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Fast Fourier Sampling: A Tutorial

A. C. Gilbert, M. J. Strauss, and J. A. Tropp

I. WHEN FAST IS NOT ENOUGH

Suppose thatx is a discrete-time signal of lengthN that can be expressed with onlym digital

frequencies wherem≪ N :

x[t] =
1√
N

m
∑

k=1

ake
2πiωkt/N , t = 0, 1, 2, . . . , N − 1.

We study the problem of identifying the unknown frequenciesω1, . . . , ωm that participate and

their coefficientsa1, . . . , am. Conceptually, the easiest way is to perform anN -point Discrete

Fourier Transform (DFT):

X[ω] =
1√
N

N−1
∑

t=0

x[t]e−2πiωt/N , ω = 0, 1, 2, . . . , N − 1.

Having obtained allN Fourier coefficients, it is straightforward to locate them nonzero frequen-

cies and their coefficients. Although you can compute the DFTefficiently by means of the Fast

Fourier Transform (FFT), the fact remains that you must compute a very large number of zero

coefficients when the signal involves few frequencies. Thisapproach seems rather inefficient.

The Discrete Uncertainty Principle [DS89] suggests that itmight be possible to use fewer

samples from the signal. Indeed, if the spectrum of a length-N discrete-time signal contains only

m nonzero frequencies, then the time domain has at leastN/m nonzero positions. As a result,

even if we sample the signal at relatively few points in time,the samples should carry significant

information about the spectrum of the signal.

This article describes a computational method, called theFourier Sampling algorithm, that

exploits this insight [GMS05]. The algorithm takes a small number of (correlated) random samples

from a signal and processes them efficiently to produce an approximation of the discrete Fourier

transform of the signal. The algorithm offers provable guarantees on the number of samples, the
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running time, and the amount of storage. As we will see, theserequirements are exponentially

better than the FFT for some cases of interest.

This article describes in detail how to implement a version of Fourier Sampling; it presents

some evidence of its empirical performance; and it explainsthe theoretical ideas that underlie

the analysis. Our hope is that this tutorial will allow engineers to apply Fourier Sampling to their

own problems. We also hope that it will stimulate further research on practical implementations

and extensions of the algorithm.

A. The Fourier Sampling Algorithm, a summary

We begin with a discussion of performance guarantees, so it clear what the Fourier Sampling

algorithm can accomplish and what it cannot. The algorithm requires random access to the time

domain of a signalx of lengthN . The input parameterm is the number of frequencies sought.

As output, the algorithm produces a signaly that approximatesx with only m frequencies:

y[t] =
1√
N

∑m

k=1
ake

2πiωkt/N . (I.1)

This approximation is represented by the set{(ωk, ak) : k = 1, 2, . . . ,m} of frequency/coefficient

pairs. In a moment, we will see that the approximation error is comparable with the minimal

error possible using an signal of the form (I.1).

The algorithm also involves several design parameters. Thenumberε > 0 determines the

quality of the computed approximation in comparison with the best approximation. The number

δ > 0 is the probability that the algorithm fails with respect to the random choices it makes

during its execution. Both these quantities can be controlled by taking additional samples from

the signal. The following theorem shows how all the factors interact.

Theorem 1 (Gilbert et al. [GMS05]):Let x be an arbitrary signal of lengthN . The Fourier

Sampling algorithm takesm poly(ε−1, log(δ−1), log(N)) random samples1 of the signal. With

probability at least1− δ, the algorithm returns an approximationy of the form (I.1) that satisfies

the error bound

‖x− y‖2 ≤ (1 + ε) ‖x− xopt‖2 + ε

1The termpoly(·) indicates an unspecified polynomial in its arguments.
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wherexopt is the best approximation tox of the form (I.1). It produces this approximation using

time and storagem poly(ε−1, log(δ−1), log(N)).

Let us elaborate on the statement of this theorem. Whenm ≪ N , the algorithm takes far

fewer samples than the total length of the signal. We emphasize that the sample set depends on

random choices, but it does not depend on the signal or the progress of the algorithm. Therefore,

the sample locations can be established before execution. Moreover, the runtime and storage

requirements of the algorithm are roughly proportional to the number of frequencies it outputs,

rather than the signal length. All the resource requirements are logarithmic inN , the signal

length, so Fourier Sampling has the potential to be exponentially faster than the FFT.

Second, let us discuss how to interpret the approximation guarantee. When the signal is well

approximated by a set ofm frequencies, the right-hand side of the error bound is small, so the

algorithm produces an approximation that is competitive with the optimalm-frequency approxi-

mation. In contrast, when it takes many frequencies to approximate the signal, the algorithm will

return a poor result. In this setting, Fourier Sampling is not an appropriate tool.

Even if the true signal consists ofm frequencies contaminated with heavy noise, the algorithm

may not return them ideal frequencies. Indeed, the theorem only promises that the error in

the output approximation is comparable to the amount of noise. Nevertheless, a careful analysis

shows that the energy of the noise must be substantial compared with the signal energy before

the algorithm delivers frequencies different from the ground truth.

A more familiar way to analyze the quality of the approximation y is to compute its recon-

struction SNR. Suppose that our signalx consists ofm frequencies plus an orthogonal noise

vectorν. Then

SNR = 10 log10

( ‖x‖2
‖x− y‖2

)

≥ 10 log10

( ‖x‖2
(1 + ǫ) ‖ν‖2

)

.

Consequently, the SNR of the reconstructed signal is smaller than optimal by an additive term.

We can reduce this loss by decreasing the design parameterǫ, although this revision results in

additional samples of the signal and increased computationtime.
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B. Rising to the Challenge

The fundamental challenge for the Fourier Sampling algorithm is to divine information about

the frequency spectrum of a signal under severe constraintson the number of samples and arith-

metic operations. To do so, the algorithm makes random choices to avoid worst-case scenarios.

This means that the procedure has access to random bits separate from and in addition to its input.

In its execution, the algorithm uses those random bits to guide its behavior.For each input, it

succeeds with high probability with respect to the source ofrandomness. This idea is substantially

different from the use of statistical signal models, so practitioners of signal processing may be

less familiar with it. Here are the key observations:

1) Random time samples of a signal allows us to estimate certain characteristics, such as its

zero-frequency coefficient and its energy.

2) Random permutation of the spectrum allows us to separate significant tones into different

frequency bands. The tones can then be isolated with bandpass filters.

The algorithm also exploits many standard methods from the DSP toolbox:

1) Sampling in time corresponds to summing modulated Fourier coefficients.

2) Dilation in time corresponds to dilation of the spectrum.

3) Modulation in time corresponds to translation of the spectrum.

4) The FFT can be used to apply a filterbank, which multiplies the spectrum of the signal by

a collection of transfer functions.

5) (Nonuniform) FFTs allow fast evaluation of exponential polynomials at multiple points.

The algorithm combines these ideas in a way that is complicated and—perhaps—unusual. In Sec-

tion IV, we provide more detailed information about how these methods allow us to approximate

the spectrum of an unknown signal.

C. Background and Related Work

The Fourier sampling algorithm differs from traditional spectral estimation techniques in a

variety of ways. First, unlike Prony’s method [dP95] and itsmore stable variations [SH00],

the algorithm is not predicated upon evenly spaced samples—just the opposite. Second, the

reconstruction algorithm uses the samples in a nonlinear fashion, unlike the procedures of [HB98].

It does not form a linear combination of the sample values. Third, the algorithm and its analysis
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are inherently discrete. The samples are drawn from a discrete-time signal (rather than an

underlying continous-time signal) and the output of the algorithm is an approximation to the

discrete spectrum.

The Fourier sampling algorithm is related to the Compressive Sampling paradigm, but the two

approaches focus on different resource constraints. Let usconsider the case where signals of

interest have few significant frequencies in comparison with their length. The primary concern of

Compressive Sampling is to reconstruct the spectrum of the signal from as few samples as possible

with extremely strong guarantees on the probability of success. Researchers have established that

several different randomized sampling schemes are compatible with this goal [Don06], [CT06].

Most of the literature concentrates on reconstruction algorithms such as convex programming,

but other methods are available [CM06], [GSTV07]. The Fourier sampling algorithm is closest

in spirt to the algorithms in [KM91], [Man95].

II. EMPIRICAL PERFORMANCE

The Fourier sampling algorithm has been implemented and tested in a variety of settings to

assess its empirical performance. We discuss one particular implementation [IGS07], the AAFFT,

and we provide evidence that it is both powerful and resource-efficient.

First, we consider a problem inspired by communication devices that use frequency-hopping

modulation schemes. Suppose we wish to recover a synthetic signal consisting of two tones that

change at regular intervals. These signals are contaminated with white Gaussian noise so the

SNR is−17 dB. We apply the AAFFT implementation to identify the location of the two tones.

Figure 1 exhibits the output using asparsogram, which is a time–frequency plot that displays

only the dominant frequencies in the signal. As a benchmark,we also computed the sparsogram

with FFTW, a highly optimized implementation of the FFT. Both AAFFT and FFTW obtain the

correct result in the same amount of time, but AAFFT samples only 3% of the signal—a factor

33× undersampling.

This first experiment provides evidence that AAFFT uses far fewer samples than FFTW. The

AAFFT implementation is also substantially faster than FFTW for long signals. To prove this

point, we constructed (noiseless) signals of different lengths by selecting 60 frequencies at random

and assigning them unit coefficients. We compared the running time for AAFFT to identify these
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Fig. 1. The sparsogram for a synthetic frequency-hopping signal consisting of two tones in noise, as computed by
the AAFFT.
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Fig. 2. The execution time of FFTW and AAFFT for recovering 60frequencies without noise. The error bars indicate
the minimum and maximum run times. The AAFFT runs faster thanFFTW when the signal length exceeds106.

60 frequencies with the running time for FFTW using a log–logscale. The result appears in

Figure 2. Notice that the execution time of FFTW grows dramatically while the speed of the

AAFFT remains virtually constant as the signal length varies across several orders of magnitude.
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Fig. 3. Phase transition diagram for recovering one frequency in noise. The plot uses shades of gray to indicate the
probability of successful recovery as a function of the SNR and the percentage of the signal that is sampled. The
undersampling rate is the reciprocal of the sampling percentage.

At the beginning of the tutorial, we mentioned that the algorithm may fail completely to

approximate the signal. The failure probability can be controlled by increasing the number of

samples of the signal that we take. We constructed signals oflengthN = 222 (about four million)

containing one tone in additive white Gaussian noise, and weattempted to locate the frequency

with AAFFT. For each sampling rate, we performed 1000 trialsand computed the fraction of

those trials in which the tone was successfully identified. Figure 3 is a phase transition chart that

indicates the probability of recovering a single frequencyin heavy noise. We see, for example, that

AAFFT can recover the tone 90% of the time at an SNR of−15 dB with 100× undersampling.

This rate is fully two orders of magnitude below Nyquist.

We also studied the number of samples necessary to recover a larger number of frequencies.

We fixed the signal length atN = 222 and measured the number of samples necessary to recover

m tones at least 99% of the time. Figure 4 displays the results.For example, if we sample10%

of the signal, the AAFFT implementation can recover 1000 tones over 99% of the time. If an

application can tolerate a higher failure probability, then AAFFT can recover more tones with

the same level of undersampling.
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Fig. 4. The proportion of the signal that AAFFT samples to recover a fixed number of tones in a signal of length
N = 222 at least 99% of the time.

III. I MPLEMENTATION

This section gives an overview of a simplified version of the AAFFT implementation, including

explicit pseudocode (Algorithm III.1). This version assumes thatN is a power of two, and it

removes some failure-control mechanisms. The complete AAFFT algorithm is somewhat more

complicated than the code here, but this basic implementation still works quite well.

Let us note that the upcoming description of the algorithm interleaves the sampling of the

signal with the other actions of the algorithm. We have elected this description to make it clear

precisely where samples are required. Nevertheless, we emphasize that the samples used by the

algorithm are totally nonadaptive. In particular, it is possible to select the sample points and draw

the samples from the signal prior to runtime.

The algorithm iteratively constructs an approximationy to the input signal. As it runs, the

algorithm represents the approximation as a listΛ of at mostK frequency/coefficient pairs:

Λ = {(ωk, ak) : k = 1, 2, . . . ,K}. The approximationy is implicitly determined via (I.1).

The approximation also induces aresidual signalr = x − y. The most critical parameter in

the algorithm is the sizeK of frequency list. In the pseudocode, we have chosenK = 8m.

Increasing the factor eight improves accuracy at the cost ofadditional samples and arithmetic.
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The algorithm often needs to determine the value of the residual signal at designated sampling

locations. Since the approximation has the form (I.1), the SAMPLE-RESIDUAL subroutine is able

to perform this computation efficiently with a nonuniform FFT. The literature describes several

approaches to computing nonuniform FFTs, including [Bey95], [AD96]. Explicit pseudocode is

also available [DR93, Alg. 1]. Alternatively, the exponential sums can be evaluated directly at

somewhat higher cost.

At the highest level, the algorithm proceeds as follows. First, the approximation is set to zero,

so the residual signal equals the input signal. The algorithm iteratively refines the approximation,

as described in the next paragraph. After the iteration is complete, the algorithm reduces the list

Λ by picking m frequencies with the largest coefficients.

The main loop consists of the three steps. First, the identification stage constructs a listΩ

containingK frequencies that are likely to carry a significant amount of the energy from the

residual. Second, the estimation stage finds estimates of the coefficients of the frequencies inΩ.

Third, the algorithm adds the new approximation to the previous approximation to get a total of

2K terms (or fewer). Frequencies with small coefficients are likely to be spurious, so the list

is reduced toK terms (or fewer) by retaining only the frequencies with the largest coefficients.

Our experience suggests that the main loop should be repeated about five times.

The IDENTIFICATION subroutine employs a randomized filtering process to find up to K sig-

nificant frequencies from the residual signal. Beginning with the least-significant bit, it determines

each bit from allK frequencies in parallel. In the inner loop, the subroutine performs several

repetitions to drive down the failure probability. Our experience suggests that 3–5 repetitions are

adequate.

The ESTIMATION subroutine uses a related randomized filtering process to estimate simulta-

neously the coefficients ofK given frequencies in the residual signal. This calculationinvolves

the adjoint of the nonuniform FFT. Explicit pseudocode appears in [DR93, Alg. 2]. The sums

can also be evaluated directly at higher cost. The subroutine takes the median of several copies

of the estimator to improve robustness. In practice, 3–5 copies suffice.

IV. T HE CONCEPTSBEHIND THE CODE

The Fourier sampling algorithm must perform computations on the frequency spectrum of a

signal under severe constraints on the number of samples andarithmetic operations. It is possible
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to achieve an economy of scale by attempting to find all the significant frequencies at once. The

central design principle in the algorithm is to exploit thiseconomy whenever possible by means of

filterbanks, nonuniform FFTs, and random sampling. This section describes the intuitions behind

the key steps in the algorithm. In the sequel, we assume that the signal lengthN is a power

of two, that the signal takes complex values, and that all arithmetic on the indices is performed

moduloN .

A. The Role of Randomness

In contrast with the field of statistical signal processing,we do not make any assumptions about

the input signal. Instead, the algorithm makes random choices during its execution to enable it

to succeed with high probability for any given input signal.In this section, we attempt to share

the flavor of these techniques.

1) Random Sampling:Random sampling is a very efficient method for estimating some key

characteristics of a signal. Letx be a signal of lengthN , and letT be the random variable that

takes each value from{0, 1, 2, . . . , N − 1} with equal probability.

First, the squared magnitude of a random time sample gives a good estimate for the signal

energy because‖x‖2 = N E |x[T ]|2. Owing to Markov’s inequality, it is unlikely that a random

sample, suitably normalized, has magnitude much greater than the norm of the signal.

Second, consider a signal containing one large frequency plus noise:x[t] = a e2πiωt/N/
√

N +

v[t]. A short argument involving the triangle inequality and Jensen’s inequality yields

|a| − ‖v‖2 ≤
√

N E |x[T ]| .

That is, we can approximate the magnitude of the tone by random sampling. Therefore, we can

find the location of a tone that dominates a signal.

Finally, the scaled expectation of a random sample equals the zero-frequency component of a

signal. This point follows from the simple factX[0] =
√

N Ex[T ]. The algorithm uses this fact

to estimate the coefficient of a specified frequency.

2) Random Spectral Permutation:A major difficulty is that significant tones in the spectrum of

a signal can be clustered together or spread out. One of the central innovations in the algorithm

is a randomized technique for isolating significant tones from each other so we can perform
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Fig. 5. The impact of dilations on the spectrum of a frequency-sparse signal. The top-right panel is generated by
the time dilationt 7→ 11t mod N (equivalently, by a frequency dilationω 7→ 3ω mod N ); the bottom-right panel by
t 7→ 9t mod N (or ω 7→ 9ω mod N ). Note that the zero frequency always remains fixed.

spectral analysis using bandpass filters.

To explain, we need some basic number theory. Two numbers arerelatively primeif they have

no common integer factor except±1. SinceN is a power of two, the numbers relatively prime

to N are precisely the odd integers. Given an odd numberσ, the Euclidean division algorithm

furnishes a numberσ−1, called itsmultiplicative inverse, that satisfiesσ · σ−1 ≡ 1 (mod N).

Let σ be odd, and consider the dilationdσ : t 7→ σt mod N . It is not hard to see that this map

is a permutation on the set{0, 1, 2, . . . , N − 1} and that its inverse is the mapdσ−1 . In discrete

Fourier analysis, these observations lead directly to the identity

y[t] = x[σt] for all t ⇐⇒ Y [ω] = X[σ−1ω] for all ω.

Succinctly, time dilations generate frequency permutations. See Figure 5 for an illustration.

The key idea is to chooseσ at random from the set{1, 3, 5, . . . , N −1} of invertible numbers.

Applying the dilationdσ to the signal, we produce a random permutation of its spectrum. It is

unlikely that a given pair of frequencies is mapped to the same part of the spectrum. Roughly

speaking, random permutation of the spectrum isolates significant frequencies from each other.

B. Identification

The first stage in the Fourier sampling algorithm is to identify a collection of frequencies

whose coefficients are large relative to the signal energy. The identification process consists of

two conceptual steps,shatteringandbit testing. Shattering generates a collection of signals, many
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of which have a single dominant frequency. Then bit tests areapplied to each signal to find the

location of the dominant frequency, one bit at a time.

1) Shattering:A shatteringof a signalx is a collection{x0,x1, . . . ,xK−1} of signals that are

formed by a three-step filtering process. First, we randomlypermute the spectrum of the signal

to isolate significant frequencies from each other. Second,we apply a sub-band decomposition

filterbank to createK signals that each carry a chunk of the permuted spectrum. Each significant

tone in the orginal signal is likely to dominate one signal inthe shattering. Finally, we invert

the dilation to restore the frequencies to their original places in the spectrum. Figure 6 exhibits

a block diagram, and Figure 7 illustrates the effects of shattering on a signal.

The design of the sub-band decomposition filterbank is simple. Leth be a low-pass filter with

K taps whose cutoff frequency is aboutπ/K radians. The filterbank consists ofK frequency

translates of this filter, spaced2π/K radians apart. In the time domain, this amounts to convolution

with hk[t] = e−2πikt/Kh[t] for eachk = 0, 1, . . . ,K − 1. The analysis in [GMS05] suggests that

the ideal filter has minimal energy among all normalized filters with K taps. This observation

recommends the boxcar filterh[j] =
√

N/K for j = 0, 1, . . . ,K − 1. It is possible that more

sophisticated low-pass filters or windows will sometimes yield better results [OSB99, Ch. 7].

Let us emphasize that the algorithm never forms a shatteringexplicitly. Instead, the filterbank

is constructed so we can take one time sample from each element of the shattering by processing

K samples from the input signal. Ifσ is the parameter of the random dilation, thekth signal in

the shattering satisfies

xk[t] =
∑K−1

j=0
h[j]x[t − σj] e−2πijk/K .

Given a pointt, we can simultaneously calculatex0[t], x1[t], . . . , xK−1[t] by extracting an arith-

metic progression from the input signal, multiplying it with the filter, and applying an FFT. The

subroutine SAMPLE-SHATTERING performs these actions.

2) Bit Testing: Shattering generates a collection of signals, some of whichcontain a single

dominant frequency. The bit-test process is designed to locate the dominant frequency in such a

signal. (The bit tests are likely to return spurious frequencies for other elements of the shattering.)

Suppose thatx is a length-N signal in which a single frequency carries most of the energy.

We find the bits of the frequency sequentially, beginning with the least significant bitb = 0.

Assuming we already know the least-significant(b − 1) bits, we can demodulate the signal so
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Fig. 6. A conceptual block diagram for the shattering process. A shattering ofx contains K elements
x0, x1, . . . , xK−1.
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preserved and the other is attenuated. In each plot, the transfer function is traced in black.
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Fig. 8. A conceptual block diagram for thebth bit test. The test yields a 0/1 bit valueε and a demodulated copy of
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that the binary expansion of the dominant frequency ends in10 . . . 0 or in 00 . . . 0. We apply the

frequency mask filters

geven
b =

1

2

(

δ0 + δN/2b+1

)

and godd
b =

1

2

(

δ0 − δN/2b+1

)

.

The filter geven
b passes the even frequencies and zeros the odd frequencies (mod 2b). In a similar

fashion, the filtergodd
b passes the odd frequencies and zeros the even ones (mod2b). If E0 is a

random sample from the output of the even filter andE1 is a random sample from the odd filter,

then the inequality|E1| ≥ |E0| is evidence that the least-significant bit is one.

Therefore, the bit test compares the magnitude of a random sample from each of the two

filtered signals. It repeats the comparison several times, and it takes a majority vote to reduce

the failure probability. See Figure 8 for a block diagram of the bth bit test. Note that bit testing

is computationally efficient since each filter has only two taps.

3) Implementation:We separate theconceptsof shattering and bit testing, but the code must

intertwine them for efficiency. Recall that we can simultaneously compute one sample from each

of theK elements in the shattering. To exploit this fact, we simultaneously test thebth bit of the

dominant frequency in each element of the shattering using two correlated samples, demodulated

by the first(b− 1) bits of that frequency. Details appear in the IDENTIFICATION subroutine.
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C. Estimation of Fourier Coefficients

The identification phase of the algorithm returns a list ofK or fewer frequencies, but it does not

provide sufficient information about their coefficients. The next stage of the algorithm estimates

the coefficients using a randomized filtering technique.

Suppose we want to estimate the coefficient of a significant frequencyω in a signal x.

First, we demodulate the signal byω so we can estimate the zero frequency instead. Next,

we randomly dilate the signal. This operation fixes the zero frequency and shuffles the other

significant frequencies around (probably away from zero). Third, we apply a filter to pass the

zero frequency and attenuate the rest of the spectrum. Then,we invert the dilation. At this point,

the zero frequency is likely to dominate the signal. We estimate its coefficient by taking a random

sample and scaling appropriately. See Figure 9 for a block diagram.

As in shattering, we cannot afford to use a filter with more than K taps. It turns out that the

boxcar filterh[k] =
√

N/K for k = 0, 1, 2, . . . ,K − 1 remains a good choice in this setting.

We can write down the cumulative effect of this random filtering process. Letσ be the parameter

of the random dilation, and lett be the sample location. Then the coefficient estimatecω is

cω =
√

Ne−2πiωt/N
K−1
∑

j=0

h[j] s[t − σj] e−2πi(ωσK/N) j/K .

One should view this expression as the discrete Fourier transform of a sequence of length

K, evaluated at the nonintegral frequency2πωσK/N radians, then demodulated and scaled.

Therefore, we can simultaneously estimate the coefficientsof a collection ofK frequencies

(or fewer) using the adjoint nonuniform FFT. Afterward, we can demodulate each coefficient

individually. Finally, we make each coefficient estimator more robust by taking the median of

several copies. (The medians of the real and imaginary partsare performed separately.)

D. Iteration

The recoverable energyin a signal is the energy carried by the largestm frequencies. It is

impossible to collect more since our approximation contains only m frequencies. By performing

identification and estimation once, the algorithm finds a constant proportion of the recoverable

energy in the residual. Therefore, after a constant number of iterations, the algorithm can find a

fixed proportion of the recoverable energy in the original signal.
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Randomly

permute spectrum Low-pass filter

Draw random number for dilation

Undo permutationDemodulate

Draw random sampling point

x[t] e
−2πiωt/N

ω

t 7→ σt mod N t 7→ σ
−1

t mod Nh[t]

σ ∼ Uniform{1, 3, 5, . . . , N − 1} T ∼ Uniform{0, 1, 2, . . . , N − 1}

Sample at T cω

Fig. 9. A conceptual block diagram for the coefficient estimator. The system returns an estimate for the coefficient
cω of the frequencyω in the signalx. Note that the estimate must also be scaled by

√
N .

V. EXTENSIONS AND IMPROVEMENTS

Although the Fourier sampling algorithm is designed for discrete-time signals, we can use

it in certain analog settings with some modifications. We canacquire a few random structured

samples of a wide-band continuous-time signal that has a fewsignificant tones and recover

quickly those tones present. To build a practical system, wemust analyze carefully the required

minimum sample spacing as it is costly to acquire signal samples close in time. We must also

increase the flexibility of the output representation so as to improve the reconstruction SNR;

instead of returning exactlym, we return a (tunable) multiple ofm. All of these modifications

are possible while still preserving the structure and quality guarantees of the algorithm. We must

be realistic, however, in assessing the quality of our output. The algorithm returns a compressed

or approximate representation of the discrete spectrum of an inherently analog signal. It only

approximates the significant portions of the discrete spectrum, which, itself, is an approximation

to the true spectrum.
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ALGORITHM III.1: Simplified Fourier sampling Algorithm.

FOURIERSAMPLING(x, m)
Input: Input signalx of lengthN = 2α and numberm of frequencies to find
Output: SetΛ = {(ω, aω)} containingO(m) frequency/coefficient pairs

K ← 8m andΛ← ∅
for j = 1 to 5

Ω← IDENTIFICATION(x, Λ, K) { Identify K frequencies in the residual}
c← ESTIMATION(x, Λ, Ω) { Estimate Fourier coefficients}
foreach frequencyω ∈ Ω and corresponding coefficientcω

if (ω, aω) ∈ Λ for someaω then replace the pair with(ω, aω + cω)
else add the new pair(ω, cω) to Λ

RetainK pairs fromΛ whose coefficients have greatest magnitude
Retainm pairs fromΛ whose coefficients have greatest magnitude

SAMPLE-RESIDUAL(x, Λ, t, σ, K)
for k = 1 to K

uk ← x[t + σ(k − 1) mod N ] { Arithmetic progression from signal}
vk ←

∑

(ω,aω)∈Λ(aωe2πiωt/N ) e2πi(ωσ/N)(k−1) { In parallel, via nonuniform FFT}
return (u− v) { Residual is signal minus approximation}
IDENTIFICATION(x, Λ, K)
reps← 5 andωk ← 0 for k = 1, 2, . . . , K
Draw σ ∼ UNIFORM{1, 3, 5, . . . , N − 1} { Random shattering parameter}
for b = 0 to log2(N/2) { Loop from LSB to MSB}

votek ← 0 for k = 1, 2, . . . , K
for j = 1 to reps

Draw t ∼ UNIFORM{0, 1, 2, . . . , N − 1} { Random sample point}
u← SAMPLE-SHATTERING(t) { Samples correlated
v ← SAMPLE-SHATTERING(t + N/2b+1) for testingbth bit }
for k = 1 to K

E0 ← uk + e−πiωk/2b

vk { Apply bit-test filters to
E1 ← uk − e−πiωk/2b

vk demodulated signal}
if |E1| ≥ |E0| then votek ← votek + 1 { Vote when bit is one}

for k = 1 to K
if votek > reps/2 then ωk ← ωk + 2b { Majority vote for bit value}

return Unique(ω1, ω2, . . . , ωK) { Remove duplicates}

SAMPLE-SHATTERING(p)
z ← SAMPLE-RESIDUAL(x, Λ, p, σ, K) { Get arithmetic progression of samples}
z ← FFT(z) { Apply sub-band decomposition filterbank}
return z

ESTIMATION(x, Λ, Ω)
reps← 5
for j = 1 to reps

Draw σ ∼ UNIFORM{1, 3, 5, . . . , N − 1} and t ∼ UNIFORM{0, 1, 2, . . . , N − 1}
u← SAMPLE-RESIDUAL(x, Λ, t, σ, K)
for ℓ = 1 to |Ω|

cℓ(j)←
∑K

k=1 uk e2πi(ωℓσ/N)(k−1) { In parallel, via nonuniform FFT}
cℓ(j)← (N/K) e−2πiωℓt/N cℓ(j) { Demodulate and scale estimates}

cℓ ← Median{cℓ(j) : j = 1, 2, . . . , reps} for ℓ = 1, 2, . . . , |Ω| { Do real, imaginary separately}
return c1, c2, . . . , c|Ω|
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