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From Poincaré inequalities to nonlinear
matrix concentration
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This paper deduces exponential matrix concentration from a Poincaré inequality via a short, conceptual argument.
Among other examples, this theory applies to matrix-valued functions of a uniformly log-concave random vector.
The proof relies on the subadditivity of Poincaré inequalities and a chain rule inequality for the trace of the matrix
Dirichlet form. It also uses a symmetrization technique to avoid difficulties associated with a direct extension of
the classic scalar argument.
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1. Introduction

Matrix concentration inequalities describe the probability that a random matrix is close to its expected
value, with deviations measured by the �2 operator norm. These results have had a profound impact
on a wide range of areas in computational mathematics and statistics. See the monograph [46] for an
introduction to the subject and its applications.

As did the field of scalar concentration, matrix concentration theory began with simple models, such
as sums of independent random matrices [1,29,42,45] and matrix-valued martingale sequences [33,40,
44]. In recent years, researchers have sought to develop results that hold for a wider class of random
matrix models. Some initial successful efforts were based on exchangeable pairs techniques [30,36],
but these methods do not address all cases of interest.

Researchers have also tried to extend scalar concentration techniques based on functional inequal-
ities. An early attempt, by Chen and Tropp [11], demonstrates that (traces of) matrix variance and
entropy quantities are subadditive, which leads to some Poincaré and modified log-Sobolev inequali-
ties. A number of papers, including [12–14], have pursued this line of work. Unfortunately, these ap-
proaches have not been sufficient to reproduce all the results that have been established in the simpler
models.

Very recently, Aoun et al. [3] have shown that a matrix form of the Poincaré inequality implies
subexponential concentration of a random matrix with respect to the �2 operator norm. We believe
that this is the first instance where a matrix functional inequality leads unconditionally to a matrix
concentration result (with respect to the operator norm). Nevertheless, it remains an open question to
deduce a full spectrum of matrix concentration results from matrix functional inequalities.

In this paper, we improve on [3] by demonstrating that the ordinary scalar Poincaré inequality also
leads to subexponential concentration with respect to the operator norm. Our argument has some el-
ements in common with the work in [3], but we have found a route to avoid most of the technical
difficulty of their approach.

The basic idea is to bound the trace of an odd function (for example, the hyperbolic sine) of the
random matrix using a symmetrization argument. The variance appears, and the Poincaré inequality
yields a bound on the variance in terms of the Dirichlet form. Last, we apply a new matrix chain rule
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inequality for the Dirichlet form to obtain a moment comparison. After this paper was written, we
learned that Bobkov and Ledoux proposed a similar argument in the scalar case [5], Section 4.

As in the scalar setting, Poincaré inequalities may not capture the strongest concentration properties
that are possible. In a companion paper [22], we demonstrate that local Poincaré inequalities lead to the
optimal subgaussian concentration results. The analysis in [22] captures most of the previous results
on matrix concentration, but it involves more technical machinery. We also refer the reader to work of
Junge and Zeng [23] that contains similar results in the fully noncommutative setting.

An expert reader may still wonder about the role of (modified) log-Sobolev inequalities in estab-
lishing matrix concentration. At the time of writing, it is not clear how to obtain a matrix analog of
the log-Sobolev inequality that would imply subgaussian matrix concentration inequalities in the same
spirit as the ones in the related works [22,23].

2. Main result

This section summarizes our notation and the setting for our problem. It highlights our primary result
on matrix concentration, and it gives a number of examples. In the next section, we comment further
on the relationship with previous work.

2.1. Notation

Let Hd be the real linear space of d × d self-adjoint complex matrices, equipped with the �2 operator
norm ‖·‖. We work with both the ordinary trace, tr, and the normalized trace, t̄r := d−1 tr on the space
Hd . Matrices, and occasionally vectors, are written in boldface italic. In particular, f and g refer to
functions taking values in Hd . The cone H+

d contains the positive semidefinite matrices, and the symbol
� refers to the semidefinite order.

Given a function ϕ : R → R taking real values, we extend it to a function ϕ : Hd → Hd on self-
adjoint matrices by means of the spectral resolution:

A =
∑

λ∈spec(A)

λP λ ∈Hd implies ϕ(A) =
∑

λ∈spec(A)

ϕ(λ)P λ ∈ Hd .

Whenever we apply a scalar function, such as a power or a hyperbolic function, to a matrix, we are
referring to the standard matrix function. Nonlinear functions bind before the trace.

We use familiar notation from probability. The operator E returns the expectation, and P{·} is the
probability of an event. The symbol ∼ means “has the distribution.” Nonlinear functions bind before
the expectation.

2.2. Random matrices

Let � be a Polish space, equipped with a probability measure μ, and write Eμ for the integral with
respect to the measure μ. Consider a μ-integrable matrix-valued function f : � → Hd on the state
space �. By drawing a random variable Z ∼ μ, we can construct a random matrix f (Z). Our goal is
to understand the concentration of f (Z) around its mean Eμ f .

Example 2.1 (Gaussians). Consider the Gaussian space (Rn, γn) of n-dimensional real vectors
equipped with the standard normal measure γn. Suppose we are interested in a matrix-valued func-
tion f (X) of a standard normal random vector X ∼ γn. A familiar example [46], Chapter 5, is the
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matrix Gaussian series

f (X) =
n∑

i=1

XiAi where X ∼ γn and A1, . . . ,An ∈Hd are fixed. (2.1)

We will use the Gaussian case as a running example to illustrate the concepts that we introduce.

2.3. Markov processes

Suppose that we can identify an ergodic, reversible, time-homogeneous Markov process (Zt : t ≥
0) ⊂ � with initial value Z0 and stationary measure μ. This induces a matrix-valued Markov process
(f (Zt ) : t ≥ 0) ⊂Hd .

By ergodicity, for any point z ∈ �, we have the limit E[f (Zt ) | Z0 = z] → Eμ f as t → ∞. The
results in this paper build on the intuition that a random matrix f (Z) with Z ∼ μ concentrates sharply
about its mean when the matrix-valued Markov process tends quickly to equilibrium.

Example 2.2 (Gaussians). We can construct a reversible Markov process (Xt : t ≥ 0) ⊂ R
n, called

the Ornstein–Uhlenbeck (OU) process, by means of the stochastic differential equation

dXt = −Xt dt + √
2 dB t with initial value X0 ∈ R

n,

where (B t : t ≥ 0) ⊂ R
n is random vector whose coordinates are independent Brownian motions. The

stationary measure of the OU process is the standard normal distribution γn.

2.4. Derivatives and energy

To understand how quickly a matrix Markov process f (Zt ) converges to stationarity, we introduce
notions of the “squared derivative” and the “energy” of the function f .

Inspired by [3], we define the matrix carré du champ operator by the formula

�(f )(z) := lim
t↓0

1

2t
E

[(
f (Zt ) − f (Z0)

)2 | Z0 = z
] ∈ H

+
d for z ∈ �. (2.2)

In many instances, the carré du champ �(f ) has a natural interpretation as a squared derivative of f .
The expectation of the carré du champ is called the matrix Dirichlet form:

E(f ) := lim
t↓0

1

2t
EZ∼μ

[(
f (Zt ) − f (Z0)

)2 | Z0 = Z
] ∈ H

+
d . (2.3)

The Dirichlet form E(f ) reflects the total energy of the function f .
In a general setting, it requires some care to make sense of the definitions (2.2) and (2.3). Without

further comment, we restrict our attention to a “nice” class of functions where the limit in (2.2) exists
pointwise and in L1(μ) and where calculus operations are justified. By approximation, our main results
on concentration hold for a wider class of functions.

Example 2.3 (Gaussians). According to [3], Proposition 5.5, the matrix carré du champ operator and
matrix Dirichlet form of the OU process are determined by

�(f )(x) =
n∑

i=1

(
∂if (x)

)2 for x ∈R
n and E(f ) =

n∑
i=1

Eγn(∂if )2.
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The interpretations as a squared derivative and an energy are evident, and it is easy to check when the
carré du champ is defined.

The matrix Gaussian series (2.1) provides an illustration:

�(f ) = E(f ) =
n∑

i=1

A2
i .

This quantity is familiar from work on matrix concentration for Gaussian series [46], Chapter 4.

2.5. Trace Poincaré inequalities

The matrix variance of a function f : � → Hd with respect to the distribution μ is defined as

Varμ[f ] := Eμ

[
(f −Eμ f )2] = Eμ

[
f 2] − (Eμ f )2 ∈H

+
d . (2.4)

As in the scalar case, the variance reflects fluctuations of the random matrix f (Z) about its mean,
where the random variable Z ∼ μ.

We say that the Markov process satisfies a trace Poincaré inequality with constant α > 0 if

tr Varμ[f ] ≤ α · trE(f ) for all f : � → Hd . (2.5)

In other words, the trace variance of f (Z) is controlled by the energy in the function f . The inequality
(2.5) provides a way to quantify the ergodicity of the Markov process.

As it happens, the trace Poincaré inequality is equivalent to an ordinary Poincaré inequality. We
are grateful to Ramon Van Handel for this observation. The same result has recently appeared in the
independent work of Garg et al. [16].

Proposition 2.4 (Equivalence of Poincaré inequalities). Consider a Markov process (Zt : t ≥ 0) ⊂ �

with stationary measure μ. The following are equivalent:

1. Scalar Poincaré. For all f : � → R, we have Varμ[f ] ≤ α · E(f ).
2. Trace Poincaré. For all d ∈N and all f : � → Hd , we have tr Varμ[f ] ≤ α · trE(f ).
3. Matrix Poincaré. For all d ∈N and all f : � →Hd , we have Varμ[f ] � α · E(f ).

The Poincaré constant α ≥ 0 is the same in all three cases.

Proof. It is evident that (3) =⇒ (2) =⇒ (1). Our task is to prove that (1) =⇒ (3).
Consider a real matrix-valued function f : � → Hd(R) with zero mean. For vectors u,v ∈ R

d ,
define the scalar function g(z) = 〈u,f (z)v〉 ∈ R. Apply the scalar Poincaré inequality to g and invoke
the definition (2.3) of the Dirichlet form. Thus,

Eμ

〈
u,f (z)v

〉2 ≤ α · lim
t↓0

1

2t
EZ∼μ

[〈
u,

(
f (Zt ) − f (Z0)

)
v
〉2 | Z0 = Z

]
.

Instate this inequality with v = ei for each i = 1, . . . , d and sum over i to arrive at〈
u,Varμ[f ]u〉 ≤ 〈

u,E(f )u
〉
.

Since u ∈ R
d is arbitrary, this is the matrix Poincaré inequality (3).
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To extend this argument to complex matrices, apply the same approach to the real and imaginary
parts of the inner product. �

The main result of this paper is that concentration properties of the random matrix f (Z) follow from
the trace Poincaré inequality (2.5) or, equivalently, the scalar Poincaré inequality.

Example 2.5 (Gaussians). It is well known that the OU process satisfies the Poincaré inequality with
constant α = 1. Thus, it satisfies the trace Poincaré inequality (2.5) with α = 1. For an alternative proof,
see [3], Theorem 1.2.

2.6. Subexponential concentration and expectation bounds

We are now prepared to present our main result. It demands several hypotheses, which will be enforced
throughout the paper.

Assumption 2.6 (Conditions). We assume that

1. The Markov process (Zt : t ≥ 0) ⊂ � is reversible and homogeneous, with initial value Z0 and
stationary measure μ.

2. The process admits a trace Poincaré inequality (2.5) with constant α. Equivalently, the process
admits a scalar Poincaré inequality with the same constant α.

3. The class of valid functions is suitably restricted so that manipulations of expectations, limits,
and derivatives are justified.

Under Assumption 2.6, we will deduce subexponential concentration of the random matrix f (Z)

around its mean Eμ f , where we measure the size of deviations with the �2 operator norm ‖·‖.

Theorem 2.7 (Subexponential Concentration). Enforce Assumption 2.6. Let f : � → Hd be a
matrix-valued function, and define the variance proxy

vf := ∥∥∥∥�(f )(z)
∥∥∥∥

L∞(μ)
.

For all λ > 0,

Pμ

{‖f −Eμ f ‖ ≥ √
αvf · λ} ≤ 6d · e−λ. (2.6)

In particular,

Eμ ‖f −Eμ f ‖ ≤ log(6ed) · √αvf . (2.7)

The proof of Theorem 2.7 appears in Section 6 after we present some more background on matrix-
valued Markov processes. Note that we have made no effort to refine constants.

The main point of the tail bound (2.6) is that the random matrix f (Z) exhibits exponential concentra-
tion on the scale

√
αvf . The variance proxy vf is analogous to a global bound on the Lipschitz constant

of f . Be aware that we cannot achieve tail decay faster than exponential under the sole assumption of
a Poincaré inequality, so this approach may not capture the strongest possible concentration. The lead-
ing constant in (2.6) reflects the ambient dimension d of the matrix; this feature is typical of matrix
concentration bounds.

The expectation bound (2.7) shows that the average value of ‖f −Eμ f ‖ is proportional to the
square root

√
vf of the variance proxy and to the logarithm of the ambient dimension. For many
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examples, the optimal bound contains the square-root of the logarithm, but the result (2.7) is nontrivial
and informative.

Example 2.8 (Gaussian Series). Theorem 2.7 applies to a matrix-valued function of a standard normal
vector. For instance, according to (2.7), a matrix Gaussian series satisfies the expectation bound

E

∥∥∥∥∥
n∑

i=1

XiAi

∥∥∥∥∥ ≤ log(6ed) ·
∥∥∥∥∥

n∑
i=1

A2
i

∥∥∥∥∥
1/2

.

Modulo the constant and the power on the logarithm, this bound is qualitatively correct for worst-
case examples. On the other hand, the subexponential tail bound (2.6) does not reproduce the actual
sub-Gaussian behavior. See [46], Chapter 5, for discussion. Example 7.3 describes an application to
Gaussian chaos that requires tools more delicate than Theorem 2.7.

Remark 2.9 (Extensions). The bounds in Theorem 2.7 can be refined in several ways. We can replace
the variance proxy vf with less stringent measures of the size of the carré du champ �(f ), such as the
expected Schatten q-norm with q ≈ logd . It is also possible to replace the ambient dimension d with
a measure of the intrinsic dimension of the random matrix f (Z). See Section 7.

Remark 2.10 (Rectangular case). By a standard formal argument, we can extend all the results here
to a function h : � → Md1×d2 that takes values in the d1 × d2 complex matrices. To do so, we simply
apply our results to the self-adjoint function

f (z) =
[

0 h(z)

h(z)∗ 0

]
∈ Hd1+d2 for z ∈ �.

See [46], Section 2.1.17, for details.

2.7. Examples

To indicate the scope of Theorem 2.7, let us present some more examples. Most of these examples
are actually known to exhibit sub-Gaussian matrix concentration, but there is at least one case (Sec-
tion 2.7.4) where the results here are currently the best available.

2.7.1. Log-concave measures

The Gaussian case is a particular example of a more general result for log-concave measures. Suppose
that J : Rn →R is a strongly convex function that satisfies HessJ � ηI uniformly for η > 0. Construct
the probability measure μ on R

n whose density is proportional to e−J . In this example, we briefly dis-
cuss concentration of matrix-valued functions f (X) where X ∼ μ. This model is interesting because
it captures a type of negative dependence.

The appropriate Markov process (Xt : t ≥ 0) evolves with the stochastic differential equation

dXt = −∇J (Xt )dt + √
2 dB t with initial value X0 ∈R

n,

where (B t : t ≥ 0) ⊂ R
n is Brownian motion. The stationary distribution is μ, and the matrix carré du

champ is

�(f )(x) =
n∑

i=1

(
∂if (x)

)2 for x ∈R
n.
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It is well known that these diffusions satisfy a Poincaré inequality with constant α = 1/η; see [4],
Corollary 4.8.2. Therefore, Theorem 2.7 applies.

A fortiori, these log-concave measures also satisfy a local Poincaré inequality, which leads to sub-
Gaussian matrix concentration [22], Section 2.12.2.

2.7.2. Riemannian manifolds with positive curvature

More generally, let (M,g) be a compact Riemannian manifold with co-metric g. The manifold carries
a canonical Riemannian probability measure μg. The diffusion whose infinitesimal generator is the
Laplace–Beltrami operator 
g is called the Brownian motion on the manifold. This is a reversible,
ergodic Markov process. Its matrix carré du champ takes the form

�(f )(z) =
∑
i,j

gij (z)
(
∂if (z)

)(
∂jf (z)

)
for f : � → Hd . (2.8)

The co-metric g and the partial derivatives ∂if are computed with respect to local coordinates. See [4]
for an introduction to diffusions on manifolds; the companion paper [22] treats matrix-valued functions
on manifolds.

Suppose that the manifold has uniformly positive Ricci curvature, where the Ricci tensor has eigen-
values bounded below by ρ. By now, it is a classic fact that the Brownian motion on this manifold
satisfies the scalar Poincaré inequality with constant α = ρ−1. See [4], Section 4.8.

Example 2.11 (Sphere). For n ≥ 2, the unit sphere S
n ⊂Rn+1 is a Riemannian submanifold of Rn+1.

Its canonical measure is the uniform probability distribution, and the carré du champ of the Brownian
motion on the sphere is computed using (2.8). The sphere has positive Ricci curvature with ρ = n − 1,
so it admits a Poincaré inequality with α = (n − 1)−1. Thus, matrix-valued functions on the sphere
satisfy exponential matrix concentration.

A similar story can be told about every positively curved manifold. In fact, in this setting, we even
have sub-Gaussian matrix concentration because of the stronger arguments in [22].

2.7.3. Products

Consider a probability space (�,μ). It is common to work with multivariate functions defined on the
product space (�n,μ⊗n). There is a standard construction [48], Section 2.3.2, of a Markov process on
the product space. Aoun et al. [3] verify that the (matrix) carré du champ of this process is

�(f )(z) = 1

2

n∑
i=1

EZ∼μ

[(
f (z1, . . . , zn) − f (z1, . . . , zi−1,Z, zi+1, . . . , zn)

)2]
.

This is the sum of squared discrete derivatives, each averaging over perturbations in a single coordinate.
The variance proxy vf takes the form

vf = esssupz∈�n

1

2

∥∥∥∥∥
n∑

i=1

EZ∼μ

[(
f (z1, . . . , zn) − f (z1, . . . , zi−1,Z, zi+1, . . . , zn)

)2]∥∥∥∥∥.

The variance proxy coincides with the matrix bounded difference that arises in Paulin et al. [36]. Aoun
et al. prove that the Markov process satisfies a trace Poincaré inequality (2.5) with constant α = 1.
Therefore, Theorem 2.7 yields a suboptimal version of the exponential matrix Efron–Stein inequality
[36], Theorem 4.3. See [3,22] for more details.
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Remark 2.12 (Bernstein concentration?). In the scalar case, Bobkov and Ledoux [5], Corollary 3.2,
have shown that a function f : �n → R on a product space (�n,μ⊗n) exhibits Bernstein-type concen-
tration when μ admits a Poincaré inequality with constant α. In detail,

P
{|f −Ef | > t

} ≤ exp

( −ct2

v + Bt

)
with v =

∥∥∥∥∥
n∑

i=1

(∂if )2

∥∥∥∥∥
L∞

and B = max
i

‖∂if ‖L∞ .

The constant c depends on the constant α in the Poincaré inequality. Our approach does not seem
powerful enough to transfer this insight to the matrix setting. Nevertheless, our paper [22] demonstrates
that a local Poincaré inequality is sufficient to achieve Bernstein concentration.

2.7.4. Stochastic covering property

Aoun et al. [3] have considered a model for negatively dependent functions on the hypercube {0,1}n,
namely the class of measures with the stochastic covering property (SCP). For a k-homogeneous mea-
sure μ with the SCP, it is possible to construct a Markov process that satisfies the trace Poincaré
inequality (2.5) with constant 2k. Thus, Theorem 2.7 applies. See [3,21,37] for a more complete dis-
cussion of this example.

Remark 2.13 (Subgaussian concentration?). Although the Markov process associated with an SCP
measure satisfies a log-Sobolev inequality, we do not know if it satisfies the local Poincaré inequality
that we would need to activate the sub-Gaussian concentration inequalities in [22].

2.7.5. Expander graphs

Let G = (�,E) be a k-regular, connected, undirected graph. We can construct a Markov process
(Zt : t ≥ 0) ⊂ � by taking a continuous-time random walk on the vertex set �. The stationary measure
μ of the random walk is the uniform measure on �. The carré du champ operator takes the form

�(f )(z) = 1

2k

∑
(z′,z)∈E

(
f

(
z′) − f (z)

)2
.

In other words, the “squared gradient” is just the half the average squared difference between the matrix
at the current vertex and its k neighbors. Thus,

vf := max
z∈�

∥∥∥∥ 1

2k

∑
(z′,z)∈E

(
f

(
z′) − f (z)

)2
∥∥∥∥.

The variance proxy is just the maximum “squared gradient” at any vertex.
Assume that the Markov process satisfies the (scalar) Poincaré inequality, Proposition 2.4(1), with

constant α. In this case, we say that G is an α-expander graph. According to Theorem 2.7, a matrix-
valued function f : � → Hd on an α-expander graph satisfies a subexponential matrix concentration
inequality:

P
{‖f −Eμ f ‖ ≥ √

αvf · λ} ≤ 6d · e−λ.

Therefore, local control over the fluctuations yields global concentration around the mean. The number
of vertices where the function departs from its mean is controlled by the quality α of the expander.
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This example is potentially interesting because the Markov process does not satisfy a (modified) log-
Sobolev inequality with a constant independent of the number of vertices in the graph [6], Section 5.
Indeed, to achieve the functional inequality

Entμ(f ) ≤ β · E(f, logf ) for all f : � →R,

it is necessary that β ≥ const · log(#�). See [32], Section 4.3, for related results on curvature-dimension
conditions of Bakry–Émery type.

Remark 2.14 (Matrix Expander Chernoff). Although the modified log-Sobolev inequality fails, it
is still possible to establish sub-Gaussian concentration for the ergodic averages of a matrix-valued
random walk on an expander graph [17].

3. Related work

3.1. Markov processes

Much of the classical research on Markov processes concerns the relationship between the geometry
of the state space and the behavior of canonical diffusion processes (e.g., Brownian motion on a Rie-
mannian manifold). For an introduction, we recommend the lecture notes [48]. A more comprehensive
source is the treatise [4].

Matrix-valued Markov processes first arose in the mathematical physics literature as a model for
the evolution of a quantum system. Some of the foundational works include Davies [15] and Lindblad
[28]. Quantum information theory has provided a new impetus for studying matrix-valued Markov
processes; see [24] for a discussion and some background references.

Here, we are interested in a mixed classical-quantum setting, where a classical Markov process drives
a matrix-valued function. Surprisingly, this model does not seem to have received much attention until
the last few years. See Cheng et al. [14] for a more expansive framework that includes this case. Other
foundational results appear in [3,22].

3.2. Functional inequalities

In the scalar setting, the connection between functional inequalities, convergence of Markov processes,
and concentration is a long-standing topic of research. References include [4,7,26,48].

Functional inequalities for matrices were originally formulated in the mathematical physics litera-
ture; for example, see the work of Gross [19]. The application of functional inequalities to the ergod-
icity of matrix-valued Markov processes dates back at least as far as the papers [31,35].

Functional inequalities in the mixed classical-quantum setting seem to have a more recent vintage.
Chen and Tropp [11] formulated subadditivity properties for tracial entropy-like quantities, including
the trace variance (2.4). They showed that these properties imply some Sobolev and modified log-
Sobolev-type inequalities for random matrices, and they obtained some restricted matrix concentration
inequalities. Some of the partial results from [11] were completed in [12,20,41].

Cheng et al. [14] developed a framework for studying Markov processes in the mixed classical-
quantum setting (and beyond), and they showed an equivalence between tracial log-Sobolev inequali-
ties and exponential ergodicity of the trace entropy. Further results and implications for concentration
appear in [13]. At present, we do not have a full picture of the relationships between matrix functional
inequalities and matrix concentration.
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Van Handel (personal communication) has pointed out that we can derive nonlinear matrix concen-
tration for functions of a log-concave measure with a strongly convex potential by combining Pisier’s
method [39], the (sharp) noncommutative Khintchine inequality [8,47], and Caffarelli’s contraction
theorem [9]. This approach gives subgaussian concentration, which is better than we can obtain via
the trace Poincaré inequality for log-concave measures, but it apparently does not extend beyond this
setting.

3.3. From Poincaré to concentration

It has been recognized for about 40 years that Poincaré inequalities imply exponential concentration.
Gromov and Milman [18], Theorem 4.1, prove such a theorem in the context of Riemannian manifolds.
The standard argument, a recursive estimate of the moment generating function, is attributed to Aida
and Stroock [2]. For a textbook presentation, see [7], Section 3.6.

Consider a matrix Poincaré inequality of the form

Varμ[f ]� α · E(f ). (3.1)

Proposition 2.4 shows that this matrix Poincaré inequality (3.1) is also equivalent to a scalar Poincaré
inequality with the same constant α. The papers [12–14] demonstrate that (3.1) leads to some inequali-
ties for the matrix variance (2.4) and its trace, but these approaches do not lead to matrix concentration
inequalities like Theorem 2.7.

Aoun, Banna, and Youssef [3] have recently shown that the matrix Poincaré inequality (3.1) does im-
ply exponential concentration of a random matrix about its mean with respect to the �2 operator norm.
Modulo constants, their result is equivalent with the tail bound (2.6), but it is weaker than the bounds
in Theorem 7.1. The proof in [3] is a direct analog of the argument of Aida and Stroock [2]. But, in
the matrix setting, the recursive estimate requires some heavy lifting. Another contribution of the pa-
per [3] is to establish that some particular matrix-valued Markov processes satisfy (3.1). Nevertheless,
Proposition 2.4 indicates that no additional effort is required on that end.

Our approach is similar in spirit to the work of Aoun et al. [3], but we use a symmetrization ar-
gument to avoid the difficult recursion. For related work in the scalar setting, see [5], Section 4. In a
companion paper [22], we show that local Poincaré inequalities lead to much stronger ergodicity and
concentration properties. The theory in the companion paper is significantly more involved than the
development here, so we have chosen to separate them. For results on (local) Poincaré inequalities in
noncommutative probability spaces, see Junge and Zeng [23].

4. Subadditivity

To control the variance of a function of several independent variables, it is helpful to understand the
influence of each individual variable. As in the scalar setting, the matrix variance can be bounded by a
sum of conditional variances. We can control each conditional variance by a conditional application of
a trace Poincaré inequality. For simplicity, we focus on the case that is relevant to our proof, but these
results hold in greater generality (products of more than two spaces that may carry different measures).
Some of the material in this section is drawn from [11,12]. See [25] for classic work on subadditivity
and concentration.
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4.1. Influence of a coordinate

Consider the product space (�2,μ ⊗ μ). We want to study how individual coordinates affect the be-
havior of a matrix-valued function g : �2 → Hd .

First, introduce notation for the expectation of the function with respect to each coordinate:

E1[g](z2) := EZ∼μ

[
g(Z, z2)

] ∈ Hd for all z1 ∈ �;
E2[g](z1) := EZ∼μ

[
g(z1,Z)

] ∈ Hd for all z2 ∈ �.

The coordinate-wise variance is the positive-semidefinite random matrix

Vari[g] := Ei

[
(g −Ei g)2] ∈H

+
d for i = 1,2.

This matrix reflects the fluctuation in the ith coordinate, with the other coordinate held fixed.
Similarly, we can introduce the coordinate-wise carré du champ operator and Dirichlet form:

�1(g)(z1, z2) := lim
t↓0

1

2t
E

[(
g(Zt , z2) − g(Z0, z2)

)2 | Z0 = z1
] ∈ H

+
d ;

E1(g)(z2) := lim
t↓0

1

2t
EZ∼μ

[(
g(Zt , z2) − g(Z0, z2)

)2 | Z0 = Z
] ∈ H

+
d .

(4.1)

As usual, (Zt : t ≥ 0) is a realization of the Markov process with initial value Z0. We make analogous
definitions for the second coordinate i = 2.

Last, we extend the carré du champ operator and the Dirichlet form to bivariate functions:

�(g) := �1(g) + �2(g) ∈ H
+
d ; (4.2)

E(g) := Eμ⊗μ

[
E1(g) + E2(g)

] ∈ H
+
d . (4.3)

These formulas have a heuristic interpretation: the squared derivative of a bivariate function is the sum
of the squared partial derivatives.

4.2. Trace variance is subadditive

Observe that the trace variance is controlled by the sum of the coordinate-wise variances.

Fact 4.1 (Trace variance: Subadditivity). Let g : �2 → Hd be a matrix-valued function on the prod-
uct space (�2,μ ⊗ μ). Then

tr Varμ⊗μ[g] ≤ E2 tr Var1[g] +E1 tr Var2[g].

This result is due to Chen and Tropp [11], who showed that other matrix functions are also subad-
ditive. Later, Cheng and Hsieh [12] noticed that an analogous result holds without the trace. Similar
decompositions are also valid for functions on the n-fold product (�1 ⊗ �2 ⊗ · · · ⊗ �n,μ1 ⊗ μ2 ⊗
· · · ⊗ μn). See [48], Section 2.1, for the standard result in the scalar setting.
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Proof. The proof is the same as in the scalar setting. Writing E = Eμ⊗μ for the total expectation,

EVarμ⊗μ[g] := E
[
(g −Eg)2] = E

[
(g −E1 g)2 + (E1 g −E1 E2 g)2]

� E
[
(g −E1 g)2] +E

[
(g −E2 g)2]

= E2 Var1[g] +E1 Var2[g].
The first line relies on orthogonality of the conditionally centered random matrices. The second line
requires the operator convexity of the square, applied conditionally. Last, take the trace. �

4.3. Trace Poincaré inequalities are subadditive

If the Markov process satisfies a trace Poincaré inequality, then the variance of a bivariate function also
satisfies a trace Poincaré inequality.

Proposition 4.2 (Trace Poincaré: Subadditivity). Suppose that the Markov process satisfies a trace
Poincaré inequality (2.5) with constant α. Let g : �2 → Hd be a suitable bivariate matrix-valued
function. Then

tr Varμ⊗μ[g] ≤ α · trE(g).

Proof. Start with Fact 4.1. Apply the trace Poincaré inequality (2.5) coordinate-wise to control each
of the two coordinate-wise variances. Last, introduce the definition (4.3) of the Dirichlet form for a
bivariate function. �

5. Chain rule inequality for the Dirichlet form

The key new tool in our approach is a simple trace inequality for the matrix Dirichlet form that shows
how it interacts with composition.

Proposition 5.1 (Chain rule inequality). Enforce Assumption 2.6. Let ϕ : R→R be a scalar function
whose squared derivative ψ = (ϕ′)2 is convex. Then

trE
(
ϕ(f )

) = Eμ tr�
(
ϕ(f )

) ≤ Eμ tr
[
�(f )ψ(f )

]
for all suitable f : � → Hd .

In particular,

trE
(
ϕ(g)

) = Eμ⊗μ tr�
(
ϕ(g)

) ≤ Eμ⊗μ tr
[
�(g)ψ(g)

]
for all suitable g : �2 → Hd .

The proof of Proposition 5.1 consumes the rest of this section.
For context, recall that the carré du champ operator � of a (scalar-valued, reversible) diffusion pro-

cess satisfies a chain rule [4], Section 1.11:

�
(
ϕ(f )

) = �(f )ϕ′(f )2 for smooth f and ϕ.

Proposition 5.1 provides a substitute for this relation for an arbitrary reversible Markov process that
takes matrix values. In exchange for the wider applicability, we need some additional averaging (pro-
vided by the Dirichlet form); we must restrict our attention to functions ϕ with a convexity property;
and the equality is relaxed to an inequality. In the scalar case, Proposition 5.1 is related to the Stroock–
Varopoulos inequality [43,49].
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5.1. Mean-value inequality for trace functions

The argument hinges on an elementary trace inequality for deterministic matrices. This result is
obtained by lifting a numerical inequality to self-adjoint matrices. A very similar statement [30],
Lemma 3.4, animates the exchangeable pairs approach to matrix concentration, which is motivated
by work in the scalar setting [10].

Lemma 5.2 (Mean-value trace inequality). Let A,B ∈ Hd . Let ϕ : R → R be a scalar function
whose squared derivative ψ = (ϕ′)2 is convex. Then

tr
[(

ϕ(A) − ϕ(B)
)2] ≤ 1

2
tr
[
(A − B)2(ψ(A) + ψ(B)

)]
.

Proof. Let a, b ∈ R. The fundamental theorem of calculus and Jensen’s inequality together deliver the
relations

(
ϕ(a) − ϕ(b)

)2 = (a − b)2
[∫ 1

0
dτϕ′(τa + (1 − τ)b

)]2

≤ (a − b)2
∫ 1

0
dτψ

(
τa + (1 − τ)b

)

≤ (a − b)2
∫ 1

0
dτ

[
τψ(a) + (1 − τ)ψ(b)

] = 1

2
(a − b)2(ψ(a) + ψ(b)

)
.

The generalized Klein inequality [38], Proposition 3, allows us to lift this numerical fact to a trace
inequality for matrices A,B ∈ Hd . �

5.2. Proof of Proposition 5.1

The result follows from a short calculation. First, we use the definition (2.3) of the Dirichlet form as a
limit:

trE
(
ϕ(f )

) = lim
t↓0

1

2t
EZ∼μ

[
tr
[(

ϕ
(
f (Zt )

) − ϕ
(
f (Z0)

))2] | Z0 = Z
]

≤ lim
t↓0

1

4t
EZ∼μ tr

[(
f (Zt ) − f (Z0)

)2(
ψ

(
f (Zt )

) + ψ
(
f (Z0)

)) | Z0 = Z
]

= lim
t↓0

1

2t
EZ∼μ tr

[(
f (Zt ) − f (Z0)

)2
ψ

(
f (Z0)

) | Z0 = Z
]

= EZ∼μ tr

[
lim
t↓0

1

2t
E

[(
f (Zt ) − f (Z0)

)2 | Z0 = Z
]
ψ

(
f (Z)

)]

= Eμ tr
[
�(f )ψ(f )

]
.

The inequality is Lemma 5.2. To reach the third line, we use the fact that (Z0,Zt ) is an exchangeable
pair for each t ≥ 0, a consequence of the reversibility of the Markov process (Zt : t ≥ 0) and the
fact that Z0 ∼ μ. Last, we condition on the value of Z0, invoke dominated convergence to pass the
expectation through the limit, and we apply the definition (2.2) of the carré du champ operator.
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6. Exponential moments

Our main technical result is a bound for the exponential moments of a general matrix-valued function
on the state space. In contrast to the usual approach of bounding the moment generating function, we
will compute the expectation of a hyperbolic function.

Theorem 6.1 (Exponential moments). Enforce Assumption 2.6. Let f : � → Hd be a function with
Eμ f = 0. For θ > 0,

Eμ tr cosh(θf ) ≤ d ·
[

1 + αθ2 t̄rE(f )

(1 − αvf θ2/2)+

]
. (6.1)

The variance proxy vf is defined in (2.7), and t̄r is the normalized trace.

The proof of Theorem 6.1 occupies the rest of the section. But first, we use this moment bound to
derive our main result, Theorem 2.7.

Proof of Theorem 2.7 from Theorem 6.1. Without loss, assume that Eμ f = 0. We use the matrix
moment method [1,34]:

Pμ

{‖f ‖ ≥ λ
} ≤ inf

θ>0

1

cosh(θλ)
·Eμ cosh

(
θ‖f ‖) = inf

θ>0

2

eθλ + e−θλ
·Eμ

∥∥cosh(θf )
∥∥

≤ inf
θ>0

2

eθλ
·Eμ tr cosh(θf ) ≤ 2d · inf

θ>0
e−θλ ·

[
1 + αθ2 t̄rE(f )

(1 − αvf θ2/2)+

]

≤ 2d · e−λ/
√

αvf ·
[

1 + 2 t̄rE(f )

vf

]
≤ 6d · e−λ/

√
αvf .

The first inequality is Markov’s. The second relation is the spectral mapping theorem. The �2 operator
norm of a positive-definite matrix is obviously bounded by its trace. Then invoke Theorem 6.1 to
control the moment. We have chosen θ = (αvf )−1/2. Last, we have noted that t̄rE(f ) ≤ ‖E(f )‖ ≤ vf .
To finish the proof of the tail bound (2.6), make the change of variables λ �→ λ

√
αvf .

The expectation bound (2.7) follows when we integrate the tail bound (2.6), taking into account that
the probability is also bounded by one; we omit the details. �

6.1. Proof of Theorem 6.1

Our goal is to develop an exponential moment bound for a function f : � →Hd that satisfies Eμ f = 0.
We will need to work with both the hyperbolic sine and cosine, passing between them using simple
identities. After writing this paper, we learned that this proof is a matrix analog of an argument pro-
posed by Bobkov and Ledoux [5], Section 4.

6.1.1. Symmetrization

The first step is to symmetrize the function. Let Z,Z′ ∈ � be independent random variables, each with
distribution μ. Since f (Z′) has mean zero, a conditional application of Jensen’s inequality yields

E tr sinh2(θf (Z)
) ≤ E tr sinh2(θ(

f (Z) − f
(
Z′))) =: E tr sinh2(θg

(
Z,Z′)). (6.2)

Indeed, since sinh2 is convex, the function tr sinh2 is also convex [38], Proposition 2. We have defined
the antisymmetric function g(z, z′) := f (z) − f (z′) for z, z′ ∈ �.
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6.1.2. From moments to variance

Next, we will write the expectation as a variance. Consider the odd function ϕ(s) = sinh(θs). First, we
claim that

E sinh
(
θg

(
Z,Z′)) = 0.

Indeed, using the antisymmetry of g and the oddness of ϕ,

E sinh
(
θg

(
Z,Z′)) = E sinh

(−θg
(
Z′,Z

)) = −E sinh
(
θg

(
Z′,Z

)) = −E sinh
(
θg

(
Z,Z′)).

The last identity holds because (Z,Z′) is exchangeable.
As an immediate consequence,

Eμ⊗μ tr sinh2(θg) = Eμ⊗μ tr sinh2(θg) − tr
[(
Eμ⊗μ sinh(θg)

)2] = tr Varμ⊗μ

[
sinh(θg)

]
.

The appearance of the variance gives us access to Poincaré inequalities.

6.1.3. Poincaré inequality

To continue, we apply Proposition 4.2, the trace Poincaré inequality for bivariate functions:

Eμ⊗μ tr sinh2(θg) ≤ α · trE
(
sinh(θg)

) ≤ αθ2 ·Eμ⊗μ tr
[
�(g) cosh2(θg)

]
. (6.3)

The second inequality is the chain rule, Proposition 5.1, for the Dirichlet form. To activate it, we note
that the squared derivative of ϕ(s) = sinh(θs) is the convex function ψ(s) = θ2 cosh2(θs).

6.1.4. Moment comparison

A moment comparison argument allows us to isolate the exponential moment. Define the variance
proxy of the bivariate function:

vg := ∥∥∥∥�(g)
∥∥∥∥

L∞(μ⊗μ)
. (6.4)

Continuing from (6.3), the identity cosh2 = 1 + sinh2 implies that

Eμ⊗μ tr sinh2(θg) ≤ αθ2 ·Eμ⊗μ tr�(g) + αθ2 ·Eμ⊗μ tr
[
�(g) sinh2(θg)

]
≤ αθ2 · trE(g) + αθ2vg ·Eμ⊗μ tr sinh2(θg).

The second inequality is just the usual operator-norm bound for the trace. Rearrange this identity to
arrive at

Eμ⊗μ tr sinh2(θg) ≤ αθ2 trE(g)

(1 − αvgθ2)+
. (6.5)

It remains to revert to the original function f .

6.1.5. Comparison of carré du champs

Let us compute the Dirichlet form E(g) and the variance proxy vf in terms of the original function f .
To that end, observe that the coordinate-wise carré du champ (4.1) satisfies

�1(g)
(
z, z′) = E lim

t↓0

1

2t

[(
g
(
Zt , z

′) − g
(
Z0, z

′))2 | Z0 = z
]

= E lim
t↓0

1

2t

[(
f (Zt ) − f (Z0)

)2 | Z0 = z
] = �(f )(z).
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A similar calculation reveals that �2(g)(z, z′) = �(f )(z′). Thus, the bivariate carré du champ (4.2)
takes the form

�(g)
(
z, z′) = �1(g)

(
z, z′) + �2(g)

(
z, z′) = �(f )(z) + �(f )

(
z′). (6.6)

As a consequence, the Dirichlet form can be calculated as

E(g) = Eμ⊗μ �(g) = Eμ⊗μ

[
�(f )(z) + �(f )

(
z′)] = 2E(f ). (6.7)

The variance proxy (6.4) of the bivariate function satisfies

vg = ∥∥∥∥�(g)
(
z, z′)∥∥∥∥

L∞(μ⊗μ)
≤ ∥∥∥∥�(f )(z)

∥∥∥∥
L∞(μ)

+ ∥∥∥∥�(f )
(
z′)∥∥∥∥

L∞(μ)
= 2vf . (6.8)

The last relation is the definition (2.7) of the variance proxy vf .

6.1.6. Endgame

Combining (6.2) and (6.5), we see that

Eμ tr sinh2(θf ) ≤ αθ2 trE(g)

(1 − αvgθ2)+
≤ 2αθ2 trE(f )

(1 − 2αvf θ2)+
.

We have also used the relations (6.7) and (6.8) from the last section.
To compete the proof of (6.1), invoke the identity sinh2(s) = (cosh(2s) − 1)/2 to see that

Eμ tr cosh(2θf ) ≤ d + 4αθ2 trE(f )

(1 − 2αvf θ2)+
.

Finally, introduce the normalized trace, t̄r, and make the change of variables θ �→ θ/2 to arrive at

Eμ tr cosh(θf ) ≤ d ·
[

1 + αθ2 t̄rE(f )

(1 − αvf θ2/2)+

]
.

This is the stated result.

7. Polynomial moments

By a simple variation on the proof of Theorem 6.1, we can also obtain bounds for the polynomial
moments of a random matrix.

Theorem 7.1 (Polynomial moments). Enforce Assumption 2.6. Let f : � → Hd be a function with
Eμ f = 0. For q = 1 and q ≥ 1.5,

(
Eμ tr |f |2q

)1/(2q) ≤
√

2αq2 · (Eμ tr�(f )q
)1/(2q)

. (7.1)
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By combining Theorem 7.1 with the moment method, we can obtain probability bounds for ‖f ‖. Let
us summarize how these results compare with the main result, Theorem 2.7. Observe that Theorem 7.1
gives a bound on the Schatten 2q-norm of the random matrix f (Z) in terms of the Schatten 2q-norm
of �(f )1/2. We have the relation

(
Eμ tr�(f )q

)1/(2q) ≤ d1/(2q) · ∥∥∥∥�(f )(z)
∥∥∥∥1/2

L∞(μ)
= d1/(2q) · √vf . (7.2)

Therefore, Theorem 7.1 potentially yields stronger bounds than Theorem 6.1.
In particular, Theorem 7.1 applies even when �(f ) is not uniformly bounded. Example 7.3 illustrates

why this flexibility is valuable. In Section 7.2, we show that slightly better polynomial moment bounds
are possible when �(f ) is uniformly bounded.

Remark 7.2 (Missing Parameters). Theorem 7.1 also holds for q ∈ (1,1.5), with an extra factor of√
2 on the right-hand side. The proof uses a variant of Proposition 5.1 that only requires the function

ψ to be monotone.

Example 7.3 (Gaussian Chaos). Consider the matrix Gaussian chaos

f (X) =
n∑

i,j=1

XiXjAij where X ∼ γn and Aij = Aji ∈Hd .

To bound the trace moments of f (X), observe that the carré du champ takes the form

�(f )(x) =
n∑

i=1

(
∂if (x)

)2 = 4
n∑

i=1

(
n∑

j=1

xjAij

)2

.

Evidently, �(f ) is unbounded, so Theorem 2.7 does not apply. But Theorem 7.1 yields

(
Eγn tr |f |2q

)1/(2q) ≤
√

8q2 ·
(
Eγn tr

[
n∑

i=1

(
n∑

j=1

XjAij

)2]q)1/(2q)

. (7.3)

We have used the fact that the Poincaré constant of the OU process is α = 1. Further bounds can be
obtained by applying Theorem 7.1 repeatedly. In the matrix setting, there are obstacles that prevent us
from simplifying (7.3) completely (related to the fact that the partial transpose operator is not com-
pletely bounded).

In the scalar case d = 1, we can obtain more transparent conclusions. Consider the scalar-valued
Gaussian chaos

f (X) =
n∑

i,j=1

XiXjaij .
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The most satisfying outcome takes place when A = [aij ] is positive semidefinite. In this case, the result
(7.3) implies that

(
Eγn |f |2q

)1/(2q) ≤
√

8q2 ·
(
Eγn

[
n∑

i=1

(
n∑

j=1

Xjaij

)2]q)1/(2q)

=
√

8q2 ·
(
Eγn

[
n∑

j,k=1

XjXk

(
A2)

jk

]q)1/(2q)

≤
√

8q2‖A‖ · (Eγn |f |q)1/2q ≤
√

8q2‖A‖ · (Eγn |f |2q
)1/4q

.

Solving, we obtain the bound (
Eγn |f |2q

)1/(2q) ≤ 8q2‖A‖.
This result gives a suboptimal estimate for large moments of the Gaussian chaos; as q → ∞, the
moments should grow in proportion to q‖A‖ rather than q2‖A‖. For example, see [27], Corollary 3.9.

7.1. Proof of Theorem 7.1

For a parameter q = 1 or q ≥ 1.5, we wish to estimate the Schatten 2q-norm of a function f : � → Hd

that satisfies Eμ f = 0. The argument has the same structure as Theorem 6.1.
First, we symmetrize. Let Z,Z′ ∈ � be independent random variables, each with distribution μ.

Jensen’s inequality implies that

E tr |f |2q ≤ E tr
∣∣f (Z) − f

(
Z′)∣∣2q =: E tr

∣∣g(
Z,Z′)∣∣2q

. (7.4)

Since | · |2q is convex, the function tr | · |2q is also convex [38], Proposition 2.
Define the signed moment function ϕ(s) := sgn (s) · |s|q , which is odd. Note that its squared deriva-

tive ψ(s) := (ϕ′(s))2 = q2|s|2(q−1) is convex. Since g(z, z′) = f (z) − f (z′) is antisymmetric,

Eμ⊗μ tr |g|2q = Eμ⊗μ trϕ(g)2

= Eμ⊗μ trϕ(g)2 − tr
[(
Eμ⊗μ ϕ(g)

)2] = tr Varμ⊗μ

[
ϕ(g)

]
.

Apply the bivariate trace Poincaré inequality, Proposition 4.2:

tr Varμ⊗μ

[
ϕ(g)

] ≤ α · trE
(
ϕ(g)

) ≤ αq2 ·Eμ⊗μ tr
[
�(g)ψ(g)

]
.

The second bound is the chain rule inequality, Proposition 5.1. In summary,

Eμ⊗μ tr |g|2q ≤ αq2 ·Eμ⊗μ tr
[
�(g)|g|2(q−1)

]
. (7.5)

This formula allow us to perform a moment comparison.
To isolate the carré du champ �(g), invoke Hölder’s inequality for the Schatten norms:

Eμ⊗μ tr |g|2q ≤ αq2(
Eμ⊗μ tr�(g)q

)1/q(
Eμ⊗μ tr |g|2q

)(q−1)/q
.
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Rearrange the last display, and use the initial bound (7.4) to arrive at

(
Eμ⊗μ tr |f |2q

)1/(2q) ≤ (
Eμ⊗μ tr |g|2q

)1/(2q) ≤
√

αq2 · (Eμ⊗μ tr�(g)q
)1/(2q)

.

To finish the proof of (7.1), recall the expression (6.6) for the carré du champ �(g). Thus,

(
Eμ⊗μ tr�(g)q

)1/q = (
Eμ⊗μ tr

∣∣�(f )(z) + �(f )
(
z′)∣∣q)1/q ≤ 2

(
Eμ tr�(f )q

)1/q
.

This point follows from the triangle inequality. The argument is complete.

7.2. A variant of the argument

The intrinsic dimension of a positive-semidefinite matrix is

intdim(A) := tr(A)

‖A‖ for A ∈ H
+
d .

We also set intdim(0) = 0. For a nonzero matrix A, the intrinsic dimension satisfies 1 ≤ intdim(A) ≤
rank(A). It can be interpreted as a continuous measure of the rank.

Suppose that q is a natural number. If we use the uniform bound (6.4) for the carré du champ instead
of Hölder’s inequality, we can apply the bound (7.5) iteratively to obtain

Eμ⊗μ tr |g|2q ≤ intdim
(
E(g)

) · αqq! · vq
g.

The latter estimate improves over the uniform inequality that follows from Theorem 7.1 and (7.2).

Acknowledgment

Ramon Van Handel offered valuable feedback on a preliminary version of this work, and we are grateful
to him for the proof of Proposition 2.4.

Funding

DH was funded by NSF grants DMS-1907977 and DMS-1912654. JAT gratefully acknowledges fund-
ing from ONR awards N00014-17-12146 and N00014-18-12363, and he would like to thank his family
for their support in these difficult times.

References

[1] Ahlswede, R. and Winter, A. (2002). Strong converse for identification via quantum channels. IEEE Trans.
Inf. Theory 48 569–579. MR1889969 https://doi.org/10.1109/18.985947

[2] Aida, S. and Stroock, D. (1994). Moment estimates derived from Poincaré and logarithmic Sobolev inequal-
ities. Math. Res. Lett. 1 75–86. MR1258492 https://doi.org/10.4310/MRL.1994.v1.n1.a9

[3] Aoun, R., Banna, M. and Youssef, P. (2020). Matrix Poincaré inequalities and concentration. Adv. Math. 371
107251, 33. MR4108222 https://doi.org/10.1016/j.aim.2020.107251

http://www.ams.org/mathscinet-getitem?mr=1889969
https://doi.org/10.1109/18.985947
http://www.ams.org/mathscinet-getitem?mr=1258492
https://doi.org/10.4310/MRL.1994.v1.n1.a9
http://www.ams.org/mathscinet-getitem?mr=4108222
https://doi.org/10.1016/j.aim.2020.107251


From Poincaré to matrix concentration 1743

[4] Bakry, D., Gentil, I. and Ledoux, M. (2014). Analysis and Geometry of Markov Diffusion Operators.
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 348.
Cham: Springer. MR3155209 https://doi.org/10.1007/978-3-319-00227-9

[5] Bobkov, S. and Ledoux, M. (1997). Poincaré’s inequalities and Talagrand’s concentration phenomenon for
the exponential distribution. Probab. Theory Related Fields 107 383–400. MR1440138 https://doi.org/10.
1007/s004400050090

[6] Bobkov, S.G. and Tetali, P. (2006). Modified logarithmic Sobolev inequalities in discrete settings. J. Theoret.
Probab. 19 289–336. MR2283379 https://doi.org/10.1007/s10959-006-0016-3

[7] Boucheron, S., Lugosi, G. and Massart, P. (2013). Concentration Inequalities: A Nonasymptotic Theory of In-
dependence. Oxford: Oxford Univ. Press. MR3185193 https://doi.org/10.1093/acprof:oso/9780199535255.
001.0001

[8] Buchholz, A. (2001). Operator Khintchine inequality in non-commutative probability. Math. Ann. 319 1–16.
MR1812816 https://doi.org/10.1007/PL00004425

[9] Caffarelli, L.A. (2000). Monotonicity properties of optimal transportation and the FKG and related inequal-
ities. Comm. Math. Phys. 214 547–563. MR1800860 https://doi.org/10.1007/s002200000257

[10] Chatterjee, S. (2007). Stein’s method for concentration inequalities. Probab. Theory Related Fields 138 305–
321. MR2288072 https://doi.org/10.1007/s00440-006-0029-y

[11] Chen, R.Y. and Tropp, J.A. (2014). Subadditivity of matrix ϕ-entropy and concentration of random matrices.
Electron. J. Probab. 19 no. 27, 30. MR3174839 https://doi.org/10.1214/ejp.v19-2964

[12] Cheng, H.-C. and Hsieh, M.-H. (2016). Characterizations of matrix and operator-valued �-entropies, and
operator Efron–Stein inequalities. Proc. R. Soc. A 472 20150563, 20. MR3488705 https://doi.org/10.1098/
rspa.2015.0563

[13] Cheng, H.-C. and Hsieh, M.-H. (2019). Matrix Poincaré, �-Sobolev inequalities, and quantum ensembles.
J. Math. Phys. 60 032201, 16. MR3922774 https://doi.org/10.1063/1.5035381

[14] Cheng, H.-C., Hsieh, M.-H. and Tomamichel, M. (2017). Exponential decay of matrix �-entropies on
Markov semigroups with applications to dynamical evolutions of quantum ensembles. J. Math. Phys. 58
092202, 24. MR3702668 https://doi.org/10.1063/1.5000846

[15] Davies, E.B. (1969). Quantum stochastic processes. Comm. Math. Phys. 15 277–304. MR0266288
[16] Garg, A., Kathuria, T. and Srivastava, N. (2020). Scalar Poincaré implies matrix Poincaré. Preprint. Available

at arXiv:2006.09567 [math.PR].
[17] Garg, A., Lee, Y.T., Song, Z. and Srivastava, N. (2018). A matrix expander Chernoff bound. In STOC’18 –

Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing 1102–1114. New York:
ACM. MR3826320

[18] Gromov, M. and Milman, V.D. (1983). A topological application of the isoperimetric inequality. Amer.
J. Math. 105 843–854. MR0708367 https://doi.org/10.2307/2374298

[19] Gross, L. (1975). Hypercontractivity and logarithmic Sobolev inequalities for the Clifford Dirichlet form.
Duke Math. J. 42 383–396. MR0372613

[20] Hansen, F. and Zhang, Z. (2015). Characterisation of matrix entropies. Lett. Math. Phys. 105 1399–1411.
MR3395224 https://doi.org/10.1007/s11005-015-0784-8

[21] Hermon, J. and Salez, J. (2019). Modified log-Sobolev inequalities for strong-Rayleigh measures.
[22] Huang, D. and Tropp, J.A. (2021). Nonlinear matrix concentration via semigroup methods. Electron.

J. Probab. 26 1–31. https://doi.org/10.1214/20-EJP578
[23] Junge, M. and Zeng, Q. (2015). Noncommutative martingale deviation and Poincaré type inequali-

ties with applications. Probab. Theory Related Fields 161 449–507. MR3334274 https://doi.org/10.1007/
s00440-014-0552-1

[24] Kastoryano, M.J. and Temme, K. (2013). Quantum logarithmic Sobolev inequalities and rapid mixing.
J. Math. Phys. 54 052202, 30. MR3098923 https://doi.org/10.1063/1.4804995

[25] Ledoux, M. (1995/97). On Talagrand’s deviation inequalities for product measures. ESAIM Probab. Stat. 1
63–87. MR1399224 https://doi.org/10.1051/ps:1997103

[26] Ledoux, M. (2001). The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs
89. Providence, RI: Amer. Math. Soc. MR1849347 https://doi.org/10.1090/surv/089

[27] Ledoux, M. and Talagrand, M. (2011). Probability in Banach Spaces: Isoperimetry and Processes. Classics
in Mathematics. Berlin: Springer. MR2814399

http://www.ams.org/mathscinet-getitem?mr=3155209
https://doi.org/10.1007/978-3-319-00227-9
http://www.ams.org/mathscinet-getitem?mr=1440138
https://doi.org/10.1007/s004400050090
http://www.ams.org/mathscinet-getitem?mr=2283379
https://doi.org/10.1007/s10959-006-0016-3
http://www.ams.org/mathscinet-getitem?mr=3185193
https://doi.org/10.1093/acprof:oso/9780199535255.001.0001
http://www.ams.org/mathscinet-getitem?mr=1812816
https://doi.org/10.1007/PL00004425
http://www.ams.org/mathscinet-getitem?mr=1800860
https://doi.org/10.1007/s002200000257
http://www.ams.org/mathscinet-getitem?mr=2288072
https://doi.org/10.1007/s00440-006-0029-y
http://www.ams.org/mathscinet-getitem?mr=3174839
https://doi.org/10.1214/ejp.v19-2964
http://www.ams.org/mathscinet-getitem?mr=3488705
https://doi.org/10.1098/rspa.2015.0563
http://www.ams.org/mathscinet-getitem?mr=3922774
https://doi.org/10.1063/1.5035381
http://www.ams.org/mathscinet-getitem?mr=3702668
https://doi.org/10.1063/1.5000846
http://www.ams.org/mathscinet-getitem?mr=0266288
http://arxiv.org/abs/arXiv:2006.09567
http://www.ams.org/mathscinet-getitem?mr=3826320
http://www.ams.org/mathscinet-getitem?mr=0708367
https://doi.org/10.2307/2374298
http://www.ams.org/mathscinet-getitem?mr=0372613
http://www.ams.org/mathscinet-getitem?mr=3395224
https://doi.org/10.1007/s11005-015-0784-8
https://doi.org/10.1214/20-EJP578
http://www.ams.org/mathscinet-getitem?mr=3334274
https://doi.org/10.1007/s00440-014-0552-1
http://www.ams.org/mathscinet-getitem?mr=3098923
https://doi.org/10.1063/1.4804995
http://www.ams.org/mathscinet-getitem?mr=1399224
https://doi.org/10.1051/ps:1997103
http://www.ams.org/mathscinet-getitem?mr=1849347
https://doi.org/10.1090/surv/089
http://www.ams.org/mathscinet-getitem?mr=2814399
https://doi.org/10.1007/s004400050090
https://doi.org/10.1093/acprof:oso/9780199535255.001.0001
https://doi.org/10.1098/rspa.2015.0563
https://doi.org/10.1007/s00440-014-0552-1


1744 D. Huang and J.A. Tropp

[28] Lindblad, G. (1976). On the generators of quantum dynamical semigroups. Comm. Math. Phys. 48 119–130.
MR0413878

[29] Lust-Piquard, F. (1986). Inégalités de Khintchine dans Cp (1 < p < ∞). C. R. Acad. Sci. Paris Sér. I Math.
303 289–292. MR0859804

[30] Mackey, L., Jordan, M.I., Chen, R.Y., Farrell, B. and Tropp, J.A. (2014). Matrix concentration inequali-
ties via the method of exchangeable pairs. Ann. Probab. 42 906–945. MR3189061 https://doi.org/10.1214/
13-AOP892

[31] Majewski, A.W., Olkiewicz, R. and Zegarlinski, B. (1998). Dissipative dynamics for quantum spin systems
on a lattice. J. Phys. A 31 2045–2056. MR1628657 https://doi.org/10.1088/0305-4470/31/8/015

[32] Münch, F. (2019). Li–Yau inequality under cd(0, n) on graphs. Preprint. Available at arXiv:1909.10242
[math.DG].

[33] Oliveira, R.I. (2009). Concentration of the adjacency matrix and of the Laplacian in random graphs with
independent edges.

[34] Oliveira, R.I. (2010). Sums of random Hermitian matrices and an inequality by Rudelson. Electron. Commun.
Probab. 15 203–212. MR2653725 https://doi.org/10.1214/ECP.v15-1544

[35] Olkiewicz, R. and Zegarlinski, B. (1999). Hypercontractivity in noncommutative Lp spaces. J. Funct. Anal.
161 246–285. MR1670230 https://doi.org/10.1006/jfan.1998.3342

[36] Paulin, D., Mackey, L. and Tropp, J.A. (2016). Efron–Stein inequalities for random matrices. Ann. Probab.
44 3431–3473. MR3551202 https://doi.org/10.1214/15-AOP1054

[37] Pemantle, R. and Peres, Y. (2014). Concentration of Lipschitz functionals of determinantal and other
strong Rayleigh measures. Combin. Probab. Comput. 23 140–160. MR3197973 https://doi.org/10.1017/
S0963548313000345

[38] Petz, D. (1994). A survey of certain trace inequalities. In Functional Analysis and Operator Theory (Warsaw,
1992). Banach Center Publ. 30 287–298. Warsaw: Polish Acad. Sci. Inst. Math. MR1285615

[39] Pisier, G. (1986). Probabilistic methods in the geometry of Banach spaces. In Probability and Analysis
(Varenna, 1985). Lecture Notes in Math. 1206 167–241. Berlin: Springer. MR0864714 https://doi.org/10.
1007/BFb0076302

[40] Pisier, G. and Xu, Q. (1997). Non-commutative martingale inequalities. Comm. Math. Phys. 189 667–698.
MR1482934 https://doi.org/10.1007/s002200050224

[41] Pitrik, J. and Virosztek, D. (2015). On the joint convexity of the Bregman divergence of matrices. Lett. Math.
Phys. 105 675–692. MR3339204 https://doi.org/10.1007/s11005-015-0757-y

[42] Rudelson, M. (1999). Random vectors in the isotropic position. J. Funct. Anal. 164 60–72. MR1694526
https://doi.org/10.1006/jfan.1998.3384

[43] Stroock, D.W. (1984). An Introduction to the Theory of Large Deviations. Universitext. New York: Springer.
MR0755154 https://doi.org/10.1007/978-1-4613-8514-1

[44] Tropp, J.A. (2011). Freedman’s inequality for matrix martingales. Electron. Commun. Probab. 16 262–270.
MR2802042 https://doi.org/10.1214/ECP.v16-1624

[45] Tropp, J.A. (2012). User-friendly tail bounds for sums of random matrices. Found. Comput. Math. 12 389–
434. MR2946459 https://doi.org/10.1007/s10208-011-9099-z

[46] Tropp, J.A. (2015). An introduction to matrix concentration inequalities. Found. Trends Mach. Learn. 8
1–230.

[47] Tropp, J.A. (2016). The expected norm of a sum of independent random matrices: An elementary approach.
In High Dimensional Probability VII. Progress in Probability 71 173–202. Cham: Springer. MR3565264
https://doi.org/10.1007/978-3-319-40519-3_8

[48] Van Handel, R. (2016). Probability in High Dimension. APC 550 lecture notes, Princeton Univ.
[49] Varopoulos, N.T. (1985). Hardy–Littlewood theory for semigroups. J. Funct. Anal. 63 240–260. MR0803094

https://doi.org/10.1016/0022-1236(85)90087-4

Received June 2020 and revised October 2020

http://www.ams.org/mathscinet-getitem?mr=0413878
http://www.ams.org/mathscinet-getitem?mr=0859804
http://www.ams.org/mathscinet-getitem?mr=3189061
https://doi.org/10.1214/13-AOP892
http://www.ams.org/mathscinet-getitem?mr=1628657
https://doi.org/10.1088/0305-4470/31/8/015
http://arxiv.org/abs/arXiv:1909.10242
http://www.ams.org/mathscinet-getitem?mr=2653725
https://doi.org/10.1214/ECP.v15-1544
http://www.ams.org/mathscinet-getitem?mr=1670230
https://doi.org/10.1006/jfan.1998.3342
http://www.ams.org/mathscinet-getitem?mr=3551202
https://doi.org/10.1214/15-AOP1054
http://www.ams.org/mathscinet-getitem?mr=3197973
https://doi.org/10.1017/S0963548313000345
http://www.ams.org/mathscinet-getitem?mr=1285615
http://www.ams.org/mathscinet-getitem?mr=0864714
https://doi.org/10.1007/BFb0076302
http://www.ams.org/mathscinet-getitem?mr=1482934
https://doi.org/10.1007/s002200050224
http://www.ams.org/mathscinet-getitem?mr=3339204
https://doi.org/10.1007/s11005-015-0757-y
http://www.ams.org/mathscinet-getitem?mr=1694526
https://doi.org/10.1006/jfan.1998.3384
http://www.ams.org/mathscinet-getitem?mr=0755154
https://doi.org/10.1007/978-1-4613-8514-1
http://www.ams.org/mathscinet-getitem?mr=2802042
https://doi.org/10.1214/ECP.v16-1624
http://www.ams.org/mathscinet-getitem?mr=2946459
https://doi.org/10.1007/s10208-011-9099-z
http://www.ams.org/mathscinet-getitem?mr=3565264
https://doi.org/10.1007/978-3-319-40519-3_8
http://www.ams.org/mathscinet-getitem?mr=0803094
https://doi.org/10.1016/0022-1236(85)90087-4
https://doi.org/10.1214/13-AOP892
https://doi.org/10.1017/S0963548313000345
https://doi.org/10.1007/BFb0076302

	Introduction
	Main result
	Notation
	Random matrices
	Markov processes
	Derivatives and energy
	Trace Poincaré inequalities
	Subexponential concentration and expectation bounds
	Examples
	Log-concave measures
	Riemannian manifolds with positive curvature
	Products
	Stochastic covering property
	Expander graphs


	Related work
	Markov processes
	Functional inequalities
	From Poincaré to concentration

	Subadditivity
	Inﬂuence of a coordinate
	Trace variance is subadditive
	Trace Poincaré inequalities are subadditive

	Chain rule inequality for the Dirichlet form
	Mean-value inequality for trace functions
	Proof of Proposition 5.1

	Exponential moments
	Proof of Theorem 6.1
	Symmetrization
	From moments to variance
	Poincaré inequality
	Moment comparison
	Comparison of carré du champs
	Endgame


	Polynomial moments
	Proof of Theorem 7.1
	A variant of the argument

	Acknowledgment
	Funding
	References

