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Abstract This paper develops nonasymptotic growth and concentration bounds for a product of independent
random matrices. These results sharpen and generalize recent work of Henriksen–Ward, and they are similar in
spirit to the results of Ahlswede–Winter and of Tropp for a sum of independent random matrices. The argument
relies on the uniform smoothness properties of the Schatten trace classes.
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1 Motivation

Products of random matrices arise in many contemporary applications in the mathematics of data science. For
instance, they describe the evolution of stochastic linear dynamical systems, which include popular stochastic
algorithms for optimization such as Oja’s algorithm for streaming principal component analysis [31] and the
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randomized Kaczmarz method for solving linear systems [39]. To understand the detailed behavior of these
algorithms, such as the rate of convergence, we may seek out methods for studying a product of random matrices.

Unfortunately, the tools currently available in the literature are poorly adapted to these circumstances. Indeed,
an instantiation of a stochastic optimization algorithm involves a finite product of finite-dimensional matrices,
often with a particular structure (e.g., low-rank perturbations of the identity). But most existing theoretical
results are limit laws that require the number of factors in the product or the dimension of the factors to tend to
infinity. Furthermore, strong assumptions on the random matrices (e.g., independent and identically distributed
entries) are usually required.

This paper offers some new tools for studying random matrix products that arise from stochastic optimization
algorithms and related problems. The research is inspired by the recent paper [21] of Henriksen and Ward. Our
hope is to replicate the successful program for studying sums of random matrices, implemented in the works [1,
32,41,42,43,44,45]. In particular, we seek to develop methods that are flexible, easy to use, and powerful. We
also aspire to use transparent theoretical arguments that can be adapted to new situations.

2 Contributions

To motivate our work, we start with an elementary concentration inequality for a product of independent random
numbers. We will generalize this bound, and others, to the matrix setting.

2.1 Context: A Product of Random Numbers Near 1

Consider an independent family {-1, -2, . . . } ⊂ ℝ of bounded random variables that satisfy

E -7 = ` and |-7 − ` |2 ≤ 12 almost surely.

Form a product of random perturbations of 1, and compute its mean:

/< :=
<∏
7=1

(
1 + -7

<

)
and E /< =

(
1 + `

<

)<
= e` · (1 − $(<−1)).

We anticipate that the random product /< concentrates around its expectation E /< ≈ e`.
To check this surmise, we can use standard methods from scalar concentration theory. For A > 0,

ℙ {/< ≥ (1 + A) e`} = ℙ

{
<∏
7=1

(
1 + -7

<

)
≥ (1 + A) e`

}
≤ ℙ

{
exp

(
1
<

<∑
7=1

-7

)
≥ (1 + A) e`

}
= ℙ

{
1
<

<∑
7=1

(-7 − E -7) ≥ log(1 + A)
}
.

The inequality follows from the numerical fact 1 + 0 ≤ e0, valid for 0 ∈ ℝ. Hoeffding’s inequality furnishes the
bound

ℙ {/< ≥ (1 + A) e`} ≤ exp
(
−< log2(1 + A)

212

)
. (2.1)

At the small scale A ≤ e, in which case log(1 + A) ≥ A/e, the growth bound (2.1) implies a subgaussian tail
behavior:

ℙ {/< − E /< ≥ B e`} ≤ ℙ {/< − e` ≥ B e`} ≤ exp
(
−<B2
2e212

)
for B ≤ e. (2.2)

A similar inequality holds for the lower tail.
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2.2 A Product of Random Perturbations of the Identity

We might hope that products of random matrices exhibit a similar behavior. Consider an independent family
{^1, . . . , ^<} ⊂ M3 of 3 × 3 matrices that satisfy

E ^7 = G and ‖^7 − E ^7‖2 ≤ 12 almost surely. (2.3)

Here are elsewhere, ‖·‖ is the spectral norm, that is, the �2 operator norm. Form a product of random perturbations
of the identity and compute its mean:

`< =

(
I + ^<

<

)
· · ·

(
I + ^1

<

)
and E `< =

(
I + G

<

)<
≈ eG. (2.4)

Is it true that the spectral norm ‖`<‖ is proportional to e`, where ` = ‖G‖? Does the random product `<
concentrate near its mean E `<?

These speculations are correct. Moreover, we can obtain bounds that parallel the scalar inequalities announced
in the last subsection. Here is one particular result that follows from our analysis.

Theorem 2.1 (Products of Perturbations of the Identity—Special Case) Consider an independent family
{^1, . . . , ^<} ⊂ M3 of random matrices that satisfy the hypotheses (2.2). Define ` := ‖G‖. The matrix product `<
introduced in (2.2) satisfies the bounds

ℙ {‖`<‖ ≥ (1 + A) e`} ≤ 3 · exp
(
−< log2(1 + A)

212

)
when log(1 + A) ≥ 212/<;

ℙ {‖`< − E `<‖ ≥ Be`} ≤ max{3, e} · exp
(
−<B2
2e212

)
when B ≤ e.

Theorem 2.1 follows from Corollary 6.1.
As compared with the scalar bounds (2.1) and (2.1), the results in Theorem 2.1 feature an additional

dimensional factor 3 in front of the exponential. This term leads to a dependency of log 3 in the bounds for
products of random matrices. Otherwise, everything is the same, including the constants.

2.3 Proof Strategy

How might one establish a result like Theorem 2.1? The derivation in Section 2.1 is valid only for products of
random scalars. We cannot even begin to make this argument for matrices because the exponential of a sum of
matrices generally does not equal the product of the exponentials.

In this paper, we take a completely different approach. The key is to observe that multiplying a random
product ` ∈ M3 by a statistically independent factor _ ∈ M3 creates a predictable change plus a random
perturbation:

_` = (E_)` + (_ − E_)`.
Since the second term has zero mean, conditional on `, we can exploit this orthogonality property to estimate
the size of the product:

E ‖_`‖22 = E ‖(E_)`‖22 + E ‖(_ − E_)`‖22
≤

(
‖E_ ‖2 + E ‖_ − E_ ‖2

) (
E ‖`‖22

)
=: (1 + D) ;2 ·

(
E ‖`‖22

)
The notation ‖·‖2 refers to the Schatten 2-norm, also known as the Frobenius norm. The last step introduces
data about the random matrix _ : the mean ; = ‖E_ ‖ and the relative variance D = E ‖_ − E_ ‖2 /‖E_ ‖2. We
can apply the same argument recursively to decompose the matrix ` into its own factors.

The approach in the last paragraph depends on the fact that ‖·‖2 is the norm induced by the trace inner
product. To undertake the same action for the spectral norm ‖·‖, we first need to approximate the spectral
norm by the Schatten >-norm for > ≈ log 3. Then we can invoke a remarkable geometric property of the
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Schatten >-norm, called uniform smoothness, as a substitute for the orthogonality law. See the paper [29] for an
introduction to this circle of ideas. Section 4 executes this method.

2.4 Additional Results

We establish a family of norm inequalities for products of random matrices. The main result, Theorem 5.1, gives
a bound for the moments of a Schatten >-norm of a random product and a centered random product. From this
fact, we derive expectation bounds, tail bounds, and matrix concentration inequalities. Many of these results
hold under weaker assumptions than Theorem 2.1, addressing cases where the random matrices have different
means, are unbounded, or form an adapted sequence.

To give a better indication of what we can prove, let us give an informal presentation of one of our main
results, Corollary 5.1. The statement concerns a general product `< = _< · · ·_1 of independent random matrices
of dimension 3. Abbreviating > = 1 + 2 log 3, we have the inequality

E ‖`< − E `<‖ ≤ e
√
>D

<∏
7=1

‖E_7‖ when D :=
<∑
7=1

E ‖_7 − E_7‖2

‖E_7‖2
≤ 1
>
.

We can interpret D as the accumulated relative variance in the product.
For example, in the setting of Theorem 2.1, the quantity D = $(12/<). It follows that

E ‖`< − E `<‖ = $

(√
12 log 3

<
‖E `<‖

)
.

In particular, ‖`<‖ is much closer to e` than to the worst-case bound e1.

2.5 Roadmap

We continue with an overview of related work in Section 3. Section 4 presents background results from matrix
theory and high-dimensional probability. We establish our main results for general matrix products in Section 5.
Afterward, Section 6 draws corollaries for a product of perturbations of the identity. Finally, we describe some
refinements and extensions in Section 7.

3 Related Work

Products of random matrices have been studied for decades, primarily within the fields of ergodic theory, control
theory, random matrix theory, and free probability. More recently, applied mathematicians have developed results
that are tailored to problems arising in data science. Almost all prior work is either asymptotic in the length of
the product or asymptotic in the dimension of the matrices. This section contains an overview of these inquiries.

3.1 Direct Connections

The most immediate precedent for our research is the recent paper of Henriksen and Ward [21]. They were
motivated by the problem of understanding streaming algorithms for covariance estimation. Their work gives,
perhaps, the first explicit nonasymptotic bounds for a somewhat general product of random matrices with
fixed dimension. The argument is based on the matrix Bernstein inequality and a combinatorial fact about set
partitions.

Henriksen and Ward focus on the setting of Theorem 2.1, and they establish a bound of the form

‖`< − E `<‖ ≤
1e1
√
<
· polylog(<, 3, 1/X) with probability at least 1 − X. (3.1)
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In contrast, our new result reported in Theorem 2.1 implies that for 3 ≥ 3 and X ∈ (0, 1), with probability at
least 1 − X,

‖`< − E `<‖ ≤
1e`
√
<
·
√

2e2 log(3/X) when 212 log(3/X) ≤ <. (3.2)

Furthermore, if we assume that ‖^7‖ ≤ 1 almost surely for each 7, then (5.5) implies that (3.1) holds without
restriction. Compared with previous work, the salient improvement in (3.1) stems from the reduction of the
factor e1 to e`. This difference is most pronounced when E ^7 = 0 for each 7, in which case the bound (3.1)
removes the exponential factor entirely. Even under the assumption that ^7 < 0 for all each 7, it can happen that
1 ≥ 3`, so this refinement can make a big difference.

Also in the setting of Theorem 2.1, several works obtain results on the asymptotic behavior of `<. Berger [9]
establishes, via a semigroup argument based on the Chernoff product formula, that `< → eG in probability
as < → ∞. Emme and Hubert [14] recently obtained a refinement of this result: motivated by a problem
in ergodic theory, they show that `< → eG as < → ∞ under the sole assumptions that

∑<
7=1 ^7/< → G

and
∑<
7=1 ‖^7‖/< < ∞. Their argument expands the product and computes the limit of the 9th order term

using an induction. We can recover a special case of their results by applying (3.1): given a triangular array
{^ (<)

7
: 7 ≤ < and < ∈ ℕ} of independent random matrices, form the products

` (<) =
(
I + ^ (<)<

)
· · ·

(
I + ^ (<)1

)
.

The bound (3.1), combined with the first Borel–Cantelli Lemma, guarantees that

` (<) → eG as <→∞, almost surely.

While Emme and Hubert do not require independence, their approach does not readily yield nonasymptotic
bounds. Our analysis gives a rate of convergence that matches the corresponding bound (2.1) for scalar random
variables.

After the first version of our work appeared, Kathuria et al. [23] released a preprint containing an independent
proof of a weaker version of Theorem 2.1. Though their bound removes several logarithmic factors from the
bound (3.1) proved by Henriksen and Ward, their results still depend on e1 rather than on e` . Like us, they use a
martingale decomposition of `< − E `<, but they employ the matrix Freedman inequality [41] to analyze the
martingale.

3.2 Other Recent Applications

Some applied work on random matrix products has been driven by the empirical observation that stochastic
gradient descent converges faster when the gradient approximations are sampledwithout replacement, rather than
sampled with replacement. Some papers that investigate this question from the point of view of (nonasymptotic)
matrix inequalities include [35,22,2]. This specific problem has been solved by Gürbüzbalaban et al. [18] using
optimization theory. However, none of these results directly address the questions at hand.

Researchers studying randomly initialized deep neural networks have also developed theoretical analysis for
products of random matrices; see [19,49]. These results involve operations on matrices with independent entries,
and they focus on the large-matrix limit.

3.3 Ergodic Theory and Control Theory

Products of random matrices describe the evolution of a linear stochastic dynamical system. For this reason, they
have been a subject of perennial interest within the literatures on ergodic theory and on control theory. For the
most part, this research is concerned with properties of the asymptotics of infinite products of matrices (of fixed
size). Let us give a few more details.
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Consider a finite family A= {G1, . . . , GA} ⊂ M3 of fixed matrices. Construct a random matrix ^ ∈ M3 with
the distribution

ℙ {^ = G7} =
1
A

for each 7 = 1, . . . , A.

The Lyapunov exponent of the set A is the quantity

_ (A) := lim
<→∞

1
<

log ‖^< · · · ^1‖ where ^7 ∼ ^ iid.

The Furstenberg–Kesten theorem [16] establishes that _ (A) exists almost surely, but approximating _ (A) is
algorithmically undecidable [46, Thm. 2]. As a consequence, we must be pessimistic about finding a completely
satisfactory solution to the matrix concentration problem for products.

To learn more about Lyapunov exponents and to find additional references, see the paper [3] for work in
control theory and the paper [48] for work in ergodic theory. Another major application of random products
is to study the asymptotic behavior of a random walk on a group; we refer the reader to [26,15,8] for more
information.

3.4 Random Matrix Theory and Free Probability

Products of random matrices have also been considered within random matrix theory and free probability. This
connection is natural, but matrix products have received somewhat less attention than other kinds of random
matrix models. In these contexts, it is common to study a product of a small number of matrices (two or three,
say) in the limit as the dimension of the matrices grows.

Bai and Silverstein [5, Chap. 4] present a limit law for the sequence of products of a random matrix with iid
entries and a random matrix whose spectral distribution has a deterministic limit. This theorem is motivated
by a statistical application, multivariate analysis of variance. Note, however, that convergence of the spectral
distribution does not determine the limit of the spectral norm.

Free probability gives a complete description of the spectral distribution of a product of two freely independent
elements as the “multiplicative free convolution” of the spectral distributions of the factors. The connection
to random matrix theory stems from the fact that a family of “adequately random” matrices becomes freely
independent in the limit as the dimension of the matrices tends to infinity. See the book of Nica & Speicher [30]
for a digestible introduction; some other good treatments include [34,37,38]. Free probability has significant
applications in wireless communications [47].

For highly structured random matrices (invariant ensembles), it may be possible to obtain more detailed
formulas for products. See [24,13] for some work in this direction. Recently, Hanin and Paouris [20] developed a
non-asymptotic version of the argument of Furstenberg and Kesten [16] to prove concentration bounds for the
singular values of products matrices with independent Gaussian entries, though they conjecture that their results
continue to hold under weaker assumptions.

4 Random Matrix Inequalities via Uniform Smoothness

To analyze products of random matrices, we exploit classic methods that were developed to study the evolution
of a martingale taking values in a uniformly smooth Banach space. These ideas are relevant for us because the
matrix Schatten classes (with power 2 ≤ > < ∞) enjoy a remarkable uniform smoothness property.

In this section, we outline the required background from matrix analysis and high-dimensional probability.
Naor’s tutorial paper [29] serves as a model for our presentation; it contains a more general treatment but does
not give the sharp constants. See Section 4.6 for additional discussion about the history of these ideas.

4.1 Notation and Background

We work in the complex field ℂ; identical results hold for the real field ℝ. We often use the infix notation for the
minimum (∧) and the maximum (∨) of two real numbers.
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The operator ℙ computes the probability on an event. The operator E computes the expectation of a random
variable. Nonlinear functions, such as powers, bind before the expectation.

The linear space ℂ3×@ contains all 3 × @ matrices with complex entries. The algebra M3 consists of all 3 × 3
matrices with complex entries. We use the standard definitions of scalar multiplication, matrix addition, matrix
multiplication, and the adjoint (i.e., conjugate transpose). Any statement about matrices that is not qualified with
specific dimensions holds for all matrices with compatible dimensions. Nonlinear functions, such as matrix powers,
bind before the trace. The matrix absolute value |G| := (G∗G)1/2, where (·)1/2 is the positive-semidefinite square
root of a positive-semidefinite matrix.

We write ‖·‖ for the spectral norm on matrices; the spectral norm coincides with the maximum singular
value, and it is also known as the �2 operator norm. For each > ≥ 1, the symbol ‖·‖ > refers to the Schatten
>-norm, which returns the �> norm of the singular values of its argument. The symbol (> refers to a linear space
of matrices (of fixed dimension), equipped with the Schatten >-norm.

For parameters >, ? ≥ 1, we define the !?((>) norm of a random matrix ^ as

|||^ |||>,? := ‖^ ‖!? ((>) :=
(
E ‖^ ‖?>

)1/?
.

The !?((>) norm is an operator ideal norm, in the sense that

|||G^ |||>,? ≤ ‖G‖ · |||^ |||>,? for fixed G and random ^. (4.1)

This statement follows instantly from the analogous property of the Schatten >-norm.
We sometimes use the following simple inequalities for the moments of a random matrix ^:

E ‖^ ‖ ≤ inf
>≥1

E ‖^ ‖ > = inf
>,?≥1

|||^ |||>,?. (4.2)

The equality follows from Lyapunov’s inequality, combined with the fact that |||^ |||>,1 = E ‖^ ‖ > for all > ≥ 1.

4.2 Uniform Smoothness for Matrices

Uniform smoothness 1 is a property of a normed space that describes how much the norm of a point changes
under symmetric perturbation. Since the Schatten-2 space (2 is an inner-product space, the parallelogram law
gives an exact description of this phenomenon:

1
2

[
‖^ + _ ‖22 + ‖^ − _ ‖22

]
= ‖^ ‖22 + ‖_ ‖22 .

Remarkably, in other Schatten classes, the parallelogram law is replaced by an inequality.
Fact 4.1 (Uniform Smoothness for Schatten Classes) Let G, H be matrices of the same size. For > ≥ 2,[

1
2

(
‖G + H‖ >> + ‖G − H‖ >>

) ]2/>
≤ ‖G‖2> + C> ‖H‖2> . (4.3)

The optimal constant C> := > − 1. The inequality is reversed when 1 ≤ > ≤ 2.
Fact 4.1 was first established by Tomczak-Jaegermann [40]; she obtained the sharp constant C> when > is an

even number. Ball, Carlen, and Lieb [6, Thm. 1] determined that C> is the optimal constant for all values of >.
Throughout the paper, we will continue to write C> = > − 1.

4.3 Uniform Smoothness for Random Matrices

Much as the Schatten class (> of matrices enjoys a uniform smoothness property, the normed space !?((>) of
random matrices is also uniformly smooth. When 2 ≤ ? ≤ >, this statement follows as an easy consequence of
Fact 4.1.

1 More precisely, we are considering uniformly smooth spaces whose modulus of smoothness has power type 2.
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Corollary 4.1 (Uniform Smoothness for RandomMatrices) Let ^,_ be random matrices of the same size. When
2 ≤ ? ≤ >, [

1
2

(
|||^ + _ |||?>,? + |||^ − _ |||?>,?

) ]2/?
≤ |||^ |||2>,? + C> |||_ |||2>,?.

Proof Apply Lyapunov’s inequality to the left-hand side of (4.1) to pass from the >th power to the ?th power, and
then transfer the exponent to the right-hand side to obtain the pointwise bound

1
2

(
‖^ + _ ‖?> + ‖^ − _ ‖?>

)
≤

[
‖^ ‖2> + C> ‖_ ‖2>

]?/2
.

Take the expectation, and use the triangle inequality for the !?/2 norm:

1
2

(
E ‖^ + _ ‖?> + E ‖^ − _ ‖?>

)
≤

[ (
E ‖^ ‖?>

)2/? + C>

(
E ‖_ ‖?>

)2/?
]?/2

.

Reinterpret the latter display using the !?((>) norm |||·|||>,?.

4.4 Subquadratic Averages for Random Matrices

Corollary 4.1 admits a powerful extension that controls how the norm of a matrix changes if we add a random
matrix that has zero mean. This result is the main tool that we employ in our study of random products.

Proposition 4.1 (Subquadratic Averages) Consider randommatrices ^,_ of the same size that satisfyE[_ |^] = 0.
When 2 ≤ ? ≤ >,

|||^ + _ |||2>,? ≤ |||^ |||2>,? + C> |||_ |||2>,?.
The constant C> = > − 1 is the best possible.

Ricard and Xu [36] obtained a version of Proposition 4.1 in the more general setting of a von Neumann
algebra. In their work, the expectation implicit in the !? norm is replaced by the projection onto a subalgebra.
They emphasize that the key feature of their work is the determination of the sharp constant.

Here, we offer a very short proof of Proposition 4.1 with a suboptimal constant. The method is drawn from
Naor’s paper [29]. Lemma A.1, in the appendix, unspools an elementary argument that delivers the sharp
constant.

Proof By Jensen’s inequality, applied conditionally on ^,

1
2

(
|||^ + _ |||2>,? + |||^ |||2>,?

)
≤ 1

2

(
|||^ + _ |||2>,? + |||^ − _ |||2>,?

)
≤

[
1
2

(
|||^ + _ |||?>,? + |||^ − _ |||?>,?

) ]2/?
≤ |||^ |||2>,? + C> |||_ |||2>,?.

The second inequality is Lyapunov’s; the third is Corollary 4.1. Upon rearranging, we find that

|||^ + _ |||2>,? ≤ |||^ |||2>,? + 2C> |||_ |||2>,?. (4.4)

This is the stated result, with a spurious factor of 2.

4.5 Matrix-Valued Martingales

To demonstrate the value of Proposition 4.1, let us explain how it leads to moment bounds for a matrix-
valued martingale sequence. Consider a null matrix martingale {^1, . . . , ^<} ⊂ M3 with difference sequence
{�1, . . . ,�<} ⊂ M3 . That is,

^0 = 0 and ^7 = ^7−1 + �7 where E[�7 |^0, . . . , ^7−1] = 0 for 7 = 1, . . . , <.
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Applying Proposition 4.1 repeatedly, we arrive at the bound

|||^< |||2>,? ≤ C>

<∑
7=1

|||�7 |||2>,?. (4.5)

In words, the squared norm of the martingale is controlled by the sum of the squares of the norms of the
martingale differences. The inequality (4.5) is a powerful extension of the orthogonality of the increments of a
martingale taking values in an inner-product space, say (2. The uniform smoothness constant C> shows how the
geometry of the matrix space intermediates.

In this work, we will develop bounds for random matrix products by applying a similar technique to
appropriately chosen decompositions of the product.

4.6 History

The approach in this section has a long history. Let us summarize the contributions that are most relevant to our
development.

For real numbers, the (sharp) uniform smoothness property in Fact 4.1 is known as the two-point inequality;
it was established independently by Leonard Gross [17] and Aline Bonami [11] in the early 1970s, with later
contributions by William Beckner [7]. In 1974, the uniform smoothness property for the Schatten classes was
obtained by Nicole Tomczak-Jaegermann [40]. It took another 20 years before Ball, Carlen, and Lieb [6] obtained
the sharp uniform smoothness constants for all Schatten classes. The property dual to uniform smoothness is
called uniform convexity. See [6] for a detailed exposition.

Tomczak-Jaegermann [40, Thm. 3.1] also demonstrated that Rademacher averages are subquadratic in
each Schatten space (> with > ≥ 2; that is, the Banach space (> has the type 2 property [25, Chap. 9]. This
fact is a prototype for the more general result stated in Proposition 4.1. Tropp [42, Sec. 4.8] points out that
parts of the Ahlswede–Winter [1, App.] theory of sums of independent random matrices already follow from
Tomczak-Jaegermann’s work. (In contrast, Tropp’s matrix concentration inequalities [42] are more closely related
to a fact from operator theory, the noncommutative Khintchine inequality of Françoise Lust-Piquard [28]; Tropp’s
results are derived using a theorem [27, Thm. 6] of Elliot Lieb.)

Assaf Naor [29] traces the application of uniform convexity inequalities in the study of martingales to a 1975
paper of Gilles Pisier [33]. Naor [29] gives a nice introduction to this circle of ideas, which he uses to derive a
general version of the Azuma inequality that holds in any uniformly smooth Banach space.

At least as early as 1988, Donald Burkholder [12] applied closely related convexity inequalities to derive sharp
inequalities for martingales taking values in a Hilbert space. The paper [36] of Éric Ricard and Quanhua Xu is a
recent entry in this line of research.

5 A Product of Independent Random Matrices

In this section, we obtain our main results on the growth and concentration of a product of independent random
matrices. Section 5.1 shows how to decompose a random product into pieces that we can control using a recursive
argument. Based on these ideas, we derive Theorem 5.1, a general bound on the moments of the norm of the
matrix product. The moment estimate leads to a family of expectation bounds (Corollary 5.1) and probability
bounds (Corollary 5.2).

The balance of the paper contains applications of these results (Section 6) and extensions of the method to
other settings (Section 7).

5.1 Decomposition of Random Products

Our approach is based on a recursive argument that describes how the product evolves as we include more
factors. At each step, we decompose the product into a nonrandom term and a random term with mean zero.
This formulation allows us to apply Proposition 4.1 on subquadratic averages.
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Consider a fixed matrix `0 ∈ M3 and an independent family {_1,_2, . . . ,_<} ⊂ M3 of random matrices. We
can recursively construct products of these random matrices:

`7 = _7`7−1 for 7 = 1, . . . , <.

Evidently, the last element of the sequence takes the form `< = _< · · ·_1`0. By independence, E `< =

(E_<) · · · (E_1)`0.
The random product `7 admits a simple decomposition into a mean term and a fluctuation term:

`7 = _7`7−1 = (E_7)`7−1 + (_7 − E_7)`7−1 for each 7 = 1, . . . , <. (5.1)

Since _7 is independent from `7−1, the second term is conditionally zero mean:

E[(_7 − E_7)`7−1 |`7−1] = 0. (5.2)

The property (5.1) supports the use of Proposition 4.1, which gives a bound on the squared norm of `7 as a sum
of the squared norms of the mean and fluctuation terms. The the norm of the mean term admits a simple bound:

||| (E_7)`7−1 |||>,? ≤ ‖E_7‖ · |||`7−1 |||>,?. (5.3)

The inequality follows from the operator ideal property of the Schatten >-norm. We likewise have an explicit
bound on the norm of the random fluctuation term:

||| (_7 − E_7)`7−1 |||>,? ≤
(
E ‖_7 − E_7‖? · E ‖`7−1‖?>

)1/?
= (E ‖_7 − E_7‖?)1/? |||`7−1 |||>,?. (5.4)

The first relation follows from the operator ideal property and the statistical independence of the random
matrices _7 and `7−1. Combining (5.1) and (5.1) gives a recursive bound on |||`7 |||>,? in terms of |||`7−1 |||>,?.

We can study the concentration properties of the product `7 using a related decomposition:

`7 − E `7 = _7`7−1 − (E_7) (E `7−1) = (E_7) (`7−1 − E `7−1) + (_7 − E_7)`7−1. (5.5)

As in (5.1), the second term is a fluctuation that is conditionally zero mean, and applying Proposition 4.1 once
again gives a suitable recursive bound.

We carry out the details of these arguments in Theorem 5.1.

5.2 Growth and Concentration

Our main result controls the growth of the moments of a product of independent random matrices. It also
describes how well the random product concentrates around its expectation.

Theorem 5.1 (Growth and Concentration of Random Products) Consider a fixed matrix `0 ∈ ℂ3×@ and an
independent family {_1,_2, . . . ,_<} ⊂ M3 of random matrices. Form the product

`< = _<_<−1 · · ·_2_1`0 ∈ ℂ3×@ .

For parameters 2 ≤ ? ≤ >, assume that

‖E_7‖ ≤ ;7 and
(
E ‖_7 − E_7‖?

)1/? ≤ f7;7 for 7 = 1, . . . , <.

Define the product of means and the accumulated relative fluctuation

" =

<∏
7=1

;7 and D =

<∑
7=1

f2
7 .
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Then the random product `< satisfies the growth bound and the concentration bound

|||`< |||>,? ≤ eC>D/2 ‖`0‖ > · "; (5.6)

|||`< − E `< |||>,? ≤
(
eC>D − 1

)1/2 ‖`0‖ > · ". (5.7)

Proof (Proof of Theorem 5.1, relation (5.1)) By the homogeneity of (5.1), we may assume that ;7 = 1 for each
index 7, so that also " = 1. As in (5.1), we have the decomposition

`7 := _7`7−1 = (E_7)`7−1 + (_7 − E_7)`7−1 for each 7 = 1, . . . , <.

Now, Proposition 4.1 implies that

|||`7 |||2>,? ≤ ||| (E_7)`7−1 |||2>,? + C> · ||| (_7 − E_7)`7−1 |||2>,?
≤ ‖E_7‖2 · |||`7−1 |||2>,? + C> (E ‖_7 − E_7‖?)2/? · |||`7−1 |||2>,?
≤ (1 + C>f

2
7 ) · |||`7−1 |||2>,?

≤ exp(C>f
2
7 ) · |||`7−1 |||2>,?.

The second line follows from (5.1), and the third depends on our hypotheses about the factors _7. The last
relation requires the numerical inequality 1 + 0 ≤ e0, valid for all 0 ∈ ℝ. By iteration,

|||`7 |||2>,? ≤ exp

(
C>

7∑
9=1

f2
9

)
· ‖`0‖2> . (5.8)

In the final step, we use the assumption that `0 is not random to see that |||`0 |||>,? = ‖`0‖ >. For 7 = <, the
formula (5.2) is the advertised result.

Proof (Proof of Theorem 5.1, relation (5.1)) The pattern of argument is similar with the proof of (5.1). By the
homogeneity of (5.1), we may assume that all ;7 = 1 and that " = 1. As in (5.1), we have the decomposition

`7 − E `7 = _7`7−1 − (E_7) (E `7−1) = (E_7) (`7−1 − E `7−1) + (_7 − E_7)`7−1.

Again, we invoke Proposition 4.1 to ascertain that

|||`7 − E `7 |||2>,? ≤ ||| (E_7) (`7−1 − E `7−1) |||2>,? + C> · ||| (_7 − E_7)`7−1 |||2>,?
≤ |||`7−1 − E `7−1 |||2>,? + C>f

2
7 · |||`7−1 |||2>,?

≤ |||`7−1 − E `7−1 |||2>,? + C>f
2
7 exp

(
7−1∑
9=1

C>f
2
7

)
· ‖`0‖2> .

The last inequality is our growth bound (5.2). This recurrence relation delivers

|||`< − E `< |||2>,? ≤ |||`0 − E `0 |||2>,? +
[

<∑
7=1

C>f
2
7 exp

(
7−1∑
9=1

C>f
2
9

)]
· ‖`0‖2>

=

[
<∑
7=1

C>f
2
7 exp

(
7−1∑
9=1

C>f
2
9

)]
· ‖`0‖2>

≤
[
exp

(
<∑
7=1

C>f
2
7

)
− 1

]
· ‖`0‖2> .

The equality holds because `0 is not random. The last relation is a numerical inequality, whose proof appears in
Lemma A.2.
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Observe that the difference between the bounds (5.1) and (5.1) is only visible when C>D is small, in which
case

eC>D/2 ≈ 1 and
(
eC>D − 1

)1/2 ≈
√

C>D.

This is the setting where the concentration result may be nontrivial.
In applications of Theorem 5.1, we often take > large enough that the term ‖`0‖ > is a constant. For instance,

when `0 = I, it suffices to take > ≈ log 3. The most natural choices for ? are ? = 2 and ? = >. The former is
appropriate when only bounds on the variance E ‖_7 − E_7‖2 are available, whereas the latter applies when we
assume an almost-sure bound on the fluctuations of _7.

The next remark contains a minor extension of Theorem 5.1. Similar extensions are possible at other points
in this paper. For the most part, we omit these developments.

Remark 5.1 (Growth from Concentration) In some instances, we can improve over the growth bound (5.1) by
applying the triangle inequality to the decomposition `< = (E `<) + (`< − E `<) and invoking the concentration
bound (5.1):

|||`< |||>,? ≤ ‖E `<‖ > +
(
eC>D − 1

)1/2 ‖`0‖ > · ".
Similarly, we can apply Proposition 4.1 together with (5.1) to obtain

|||`< |||2>,? ≤ ‖E `<‖2> + C>

(
eC>D − 1

)
‖`0‖2> · "2.

Neither of these bounds represents a strict improvement over the other or over the growth bound (5.1).

5.3 Expectation Bounds for the Spectral Norm

In many cases, we just need to know the expected value of the product ‖`<‖ or the expected value of the
fluctuation ‖`< − E `<‖. We can obtain bounds for these quantities as an easy consequence of Theorem 5.1.

Corollary 5.1 (Expectation Bounds) Consider an independent sequence {_1, . . . ,_<} ⊂ M3 of random matrices,
and form the product `< = _< · · ·_1. Assume that

‖E_7‖ ≤ ;7 and
(
E ‖_7 − E_7‖2

)1/2 ≤ f7;7 for 7 = 1, . . . , <.

Let " =
∏<

7=1 ;7 and D =
∑<
7=1 f

2
7
. Then

E ‖`<‖ ≤ exp
(√

2D (2D ∨ log 3)
)
· ". (5.9)

Provided that D (1 + 2 log 3) ≤ 1, then also

E ‖`< − E `<‖ ≤
√

e2D (1 + 2 log 3) · ". (5.10)

Proof To apply Theorem 5.1, we set `0 = I and choose the power ? = 2.
To obtain the growth bound (5.1), consider the Schatten norm of order > =

√
2(2D ∨ log 3)/D. Note that

> ≥ 2 and that ‖`0‖ > ≤ 31/> ≤ e>D/2. Invoke Theorem 5.1, relation (5.1), to see that

E ‖`<‖ ≤ |||`< |||>,2 ≤ eC>D/2 ‖`0‖ > · " ≤ e>D/2 · e>D/2 · " = e>D · ".

We used the fact that C> = > − 1 < >. This is the stated result.
To obtain the concentration bound (5.1), consider the Schatten norm > = 2(1 + log 3). Note that > ≥ 2 and

that ‖`0‖ > ≤ 31/> ≤
√

e. Now, we use Theorem 5.1, relation (5.1), in a similar fashion. Assuming that C>D ≤ 1,

E ‖`< − E `<‖ ≤ |||`< − E `< |||>,2 ≤
(
eC>D − 1

)1/2 ‖`0‖ > · " ≤ e
√

C>D · ".

The last bound is the numerical inequality e0 − 1 ≤ e0, valid when 0 ∈ [0, 1]. Finally, note that C> = > − 1 =

1 + 2 log 3.
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The inequality (5.1) shows its power when each f7 is small. Assume that each ;7 = 1 and f7 ≤ 1/< for a
constant 1. If we assume that ‖_7 − E_7‖ ≤ f7;7 almost surely, then it is not hard to check that

‖E `<‖ ≤ 1 while ‖`<‖ ≤ (1 + (1/<))< ≤ e1 almost surely.

If 1
√
(2 log 3)/< is close to zero, then (5.1) implies

E ‖`<‖ ≤ e1
√
(2 log 3)/< ≈ 1.

That is, E ‖`<‖ is much closer to ‖E `<‖ than to the worst-case value e1.

5.4 Tail Bounds for the Spectral Norm

The moment bounds in Theorem 5.1 can also be upgraded to obtain tail bounds for ‖`<‖ and ‖`< − E `<‖.

Corollary 5.2 (Tail Bounds) Consider an independent sequence {_1, . . . ,_<} ⊂ M3 of random matrices, and form
the product `< = _< · · ·_1. Assume that

‖E_7‖ ≤ ;7 and ‖_7 − E_7‖ ≤ f7;7 almost surely for 7 = 1, . . . , <.

Let " =
∏<

7=1 ;7 and D =
∑<
7=1 f

2
7
. Then

ℙ {‖`<‖ ≥ B"} ≤ 3 · exp
(
− log2 B

2D

)
when log B ≥ 2D. (5.11)

Furthermore,

ℙ {‖`< − E `<‖ ≥ B"} ≤ (3 ∨ e) · exp
(
−B2
2e2D

)
when B ≤ e. (5.12)

Proof We begin with the proof of (5.2). By homogeneity, we may assume that ;7 = 1 for each 7, so also " = 1.
Apply Markov’s inequality and (4.1) to obtain

ℙ {‖`<‖ ≥ B} ≤ inf
>≥2

B−> · E ‖`<‖ > ≤ inf
>≥2

B−> · |||`< |||>>,>.

To bound the !>((>) norm, we will use Theorem 5.1 with `0 = I and with ? = >. Relation (5.1) gives

B−> · |||`< |||>>,> ≤ B−> · e>C>D/2 ‖`0‖ >> = 3 ·
(
B−2eC>D

) >/2
.

We have used the fact that ‖`0‖ >> = ‖I‖ >> = 3. Under the assumption that log B ≥ 2D, we may select
> = (log B)/D ≥ 2. This choice yields

3 ·
(
B−2e>D

) >/2
= 3 · exp

(
− log2 B

2D

)
.

Sequence the last three displays to arrive at the bound (5.2).
We establish (5.2) in an analogous fashion. The same argument, using relation (5.1), implies that

ℙ {‖`< − E `<‖ ≥ B} ≤ inf
>≥2

3 ·
[
B−2 (eC>D − 1

) ] >/2
.

Supposing that B2/(e2D) < 2, the bound (5.2) holds trivially because e · exp(−B2/(2e2D)) ≥ 1. Otherwise, we
may select the parameter > = B2/(e2D) ≥ 2. Under the assumption that B ≤ e, C>D ≤ >D ≤ (B/e)2 ≤ 1, so that
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eC>D − 1 ≤ eC>D ≤ B2/e. Therefore,

3 ·
[
B−2 (eC>D − 1

) ] >/2 ≤ 3 · e−>/2 = 3 · exp
(
−B2
2e2D

)
.

The last two displays imply (5.2).

Let us demonstrate the optimality of our tail bounds in Corollary 5.2 by showing that they are tight in the
commutative case. Consider a simple scenario where all the factors of the product `< are diagonal matrices:

_7 = diag(G (1)
7
, G
(2)
7
, · · · , G (3)

7
), 7 = 1, 2, . . . , < .

The scalar random variables G ( 8)
7
, 1 ≤ 7 ≤ <, 1 ≤ 8 ≤ 3 are independent of each other and satisfy

E G
( 8)
7

= ;7 ≥ 0 and |G ( 8)
7
− ;7 | ≤ f7;7 almost surely for 1 ≤ 7 ≤ <, 1 ≤ 8 ≤ 3.

Fix `0 = I. It follows that

`< = _< · · ·_1 = diag

(
<∏
7=1

G
(1)
7
, · · · ,

<∏
7=1

G
(3)
7

)
.

For each diagonal entry of `<, a calculation similar to that in Section 2.1 gives

ℙ

{
<∏
7=1

G
( 8)
7
≥ (1 + A)"

}
= ℙ

{
<∏
7=1

(
1 +

G
( 8)
7
− ;7

;7

)
≥ 1 + A

}
≤ ℙ

{
exp

(
<∑
7=1

G
( 8)
7
− ;7

;7

)
≥ 1 + A

}
= ℙ

{
<∑
7=1

G
( 8)
7
− ;7

;7

≥ log(1 + A)
}
.

As usual, " =
∏<

7=1 ;7. The inequality follows from the numerical fact 1 + 0 ≤ e0 for all 0 ∈ ℝ. We then use
Hoeffding’s inequality to obtain

ℙ

{
<∏
7=1

G
( 8)
7
≥ (1 + A)"

}
≤ exp

(
− log2(1 + A)

2D

)
,

where D =
∑<
7=1 f

2
7
. At the small scale A ≤ e, in which case log(1 + A) ≥ A/e, the above bound implies

ℙ

{
<∏
7=1

G
( 8)
7
−

<∏
7=1

E G
( 8)
7
≥ B"

}
≤ exp

(
−B2
2e2D

)
,

Taking a uniform bound over the 3 diagonal entries of `< yields

ℙ {_max(`<) ≥ (1 + A)"} = ℙ

{
∃ 7 :

<∏
7=1

G
( 8)
7
≥ (1 + A)"

}
≤ 3 · exp

(
− log2(1 + A)

2D

)
; (5.13)

ℙ {_max(`< − E `<) ≥ B"} = ℙ

{
∃ 7 :

<∏
7=1

G
( 8)
7
− " ≥ B"

}
≤ 3 · exp

(
−B2
2e2D

)
for B ≤ e. (5.14)

Moreover, these bounds are easily seen to be essentially tight.

To assess our results, we apply Corollary 5.2 to see what it predicts for this model. The assumptions translate
to the matrix bounds

‖ E_7‖ = ‖;7I‖ = ;7 and ‖_7 − E_7‖ ≤ f7;7 almost surely for 1 ≤ 7 ≤ <.
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Therefore, Corollary 5.2 implies that

ℙ {_max(`<) ≥ (1 + A)"} ≤ 3 · exp
(
− log2(1 + A)

2D

)
for log(1 + A) ≥ 2D; (5.15)

ℙ {_max(`< − E `<) ≥ B"} ≤ 3 · exp
(
−B2
2e2D

)
for B ≤ e. (5.16)

By comparing (5.4) and (5.4) with (5.4) and (5.4), we see that our estimates obtained from the uniform
smoothness argument are tight in the commutative scenario, except that we require log(1 + A) ≥ 2D for the
growth bound (5.4).

5.5 Uniform Bounds on Factors

In some circumstances, it is reasonable to assume that the factors are bounded in norm almost surely. For
example, the randomized Kaczmarz algorithm [39] can be expressed as the repeated application of random
contractions, that is, matrices whose singular values are bounded by one. Other randomized linear fixed-point
iterations take a similar form.

A modification of the proof of Theorem 5.1 offers some potential improvements in this setting. Fix parameters
2 ≤ ? ≤ >. Suppose that ‖_7‖ ≤ 17 almost surely and |||_7 − E_7 |||>,? ≤ f717 for each index 7. Define � =

∏<
7=1 17

and D =
∑<
7=1 f

2
7
. Then

|||`< |||>,? ≤ ‖`0‖ > · �; (5.17)

|||`< − E `< |||>,? ≤
√

C>D ‖`0‖ > · �. (5.18)

The growth bound (5.5) is an immediate consequence of the definition `< = _< · · ·_1`0. The concentration
result (5.5) follows if we repeat the proof of (5.1), using homogeneity to assume that 17 = 1 for each 7 and
employing the growth bound (5.5) in place of (5.1).

These bounds yield strengthenings of Corollaries 5.1 and 5.2. If we assume |||_7 − E_7 |||>,2 ≤ f717 for each 7,
then applying the argument of Section 5.5 with (5.5) implies that

E ‖`< − E `<‖ ≤
√

eD (1 + 2 log 3)�. (5.19)

This improves the constant in (5.1) by a factor of
√

e, and it removes the condition that D (1 + 2 log 3) ≤ 1.
Similarly, if we assume ‖_7 − E_7‖ ≤ f717 almost surely, then we obtain an unconditional variant of the

concentration bound (5.2):

ℙ {‖`< − E `<‖ ≥ B · �} ≤ (3 ∨ e) · exp
(
−B2
2eD

)
for all B > 0. (5.20)

Both (5.5) and (5.5) scale with � =
∏<

7=1 17. In the important special case where each factor in the product is
a random contraction, we may take 17 = 1 for each 7, so that � = 1. This bound may be pessimistic, as the next
theorem shows.

Theorem 5.2 (Product of Random Contractions) Consider an independent family {_1, . . . ,_<} ⊂ M3 of random
contractions; that is, ‖_7‖ ≤ 1. Form the random product `< = _< · · ·_1. For a parameter > ≥ 2, assume that

‖E |_7 |>‖1/> ≤ ;7 ≤ 1 and ‖E |_7 − E_7 |>‖1/> ≤ f7;7 for 7 = 1, . . . , <.

Define " :=
∏<

7=1 ;7 and D :=
∑<
7=1 f

2
7
. Then

E ‖`<‖ ≤ 1 ∧ (31/> · "); (5.21)

E ‖`< − E `<‖ ≤
√
�>D 3

1/> · ". (5.22)
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Unlike (5.5), (5.5) and (5.5), the bounds of Theorem 5.2 scale with ". This quantity can be substantially
smaller than �, particularly if each factor has low rank. For example, if _7 is a projection to a uniformly random
rank-one subspace, then ‖_7‖ = 1 but

E |_7 |2 = 1/3.
It is also possible to prove a tail bound, assuming an almost-sure bound on the spectral norm of the fluctuations;

we omit the details. For convenience, we have focused on products of random contractions, but a homogeneity
argument implies that similar inequalities hold for any product of uniformly bounded random matrices.

To prove Theorem 5.2, we require a lemma that isolates the influence of each factor in the product. This
result gives an improvement in the setting where the factor is a contraction, but it may give inferior results in
other settings.

Lemma 5.1 (Random Product: Absolute Values) Let _ ∈ M3 be a random matrix, and let ` ∈ M3 be a random
matrix that is independent from _ . For 2 ≤ ? ≤ >,

|||_` |||>,? ≤ ‖E |_ |>‖1/> · |||` |||>,?.

Proof Write out the !?((>) norm, and introduce matrix absolute values:

|||_` |||?>,? = E ‖_`‖?> = E
[
tr

(
`∗_∗_`

) >/2]?/>
= E

[
tr

(
|`∗ | · |_ |2 · |`∗ |

) >/2]?/>
.

The last relation can be verified using polar factorizations. Apply the Araki–Lieb–Thirring inequality [10,
Thm. IX.2.20] to distribute the power onto the factors in the trace. Conditioning on the random matrix `, we
obtain

|||_` |||?>,? ≤ EE

[ [
tr

(
|`∗ |>/2 · |_ |> · |`∗ |>/2

)]?/> ���� `]
≤ E

[
tr

(
|`∗ |>/2 ·

(
E |_ |>

)
· |`∗ |>/2

)]?/>
.

The inequality is Jensen’s, which is justified because ?/> ≤ 1. Bounding the matrix in the center by its norm,

|||_` |||?>,? ≤ ‖E |_ |>‖?/> · E
[
tr |`∗ |>

]?/>
= ‖E |_ |>‖?/> · |||` |||?>,?.

Take the ?th root to complete the proof.

With this result at hand, Theorem 5.2 follows from familiar arguments.

Proof (Proof of Theorem 5.2) Define `0 = I and `7 = _7`7−1 for each index 7 = 1, . . . , <. We begin with the proof
of (5.2). Since each factor is a contraction, it is clear that

E ‖`<‖ ≤ E

<∏
9=1

‖_9‖ ≤ 1.

To obtain a less trivial bound on the expectation, we apply Lemma 5.1 repeatedly. For > ≥ 2,

E ‖`7‖ ≤ |||`7 |||>,> ≤
7∏

9=1

‖E |_9 |>‖1/> · |||I|||>,> = 31/>
7∏

9=1

;9. (5.23)

The statement (5.2) combines these two observations for the choice 7 = <.
Let us continue with the proof of (5.2), which is analogous to the argument in Theorem 5.1(5.1). First, by

expanding the inequality E |_7 − E_7 |2 < 0, we see that 0 4 |E_7 |2 4 E |_7 |2. As a consequence, for > ≥ 2,

‖E_7‖2 ≤
E |_7 |2 ≤ ‖E |_7 |>‖2/> ≤ ;2

7 .
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The second inequality follows from a matrix extension of Lyapunov’s inequality [4, Cor. 4.2(i)]. Now, we may
calculate that

|||`7 − E `7 |||2>,> ≤ ||| (E_7) (`7−1 − E `7−1) |||2>,> + C> · ||| (_7 − E_7)`7−1 |||2>,>
≤ ;2

7 · |||`7−1 − E `7−1 |||2>,> + C>f
2
7 ;

2
7 · |||`7−1 |||2>,>

≤ ;2
7 · |||`7−1 − E `7−1 |||2>,> + C>f

2
7 · 32/>

7∏
9=1

;2
9.

The second inequality uses (5.1), Lemma 5.1, and the last display. The third inequality requires the preliminary
bound (5.5). Unrolling the recursion,

|||`< − E `< |||2>,> ≤ C>3
2/>

(
<∏
7=1

;2
7

) (
<∑
7=1

f2
7

)
= C>3

2/>"
2
D.

This result implies the advertised bound (5.2).

6 Application: Random Perturbations of the Identity

This section treats the fundamental case where the factors_7 in the product are independent, random perturbations
of the identity. That is, _7 = I + ^7 where {^7} ⊂ M3 is an independent family. Applying our main theorems in
this setting yields the promised improvements to the tail bounds developed by Henriksen–Ward [21].

6.1 Iterative Algorithms

To motivate this development, observe that random perturbations of the identity arise from the analysis of the
iterative scheme

u(7+1) = u(7) + ^7u(7) for 7 = 1, 2, 3 . . . . (6.1)

where ^7u(7) is a linear update to the current iterate u(7) . In this application, the norm of each ^7 is proportional
to the step size of the scheme, so it is typically small and it is controlled by the user. For example, the updates in
Oja’s algorithm [31] take the form (6.1).

For now, we do not permit the random matrix ^7 to depend on the sequence {u(7) } of iterates. Later, in
Section 7.2, we describe an extension of our approach to the setting where {^7} is an adapted sequence. This
variant allows for the study of a wider class of iterative algorithms.

6.2 Bounds for the Product

First, we develop bounds for the growth and concentration of a product of perturbations of the identity. In
Section 6.3, we develop results for the inverse of the product.

Corollary 6.1 (Perturbations of the Identity) Consider an independent family {^1, . . . , ^<} ⊂ M3 of random
matrices, and form the product `< = (I + ^<) · · · (I + ^1). Assume that

‖E ^7‖ ≤ b7 and ‖^7 − E ^7‖ ≤ f7 almost surely for 7 = 1, . . . , <.

Define b =
∑<
7=1 b7 and D =

∑<
7=1 f

2
7
. Then

E ‖`<‖ ≤ exp
(
b +

√
2D log 3

)
when 2D ≤ log 3;

E ‖`< − E `<‖ ≤ eb+1
√
D (1 + 2 log 3) when D (1 + 2 log 3) ≤ 1.
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Moreover,

ℙ
{
‖`<‖ ≥ Beb

}
≤ 3 · exp

(
− log2 B

2D

)
when log B ≥ 2D;

ℙ
{
‖`< − E `<‖ ≥ Beb

}
≤ (3 ∨ e) · exp

(
−B2
2e2D

)
when B ≤ e.

Proof Let _7 = I + ^7 for each index 7. Then

‖E_7‖ ≤ 1 + ‖E ^7‖ ≤ eb7 =: ;7.

Furthermore, since ;7 ≥ 1,
‖_7 − E_7‖ = ‖^7 − E ^7‖ ≤ f7 ≤ f7;7.

The results follow instantly from Corollary 5.1 and Corollary 5.2.

6.3 Bounds for the Inverse of a Product

In some applications, it is valuable to have a lower bound for the minimum singular value of a random product.
Equivalently, we can seek an upper bound for the spectral norm of the inverse of the product. This section
describes a situation where clean results are possible.

Consider the case where the factors _7 are perturbations of the identity: _7 = I + ^7, where ^7 is small enough
to ensure that _7 is invertible with probability 1. In this setting, we can easily study the inverse of the product
using Corollary 6.1.

Corollary 6.2 (Perturbations of the Identity: Inverses) Frame the same hypotheses as in Corollary 6.1. Assume
that b7 + f7 < 1 for each index 7, and define

b̄ =

<∑
7=1

[
b7 +

(b7 + f7)2
1 − (b7 + f7)

]
and D̄ =

<∑
7=1

[
f7 +

2(b7 + f7)2
1 − (b7 + f7)

]2

.

Then

E
`−1

<

 ≤ exp
(
b̄ +

√
2D̄ log 3

)
when 2D̄ ≤ log 3;

E
`−1

< − E `−1
<

 ≤ eb̄
√

e2 D̄ (1 + 2 log 3) when D̄ (1 + 2 log 3) ≤ 1.

Proof With the same notation as in Corollary 6.1, observe that `−1
< = (I + ^1)−1 · · · (I + ^<)−1. This is an

independent product that can be bounded by applying the corollary. To do so, we simply need to express
(I + ^7)−1 = I + ¯̂

7 for suitable random matrices ¯̂
7. The perturbation terms ¯̂

7 are obtained from the calculation

(I + ^7)−1 = I +
∞∑
9=1

(−1)9^9
7 = I − ^7 + ^2

7 (I + ^7)−1 =: I + ¯̂
7.

It remains to develop estimates for the size of the perturbation.
The uniform bound ‖^7‖ ≤ ‖E ^7‖ + ‖^7 − E ^7‖ ≤ b7 + f7 < 1 implies that(I + ^7)−1 ≤ (

1 − ‖^7‖
)−1 ≤ 1

1 − (b7 + f7)
.

Therefore, the norm of the expected perturbation satisfiesE ¯̂
7

 ≤ ‖E ^7‖ +
E [

^2
7 (I + ^7)−1] ≤ b7 + (b7 + f7)21 − (b7 + f7)

=: b̄7.
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The fluctuations of the perturbation satisfy ¯̂
7 − E ¯̂

7

 ≤ ‖^7 − E ^7‖ + 2
^2

7 (I + ^7)−1 ≤ f7 + 2(b7 + f7)2
1 − (b7 + f7)

=: f̄7.

The results follow when we apply Corollary 6.1 with the random matrices ¯̂
7 in place of the ^7.

7 Improvements and Extensions

The argument underlying Theorem 5.1 has several natural extensions. In Section 7.1, we derive better estimates for
a matrix product where the initial term is rectangular. In Section 7.2, we document the changes that are necessary
in case the factors in the product are not independent but form an adapted sequence. Last, in Section 7.3, we
explain how to develop a bound on the spectral radius of a product.

7.1 Low-Rank Products

So far, we have focused on the setting where the initial matrix `0 = I. In many applications, we are interested in
the action of the random product _< · · ·_1 ∈ M3 on a specific matrix `0 ∈ ℂ3×@ with relatively few columns. In
this case, the terms that control the behavior of the product may be significantly smaller. Here is an example of
the kinds of results one can achieve.

Theorem 7.1 (Growth and Concentration of Low-Rank Random Products) Consider a fixed matrix `0 ∈ ℂ3×@

and an independent sequence {_1, . . . ,_<} ⊂ M3 of random matrices. Form the product `< = _< · · ·_1`0. Assume
that

‖E_7‖ ≤ ;7 and sup
V∈P@

(
E ‖(_7 − E_7)V‖2

)1/2
≤ f7;7 for 7 = 1, . . . , <,

where P@ ⊂ M3 is the set of rank-@ orthogonal projectors. Define " =
∏<

7=1 ;7 and D =
∑<
7=1 f

2
7
. For each > ≥ 2,

E ‖`<‖ ≤ eC>D/2 · ‖`0‖ > · ".

E ‖`< − E `<‖ ≤
(
eC>D − 1

)1/2 · ‖`0‖ > · ".

Proof Define `7 = _7`7−1 for each index 7. Since `0 ∈ ℂ3×@, the rank of each matrix `7 is at most @. Thus, we
can write `7 = V7`7, where V7 is a rank-@ orthogonal projector that only depends on _7, . . . ,_1 and `0. As a
consequence,

||| (_7 − E_7)`7−1 |||>,2 = ||| (_7 − E_7)V7−1`7−1 |||>,2
≤

(
E

[
‖(_7 − E_7)V7−1‖2 · ‖`7−1‖2>

] )1/2

≤ sup
V∈P@

(
E ‖(_7 − E_7)V‖2

)1/2 ·
(
E ‖`7−1‖2>

)1/2 ≤ f7;7 · |||`7−1 |||>,2.

We have used the fact that _7 is independent from V7−1 and from `7−1 to pass to the last line.
The rest of the proof runs along the same lines as the argument in Theorem 5.1, using the last display in

place of the bound (5.1).

Let us offer a simple example to illustrate why Theorem 7.1 can produce better outcomes than Theorem 5.1.
Consider a random matrix ^ ∈ M3 with the distribution ℙ {^ = e 8e 8∗} = 3−1 for each 8 = 1, . . . , 3. As usual,
e 8 ∈ ℂ3 is the 8th standard basis vector. Construct the random matrix _ = I + Y^, where Y is a Rademacher
random variable that is independent from ^. Clearly, E_ = I. For any rank-@ orthogonal projector V,

E ‖(_ − E_)V‖2 = E ‖V^∗^V‖ = 1
3

3∑
7=1

tr[Ve7e∗7 V] =
1
3

tr V =
@

3
.
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Therefore,

sup
V∈P@

(
E ‖(_ − E_)V‖2

)1/2
=

√
@/3 ≤ 1.

By contrast, E ‖_ − E_ ‖2 = E ‖^ ‖2 = 1. This bound hence offers a significant improvement when @ � 3.

7.2 Adapted Sequences

We can easily generalize our results on a product of independent random matrices to a product of adapted
random matrices. This kind of extension is valuable for studying iterative algorithms where the choices made by
the algorithm at a given step depend on the history of the iteration.

Let (Ω,F,ℙ) be a probability space, and let F1 ⊂ F2 ⊂ · · · ⊂ F< ⊂ F be a filtration. For each index
7 = 1, . . . , <, we write E7 for the expectation conditioned on the f-algebra F7. The operator E0 := E is the
unconditional expectation.

We consider an adapted sequence {_1, . . . ,_<} ⊂ M3 of random matrices; that is, each _7 is measurable
with respect to F7. The next result provides information about the growth and concentration properties of the
product `< = _< · · ·_1. Note that the natural concentration result compares `< with a product of conditional
expectations, rather than the expectation of the product.

Theorem 7.2 (Products of Adapted Random Matrices) Consider a fixed matrix `0 ∈ M3 and an adapted
sequence {_1, . . . ,_<} ⊂ M3 of random matrices. Form the products

`< = _< · · ·_1`0 and L< = (E<−1 _<) · · · (E1 _2) (E0 _1)`0.

Assume that
‖E7−1 _7‖ ≤ ;7 and ‖_7 − E7−1 _7‖ ≤ f7;7 almost surely for 7 = 1, . . . , <.

Define " =
∏<

7=1 ;7 and D =
∑<
7=1 f

2
7
. For 2 ≤ ? ≤ >, the random product `< satisfies the growth and concentration

bounds

|||`< |||>,? ≤ eC>D/2 ‖`0‖ > · "; (7.1)

|||`< − L< |||>,? ≤
(
eC>D − 1

)1/2 ‖`0‖ > · ". (7.2)

Proof Recursively construct the products

`7 = _7`7−1 and L7 = (E7−1 _7)L7−1 for 7 = 1, . . . , <.

To bound the growth of `7 and the concentration of `7 − L7, we simply need to update the argument from
Theorem 5.1.

To obtain (7.2), decompose
`7 = (E7−1 _7)`7−1 + (_7 − E7−1 _7)`7−1.

Since E7−1 _7 and `7−1 are both measurable with respect to F7−1 and E7−1(_7 − E7−1 _7) = 0, the obvious variant
of Proposition 4.1 implies that

|||`7 |||2>,? ≤ ||| (E7−1 _7)`7−1 |||2>,? + C> ||| (_7 − E7−1 _7)`7−1 |||2>,?
≤ ;2

7 |||`7−1 |||>,? + C>;
2
7 f

2
7 |||`7−1 |||2>,?.

The second inequality follows from (4.1). This is the same recurrence we obtain in the proof of Theorem 5.1,
relation (5.1). The rest of the argument is the same.

To obtain (7.2), decompose

`7 − L7 = _7`7−1 − (E7−1 _7)L7−1 = (E7−1 _7) (`7−1 − L7−1) + (_7 − E7−1 _7)`7−1.
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As before, Proposition 4.1 implies that

|||`7 − L7 |||2>,? ≤ ||| (E7−1 _7) (`7−1 − L7−1) |||2>,? + C> ||| (_7 − E7−1 _7)`7−1 |||2>,?
≤ ;2

7 |||`7−1 − L7−1 |||>,? + C>;
2
7 f

2
7 |||`7−1 |||2>,?.

This is the same recurrence that arose when we established Theorem 5.1, relation (5.1). The balance of the
argument is identical.

7.3 The Spectral Radius

Products of matrices are closely related to the evolution of discrete-time linear dynamical systems. In this context,
it may be more natural to study the spectral radius of the matrix product, rather than its spectral norm. Bounds
for the spectral radius follow as corollary of our work, owing to the following classical fact.

Fact 7.3 (Schur) Let S ∈ M3 be a square matrix. The spectral radius r(S) is defined as the maximum absolute
value of an eigenvalue of S. It satisfies the variational principle

r(S) = inf
Y∈M3

Y−1SY
 .

The infimum takes place over all invertible matrices Y. In particular r(S) ≤ ‖S‖.

Let us give an indication of the kinds of results that are possible.

Corollary 7.1 (Expectation Bounds for the Spectral Radius) Consider an independent sequence {_1, . . . ,_<} ⊂
M3 of random matrices, and form the product `< = _< · · ·_1. Let Y ∈ M3 be a fixed invertible matrix, and assume
that Y−1(E_7)Y

 ≤ ;7 and
(
E

Y−1(_7 − E_7)Y
2

)1/2
≤ f7;7 for 7 = 1, . . . , <.

Let " =
∏<

7=1 ;7 and D =
∑<
7=1 f

2
7
. Then

E r(`<) ≤ exp
(√

2D (2D ∨ log 3)
)
· ".

Proof Combine Corollary 5.1 and Fact 7.3.

7.4 Prospects

We have developed a collection of nonasymptotic bounds for products of random matrices. These results hold
under simple and easily verifiable conditions, and they give accurate predictions about the behavior of some
particular instances (e.g., products of iid random perturbations of the identity). The proofs are based on
foundational results about the geometry of the Schatten classes, and they can easily be adapted to treat variants
of the problems under consideration.

A disappointing feature of our results is that they do not account for interactions between the matrix factors.
For example, when _7 = I + ^7/< for bounded, independent matrix perturbations ^7, we have shown that

logE ‖_< · · ·_1‖ ≤
1
<

<∑
7=1

‖ E ^7‖ + $
(√

log 3
<

)
.

However, when the matrices ^7 are Hermitian and commute almost surely, it is easy to show the sharper bound

logE ‖_< · · ·_1‖ ≤
1
<

 <∑
7=1

E ^7

 + $
(√

log 3
<

)
.
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The results of Emme and Hubert [14] establish that lim<→∞ logE ‖_< · · ·_1‖ = lim<→∞
∑<

7=1 E ^7
 /<. It

therefore seems reasonable to conjecture that a refined bound of the latter type exists in more generality. The
growth bounds discussed in Remark 5.1 imply a statement of the form

logE ‖_< · · ·_1‖ ≤
1
<

 <∑
7=1

E ^7

 + error ,

but the error term is not sharp. This type of bound would echo Tropp’s improvements [42] to the Ahlswede–Winter
results [1] for a sum of independent random matrices. At present, it is not clear whether this refinement is
possible, nor what technical arguments would lead there.

A Supplementary Proofs

This appendix collects a few additional arguments. First, we establish the sharp form of the result on subquadratic averages, Proposition 4.1,
using an elementary method.

Lemma A.1 (Sharp Subquadratic Averages) Let ^,_ be random matrices of the same size that satisfy E[_ |^ ] = 0. When 2 ≤ ? ≤ >,

|||^ + _ |||2>,? ≤ |||^ |||2>,? + C> |||_ |||2>,?,

where the optimal constant C> := > − 1.

Proof Fix a natural number <, and set ` = <−1_ . Inequality (4.4) states that

�1 := |||^ + ` |||2>,? − |||^ |||2>,? − 2C> |||` |||2>,? ≤ 0.

For a parameter 2 ≤ 9 ≤ <, Corollary 4.1 and Lyapunov’s inequality imply that

|||^ + 9` |||2>,? + |||^ + (9 − 2)` |||2>,? ≤ 2 |||^ + (9 − 1)` |||2>,? + 2C> |||` |||2>,?.

Rearranging the last display, we see that

�9 := |||^ + 9` |||2>,? − |||^ + (9 − 1)` |||2>,? − 2C>9 |||` |||2>,?
≤ |||^ + (9 − 1)` |||2>,? − |||^ + (9 − 2)` |||2>,? − 2C> (9 − 1) |||` |||2>,? = �9−1.

In particular, �9 ≤ �1 ≤ 0. Using a telescoping sum,

|||^ + _ |||2>,? − |||^ |||2>,? =
<∑
9=1

(
|||^ + 9` |||2>,? − |||^ + (9 − 1)` |||2>,?

)
=

<∑
9=1

(
�9 + 2C>9 |||` |||2>,?

)
≤

<∑
9=1

2C>9 |||` |||2>,? = C>
< + 1
<
|||_ |||2>,?.

Take the limit as <→∞ to arrive at the stated result.

Second, we present a basic numerical inequality for weighted sums of exponentials.

Lemma A.2 Let 01, 02, . . . , 0< be a sequence of real numbers. Then

<∑
7=1

07 exp

(
7−1∑
9=1

09

)
≤ exp

(
<∑
7=1

07

)
− 1.

Proof The elementary inequality 0 ≤ e0 − 1, valid for 0 ∈ ℝ, implies that

07 exp

(
7−1∑
9=1

09

)
≤ exp

(
7∑

9=1
09

)
− exp

(
7−1∑
9=1

09

)
.

Sum the displayed equation over 7 = 1, . . . , < to verify the claim.
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