SUPPLEMENTARY MATERIALS: Binary Component Decomposition
Part I: The Positive-Semidefinite Case

Richard Kueng† and Joel A. Tropp†

SM1. Dimension reduction for Algorithm 2.1. As it is stated, Algorithm 2.1 requires solving semidefinite programs in an \(n \times n \) matrix variable. In this section, we develop an equivalent procedure that optimizes over a much lower-dimensional space of matrices. This approach, which we document in Algorithm SM1.1, has significantly lower resource usage.

Theorem SM1.1 (Efficient sign component decomposition). Let \(A \in \mathbb{H}_n \) be a rank-\(r \) correlation matrix that admits a sign component decomposition

\[
A = \sum_{i=1}^{r} \tau_i s_i s_i^t \quad \text{where} \quad s_i \in \{\pm 1\}^n \quad \text{and} \quad (\tau_1, \ldots, \tau_r) \in \Delta_r^+.
\]

Assume that the family \(S = \{s_1, \ldots, s_r\} \) of sign components is Schur independent. Then Algorithm SM1.1 computes the sign component decomposition up to trivial symmetries. That is, the output is the unordered set of pairs \(\{(\tau_i, \xi_i s_i) : 1 \leq i \leq r\} \), where \(\xi_i \in \{\pm 1\} \) are signs.

This algorithm can be implemented with arithmetic cost \(O(n^3 \text{polylog}(r)) \). Up to logarithmic factors in \(r \), the running time for Algorithm SM1.1 matches the cost of computing a full eigenvalue decomposition of a dense \(n \times n \) symmetric matrix.

Proof. Let \(F = \text{conv}\{ss^t : s \in S\} \subset \mathcal{E}_n \) be the simplicial face of the ellipote that contains the matrix \(A \). Let \(Q = \text{orth}(A) \in \mathbb{R}^{n \times r} \) be a matrix with orthonormal columns that span the range of \(A \). In particular, \(P = QQ^t \) is the orthogonal projector onto the range of \(A \). We can use these matrices to compress all of the optimization problems that arise in Algorithm 2.1.

We begin with the random optimization problem (5.2). It is not hard to check that the feasible set of (5.2) can be rewritten as follows. Let \(q^t_j \in \mathbb{R}^r \) be the \(i \)th row of the matrix \(Q \). Then

\[
F = \{X : \text{trace}(PX) = n \text{ and } X \in \mathcal{E}_n\} = \{QYQ^t : q^t_i Y q_j = 1 \text{ for each } i \text{ and } Y \succeq 0\}.
\]

Indeed, recall that \(PS = s \) for \(s \in S \). Each feasible point \(X \) for (5.2) belongs to the face \(F \), so it must satisfy \(X = PXP \). Expanding the orthogonal projectors, we obtain the parameterization \(X = QYQ^t \) where \(Y = Q^tXQ \in \mathbb{H}_r \). Moreover, \(X \) is psd. According to the conjugation rule (Fact 1.1), this is equivalent to demanding \(Y \succeq 0 \). Finally, the diagonal contraints \(e^t_j X e_j = 1 \) translate directly into the conditions \(q^t_i Y q_j = 1 \) for each index \(j \).

We can conjugate the last display by the orthonormal matrix \(Q \) to see that

\[
\tilde{F} = \text{conv}\{Q^tss^tQ : s \in S\} = \{Y \in \mathbb{H}_r : q^t_i Y q_j = 1 \text{ for each } i \text{ and } Y \succeq 0\}.
\]
Moreover, the set \mathbf{F} on the left-hand side is a simplex. As a consequence, we can draw a standard normal vector $g \in \mathbb{R}^r$ and solve the optimization problem

\[
\text{(SM1.1) maximize } g^\top \mathbf{Y} g \text{ subject to } q_j^\top \mathbf{Y} q_j = 1 \text{ for each } j \text{ and } \mathbf{Y} \succeq 0.
\]

According to Lemma 5.1, the unique solution will be a matrix $\mathbf{Y}_s = \mathbf{Q}_s \mathbf{s} \mathbf{s}^\top \mathbf{Q}_s$ for some $s \in S$.

The deflation step of Algorithm 2.1 can also be mapped down to the simplex \mathbf{F}. We just need to solve

\[
\text{maximize } \zeta \text{ subject to } \zeta (\mathbf{Q}_j^\top \mathbf{A} \mathbf{Q}_j) + (1 - \zeta) \mathbf{Y}_s \succeq 0.
\]

As before, Lemma 5.2 ensures that this procedure extracts the rank-one component \mathbf{Y}_s from $\mathbf{Q}_j^\top \mathbf{A} \mathbf{Q}_j$, decreasing the rank by one.

Next, let us propose a further simplification to the random optimization problem (SM1.1) by noticing that the equality constraints are always redundant. First, rewrite the constraints as

\[
\text{trace}(q_j q_j^\top \mathbf{Y}) = 1 \quad \text{for } j = 1, \ldots, n.
\]

Of course, each constraint matrix $q_j q_j^\top \in \mathbb{H}_r$. In fact, the constraint matrices also satisfy additional affine constraints. For each $s \in S$, we calculate that

\[
\text{trace}(q_j q_j^\top \mathbf{Q}_s \mathbf{s} \mathbf{s}^\top \mathbf{Q}_s) = \text{trace}(\mathbf{e}_j \mathbf{e}_j^\top \mathbf{P} \mathbf{s} \mathbf{s}^\top \mathbf{P}) = \text{trace}(\mathbf{e}_j \mathbf{e}_j^\top \mathbf{s} \mathbf{s}^\top) = (\mathbf{e}_j, s)^2 = 1.
\]

Therefore, the constraint matrices lie in an affine subspace of \mathbb{H}_r with dimension $\binom{r+1}{2} - r = \binom{r}{2} + 1$. We can select a maximal linearly independent subset of $\{q_j q_j^\top : j = 1, \ldots, n\}$ and enforce this smaller family of constraints.

To conclude, observe that Algorithm SM1.1 involves $2(r - 1)$ semidefinite programs with variable $\mathbf{X} \in \mathbb{H}_r$. The number of affine constraints in each SDP is bounded by $\binom{r}{2} + 2$. Standard interior point solvers [AHO98] can solve such problems to fixed accuracy in time $O(r^{6.5})$. This bound can ostensibly be improved to $O(r^5 \log(r))$ using a method proposed in the theoretical algorithms literature [LSW15, Table 2].

Finally, we must account for the cost of computing a basis for the range of the input matrix \mathbf{A} and lifting the solution from the lower-dimensional space back to the original sign components. For Algorithm SM1.1, this leads to a total runtime of $O(n^3 \log(r))$ using the theoretical method. This bound relies on the restriction (2.3) that $r = O(\sqrt{n})$ for Schur independence.

REFERENCES

Algorithm SM1.1 Efficient sign component decomposition (2.1) of a matrix with Schur independent components. Implements the procedure in Theorem SM1.1.

Input: Rank-r correlation matrix $A \in \mathbb{H}_n$ that satisfies (3.2)

Output: Sign components $\{\tilde{s}_1, \ldots, \tilde{s}_r\} \subset \{\pm 1\}^n$ and convex coefficients $\tilde{\tau} \in \Delta_r^+$ where $A = \sum_{i=1}^{r} \tilde{\tau}_i \tilde{s}_i \tilde{s}_i$.

```
function EfficientSignComponentDecomposition(A)

1  [n, ~] ← size(A) and r ← rank(A)
2  Q ← orth(A) ▷ Orthonormal basis for the range of A
3  M ← Q^T A Q ▷ Compress the input matrix
4  Use RRQR to find a maximal independent set of constraints:
5  \[
        \max_{J \subseteq \{1, \ldots, n\}} |J| \quad \text{subject to} \quad \{q_j, q_j^T : j \in J\} \text{ is linearly independent}
      \]
6
7  for i = 1 to (r - 1) do
8    g ← randn(r, 1) ▷ Draw a random direction
9    Find the solution $Y_\star$ to the semidefinite program ▷ Step 1
\[
        \maximize_{Y \in \mathbb{H}_r} \ g^T Y g \quad \text{subject to} \quad q_j^T Y q_j = 1 \text{ for } j \in J \text{ and } Y \succeq 0
      \]
10   Factorize the rank-one matrix $Y_\star = Q^T \tilde{s}_i \tilde{s}_i Q$ ▷ Extract a sign component
11  Find the solution $\zeta_\star$ to the semidefinite program ▷ Step 2
\[
        \maximize_{\zeta \in \mathbb{R}} \zeta \quad \text{subject to} \quad \zeta M + (1 - \zeta) Y_\star \succeq 0
      \]
12  $M ← \zeta_\star M + (1 - \zeta_\star) Y_\star$ ▷ Step 3
13  Factorize the rank-one matrix $M = Q^T \tilde{s}_r \tilde{s}_r Q$ ▷ rank$(M) = 1$ in final iteration
14  Find the unique solution $\tilde{\tau} \in \mathbb{R}^r$ to the linear system ▷ Step 4
\[
        M = \sum_{i=1}^{r} \tilde{\tau}_i Q^T \tilde{s}_i \tilde{s}_i Q
      \]
```
