3 to 15
with increments of 3.

where Re and Im denote the real and imaginary parts of a complex number. The
representation of the forcing directions in the physical domain is obtained using
similar expressions.

From the singular value decomposition (2.10) and the orthonormality constraints
(2.11) it follows that if the forcing is aligned in the φ̂j-direction with unit energy, the

response is aligned in the ψ̂ j-direction with energy σ 2
j . Consequently, the forcing and

response directions with the largest gain correspond to the principal singular functions
φ̂1 and ψ̂1. For any (κx, κz, ω), the singular functions of H should be thought of
as propagating waves in the physical domain. In the rest of the paper, the resolvent
modes are characterized by c instead of ω and we note that prescribing any two of κx,
ω, and c leads to the other.

Equivalent near-wall structures to those reported for pipe flows by McKeon &
Sharma (2010) and McKeon et al. (2013) are obtained for channel flows. For
example, the principal singular function ψ1(x, y, z, t; κx, κz, ω) = [u1 v1 w1]T for the
propagating wave corresponding to the energetic near-wall cycle (λ+x = 700, λ+z = 100,
c = U(y+ = 15) = 10) for Reτ = 10 000 is shown in figure 3. The streamwise
component of these structures contains regions of fast- and slow-moving fluids that are
aligned in the streamwise direction, slightly inclined to the wall, and are sandwiched
between counter-rotating vortical motions in the cross-stream plane.

2.3. Low-rank nature of H
The operator H, acting on functions of y, can be described as low rank if a significant
portion of its response to a broadband forcing in y is captured by projection on
the first few response directions. McKeon & Sharma (2010) highlighted the low-rank
nature of H for turbulent pipe flow. Figure 4(a) shows the first twenty singular values
of H for λ+x = 700, λ+z = 100, and c = 10 in turbulent channel flow with Reτ = 2003.
We see that the largest pair of singular values is approximately one order of magnitude
larger than the other singular values.

The energetic contribution of the kth-direction ψ̂ k to the total response in the
model subject to broadband forcing in y with fixed λx, λz, and c is quantified by
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FIGURE 4. (a) The twenty largest singular values of H for λ+x = 700, λ+z = 100, c = 10, and
Reτ = 2003. (b–d) The energy that is contained in the largest two response modes relative to
the total response, (σ 2

1 + σ 2
2 )/(

∑∞
j=1σ

2
j ), for different streamwise and spanwise wavelengths

and: (b) c = U(y+ = 15); (c) c = U(y+ = 100); and (d) c = U(y = 0.2). The black contours
show the turbulent kinetic energy spectrum from the DNS of Hoyas & Jiménez (2006) at
the corresponding critical wall-normal locations: (b) y+ = 15; (c) y+ = 100; and (d) y = 0.2.
The contours represent 10 % to 90 % of the maximum energy spectrum at each wall-normal
location with increments of 20 %.

σ 2
k /(
∑∞

j=1σ
2
j ). Figures 4(b)–4(d) highlight the low-rank nature of H by showing that

the first two principal response directions ψ̂1 and ψ̂2 contribute more than 80 % of the
total response over a large range of wall-parallel wavelengths (red region) for wave
speeds c = U(y+ = 15), U(y+ = 100), U(y = 0.2), and Reτ = 2003. The relevance of
studying the low-rank approximation of H is further emphasized by noting that the
most energetic wavenumbers from the DNS of Hoyas & Jiménez (2006) (contours)
coincide with the wavenumbers and critical wave speeds for which H is low rank.
We note that the streamwise velocity has the largest contribution to the kinetic energy.
Even though the shapes of the two-dimensional wall-normal and spanwise spectra may
be significantly different from the streamwise spectrum, the contours corresponding
to 70 % of the maximum in all spectra (not shown) lie within the region where the
contribution of the largest two singular values is more than 50 %.

2.4. Rank-1 model subject to broadband forcing
In the present study, we consider a rank-1 model by only keeping the most
energetic forcing and response directions corresponding to σ1 and show that significant
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understanding of the scaling of wall turbulence can be obtained using this simple
model. This is motivated by the observation in § 2.3 that the operator H is essentially
a directional amplifier. In other words, we expect to see the principal singular response
of H in real turbulent flows provided that the principal forcing direction is present
in the nonlinear forcing term. Even though the resolvent modes corresponding to σ1

and σ2 comparably contribute to the total response, cf. § 2.3, considering one of the
resolvent modes is sufficient for capturing the wall-normal shape of the energy density.
This is because the two resolvent modes are symmetric/anti-symmetric counterparts
of each other and have the same magnitude. Therefore, accounting for both resolvent
modes yields the same result as accounting for one resolvent mode.

It is well-known that the streamwise energy spectrum can be divided into regions
that scale in inner and outer variables (see, for example, Morrison et al. 2004). Our
objective is to explore the Reynolds-number scaling of the streamwise energy density
and predict the behaviour of the streamwise turbulence intensity at high Reτ . We
focus on the streamwise velocity because it dominates the kinetic energy density in
turbulent flows. Similarly, the principal singular responses of H that result in the
largest energy amplification are dominated by their streamwise component, such that
the proposed gain-based decomposition yields the streamwise velocity most accurately.
This is in agreement with previous linear analyses of the global optimal responses, e.g.
del Álamo & Jiménez (2006) and Hwang & Cossu (2010). We note that higher-order
resolvent modes may have comparable or larger wall-normal and spanwise components
relative to the streamwise velocity, the study of which is a subject of ongoing work.

In order to use the smallest number of assumptions, we consider the case where the
forcing f̂ equals the principal forcing direction φ̂1. Consequently, the forcing has unit
energy for all wave parameters, meaning that it is broadband in κx, κz, and c. For the
rank-1 model with broadband forcing, we define the premultiplied streamwise energy
density of the principal response of H by

Euu(y; κx, κz, c)= κ2
x κz(σ1(κx, κz, c)|u1|(y; κx, κz, c))2, (2.13)

such that the premultiplied one-dimensional energy densities and the energy intensity
are obtained by integrating Euu(y; κx, κz, c) over the set of all wave parameters S , e.g.

Euu(y, c)=
∫∫

S

Euu(y; κx, κz, c) d log(κx) d log(κz), (2.14a)

Euu(y)=
∫∫∫

S

Euu(y; κx, κz, c) d log(κx) d log(κz) dc, (2.14b)

and Euu(y, κx) and Euu(y, κz) are determined similarly.
The above formulation of the energy density is used in § 3 to identify the

contribution of confined subsets of wave parameters to the energy density. We
establish that the energy density exhibits universal behaviour with Reτ for properly
selected subsets of wave parameters. It is further shown that the emerging scales are
consistent with those observed in experiments. In addition, the scales of energetically
dominant waves roughly agree with the scales of dominant near-wall motions in real
turbulent flows.

2.5. Computational approach
A pseudo-spectral method is used to discretize the differential operators in the wall-
normal direction on a set of Chebyshev collocation points. This is implemented using
the Matlab differentiation matrix Suite developed by Weideman & Reddy (2000).
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Reτ Nx Ny Nz Nc λ+x,min λx,max y+min λ+z,min λz,max Ucl

934 64 251 32 100 10 106 0.07 10 100 22.39
2003 64 251 32 100 10 5× 105 0.15 10 50 24.02
3333 64 301 32 100 10 3× 105 0.18 10 30 25.22
10 000 64 401 32 100 10 105 0.3 10 10 27.81
30 000 80 601 40 100 10 3.3×106 0.4 10 33 30.39

TABLE 1. Summary of the selected parameters in numerical computations at different
Reynolds numbers. In the wall-normal direction, Ny Chebyshev collocation points are used
with y+min denoting the closest point to the wall. In the streamwise and spanwise directions,
Nx and Nz logarithmically spaced wavelengths are used between λ+min and λmax . In addition,
Nc linearly spaced wave speeds are chosen between cmin = 2 and cmax = Ucl.

Table 1 summarizes the selected range of wave parameters and their respective
resolution in numerical computations. It has been verified that the excluded wave
parameters are not energetically important and therefore do not change the results of
the present study.

An efficient randomized scheme developed by Halko, Martinsson & Tropp (2011)
is utilized to compute the principal singular directions of H for different Reynolds
numbers and wave parameters. The accuracy and computation time depend on the
decay of the singular values; a faster decay results in high accuracy or equivalently
less computation time to reach the same accuracy. In addition, if the singular values
are not well separated, the problem of computing the associated singular functions
is badly conditioned, meaning that it is hard for any method to determine them
very accurately. In this study, the above scheme approximately halves the total
computation time relative to Matlab’s svds algorithm. This becomes increasingly
important considering the three-dimensional wave parameter space that we need to
explore and the large size of the discretized resolvent operator (twice the number of
collocation points in y) at high Reynolds numbers. In addition, the randomized nature
of this scheme enables its parallel implementation which makes it especially suitable
for large-scale computations. Even though we have not used this feature in the present
study, it may find use in designing turbulent flow control strategies, e.g. by means of
spatially or temporally periodic actuations.

3. Universal behaviour of the resolvent

The formulation of § 2 facilitates analysis of the contribution of different wave
parameters (κx, κz, c) to the streamwise energy density. For the rank-1 model with
broadband forcing, the energy density of each wave is determined from the principal
singular values and singular functions of the transfer function H; see (2.13). In this
section, we identify unique classes of wave parameters for which Euu(y; κx, κz, c)
exhibits either universal behaviour with Reτ or geometrically self-similar behaviour
with distance from the wall. Each class is characterized by a unique range of wave
speeds and a unique scaling of the wall-normal coordinate and the wall-parallel
wavelengths. These classes are inherent to the linear mechanisms in the NSE and
are rigorously identified by analysis of the transfer function.
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FIGURE 5. (Colour online) (a) The one-dimensional energy density Re−2
τ Euu(y, c) for

S = Se and Reτ = 2003; and (b) the energy density normalized by its maximum value
over all y for fixed values of c. The colours are in logarithmic scale. The turbulent mean
velocity is shown by the black curve in (b).

3.1. Requirement for universality of the resolvent modes
We start by showing that a requirement for universal behaviour is the wall-normal
locality of the resolvent modes. This is done by examining the underlying operators
in H, cf. (2.7)–(2.9). We see that the difference between the turbulent mean velocity
and the wave speed, U(y) − c, and its wall-normal derivatives, U′(y) and U′′(y),
appear as spatially varying coefficients in H. Since the turbulent mean velocity scales
differently with Reτ in different wall-normal locations, only the resolvent modes that
are sufficiently narrow in y have the potential to be universal. This is because such
resolvent modes are purely affected by a certain part of the mean velocity that scales
uniquely with Reτ .

We next show that the resolvent modes corresponding to the energetically significant
modes are in fact localized. As summarized by LeHew, Guala & McKeon (2011),
the energetic contribution of structures with convection velocities less than 10uτ and
larger than the centreline velocity Ucl = U(y = 1) is negligible in real turbulent flows.
However, we are interested in determining the effect of a broader range of wave
speeds on the energy density. Note that small values of c result in small amplification
because the corresponding singular values are small. In fact, it is shown in § 4 that
including the modes with c . 2 does not improve the matching error between the
model-based and DNS-based energy intensities. This motivates defining a conservative
subset of S , denoted by Se, that includes all wall-parallel wavenumbers and the
energetically important wave speeds:

Se = {(κx, κz, c) | 2 6 c 6 Ucl}. (3.1)

Figure 5 shows the one-dimensional energy density as a function of wave speed
Euu(y, c) for Reτ = 2003 and S =Se. As evident from figure 5(a), the energy density
for a fixed c is localized in a narrow wall-normal region; note that the colours
are given in logarithmic scale. The localization is highlighted in figure 5(b) where
Euu(y, c) is normalized by its maximum value over y for fixed values of c. We see that
the largest energy amplification takes place in the vicinity of the critical wall-normal
location where the turbulent mean velocity (thick black curve) equals the wave speed.
McKeon & Sharma (2010) argued that emergence of critical layers is one of the three
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means of maximizing the Hilbert–Schmidt norm of H (sum of squares of the singular
values), i.e. by locally minimizing the term U(y) − c that appears in the resolvent
operator RA given in (2.9).

According to Taylor’s frozen-turbulence hypothesis (Taylor 1938), the flow
structures in boundary layers propagate downstream with a speed close to the local
mean velocity. Consistent with this hypothesis, figure 5(b) shows that among all
the waves with arbitrary streamwise and spanwise wavelengths at the wall-normal
location y, the ones with critical speed c = U(y) are the most highly amplified. This
provides strong evidence for the importance of critical layers in amplification of flow
disturbances. In addition, figure 5(b) shows that the scatter in the energetic wave
speeds increases as the peak of energy density approaches the wall. This agrees with
the practical observation that Taylor’s hypothesis yields inaccurate energy spectra close
to the wall; see, for example, Kim & Hussain (1993), del Álamo & Jiménez (2009),
Monty & Chong (2009) and LeHew et al. (2011).

3.2. Requirement for geometric self-similarity of the resolvent modes
We show that a necessary condition for existence of geometrically self-similar
resolvent modes is the presence of a logarithmic region in the turbulent mean velocity.
The boundary conditions in the inhomogeneous direction y, the wall-normal symmetry
relative to the centreplane, and the presence of y-dependent coefficients, e.g. U(y) − c,
in the resolvent pose limitations on wall-normal scaling of the transfer function. As
discussed later in § 3.3, the first two limitations are removed owing to the critical
behaviour of the resolvent modes, cf. § 3.1, requiring that the resolvent modes have
a zero support near the walls and the centreplane. The third limitation concerns
scalability of U(y) − c, U′(y), and U′′(y) in the resolvent, cf. (2.9), and reduces to
identifying the necessary conditions under which

U(y)− c= g1(y/yc), (3.2)

for some functions U(y) and g1(y) and some scale yc to be determined. Let the
relationship between c and yc be governed by c = g2(yc). Then, we seek the functions
U, g1, g2, and the scale yc such that

U(y)− g2(yc)= g1(y/yc). (3.3)

It follows from (3.3) that g2(y) = U(y) − g1(1), g1(y) = U(y) − g2(1), and g2(1) =
U(1) − g1(1). Therefore, (3.3) can be rewritten as U(y) − (U(yc) − g1(1)) =
U(y/yc) − (U(1) − g1(1)), or U(y) − U(yc) = U(y/yc) − U(1). The only functions
that satisfy this constraint are the constant function and the logarithmic function and
we have

U(y)= d1 + d2logd3
(y), c= U(d4 yc), (3.4)

where d1 to d4 are constants. The wall-normal scale corresponds to the wall-normal
location where c= U(d4 yc). The constant d4 is arbitrary since it enters as a coefficient
in front of the scale yc. We select d4 = 1 such that yc is the critical wall-normal
location corresponding to the wave speed c. Therefore, in the presence of a logarithmic
mean velocity, the height of the resolvent modes scales with yc.

3.3. Universal modes and self-similar modes
We start by reviewing the universal behaviour of the turbulent mean velocity. This is
a prerequisite to studying the universality of the principal propagating waves since the
latter holds for critical modes only, as discussed in § 3.1. In the commonly accepted
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FIGURE 6. (Colour online) Schematic of the different regions of the mean velocity and the
associated classes of induced scales on the propagating waves. The mean velocity is denoted
by Ucl in the centreplane and by Um in the geometric mean of the middle region. The inner,
self-similar, and outer classes of modes are denoted by Si, Sh, and So, respectively. See also
table 2 and figures 7 and 8.

picture (Coles 1956), the mean velocity is divided into inner, logarithmic, and outer
regions:

U = B(y+)+ (1/κ) log(y+)+ (2Π/κ)W(y), (3.5)

where B is the inner-scaled wall function, Π is the wake factor, W is the outer-
scaled wake function, and κ is the von Kármán constant also appearing in (2.3).
Consequently, U − c is universal with Reτ for certain intervals of wave speed and
appropriate wall-normal scales; see figure 6. Figure 7(a) shows that U(y+) − c is
universal for y+ . 100 and fixed c . 16 (inner region). As shown in figure 7(b), the
function U(y) − c is universal for y & 0.1 and fixed defect wave speeds relative to the
centreline 0 . Ucl − c . 6.15, with Ucl = U(y= 1) (outer region).

The gap between the inner and outer regions of the turbulent mean velocity is
bridged by a middle region between y+ = 100 and y = 0.1. There is an abundance
of numerical and experimental evidence that supports the presence of a logarithmic
turbulent mean velocity in this region (see, for a recent summary, Smits et al.
2011). In this study, we consider a logarithmic law throughout the middle region
corresponding to 16 6 U 6 Ucl − 6.15, and note that recent experiments suggest that
the lower bound on the logarithmic region depends on Reynolds number: y+ ∼ Re1/2

τ ,
see e.g. Marusic et al. (2013).

The existence, at least approximately, of a logarithmic region in U satisfies the
necessary conditions in § 3.2 for presence of self-similar resolvent modes. Owing
to the locality of resolvent modes around the critical layer, the waves with speed
16 6 c 6 Ucl − 6.15 are at least one decade away from the walls and the centreplane
and the boundary effects are negligible. This eliminates the first two limitations for
presence of self-similar modes, cf. § 3.2. The constants d1 = 5.28, d2 = 1/κ , and
d3 = e in U given by (3.4) are obtained upon direct comparison with (3.5).

Associated with each region of the mean velocity, there is a class of wave
parameters for which the low-rank approximation of H exhibits either universal
behaviour with Reτ or self-similar behaviour with distance from the wall; see
tables 2 and 3 for a summary. As illustrated in figure 6, these classes are primarily
distinguished by the wave speed. The identified scales represent inherent features of
the linear mechanisms in the NSE and are not arbitrary: (i) the wall-normal length
scale is inherited from the turbulent mean velocity at the critical layer; and (ii) the
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FIGURE 7. (Colour online) (a) The turbulent mean velocity U(y+) and (b) the defect
velocity Ucl − U(y) relative to the centreline, for Reτ = 3333 (blue), Reτ = 10 000 (red),
and Reτ = 30 000 (black). The arrows indicate increase in the Reynolds number. Notice that
the shaded regions are invariant with Reτ . (c) The inner class Si and (d) the outer class
So of wave parameters (λx, λz, c) that induce universal behaviour with Reτ on the low-rank
approximation of H. So is obtained for Reτ > Reτ,min = 3333.

streamwise and spanwise length scales are determined from the balance between the
viscous dissipation term, (1/Reτ )1, and the mean advection terms, e.g. iκx(U − c),
in the resolvent in (2.9). In addition, the magnitudes of the singular values and
singular functions scale uniquely in each class of wave parameters, which induces
unique scales on the premultiplied streamwise energy density Euu(y; κx, κz, c). Next,
we separately discuss each class and refer the reader to appendices A, B and C for
detailed derivation of the scales.

3.3.1. The universal inner class Si

For wave speeds in the inner region of the turbulent mean velocity, universality
of H requires constant λ+x , y+, λ+z , and c; cf. appendix A, table 2, and figure 7(c).
As a result, the time Tc = λx/c over which the wave convects downstream for
one wavelength relative to the wall reduces with Reτ and the convective frequency
ωc = 2π/Tc increases with Reτ . In other words, a truly inner scale is induced on the
length, height, width, and convective time of the waves that correspond to the principal
resolvent modes. Therefore, the wall-normal support of the resolvent modes in outer
units linearly decreases with Reτ , and the unit energy constraint on the resolvent
modes requires that the magnitude of the resolvent modes increase with Re1/2

τ . The
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Class x-scale y-scale z-scale t-scale Subset of wave parameters

Inner λ+x y+ λ+z T+c Si : 2 . c . 16

Outer
λx

Reτ
y λz ReτTcl So :

{
0 . Ucl − c . 6.15
λx/λz & γReτ/Reτ,min

Self-similar
λx

y+c yc

y

yc

λz

yc
— Sh :


16 . c . Ucl − 6.15
c= U(yc)= B+ (1/κ) log(y+c )
λx/λz & γ

Middle λx
√

yy+
√
λzλ+z Tm Sm :

{|Um − c|. d

λx/λz & γ
√

Reτ/Reτ,min

TABLE 2. Summary of the length scales and wave speeds for the universal modes of the
transfer function H. See also figure 6.

Class Subset κx (d/dy) κz ωi,o,m σ1 u1 Euu

Inner Si Reτ Reτ Reτ Reτ Re−1
τ Re1/2

τ Re2
τ

Outer So Re−1
τ 1 1 Re−1

τ Re2
τ 1 Re2

τ

Self-similar Sh (y+c yc)
−1 y−1

c y−1
c — (y+c )

2yc y−1/2
c Re2

τ

Middle Sm 1 Re1/2
τ Re1/2

τ 1 Re1/2
τ Re1/4

τ Re2
τ

TABLE 3. Summary of the growth/decay rates (with respect to Reτ or yc) of the wall-
parallel wavenumbers, the wall-normal derivative, the convective frequency, the principal
singular value and the principal streamwise singular function of H, and the premultiplied
three-dimensional streamwise energy density for the classes of universal waves outlined in
table 2.

number of these waves per unit wall-parallel area and time increases with Re3
τ as their

length, width, and convective time decrease with Reτ . Since the singular values of H
linearly decrease with Reτ , the overall result is that Euu(y; κx, κz, c) increases with Re2

τ ;
cf. table 3.

3.3.2. The universal outer class So

For wave speeds close to the centreline, universality of H requires constant λx/Reτ ,
y, λz, and Ucl − c, such that an aspect-ratio constraint λx/λz & γReτ/Reτ,min is satisfied
(a conservative value for γ is

√
10); cf. appendix B, table 2, and figure 7(d). As

a result, the time Tcl = λx/(Ucl − c) over which the wave convects upstream for
one wavelength relative to an observer with speed Ucl increases with Reτ and the
convective frequency ωcl = 2π/Tcl decreases with Reτ . In addition, the aspect ratio
λx/λz of the universal waves increases as Reτ . This explains why universality for this
class holds for the waves with aspect ratios larger than a threshold: As the aspect
ratio of the resolvent modes increases with Reynolds number, the Laplacian operator
in the resolvent becomes independent of κx. Therefore, the necessary condition
for the Laplacian to be universal with Reτ is that κz dominates κx even for the
smallest Reynolds number Reτ,min that is considered. This poses the above-mentioned
aspect-ratio constraint on the universal waves. The magnitude of resolvent modes is
independent of Reτ since the resolvent modes scale with outer units in the wall-normal
direction. The number of waves per unit area and time decreases with Re2

τ since their
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length and convective time increase with Reτ . The singular values increase with Re2
τ

and the overall result is that the energy density Euu(y; κx, κz, c) increases with Re2
τ ; cf.

table 3.
The waves in the outer class asymptotically approach the streamwise-constant

fluctuations, i.e. κx = 0, as Reτ increases. These infinitely long fluctuations
exhibit the largest linear transient growth in response to initial perturbations in
laminar (Gustavsson 1991; Butler & Farrell 1992; Reddy & Henningson 1993) and
turbulent (Butler & Farrell 1993; del Álamo & Jiménez 2006; Pujals et al. 2009)
flows. In addition, they are the most highly amplified by the linear dynamics in
laminar (Farrell & Ioannou 1993b; Bamieh & Dahleh 2001; Jovanović & Bamieh
2005) and turbulent (Hwang & Cossu 2010) flows subject to stochastic disturbances.

The effect of Reynolds number on the streamwise-constant fluctuations has been
studied in laminar flows. For example, Gustavsson (1991) showed that the peak
of linear transient growth scales with the square of centreline Reynolds number
Recl = Uclh/ν. For the flow subject to harmonic disturbances, Jovanović & Bamieh
(2005) showed that the singular values of H increase as Re2

cl when the temporal
frequency ω linearly decreases with Recl. No other scales for the singular values
were found since the laminar mean velocity U/Ucl = 2y − y2 is universal with
Reynolds number throughout the channel. Our study shows that the singular values
in the turbulent flow increase quadratically with Reτ for the waves with defect
speeds, Ucl − c . 6.15, and streamwise wavelengths that linearly increase with Reτ ,
i.e. λx & γ λzReτ/Reτ,min; cf. table 3.

3.3.3. The geometrically self-similar class Sh

The logarithmic region of the turbulent mean velocity yields a hierarchy of
geometrically self-similar resolvent modes that are uniquely parameterized by the
critical wall-normal distance yc, i.e. c = U(yc); see appendix C for derivation. As
summarized in table 2, the height and width of the self-similar modes scale with yc

and their length with y+c yc. In addition, the self-similar modes satisfy an aspect-ratio
constraint, λx/λz & γ , where a conservative value for γ is

√
10. This agrees with the

observation of Hwang & Cossu (2010) that the optimal responses were approximately
similar for κx � κz. Notice that the difference between the streamwise scaling of
the self-similar resolvent modes λx ∼ y+c yc and the scaling λx ∼ y chosen in original
developments of the attached-eddy hypothesis (Townsend 1976; Perry & Chong 1982)
does not contradict the philosophy of self-similar attached eddies, i.e. the resolvent
modes are still self-similar.

Any hierarchy is a subset of S and can be described by a representative mode with
λx,r, λz,r, and cr = U(ycr):

Sh(λx,r, λz,r, cr)=

(λx, λz, c) |


λx = λx,r

(
y+c yc

y+cr
ycr

)
,

λz = λz,r

(
yc

ycr

)
,

c= B+ (1/κ) log y+c ,

100
Reτ

6 yc1 6 yc 6 0.1

 .
(3.6)

Here, yc1 is the critical wall-normal location associated with the smallest wave speed
c1 above which the aspect-ratio constraint is satisfied, see appendix C.

The concept of hierarchies is illustrated in figure 8(a) where the loci of wave
parameters that belong to three demonstrative hierarchies with representative modes
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FIGURE 8. (Colour online) (a) The vertical lines are the loci of wave parameters that
belong to the hierarchies with representative modes (open circles): κx,r = 1, κz,r = 10, and
cr = Ucl − 6.15 (h1, red); (2/3)Ucl (h2, black); and 16 (h3, blue), all for Reτ = 10 000. The
shaded threshold plane corresponds to the wavenumbers with aspect ratio λx/λz =

√
10. The

modes below this plane do not belong to any hierarchy. (b) The principal singular values
along the hierarchies in (a). (c) The principal streamwise resolvent modes that belong to the
hierarchy with cr = (2/3)Ucl (h2, black) in (a). (d) The normalized and scaled (according to
table 2) principal resolvent modes along the hierarchies in (a). The arrows show the direction
of increasing yc with 100/Reτ 6 yc 6 0.1.

marked by open circles are shown. The mode with κx,r = 1, κz,r = 10, and
cr = (2/3)Ucl (h2, black) is representative of the very large-scale motions (McKeon
& Sharma 2010). The representative modes for the other hierarchies have the same
wavenumbers but different speeds, i.e. cr = 16 (h3, blue) and Ucl − 6.15 (h1, red),
corresponding to the mean velocity at the upper limit of the inner region and the lower
limit of the outer region. Each locus constitutes a vertical line after normalizing the
length, width, and height of the modes according to the scales in (3.6) obtained from
the resolvent. In fact, the resolvent modes are self-similar along any vertical line as
long as λx/λz > γ . The aspect-ratio constraint requires that the wave parameters lie
above the shaded threshold plane λx/λz = γ in figure 8(a). For example, the waves
corresponding to the dashed segment of the hierarchy with cr = Ucl − 6.15 do not
belong to any hierarchy.

Owing to the self-similar behaviour, the principal singular values and singular
functions of H for all the modes in a given hierarchy can be determined from its
representative mode. The principal singular values σ1 corresponding to the waves that
belong to the hierarchies in figure 8(a) are shown in figure 8(b). The singular values
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grow with (y+c )
2
(yc) as theoretically predicted, cf. table 3. Figure 8(c) shows the

principal streamwise resolvent mode u1 corresponding to the hierarchy with κx,r = 1,
κz,r = 10, and cr = (2/3)Ucl for 100/Reτ 6 yc 6 0.1. The arrow shows the direction
of increasing yc. Normalizing and scaling the resolvent modes according to table 2
collapses the resolvent modes for different wave speeds; see black curves marked as
h2 in figure 8(d). This figure also shows the scaled resolvent modes corresponding to
the hierarchies with κx,r = 1, κz,r = 10, and cr = 16 (h3, blue) and Ucl − 6.15 (h1, red).
We see that the normalized and scaled resolvent modes lie on top of each other for the
hierarchy with cr = 16. For the hierarchy with cr = Ucl − 6.15, the resolvent modes for
large yc collapse on each other while the resolvent modes for small yc are considerably
different. This is expected since the aspect ratios of the modes fall below γ as yc

decreases. Notice that for this hierarchy, the modes corresponding to small yc lie below
the threshold plane in figure 8(a).

3.3.4. The universal middle class Sm

The Reynolds-number scaling of the self-similar class depends on the wave speed
and is consistent with the inner and outer classes of resolvent modes, cf. tables 2
and 3. For example, when the wave speed is fixed as Reτ changes, y+c remains
constant and the inner scale is recovered. When the defect wave speed Ucl − c is
fixed, yc remains constant and the outer scale is recovered. Consequently, the energy
density corresponding to the complete range of wave speeds in the self-similar region,
16 < c < Ucl − 6.15, is centred around the geometric mean of the middle region of
the turbulent mean velocity, i.e. ym = √10/Reτ . The self-similar class is primarily
concerned with geometric self-similarity of the resolvent modes. We next construct
a middle class of modes Sm, a subset of the self-similar class Sh, with unique
Reynolds-number scalings.

The wave speeds in the middle class are confined to |Um − c| < d, with d denoting
a radius around Um = U(ym). For the resolvent modes in the middle class, universality
of H requires constant λx,

√
y+y,

√
λ+z λz, and Um − c such that the aspect-ratio

constraint λx/λz & γ
√

Reτ/Reτ,min is satisfied; cf. table 2. These scales are equal to the
geometric mean of the scales in the inner and outer classes, and can also be recovered
from the scales of the self-similar class for fixed

√
y+c yc as Reτ changes. When

only one Reynolds number is considered, we have Reτ,min = Reτ and the aspect-ratio
constraints in the self-similar and middle classes are equivalent, i.e. the constraint
λx/λz & γ

√
Reτ/Reτ,min = γ in the middle class is the same as λx/λz & γ in the

self-similar class. When the self-similar modes are compared across more than one
Reynolds number, the aspect-ratio constraint on the middle class is more restrictive.
This is because, the modes remain self-similar as the Reynolds number increases.
However, they do not remain independent of Reτ unless their aspect ratio is larger
than γ even for the smallest Reynolds number Reτ,min that is considered, resulting in
the modified aspect-ratio constraint λx/λz & γ

√
Reτ/Reτ,min for the middle class. This

constraint can be obtained similarly to the constraint for the outer class, cf. § 3.3.2 and
appendix B.

The time Tm = λx/|Um − c| over which a wave in the middle class convects away
for one wavelength relative to an observer with speed Um remains independent of
Reτ and so does the convective frequency ωm = 2π/Tm. These waves have the same
scales as the structures in the meso-layer; see, for example, Long & Chen (1981),
Afzal (1984), Sreenivasan & Sahay (1997) and Wei et al. (2005). The aspect-ratio
constraint follows from similar arguments to those discussed for the outer class. The
magnitude of the corresponding resolvent modes increases with Re1/4

τ because of the
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unit-energy constraint. The number of waves per unit area and time increases with
Re1/2

τ . In addition, the principal singular values of the waves in Sm increase with Re1/2
τ .

The above scales result in growth of Euu(y; κx, κz, c) with Re2
τ ; cf. table 3.

There is a direct relationship between Sm and Sh: the union of the middle
class of modes equals the union of the geometrically self-similar modes with speeds
|Um − c| < d and aspect-ratio constraint λx/λz & γ

√
Reτ/Reτ,min. Since the difference

between the middle class and the self-similar class becomes larger as Reτ increases,
our ongoing research is focused on analytical developments using the scalings of the
self-similar class that bridges the gap between the inner and outer classes.

3.4. Universality of the streamwise energy density
We compute the streamwise energy density of the rank-1 model with broadband
forcing and illustrate its universal behaviour with Reτ . These computations build the
basis for prediction of the streamwise energy intensity at the technologically relevant
values of Reτ in § 4. Because of the unique scales in the inner, middle, and outer
classes of wave parameters, we distinguish the corresponding intervals of wave speeds
by expanding the premultiplied energy density into the following three integrals:

Euu(y, κx, κz)=
∫ 16

2
Euu(y, κx, κz, c) dc

+
∫ Ucl−6.15

16
Euu(y, κx, κz, c) dc+

∫ Ucl

Ucl−6.15
Euu(y, κx, κz, c) dc. (3.7)

Similar expansions can be written for Euu(y, κx), Euu(y, κz), and Euu(y). In spite of
the different behaviour of singular values and singular functions, the energy density
increases with Re2

τ in all three classes of wave parameters. Figure 9 shows the
premultiplied one-dimensional energy densities and the energy intensity confined to
each class of wave parameters and normalized by Re2

τ . The same contour levels are
used for all Reynolds numbers, Reτ = 3333 (blue), 10 000 (red), and 30 000 (black), in
figures 9(a)–9(f ). Notice that confining the wavenumbers to Si, Sm, and So yields a
universal energy density as summarized in tables 2 and 3.

The inner peak of streamwise energy density in the rank-1 model with broadband
forcing occurs at y+ ≈ 11, λ+x ≈ 184, and λ+z ≈ 44; see figures 9(a) and 9(d). The
location of the above wall-normal peak represents an integral effect over all wave
parameters in Si and corresponds to the critical speed c ≈ 8.5. The inner peak is
comparable with the location, length, and spacing of the most energetic structures
associated with the near-wall cycle, i.e. y+ ≈ 15, λ+x ≈ 700–1000, and λ+z ≈ 100 (see,
for example, Hoyas & Jiménez 2006). Figures 9(c) and 9(f ) show that the outer
peak takes place at y ≈ 0.45 (corresponding to critical defect speed Ucl − c ≈ 2) for
λx/Reτ ≈ 0.1, and λz ≈ 2. This peak points to much longer structures relative to the
LSM structures observed in experiments, i.e. λx ≈ 3 (see, for example in boundary
layers, Adrian et al. 2000). The same length scales are reported for channels and
pipes (see, for example, Guala, Hommema & Adrian 2006; Monty et al. 2009).

The middle peak takes place at
√

yy+ ≈ 5.2–5.8 (corresponding to critical speed
c ≈ Um), λx ≈ 12–16, and

√
λzλ+z ≈ 20; see figures 9(b) and 9(e). It has the same

streamwise and wall-normal scalings as the VLSMs and its location is comparable
with the most energetic VLSMs located at

√
yy+ ≈ 3.9 and λx ≈ 6 in boundary

layers (see, for example, Marusic et al. 2010a) and at λx ≈ 12–20 in pipes and
channels (see, for example, Monty et al. 2009). Spanwise correlations of experimental
data show that the spanwise wavelength of modes in the middle region increases
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FIGURE 9. (Colour online) The premultiplied one-dimensional streamwise energy density
Re−2

τ Euu(y, λx) in (a–c) and Re−2
τ Euu(y, λz) in (d–f ); and the streamwise energy intensity

Re−2
τ Euu(y), dashed curves in (g–i) for the rank-1 model with broadband forcing. The wave

parameters are confined to S =Si in (a,d,g); S =Sm in (b,e,h); and S =So in (c,f,i). The
Reynolds numbers are Reτ = 3333 (blue), Reτ = 10 000 (red), and Reτ = 30 000 (black). The
contour levels decrease by 0.05 from their maximum value of 0.25 (a); 0.15 (b); and 0.25 (c),
and by 0.1 from their maximum value of 0.5 (d); 0.4 (e); and 0.8 (f ). The solid curves in (g–i)
are obtained by confining the wave parameters to S = Se. The arrows indicate increase in
the Reynolds number.

approximately linearly with y, see e.g. Monty et al. (2007) and Bailey et al. (2008).
The self-similar scales of the resolvent modes in the middle region are consistent with
these results. The Reynolds-number scaling of the spanwise wavelength appears to
still be under investigation. Since the spanwise peak of the one-dimensional spectrum
is obtained by including a range of modes with speeds |Um − c| < d (instead of
focusing on one mode), the Reynolds-number scaling of the spanwise peak is similar
to the wall-normal scaling of the modes. The organization of the self-similar coherent
motions in the logarithmic layer of real turbulent flows has been studied by many
authors, e.g. see Tomkins & Adrian (2003), del Álamo et al. (2006) and Flores &
Jiménez (2010). In addition, Hwang & Cossu (2011) addressed the self-sustaining
mechanisms of these coherent motions. Studying the implications of the identified
scalings of the resolvent modes for these structures is a topic of future research.

In making the above comparisons, it is important to note the distinction between
the resolvent modes and the real turbulent flow that can be represented by a weighted
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superposition of the resolvent modes. The agreement between the admitted scales
of the principal resolvent modes and the scalings observed in real flows is striking
considering the simplicity of the rank-1 model subject to broadband forcing. This
agreement emphasizes the role of linear mechanisms and critical layers in determining
the scaling of turbulent flows. In addition, the differences between the scalings
highlights the role of nonlinearity in shaping the weights of the resolvent modes. We
also note that the experimentally obtained outer peak in the two-dimensional spectrum
and the wavelengths associated with VLSMs and LSMs may be contaminated by use
of Taylor’s hypothesis and lack of sufficient scale separation at relatively low Reτ .

The one-dimensional energy densities can be integrated in the remaining wall-
parallel direction to obtain the streamwise energy intensity Euu(y) for the rank-1
model with broadband forcing. The dashed curves in figures 9(g)–9(i) are the energy
intensities normalized by Re2

τ obtained by confining the wave parameters to Si, Sm,
and So, respectively. As expected, the energy intensities are independent of Reynolds
number when confined to the universal classes of wave parameters. The solid curves
are obtained by integrating the energy density over all wavenumbers and wave speeds
2 6 c 6 Ucl, i.e. by confining the wave parameters to Se. These figures highlight the
selection of two local peaks by the linear amplification mechanism where the inner
and outer peaks dominate the middle peak. The inner peak occurs close to the inner
peak of the streamwise intensity in real turbulent flows. While the energy intensity
of real flows exhibits outer scales near the centre of the channel, there is no strong
evidence for presence of an outer peak even for high Reτ .

As evident from figure 9(g), the universal inner waves contribute more than 96 %
of the total energy intensity for y+ < 20 for all Reynolds numbers. On the other
hand, figure 9(i) shows that the universal outer waves capture a smaller amount of
the total intensity for y = 0.45 as Reτ increases; 95 % for Reτ = 3333 versus 86 %
for Reτ = 30 000. This is because the aspect-ratio constraint in So excludes more
wavenumbers from Se as Reτ increases. The excluded waves are not universal with
Reτ and their contribution to the energy intensity is not completely negligible. A
similar reasoning explains why the universal middle scale captures 82 % of the total
energy intensity at

√
yy+ = √10 for Reτ = 3333 versus 72 % for Reτ = 30 000; cf.

figure 9(h).
At the end of this section, we recall that the streamwise energy densities and

intensities thus far were obtained for the model with broadband forcing in λx, λz, and
c. In § 4, we consider a non-broadband forcing by introducing an optimally shaped
energy density.

4. Predicting the streamwise energy intensity

In this section, we introduce a model for predicting the energy intensity of real
turbulent flows by considering a non-broadband forcing in wave speed. This is done
by incorporating a positive weight function W(c) that amplifies or attenuates the
energy density Euu(y, c) of the rank-1 model with broadband forcing. Even though
W(c) differs from a true forcing spectrum (that also depends on the wall-parallel
wavelengths), it provides the model with sufficient degrees of freedom for predicting
the energy intensity. In addition, since each wave speed is associated with a certain
class of wavelengths, W(c) affects different classes of wavelengths as the wave speed
changes.
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First, we show that W(c) can be optimally shaped such that the model-based
streamwise energy intensity,

Euu,W(y)=
∫ Ucl

2
W(c)Euu(y, c) dc, (4.1)

matches the intensity of real flows at low Reynolds numbers. Then, we estimate
similarity laws to approximate the optimal weight functions at high values of Reτ .
These weight functions in conjunction with the energy density of the rank-1 model
with broadband forcing enable prediction of the streamwise energy intensity at
technologically relevant Reynolds numbers.

4.1. Optimal weights for small Reynolds numbers
The weight function W(c) is determined by minimizing the deviation between Euu,W(y)
in (4.1) and the streamwise energy intensity obtained from DNS, Euu,DNS(y), in the
interval y+ > 1 and y 6 0.8. We do not enforce matching for y > 0.8 since it requires
significantly large values of W(c) for wave speeds close to Ucl. This is because
Euu(y, c) is considerably smaller and more localized near the centreline compared
to other locations and results in sensitivity of W(c); see, for example, figure 5(a)
for y+ > 24 000 corresponding to y > 0.8 for Reτ = 30 000. Note that the main
amplification mechanisms for waves with speeds close to Ucl is the critical behaviour
of the resolvent modes since the non-normality effect is small as the mean shear
approaches zero. This results in small gains and resolvent modes that are localized in
the wall-normal direction.

Since Euu(y, c) scales with Re2
τ (cf. table 3) while Euu,DNS(y) does not, we find the

normalized weight function W(c) = Re2
τ W(c) that solves the following optimization

problem:

minimize:
‖Euu,DNS(y)− Euu,W(y)‖2

e

‖Euu,DNS(y)‖2
e

+ γw‖W(c)‖2
w, (4.2a)

subject to: W(c) > 0, 2 6 c 6 Ucl. (4.2b)

Here, ‖g(y)‖e is defined as (note integration in log y+)

‖g(y)‖2
e =

∫ log(0.8Reτ )

0
g2(log y+) d log y+, (4.3)

to equally penalize the deviation of energy intensities near the inner peak and in the
channel core. The second term in the objective function,

‖W(c)‖2
w =

1
Ucl − 2

∫ Ucl

2
W

2
(c) dc, (4.4)

provides the weight function with smoothness by penalizing the magnitude of W, and
γw > 0 controls the importance of smoothness relative to matching the model-based
and DNS-based energy intensities.

The optimization problem (4.2) is solved using CVX, a package for specifying
and solving convex programs in Matlab (Grant & Boyd 2008; CVX Research, Inc
2012). We find the optimal weights for the largest Reynolds numbers that have
been simulated to date using DNS, i.e. Reτ = 934 (del Álamo et al. 2004) and
Reτ = 2003 (Hoyas & Jiménez 2006). Even though these are orders of magnitude
smaller than the Reynolds numbers for which we predict the energy intensity in § 4.2,
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FIGURE 10. (Colour online) (a,b) The optimal weight functions W as a function of c in
(a) and Ucl − c in (b) for Reτ = 934 (orange) and 2003 (green). The tangent lines, L,
to W(Ucl − c) at Ucl − c = 3.9 for each Reτ are shown in black. (c) The model-based
streamwise energy intensity Euu,W(y+) for Reτ = 934 (orange) and 2003 (green) and the
DNS-based intensity Euu,DNS(y+) (black) are optimally matched by solving (4.2) for each
Reτ . The respective curves lie on top of each other. (d) The optimal weight functions W for
Reτ = 934 (orange) and 2003 (green) are compared with the weight functions obtained using
the similarity law (4.6) (black dots). The arrows indicate increase in the Reynolds number.

they are free of measurement errors and useful for finding the optimal weights. We
choose γw = 0.2 to strike a balance between matching error ‖Euu,DNS(y) − Euu,W(y)‖2

e

and smoothness of W(c). The optimization problem is robust with respect to the
choice of γw. For example, changing γw by a factor of two has negligible effect on the
matching error and the optimal weights for 7 . c . Ucl − 2 while slightly modifying
W(c) elsewhere.

Figures 10(a) and 10(b) show the optimal weights as a function of c and Ucl − c
for Reτ = 934 and 2003. These weight functions match Euu,DNS and Euu,W with a
relative error of approximately 0.2 %; see figure 10(c). As expected, W is qualitatively
similar for c . 16 and Ucl − c . 6.15 since both the model-based and DNS-based
intensities exhibit inner and outer scaling in the respective regions. Figure 10(b) shows
that W(Ucl − c) approximately coincides for Reτ = 934 and 2003 for Ucl − c 6 3.9.
We denote this universal function by W1(Ucl − c). For simplicity, the weights are
approximated by linear functions in the self-similar region for 16 6 c 6 Ucl − 3.9.
These lines are denoted by L (black) and intersect for L(c = −2) = 19.88 and
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L(Ucl − c = 3.9) = 2.54. This gives an analytical expression for L as a function of
wave speed and Reynolds number since Ucl varies with Reτ :

L(c;Reτ )= 2.54+ 17.34
(

Ucl − c− 3.9
Ucl − 1.89

)
. (4.5)

As the Reynolds number increases, W(c) is shifted upward for c 6 16 by the kick that
it receives from the self-similar region. This is expected since the DNS-based energy
intensity increases with Reτ in the inner region while Euu(y+, c) remains constant.
More discussion about the relationship between the weights in the self-similar and
inner regions is provided in § 4.2. Motivated by these observations, we formulate a
similarity law for the weight function:

W(c;Reτ )=


W2(c)+ (L(c;Reτ )− L0(c)), 2 6 c 6 16,
L(c;Reτ ), 16< c< Ucl − 3.9,
W1(Ucl − c), Ucl − 3.9 6 c 6 Ucl,

(4.6)

that consists of three segments: a universal outer segment represented by W1(Ucl − c)
for Ucl − 3.9 6 c 6 Ucl; a Reynolds-number-dependent linear segment L(c;Reτ ) that
is analytically determined by (4.5); and an inner segment composed of a universal
function W2(c) for 2 6 c 6 16 superposed by a linear function L(c;Reτ ) − L0(c)
where L0(c)= L(c;Reτ = 934). Figure 10(d) shows that the optimal weights computed
by solving (4.2) are well-captured by the weights formulated using the similarity
law (4.6). We note that more complex approximations could be used if more than
two DNS datasets were available. Efforts to determine these weights analytically are
ongoing.

4.2. Predictions at high Reynolds numbers
The similarity law in (4.5)–(4.6) is used to predict the weight functions, and
consequently, the streamwise energy intensity at high Reτ using (4.1). Figures
11(a)–11(c) show the predicted weights and energy intensities for Reτ = 934, 2003,
3333, 10 000, and 30 000. An approximately logarithmic dependence of the energy
intensity on the distance from the wall is predicted at high Reynolds numbers
in the logarithmic region of the mean velocity which is consistent with recent
experiments (Hultmark et al. 2012; Marusic et al. 2013) and predictions of the
attached-eddy hypothesis (see, for example, Perry & Chong 1982). As evident from
figure 11(d), the model-based predictions are consistent with the experiments of
channel flows for Reτ = 3165, 4000, and 6000; especially note the comparison at
Reτ = 4000 with the data of Schultz & Flack (2013) that maintains a sufficient spatial
resolution down to the wall-normal location of the inner peak. Note that the data
of Monty (2005) and the data of Schultz & Flack (2013) at Reτ = 6000 are not
fully spatially resolved near the wall. In the absence of channel flow data at higher
Reynolds numbers, figure 11(e) compares the model-based streamwise intensities with
the data from boundary layer experiments for Reτ = 5813 and 13 490 (De Graaff &
Eaton 2000) and Reτ = 23 013 (Fernholz et al. 1995). Monty et al. (2009) showed
that the behaviour of boundary layers, pipes, and channels is similar in the near-wall
region in spite of the differences between channels/pipes and boundary layers further
away from the wall. The experimental measurements are not accurate near the wall
as they suffer from spatial resolution issues (see, for example, Hutchins et al. 2009).
Figure 11(f ) shows that the predicted values of the inner peak are consistent with
the boundary layer measurements that are corrected (Kunkel & Marusic 2006) based
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FIGURE 11. (Colour online) (a,b): The optimal weight functions W obtained using the
similarity law (4.6) as a function of c in (a) and Ucl − c in (b). (c–f ) The model-based
streamwise energy intensity Euu,W(y+) for Reτ = 934 (orange), 2003 (green), 3333 (blue),
10 000 (red), and 30 000 (black) in (c); Reτ = 3165 (green dotted), 4000 (blue solid), and
5813 (red dashed) in (d); and Reτ = 5813 (red dashed), 13 490 (blue solid), and 23 013 (green
dotted) in (e,f ). The arrows in (a–c) indicate increase in the Reynolds number and the line
in (c) shows logarithmic scaling. The symbols in (d) are experimental data from channel
flows for Reτ = 3165 (�) and 4000 (O) (Monty 2005), and for Reτ = 4000 (◦) and 6000
(×) (Schultz & Flack 2013). The symbols in (e) are experimental data from boundary layers
for Reτ = 5813 (×), 13 490 (+) (De Graaff & Eaton 2000), and 23 013 (?) (Fernholz et al.
1995). The symbols in (f ) are the corrected (Kunkel & Marusic 2006) data in the inner region
of (e) using the attached-eddy hypothesis.
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on the attached-eddy hypothesis. On the other hand, our predictions of the energy
intensity in channel flow are larger than the data in boundary layers close to the outer
peak in the middle region. This is expected since recent experiments have shown that
the large structures are more energetic in internal flows such as channels and pipes
compared to boundary layers (see, for example, Monty et al. 2009). This difference
was attributed to the observations suggesting that the VLSMs are longer in internal
flows than in boundary layers.

Obtaining the results of figure 11 requires computation of the streamwise energy
density of the rank-1 model with broadband forcing at the respective values of Reτ .
Alternatively, the universal behaviour of Euu(y; κx, κz, c) can be used to avoid these
computations. In the present study, we employ the universality (invariance with Reτ ) of
Euu(y; κx, κz, c) for Si to predict the inner peak of the streamwise intensity at arbitrary
high Reτ . Expanding the weighted energy density according to the wave speed and
substituting for the weight function using the similarity law (4.6) yields

Euu,W(y)=
∫ 16

2
W2(c)(Re−2

τ Euu(y, c))︸ ︷︷ ︸
universal

(
1+ L(c;Reτ )− L0(c)

W2(c)

)
dc

+
∫ Ucl−3.9

16
L(c;Reτ ) (Re−2

τ Euu(y, c)) dc+
∫ Ucl

Ucl−3.9
W1(c) (Re−2

τ Euu(y, c)) dc.

(4.7)

The first integral, corresponding to the inner class of wave parameters Si, contains
a universal function multiplied by a coefficient L(c;Reτ ) that also appears in the
second integral for the faster and larger waves in the self-similar region. It represents
the contribution from the inner class of wave parameters that are coupled with and
amplified by the large scales in the self-similar region. This is similar to the model
that Marusic et al. (2010b) proposed to capture the influence of the large scales uL

(close to the geometric mean of the middle region of U) on the small scales uS close
to the inner peak of the energy intensity:

uS = u∗(1+ β uL)+ α uL. (4.8)

For the purpose of the present study, (4.8) implies that the small structures are
determined by a universal inner-scaled function u∗ multiplied by a coefficient 1 + β uL

that increases with the energy of the large structures. Physically, the first term in (4.8)
describes the amplitude modulation of small scales by the large scales and the second
term represents the direct superimposition of the large scales on the inner-scaled
near-wall peak (Marusic et al. 2010b).

The blue long-dashed curve in figure 12(a) shows the contribution of the universal
function in (4.7) to the energy intensity. This is equal to the contribution of the
inner class of wave parameters to the energy intensity for Reτ = 934, i.e. for L = L0.
In other words, the inner class of wave parameters is not influenced by the large
scales in the middle region for Reτ = 934. This is expected since at Reτ ≈ 1000, the
inner and outer scales are separated, in the (temporal) frequency domain, by the wave
speed c = 16: i.e. inner scales for c < 16 and outer scales for c > Ucl − 6.15 ≈ 16.
Therefore, Reτ ≈ 1000 is the smallest Reynolds number where the purely inner and
outer scales are separated in the wavenumber–frequency domain. Notice that the above-
mentioned scale separation in the frequency domain does not contradict the weak scale
separation in the premultiplied spectra at Reτ ≈ 1000. The latter is a consequence of
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FIGURE 12. (Colour online) (a) The red solid curve is the model-based energy intensity
Euu,W(y) for Reτ = 104. The blue long-dashed curve is the contribution from the universal
function in (4.7), and the black short-dashed curve is the contribution from the inner class of
wave parameters Si. (b) The contribution to the energy intensity from the inner class of wave
parameters for Reτ = 104, 105, and 106.

time-averaging that overlays the separated scales in the frequency domain such that the
distinction of different scales in the spatial spectra becomes difficult.

The black short-dashed curve shows the contribution of the first integral in (4.7)
to the streamwise intensity for Reτ = 104. Notice that the large scales from the self-
similar region increase the inner peak by amplifying the universal function through
the coefficient 1 + (L − L0)/W2. The red solid curve is the total intensity obtained by
integrating the contribution of all wave parameters Se. The inner peak is captured by
the first integral and the direct superimposition of the large scales on the inner peak is
negligible. Therefore, the first integral readily yields the behaviour of the streamwise
intensity near the inner peak. For example, figure 12(b) illustrates how the more
energetic large scales at Reτ = 105 and 106 further increase the inner peak relative to
Reτ = 104 by amplifying the universal function W2.

Figure 13 is adapted from figure 8 in Marusic et al. (2010a) where the DNS
and experimental data from channels and boundary layers are summarized (open and
filled black symbols). The black filled squares and circles, respectively, show the
magnitude of the inner (y+ = 15) and outer (y+ = 3.9Re1/2

τ ) peaks in recent boundary
layer experiments (Marusic et al. 2010a). Using these data, the authors proposed two
possibilities for the behaviour of the inner peak at high Reynolds numbers. The first
possibility is to extrapolate following the trend suggested by the filled black squares
(line 1). The second possibility, motivated by the fact that the large scales increase the
energy of the small scales, is to extrapolate following line 3 which is parallel to line 2
that captures the variation of the outer peak with Reτ . The data (open triangles) from
large-eddy simulations of boundary layers (Inoue et al. 2012) combined with the wall
model of Marusic et al. (2010b) are shown for comparison. The current understanding,
at least for relatively small intervals of Reynolds numbers, suggests logarithmic growth
of the inner peak. However, due to lack of sufficient spatial resolution close to the
wall, the available experimental data obtained for different ranges of Reτ , predict
different rates for the logarithmic growth, e.g. see Marusic et al. (2010a). Therefore,
the available data are not sufficient for predicting the exact behaviour of the inner peak
as Reτ increases.



306 R. Moarref, A. S. Sharma, J. A. Tropp and B. J. McKeon

16

14

12

10

8

6

4

(3)

(1)
(2)

102 103 104 105 106 107 108 109 1010

FIGURE 13. (Colour online) Variation of the inner (y+ = 15) and outer (y+ = 3.9Re1/2
τ ) peaks

of the streamwise energy intensity with Reynolds number. The figure is adapted from Marusic
et al. (2010a). The black open and filled symbols are experimental and simulation data from
channels and boundary layers, see Hutchins & Marusic (2007a) for a full list of references.
The open triangles are from large-eddy simulations of boundary layers (Inoue et al. 2012).
The diamonds are the predicted inner peak intensities obtained from the present model for
turbulent channels. The lines show linear extrapolation of data at high Reynolds numbers.

The diamonds in figure 13 show the model-based prediction of the inner peak of
the streamwise intensity up to Reτ = 1010. These predictions are made at no additional
cost using the universal energy density for the inner class of wave parameters and the
similarity law for the weight functions. These results are obtained for channels and
are potentially different than boundary layers. In spite of an approximately logarithmic
growth of the predicted inner peak up to Reτ ∼ 106, a sub-logarithmic behaviour
becomes evident when seven decades of Reτ are considered. As shown in (4.7), the
linear part of the weight function, modelling the influence of large outer-scaled modes
on the small inner-scaled modes, affects the growth of the inner peak with Reτ . The
sub-logarithmic growth of the predicted inner peak can be attributed to the decrease
in the slope of L(c) as Reτ increases, cf. (4.5) and figure 10(a). Understanding the
Reynolds-number dependence of L(c) is an essential part of our ongoing research
which is focused on analysis of the self-similar modes in the logarithmic region.

5. Concluding remarks
Starting from the NSE, we highlighted the low-rank nature of the resolvent,

formulated for individual wall-parallel wavenumbers and frequencies, and illustrated its
power by showing that the most energetic motions of real turbulent flows correspond
to wavenumbers and frequencies whose resolvent is approximately rank-1 (in the wall-
normal direction). Motivated by this observation, we studied the streamwise energy
density of the rank-1 model subject to forcings in the wall-parallel directions and time
that were broadband and optimized, or ‘trained’, with respect to the available DNS
data.

Our analysis consists of two steps: first, identifying the modes that are highly
amplified by the NSE and their scaling (essentially an analysis of the resolvent
operator), and then calculating weighting functions (by matching to DNS results)
which determine which of these modes will be sustained in the real flow (connecting
the linear system of resolvent operators back to the full NSE).
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5.1. Scaling of the most amplified resolvent modes

It was shown that the resolvent admits three classes of wavenumbers and wave speeds
for which the corresponding principal singular values and singular functions exhibit
universal behaviour with Reynolds number. These classes are directly related to the
universal regions of the turbulent mean velocity (which is assumed known a priori)
and thus are primarily distinguished by the wave speed: (i) a truly inner-scaled class
of waves with constant speeds in the inner region of the turbulent mean velocity; (ii) a
class of waves with outer-scaled height and width and constant defect speeds relative
to the centreline; and (iii) a class of waves with outer-scaled length and constant defect
speeds relative to the geometric mean of the middle region of the turbulent mean
velocity. In addition, we showed that hierarchies of geometrically self-similar modes
whose length and width respectively scale quadratically and linearly with their height
are admitted by the resolvent in the presence of a logarithmic mean velocity.

The integral role of wave speed and critical layers in characterizing the classes
of universal modes with Reynolds number and the geometrically self-similar modes
with the wall-normal distance is understood and emphasized for the first time. The
conventional understanding about the scales of turbulent flows comes from the time-
averaged velocity spectra in DNS and experiments. Upon integration in time, the
separated scales in the (temporal) frequency domain are overlaid, and distinction of
different scales in the spatial spectra becomes difficult. Therefore, the identified scales
have significant implications for understanding the scaling of wall turbulence. They
are inherent features of the linear mechanisms in the NSE and, consequently, the
energy extraction mechanisms from the mean velocity. In both the universal and
self-similar classes, the wall-normal length scale is inherited from the turbulent mean
velocity, and the wall-parallel length scales are determined from the balance between
the viscous dissipation term, (1/Reτ )1, and the mean advection terms in the resolvent,
e.g. iκx(U − c).

The main results of the present paper, i.e. the scalings identified in § 3, rely on the
accepted scales of the turbulent mean velocity and, otherwise, do not depend on the
exact shape of U. Therefore, the choice of eddy viscosity or the von Kármán constant
κ does not change our main results. On the other hand, the debate on the universality
and/or exact value of κ is ongoing, e.g. see Nagib & Chauhan (2008), and using the
turbulent viscosity given in (2.3) can result in inaccuracies in the considered mean
velocity. This can affect the quantitative results of § 3 and § 4, e.g. the shape of the
resolvent modes and the predicted growth rate of the inner peak. Characterizing these
effects is a topic of future work, and the sensitivity is known to be highest in the
region of highest shear, close to the wall. Since closing the feedback loop in figure 2
eventually generates the exact turbulent mean velocity, we do not over-emphasize the
quantitative results of the present study.

We highlight the uniqueness of the identified scales, meaning that there are no
other scales that result in universal or geometrically self-similar principal resolvent
modes. In addition, the difference between the scalings of the resolvent modes and
real turbulent flows implies the need for distinguishing the resolvent modes from
the weighted modes that represent the real turbulent flow. For example, the scaling
admitted by the self-similar resolvent modes yields λ3

z ∼ λxyc which is different
from the trend λ2

z ∼ λxy observed in the DNS-based two-dimensional streamwise
spectrum (Jiménez & Hoyas 2008). Understanding the scaling differences between
the resolvent modes and the weighted modes requires detailed scrutiny of the weights
and the nonlinear effects, a topic of ongoing research. In addition, our results suggest
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that, owing to scale separation in frequency, there is a large benefit to obtaining and
analysing the scaling of three-dimensional time-resolved spectral measurements.

5.2. Effect of nonlinearity
From a systems theory point of view, the nonlinear terms wrap a feedback loop around
the linear sub-systems in the NSE and redistribute the energy. They determine the
wall-normal shape and the magnitude/phase of the driving force for an individual
mode. Therefore, the real flow is obtained by superposing the resolvent response
modes that are weighted according to projection of the driving force on the resolvent
forcing modes.

We started by assuming that the nonlinear forcing is broadband in the wall-parallel
directions and time and aligned in the principal resolvent forcing modes. It was shown
that these simple assumptions can qualitatively produce different scaling regions of the
streamwise energy spectra. Therefore, the proposed analysis effectively narrows down
the scaling problem in wall-bounded turbulent flows to the problem of understanding
the influence of nonlinearity on the inevitable scales that are admitted by the linear
mechanisms, i.e. determining which of those admitted modes will be required in real
flows for the flow to be self-sustaining. A full description of the latter effects is
beyond the scope of the present paper, but the subject of ongoing work.

A non-broadband forcing in time was accounted for by considering a weight
function in the wave speed. We showed that ‘training’ the weights based on the
wave speed can result in streamwise energy intensities that quantitatively match DNS
and experiments. As the Reynolds number increases, the optimal weight functions
increase for wave speeds in the inner region of the mean velocity. Representation of
the optimal weights using similarity laws revealed that the amount of upward shift
is linearly correlated with the weight function for wave speeds in the middle region
of the mean velocity. In other words, the weight function increases with the energy
intensity of the large scales and amplifies the universal inner-scaled energy density of
the rank-1 model. Therefore, it implicitly captures the well-known coupling of small
scales with the large scales and their subsequent amplification in real turbulent flows.

A consequence of the simplicity of the identified scaling in the
wavenumber–frequency domain is the success of the simple weighting based on
convection velocity in post- and pre-dicting the variation of the streamwise velocity
fluctuations with Reynolds number. One of the main results of this study is that the
rank-1 approximation, together with the optimal weight functions and the (well-known)
mean velocity profile, is sufficient for predicting the streamwise energy intensity at
high Reynolds numbers. Even though the weight function provides a rough intuition
about the effect of nonlinearity, the explicit analysis of the nonlinear feedback on the
velocity field remains a subject of ongoing research.

5.3. Outlook of the present analysis as a predictive tool
The present study effectively divides the streamwise energy density of the rank-1
model with broadband forcing into inner- and outer-scaled universal regions with
Reynolds number and a geometrically self-similar region with distance from the wall
that bridges the gap between the inner and outer regions. This enables scaling of the
streamwise energy density to arbitrary large Reynolds numbers. It was shown that the
most energetic wave parameters and the corresponding scales roughly agree with the
dominant near-wall motions in real turbulent flows.

The identified self-similar resolvent modes facilitate analytical developments in
the logarithmic region of the turbulent mean velocity and can result in significant
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simplifications in analysis of wall turbulence. In addition, the wall-normal locality of
the self-similar modes in a given hierarchy suggests that the linear sub-systems in
the NSE impose a direct correspondence between wall-parallel scales and wall-normal
locations in the logarithmic region. In the classical cascade analogy, e.g. see the
review paper by Jiménez (2012), this is reminiscent of an inertial regime, the study
of which is a topic of ongoing research. Furthermore, ongoing research is focused on
utilizing the identified scalings to better understand the structure and evolution of the
hypothesized attached eddies.

The available predictive models of wall turbulence, e.g. the attached-eddy
hypothesis (Townsend 1976; Perry & Chong 1982) and the model of Marusic &
Kunkel (2003), rely on physical intuition that is gained from DNS and experiments.
For example, the method proposed by Marusic & Kunkel (2003) is based on an
assumption about the influence of outer-layer modes on the near-wall modes (their
equation (2)), where the underlying functions are determined by empirical curve fits to
the experimental data (their equations (3)–(5)). The present model is more fundamental
as it directly uses the NSE for decomposing the flow into classes of modes that
are uniquely scaled with the Reynolds number and distance from the wall. Since the
wall-normal shape of these modes is one of the model outputs, the contribution of the
present work goes beyond reporting an empirical fit to the model-based data, namely
by exploring the scaling of the modes admitted by the NSE.

In essence, this work supports the efficacy of the low-rank model of wall turbulence
proposed by McKeon & Sharma (2010) by demonstrating that it can be used both
to determine self-similar mode scalings and to obtain a low-rank representation of
the streamwise intensity, given appropriate, self-similar weighting of the modes. Our
ongoing research, to be reported elsewhere, is focused on analytical expression of the
streamwise energy density for wave speeds in the logarithmic region of the mean
velocity and a priori derivation of the weight functions. Addressing the limitations and
implications of the low-rank model for predicting the wall-normal and spanwise energy
spectra as well as the Reynolds stresses is another topic of future research.
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Appendix A. Derivation of the inner scalings
We show that the transfer function H admits universal behaviour for the modes with

speeds c . 16. For these modes, following (3.5), the y-dependent coefficients in the
transfer function H, are either independent of Reτ , e.g. U(y+) − c, or scale with Reτ ,
e.g. U′(y+). This allows scaling the height of the resolvent modes with the viscous unit
ν/uτ . In addition, the balance between the viscous dissipation term, (1/Rτ )1, and the
mean advection terms, e.g. iκx(U − c), in the resolvent in (2.9) requires scaling of the
wall-parallel wavelengths with the viscous unit ν/uτ :

λ+x = Reτλx, y+ = Reτy, λ+z = Reτλz. (A 1)

The differential operators in y and the wavenumber symbols in the inner coordinates
are

∂/∂y+ = Re−1
τ ∂/∂y, κ+x = Re−1

τ κx, κ+z = Re−1
τ κz, 1+ = Re−2

τ 1. (A 2)
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Consequently in the inner coordinates, the operators RA, C, and C† in (2.7) and (2.9)
scale as

RA =
[

ReτX1 0
Re2

τX3 ReτX2

]−1

=
[

Re−1
τ Y1 0
Y3 Re−1

τ Y2

]
, (A 3a)

C =

C1 Re−1
τ C2

C3 0
C4 Re−1

τ C5

 , C† =
[

C†
1 C†

3 C†
4

ReτC
†
2 0 ReτC

†
5

]
. (A 3b)

For given κ+x and κ+z , the operators C1 to C5 and their adjoints are independent of
Reτ . On the other hand, the operators X1 to X3 and Y1 to Y3 contain spatially varying
coefficients, U − c and its first two derivatives, that depend on Reτ . As discussed
at the beginning of § 3, U scales with y+ and is independent of Reτ for y+ . 100.
Therefore, for given κ+x , κ+z , and c . U(y+ = 100) = 16, the operators X1 to X3 and
Y1 to Y3 are independent of Reτ when acting on functions whose supports are inside
the interval 0< y+ . 100. Since the principal resolvent modes are localized around the
critical layer (i.e. the wall-normal location where the turbulent mean velocity equals
c), the resolvent modes are negligible outside y+ . 100 for c . 16 and all of the
aforementioned operators are effectively independent of Reτ . It follows from (A 1) that

H = CRAC† =

Re−1
τ H11 Re−1

τ H12 Re−1
τ H13

Re−1
τ H21 Re−1

τ H22 Re−1
τ H23

Re−1
τ H31 Re−1

τ H32 Re−1
τ H33

 , (A 4)

where the operators Hij are effectively independent of Reτ when acting on their
principal resolvent modes. Therefore, the principal singular value of H is proportional
to Re−1

τ . In addition, the orthonormality constraints (2.11) on ψ̂1 and φ̂1 require
that these functions scale as Re1/2

τ . This is because the supports of ψ̂1 and φ̂1 are
independent of Reτ in inner units (hence, proportional to Re−1

τ in outer units). In
other words, ψ̂1(y) and φ̂1(y) become thinner and taller as Reτ increases. Finally, the
streamwise energy density Euu = κ2

x κzσ
2
1 |u1|2 scales with

(Reτ )
2 (Reτ ) (Re−1

τ )
2
(Re1/2

τ )
2 = Re2

τ . (A 5)

Appendix B. Derivation of the outer scalings
For the modes with defect speeds 0 . Ucl − c . 6.15, we show that the transfer

function H admits universal behaviour with Reynolds number. For these modes,
following (3.5), the y-dependent coefficients in the transfer function H, e.g. U(y) − c,
are independent of Reτ . This allows scaling the height of the resolvent modes with
h. Furthermore, the balance between the viscous dissipation term, (1/Rτ )1, and the
mean advection terms, e.g. iκx(U − c), in the resolvent in (2.9) requires scaling of the
spanwise coordinate with h and the streamwise coordinate with hReτ . Therefore, the
streamwise wavenumber symbol in the outer coordinates is given by κ−x = Reτκx. The
Laplacian

1= ∂yy − Re−2
τ (κ

−
x )

2 − κ2
z , (B 1)
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is independent of Reτ if κ2
z dominates Re−2

τ (κ
−
x )

2 for all values of Reτ . For fixed κ−x
and κz, it suffices that

λ−x
λz
= κz

κ−x
& γ

Reτ,min
. (B 2)

In the outer coordinates, the operators RA, C, and C† in (2.7) and (2.9) scale as

RA ≈
[

Re−1
τ X̃1 0
X̃3 Re−1

τ X̃2

]−1

=
[

Reτ Ỹ1 0
Re2

τ Ỹ3 Reτ Ỹ2

]
, (B 3a)

C ≈

Re−1
τ C̃1 C̃2

C̃3 0
C̃4 Re−1

τ C̃5

 , C† ≈
[

Re−1
τ C̃†

1 C̃†
3 C̃†

4

C̃†
2 0 Re−1

τ C̃†
5

]
. (B 3b)

For given κ−x and κz that satisfy the constraint (B 2), the operators C̃1 to C̃5 and
their adjoints are approximately independent of Reτ . In addition, the defect velocity
Ucl − U(y) is independent of Reτ for y & 0.1. Therefore, for given κ−x , κz, and
Ucl−c . Ucl−U(y= 0.1)= 6.15, the operators X̃1 to X̃3 and Ỹ1 to Ỹ3 are approximately
independent of Reτ when acting on functions whose supports are inside the interval
0.1 . y . 1. From (B 2), we have

H = CRAC† ≈

Reτ H̃11 Re2
τ H̃12 Re2

τ H̃13

H̃21 Reτ H̃22 Reτ H̃23

H̃31 Reτ H̃32 Reτ H̃33

 . (B 4)

Owing to the locality of the principal resolvent modes around the critical layer, the
operators H̃ij are approximately independent of Reτ when acting on their principal
resolvent modes. Therefore, the principal singular value of H is proportional to Re2

τ .
Since ψ̂1 and φ̂1 scale in the outer length scale, the orthonormality constraints (2.11)
require that these functions be independent of Reτ . Finally, the streamwise energy
density Euu = κ2

x κzσ
2
1 |u1|2 scales with

(Re−1
τ )

2
(1) (Re2

τ )
2
(1)2 = Re2

τ . (B 5)

Appendix C. Derivation of the geometrically self-similar scalings
The transfer function H admits geometrically self-similar modes with speeds in the

logarithmic region of the turbulent mean velocity. In this region, it follows from the
discussion in § 3.2 that the y-dependent coefficient in the transfer function H can be
expressed as U(y) − c = (1/κ) log(y/yc), where yc is the critical wall-normal location
corresponding to c, i.e. c = U(yc). Similarly, U′ and U′′ are functions of y/yc. This
allows scaling the height of the resolvent modes with yc. Furthermore, the balance
between the viscous dissipation term, (1/Rτ )1, and the mean advection terms, e.g.
iκx(U − c), in the resolvent in (2.9) requires scaling of the spanwise wavelength with
yc and the streamwise wavelength with y+c yc,

λ̄x = λx/(y
+
c yc), ȳ= y/yc, λ̄z = λz/yc. (C 1)
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The differential operators in y and the wavenumber symbols in the yc-scaled
coordinates are

∂/∂ȳ = yc(∂/∂y), κ̄x = (y+c yc)κx, κ̄z = ycκz. (C 2)

For given κ̄x and κ̄z, the Laplacian

1= y−2
c

(
∂ȳȳ − (y+c )−2

(κ̄x)
2 − (κ̄z)

2
)
, (C 3)

approximately scales with y−2
c if (κ̄z)

2 dominates (y+c )
−2
(κ̄x)

2, i.e.

κz/κx = λx/λz = y+c (λ̄x/λ̄z)& γ, (C 4)

where a conservative value for γ is
√

10. Since the aspect ratio λx/λz increases with
y+c , the smallest value of y+c for which (C 4) is guaranteed is equal to y+c1

= γ (λ̄z/λ̄x).
Therefore, the smallest wave speed that satisfies the aspect-ratio constraint and lies
above the inner region is given by

c1 =max(16,B+ (1/κ) log y+c1
). (C 5)

Then, the operators RA, C, and C† in (2.7) and (2.9) scale as

RA =
[
(y+c yc)

−1X̄1 0

y−2
c X̄3 (y+c yc)

−1X̄2

]−1

=
[
(y+c yc)Ȳ1 0

(y+c )
2 Ȳ3 (y+c yc)Ȳ2

]
, (C 6a)

C =

(1/y
+
c ) C̄1 (yc) C̄2

C̄3 0
C̄4 (1/Reτ ) C̄5

 , C† =
[
(1/y+c ) C̄†

1 C̄†
3 C̄†

4

(1/yc) C̄†
2 0 (y+c yc)

−1C̄†
5

]
. (C 6b)

For given κ̄x and κ̄z that satisfy the constraint (C 4), the operators C̄1 to C̄5 and their
adjoints are approximately independent of yc and Reτ . In addition, the operators X̄1 to
X̄3 and Ȳ1 to Ȳ3 are approximately independent of yc and Reτ when acting on functions
whose supports are localized in the interval 100/Reτ 6 y 6 0.1. From (C 3), we have

H = CRAC† =

(y+c yc)H̄11 (y+c )
2
(yc)H̄12 (y+c )

2
(yc)H̄13

(yc)H̄21 (y+c yc)H̄22 (y+c yc)H̄23

(yc)H̄31 (y+c yc)H̄32 (y+c yc)H̄33

 , (C 7)

where the operators H̄ij are effectively independent of yc and Reτ when acting on their
principal resolvent modes. Therefore, the principal singular value of H is proportional
to (y+c )

2
(yc). In addition, the orthonormality constraints (2.11) on ψ̂1 and φ̂1 require

that these functions scale with (yc)
−1/2. This is because the supports of ψ̂1 and φ̂1

expand with yc. Finally, the streamwise energy density Euu = κ2
x κzσ

2
1 |u1|2 for the waves

that belong to the same hierarchy scales with

(y+c yc)
−2
(yc)

−1 ((y+c )
2
(yc))

2
(yc)

−1 = Re2
τ . (C 8)
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