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2Institut de Mathématiques de Toulouse, Toulouse, France

3California Institute of Technology, Pasadena, United States
(Dated: October 12, 2018)

Projected least squares (PLS) is an intuitive and numerically cheap technique for quantum state
tomography. The method first computes the least-squares estimator (or a linear inversion estimator)
and then projects the initial estimate onto the space of states. The main result of this paper equips this
point estimator with a rigorous, non-asymptotic confidence region expressed in terms of the trace
distance. The analysis holds for a variety of measurements, including 2-designs and Pauli measure-
ments. The sample complexity of the estimator is comparable to the strongest convergence guarantees
available in the literature and—in the case of measuring the uniform POVM—saturates fundamen-
tal lower bounds. The results are derived by reinterpreting the least-squares estimator as a sum of
random matrices and applying a matrix-valued concentration inequality. The theory is supported by
numerical simulations for Pauli observables, Pauli basis measurements and mutually unbiased bases.

I. INTRODUCTION

Quantum state tomography is the task of recon-
structing a quantum state from experimental data.
Many methods have been proposed for this prob-
lem. Maximum-likelihood estimation [1, 2] is a pop-
ular universal approach that produces point estima-
tors, but error bars are only available in asymptotic
scenarios involving fully mixed states[56]. This short-
coming spurred the development of alternatives, such
as Bayesian [3–5] and region estimators [6–8]. These
methods have other drawbacks, such as comparatively
high computational cost and weak (or implicit) con-
vergence guarantees. In parallel, researchers proposed
compressed sensing techniques [9–12] to estimate (ap-
proximately) low-rank states from fewer samples.

In this work, we revisit linear inversion, one of
the oldest and simplest methods for tomography [13].
We prove that a variant, projected least squares (PLS),
supports easy-to-interpret, non-asymptotic error guar-
antees. Our main result demonstrates that roughly
r2dε−2 log d independent samples suffice to reconstruct
any rank-r state ρ of level d up to accuracy ε in trace
distance. This sampling rate improves upon existing re-
sults [14] and is competitive with the most powerful
techniques in the literature [11, 15]. It (almost) satu-
rates fundamental lower bounds on the minimal num-
ber of independent samples[57] required for tomogra-
phy [11, 16]. As an added benefit, the PLS method is
numerically “cheap” in the sense that its computational
cost is dominated by forming the least-squares estima-
tor. Numerical simulations indicate that PLS is much
faster and performs well in comparison to prominent
alternatives, including maximum-likelihood estimation
[17] and compressed sensing [9].
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A. Background and estimator

For d-level systems, a tomographically complete
measurement[58] is described by d × d hermitian ma-
trices M1, . . . , Mm ∈ Hd that are positive semidefinite
and obey ∑m

i=1 Mi = I. Measuring a quantum state ρ
results in one of m outcomes, indexed by i ∈ [m]. The
probability of observing outcome i depends on ρ and is
described by Born’s rule:

[p]i = Pr [i|ρ] = tr (Miρ) for i ∈ [m] . (1)

These probabilities can be estimated by frequencies: Pre-
pare n copies of the state, measure each of them sepa-
rately, and set

[ fn]i =
ni
n

for i ∈ [m] , (2)

where ni is the number of times outcome i was observed.
These frequencies converge to the true probabilities as
n → ∞. The least-squares estimator is the solution to
the least-squares problem that results from replacing the
true probabilities in Born’s rule by frequencies (2):

L̂n = argmin
X∈Hd

m

∑
i=1

([ fn]i − tr (MiX))2 . (3)

This optimization inverts the m linear equations speci-
fied by Born’s rule; see Eq. (7) below (linear inversion). In
general, L̂n can have negative eigenvalues, so it may fail
to be a quantum state. Several ways to overcome this
drawback have been proposed [18–22]. We follow [14]
and compute the quantum state closest to L̂n in Frobe-
nius distance:

ρ̂n = argmin
σ is a quantum state

‖L̂n − σ‖2. (4)

Mathematically, this corresponds to projecting L̂n onto
the convex set of all quantum states. We term this pro-
cedure Projected Least Squares (PLS); see Tab. I. To our
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Projected least squares (PLS) estimator ρ̂n

• Estimate probabilities by frequencies (2),

• Compute the least squares estimator (3),

• Project it onto the set of quantum states (4).

TABLE I: Summary of the estimation technique.

knowledge, PLS was first formulated in [14]. Its sim-
plicity is a key advantage for both the analysis and for
the actual computation. The least-squares estimator (3)
and the projection onto the set of quantum states (11)
admit closed-form expressions. The total cost of the PLS
estimator is dominated by forming the least-squares es-
timate L̂n. PLS requires considerably less storage and
arithmetic than existing techniques that are based on
more complicated optimization problems.

II. RESULTS

A. Error bounds and confidence regions for ρ̂n

We analyze several important and practically rel-
evant measurement systems: structured POVMs (e.g.
SIC-POVMs, MUBs and stabilizer states), (global) Pauli
observables, Pauli basis measurements, and the uni-
form/covariant POVM. For each of these settings, the PLS
estimator ρ̂n provably converges to the true state ρ in
trace distance ‖ · ‖1.

Theorem 1 (Error bound for ρ̂n). Let ρ ∈ Hd be state and
fix a number of samples n ∈ N. Then, for each of the afore-
mentioned measurements, the PLS estimator (Tab. I) obeys

Pr [‖ρ̂n − ρ‖1 ≥ ε] ≤ de
− nε2

43g(d)r2 for ε ∈ [0, 1] ,

where r = min {rank(ρ), rank(ρ̂n)} and g(d) specifies de-
pendence on the ambient dimension:

g(d) = 2d for structured POVMs; see Eq. (8) for L̂n,

g(d) = d2 for Pauli observables; see Eq. (9) for L̂n,

g(d) ' d1.6 for Pauli basis measurements; see Eq. (10) for L̂n.

The following immediate Corollary endows ρ̂n with
rigorous error-bars in trace distance.

Corollary 1 (δ-confidence region). The trace-norm ball of
size rank(ρ̂n)

√
43g(d)n−1 log (d/δ) around ρ̂n (intersected

with state space) is a δ-confidence region for the true state ρ.

We emphasize the following aspects of this result:

(i) (Almost) optimal sampling rate: Theorem 1 high-
lights that

n ≥ 43g(d)
rank(ρ)2

ε2 log
(

d
δ

)
(5)

samples suffice to ensure ‖ρ̂n− ρ‖1 ≤ ε with prob-
ability at least 1− δ. For structured POVMs and
Pauli observables, this sampling rate is compara-
ble to the best theoretical bounds for alternative
tomography algorithms [9, 23]. Moreover, funda-
mental lower bounds in [16] and [11] indicate that
this scaling is optimal up to a single log(d)-factor,
so it cannot be improved substantially.

(ii) implicit exploitation of (approximate) low rank: the
number of samples required to achieve a good esti-
mator scales quadratically in the rank, rather than
the ambient dimension d. This behavior extends
to the case where ρ, or ρ̂n, is well-approximated
by a rank-r matrix; see Theorem 4 in the appendix.
These results are comparable with guarantees for
compressed sensing methods [11] that are specifi-
cally designed to exploit low-rank. Fig 2 (below)
provides numerical confirmation.

Proof sketch for Theorem 1. The least-squares estimator L̂n
can be viewed as a sum of n independent random ma-
trices. To illustrate this, consider a single structured
POVM measurement. Then L̂1 defined in (8) is an in-
stance of the random matrix X = (d + 1)|vk〉〈vk| −
I, where k ∈ [m] occurs with probability d

m 〈vk|ρ|vk〉
(Born’s rule). This generalizes to L̂n = 1

n ∑n
i=1 Xi, where

the matrices Xi are statistically independent. Such sums
of random matrices concentrate sharply around their ex-
pectation value EL̂n = ρ, and matrix concentration in-
equalities [24] quantify this convergence:

Pr
[∥∥L̂n − ρ

∥∥
∞ ≥ τ

]
≤ de−

3nτ2
8g(d) τ ∈ [0, 1] . (6)

This bound induces a similar operator norm bound for
the PLS estimator: the projection is a contraction in op-
erator norm and the shift in eigenvalues is bounded
by τ. The resulting bound ‖ρ̂n − ρ‖∞ ≤ 2τ may be
transformed into a trace-norm bound. This comparison
only depends on the (approximate) rank of the states in-
volved. We refer to the appendix for details.

B. Optimal performance guarantee for the uniform POVM

Theorem 1 involves a factor of the dimension d that
may be extraneous. This, in turn, introduces an ad-
ditional log(d)-gap between Eq. (5) and existing lower
bounds [16]. The dimensional factors emerge because
we employ matrix-valued concentration inequalities in
the proof. Our second main result shows that we can
remove the dimensional factor for the uniform POVM,
which encompasses all rank-one projectors:

Theorem 2 (Convergence of ρ̂n for the uniform POVM).
For uniform POVM measurements, the PLS estimator obeys

Pr [‖ρ̂n − ρ‖1 ≥ ε] ≤ e2.2d− ε2n
480r2 for ε > 0,
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where r = min {rank(ρ), rank(ρ̂n)}.

This result exactly reproduces the best existing per-
formance guarantees for tomography from independent
measurements [15]. The bound follows from standard
techniques from high-dimensional probability theory.

Proof sketch of Theorem 2. The operator norm has a varia-
tional formulation: ‖L̂n − ρ‖∞ = maxz∈Sd |〈z|L̂n − ρ|z〉.
The optimization over the unit sphere may be replaced
by a maximization over a finite point set, called a cover-
ing net, whose cardinality scales exponentially in d. For
any z ∈ Sd, 〈z|L̂n − ρ|z〉 is a sum of n i.i.d. random vari-
ables that exhibit subexponential tail decay. (Measuring
the uniform POVM allows us to draw this conclusion.)
Standard concentration inequalities yield a tail bound
that decays exponentially in the number n of samples.
Applying a union bound over all points zi in the net
then ensures Pr

[
‖L̂n − ρ‖∞ ≥ τ

]
≤ 2ec1d−c2nτ2

. Subse-
quently, closeness in operator norm for L̂n may be con-
verted into closeness in trace-norm for ρ̂n at the cost of
an additional (effective) rank factor.

III. ALGORITHMIC CONSIDERATIONS

A. Explicit solutions for the least squares estimator (3)

Tomographically complete measurements can be
viewed as injective linear maps M : Hd → Rm with
components [M(X)]i = tr(MiX) specified by Born’s
rule (1). It is well known that the least-squares problem
(3) admits the closed-form solution:

L̂n =
(
M†M

)−1 (
M†( fn)

)
. (7)

We evaluate this formula for different measurements
and content ourselves with sketching key steps and re-
sults (see appendix for details).

a. Structured POVMs and the uniform POVM:
Also known as 2-designs, these systems include highly

structured, rank-one POVMs
{

d
m |vi〉〈vi|

}m

i=1
, such as

symmetric informationally complete POVMs [25], max-
imal sets of mutually unbiased bases [26], the set of all
stabilizer states [27, 28], as well as the uniform POVM.
By definition, for X ∈Hd, all of the above systems obey

M†M(X) =
d2

m

m

∑
i=1
〈vi|X|vi〉|vi〉〈vi| =

md
d + 1

(X + tr(X)I) .

These equations can readily be inverted, and Eq. (7) sim-
plifies to

L̂n = (d + 1)
m

∑
i=1

[ fn]i |vi〉〈vi| − I. (8)

b. Pauli observables: Fix d = 2k (k qubits), and let
W1, . . . , Wd2 ∈ Hd be the set of Pauli observables, com-
prising all possible k-fold tensor products of the elemen-
tary 2× 2 Pauli matrices. We can approximate the ex-
pectation value tr(Wiρ) of each Pauli observable by the
empirical mean µ̂i =

[
f+n/d2

]
i
−
[

f−n/d2

]
of the 2-outcome

POVM P±i = 1
2 (I±Wi). Pauli matrices form a unitary

operator basis, and the evaluation of Eq. (7) is simple:

L̂n =
1
d

d2

∑
i=1

µ̂iWi =
1
d

d2

∑
i=1

([
f+n/d2

]
i
−
[

f−n/d2

]
i

)
Wi. (9)

c. Pauli basis measurements Rather than approx-
imating (global) expectation values, it is possible to
perform different combinations of local Pauli measure-
ments. For d = 2k, there are 3k potential combina-
tions in total. Each of the settings s ∈ {x, y, z}k corre-
sponds to a basis measurement |b(s)o 〉〈b

(s)
o |, where o ∈

{±1}k labels the 2k potential outcomes. The union M
of all 3k bases obeys

(
M†M

)
(X) = 3kD⊗k

1/3(X), where
D1/3(X) = (ρ + tr(X)I)/3 denotes a single-qubit depo-
larizing channel. Evaluating Eq. (7) yields

L̂n =
1
3k ∑

s,o

[
fn/3k

](s)
o

(
D⊗k

1/3

)−1 (
|b(s)o 〉〈b

(s)
o |
)

. (10)

Finally, we point out that all of these explicit solutions
are guaranteed to have unit trace: tr

(
L̂n
)
= 1. They are

generally not positive semidefinite,

B. Explicit solutions for the projection step (4)

The PLS estimator is defined to be the state closest in
Frobenius norm to the least-squares estimator L̂n. The
search (4) admits a simple, analytic solution [19]. Define
the all-ones vector 1 ∈ Rd and the thresholding function
[·]+ with components [y]+i = max {[y]i , 0}. Let L̂n =

Udiag(λ)U† be an eigenvalue decomposition. Then

ρ̂n = Udiag
(
[λ− x01]+

)
U†, (11)

where x0 ∈ R is chosen so that tr(ρ̂n) = 1. The fact
that L̂n itself has unit trace ensures that this solution to
Eq. (4) is unique. The number x0 may be determined by
applying a root-finding algorithm to the non-increasing
function f (x) = 2 + tr(L̂n)− dx + ∑d

i=1 |λi − x|.

C. Runtime analysis

The two steps discussed here are inherently scalable:
just count frequencies to determine the LI estimators
(8,9,10) at a total cost of (at most) min {m, n} matrix
additions. The subsequent projection onto state-space
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FIG. 1: PLS (blue) vs. ML (red) for 4-qubit Pauli basis measure-
ments: boxplots of trace distance error for ML vs. PLS for 100
datasets generated with random states of rank 1,5,10 and 16,
and 200 repetitions per setting. Inset: trace distance error as a
function of sample size for a pure target state.

is a particular type of soft-thresholding. The associated
computational cost is dominated by the eigenvalue de-
composition and has runtime (at most) O

(
d3).

In summary, forming L̂n is the dominant cost of a
naı̈ve implementation. However, the high degree of
structure may allow us to employ techniques from ran-
domized linear algebra [29] to further reduce the cost.

IV. NUMERICAL EXPERIMENTS

We numerically compare the performance of PLS to
maximum likelihood (ML) and compressed sensing (CS), re-
spectively. Additional numerical studies for MUBs can
be found in the appendix.

Fig. 1 compares ML and PLS for Pauli basis measure-
ments in dimension d = 24. The trace-norm error in-
curred by PLS is within a factor of two of ML for low-
rank states. Additional simulations (not included here)
indicate that this gap closes for full-rank states.

CS is a natural benchmark for low-rank tomography.
The papers [9, 10] apply to Pauli observables, and they
show that a random choice of m ≥ Crd log6(d) Pauli ob-
servables is sufficient to reconstruct any rank-r state. The
actual reconstruction is performed by solving a convex
optimization problem, e.g. the least-squares fit over the
set of quantum states [30, 31]. Numerical studies from
[11] suggest that m = 256 is appropriate for d = 25 and
r = 1. Fig. 2 shows that PLS consistently outperforms
the CS estimator in this regime. Importantly, PLS was
also much faster to evaluate than both, ML and CS.

FIG. 2: PLS (blue) vs. CS (red) for m 5-qubit Pauli observables
and a pure target state: Trace distance error for CS (m = 256)
and PLS (m = 1024) as a function of (total) sample size.

V. CONCLUSION AND OUTLOOK

Linear inversion is one of the oldest and simplest ap-
proaches to solve the practically important task of quan-
tum state tomography. In this work, we focused on a
variant called projected least squares (PLS) that projects
the least-squares estimator onto the set of all quantum
states. Not only is this estimator numerically cheap, but
it comes with strong, non-asymptotic convergence guar-
antees. These results are derived using concentration in-
equalities for sums of random matrices, and they exploit
the randomness inherent in quantum experiments.

We show that PLS is competitive, both in theory and
in practice. For a variety of measurements, the results
match the best existing theoretical results for the sam-
pling rate of other tomography methods. In particular,
for the uniform POVM, an order of r2d

ε2 samples suffice to
reconstruct any rank-r state up to accuracy ε in trace dis-
tance. This result also saturates existing lower bounds
[16] on the minimal sampling rate required for any to-
mographic procedure with independent measurements.
Numerical studies underline these competitive features.

Outlook: Corollary 1 is not (yet) optimal. Bootstrap-
ping could be used to obtain tighter confidence regions,
and the low computational cost of PLS may speed up
this process considerably. It also seems fruitful to com-
bine the ideas presented here with recent insights from
[32]. Finally, the proof of Theorem 1 indicates that PLS
is stable with respect to time-dependent state generation
(drift). We intend to address these points in future work.
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[17] H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al
kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O.
Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, Na-
ture 438, 643 EP (2005).

[18] M. S. Kaznady and D. F. V. James, Phys. Rev. A 79, 022109
(2009).

[19] J. A. Smolin, J. M. Gambetta, and G. Smith, Phys. Rev.
Lett. 108, 070502 (2012).

[20] P. Alquier, C. Butucea, M. Hebiri, K. Meziani, and
T. Morimae, Phys. Rev. A 88, 032113 (2013).

[21] C. Butucea, M. Guta, and T. Kypraios, New Journal of
Physics 17, 113050 (2015).

[22] V. Koltchinskii and D. Xia, J. Mach. Learn. Res. 16, 1757
(2015).

[23] R. Kueng, H. Zhu, and D. Gross, arXiv preprint
arXiv:1610.08070 (2016).

[24] J. A. Tropp, Found. Comput. Math. 12, 389 (2012).
[25] J. M. Renes, R. Blume-Kohout, A. J. Scott, and C. M.

Caves, J. Math. Phys. 45, 2171 (2004).
[26] A. Klappenecker and M. Rotteler, in International Sym-

posium on Information Theory, 2005. ISIT 2005. Proceedings
(2005) pp. 1740 –1744.

[27] C. Dankert, R. Cleve, J. Emerson, and E. Livine, Phys.
Rev. A 80, 012304 (2009).

[28] D. Gross, K. Audenaert, and J. Eisert, J. Math. Phys. 48,
052104 (2007).

[29] N. Halko, P. Martinsson, and J. Tropp, SIAM Review 53,
217 (2011), https://doi.org/10.1137/090771806 .

[30] A. Kalev, R. L. Kosut, and I. H. Deutsch, NPJ Quantum
Inf. 1, 15018 (2015).

[31] M. Kabanava, R. Kueng, H. Rauhut, and U. Terstiege, Inf.

Inference 5, 405 (2016).
[32] T. L. Scholten and R. Blume-Kohout, New J. Phys. 20,

023050 (2018).
[33] R. O’Donnell and J. Wright, in Proceedings of the Forty-

eighth Annual ACM Symposium on Theory of Computing,
STOC ’16 (ACM, New York, NY, USA, 2016) pp. 899–912.

[34] A. J. Scott, J. Phys. A 39, 13507 (2006).
[35] D. Gross, F. Krahmer, and R. Kueng, J. Fourier Anal.

Appl. 21, 229 (2015).
[36] J. Schwinger, Proc. Natl. Acad. Sci. USA 46, 570 (1960).
[37] M. A. Nielsen and I. L. Chuang, Quantum Computation and

Quantum Information: 10th Anniversary Edition, 10th ed.
(Cambridge University Press, New York, NY, USA, 2011).

[38] R. Kueng and D. Gross, preprint arXiv:1510.02767 (2015).
[39] H. Zhu, Phys. Rev. A 96, 062336 (2017).
[40] Z. Webb, arXiv preprint arXiv:1510.02769 (2015).
[41] N. Tomczak-Jaegermann, Stud. Math. 50, 163 (1974).
[42] F. Lust-Piquard, CR Acad. Sci. Paris 303, 289 (1986).
[43] G. Pisier and Q. Xu, Commun. Math. Phys. 189, 667

(1997).
[44] M. Rudelson, J. Funct. Anal. 164, 60 (1999).
[45] R. Ahlswede and A. Winter, IEEE Trans. Inform. Theory

48, 569 (2002).
[46] D. Gross, IEEE Trans. Inform. Theory 57, 1548 (2011).
[47] R. I. Oliveira et al., Electron. Commun. Probab 15, 26

(2010).
[48] J. A. Tropp, Applied and Computational Harmonic Anal-

ysis 44, 700 (2018).
[49] S. Foucart and H. Rauhut, A Mathematical Introduction to

Compressive Sensing (Birkhäuser Basel, 2013).
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Appendix
At the heart of this work is projected least squares (PLS)
– a simple point estimator for quantum state tomog-
raphy from tomographically complete measurements
{M1, . . . , Mm} ⊂ Hd. PLS is a three-step procedure, see
also Tab. I:

1. Estimate outcome probabilities by frequencies.

2. Construct the least squares (linear inversion) esti-
mator:

L̂n = argmin
X∈Hd

m

∑
i=1

( fi − tr(MiX))2 . (12)

3. Project onto the set of all quantum states:

ρ̂n = argmin
σ is a quantum state

‖L̂n − σ‖2. (13)

We analyze the performance of PLS for a variety of
concrete measurement scenarios: structured POVMs,
Pauli observables, Pauli basis measurements and the uni-
form POVM. For each of them, ρ̂n may be equipped with
rigorous non-asymptotic confidence regions in trace dis-
tance. In this appendix, we complement the rather suc-
cinct presentation in the main text with additional ex-
planations, motivations and more detailed arguments.

Outline: In Section VI we provide explicit least
squares solutions (12) for the different measurements.
We also review essential features and properties of the
individual scenarios to provide context.

Section VII contains the main conceptual insight of
this work: least squares estimators may be interpreted
as sums of independent random matrices –the random-
ness is due to the fundamental laws of quantum me-
chanics (Born’s rule). This allows us to apply strong
matrix-valued concentration inequalities to show that,
with hight probability, L̂n is close to the true target state
in operator norm.

Section VIII is devoted to showing that closeness of L̂n
in operator norm implies closeness of ρ̂n in trace norm.

We combine these two insights in Section IX to arrive
at the main result of this work: convergence guarantees
for the PLS estimator in trace norm. The result derived
there is a strict generalization of Theorem 1 quoted in
the main text. It extends to the notion of effective rank
which may be beneficial in concrete applications. We il-
lustrate this potential benefit with a caricature of a faulty
state preparation apparatus.

In Section X yet stronger convergence guarantees for
the uniform POVM are derived. The proof technique
is completely different and we believe that it may be of
independent interest to the community.

Finally, we present additional numerical experiments
in Section XI.

VI. CLOSED-FORM EXPRESSIONS FOR LEAST
SQUARES ESTIMATORS

As outlined in the main text, any POVM measurement
can be viewed as a linear mapM : Hd → Rm, defined
component-wise as [M(X)]i = tr(MiX) for i ∈ [m].
This map is injective if and only if the measurement
is tomographically complete. Provided that this is the
case, the least squares estimator (12) admits a unique so-
lution:

L̂n =
(
M†M

)−1
M†( fn),

where fn ∈ Rm subsumes the individual frequency esti-
mates. In this section, we evaluate this formula explic-
itly for different types of prominent measurements.

A. The uniform POVM and 2-designs

The uniform/covariant POVM in d-dimensions corre-
sponds to the union of all (properly re-normalized)
rank-one projectors: {d|v〉〈v|dv}v∈Sd . Here, dv denotes
the unique, unitarily invariant, measure on the complex
unit sphere induced by the Haar measure (over the uni-
tary group U(d)). Its high degree of symmetry allows
for analyzing this POVM by means of powerful tools
from representation theory. This is widely known, see
e.g. [34, 35], but we include a short presentation here
to be self-contained. Define the frame operator of order k:
F(k) =

∫
Sd (|v〉〈v|)⊗k dv ∈ H⊗k

d . Unitary invariance of
dv implies that this frame operator commutes with ev-
ery k-fold tensor product of a unitary matrix U ∈ U(d):

U⊗kF(k) =
∫

Sd
(U|v〉〈v|)⊗k dv =

∫
Sd
(|ṽ〉〈ṽ|U)⊗k dṽ

=F(k)U
⊗k.

Here, we have used a change of variables (ṽ = Uv) to-
gether with the fact that dv is unitarily invariant (dṽ =
dv). Schur’s Lemma – one of the most fundamental tools
in representation theory – states that any matrix that
commutes with every element of a given group repre-
sentation must be proportional to a sum of the projectors
onto the associated irreducible representations (irreps).
For the task at hand, the representation of interest is the
diagonal representation of the unitary group: U 7→ U⊗k

for all U ∈ U(d). This representation affords, in gen-
eral, many irreps that may be characterized using Schur-

Weyl duality. The symmetric subspace Sym(k) ⊂
(

Cd
)⊗k

is one of them and corresponds to the subspace of all
vectors that are invariant under permuting tensor fac-
tors. Crucially, F(k) is an average over rank-one projec-

tors onto vectors |v〉⊗k ∈ Sym(k) and, therefore, its range
must be contained entirely within Sym(k). Combining
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this with the assertion of Schur’s lemma then yields

F(k) =
∫

Sd
(|v〉〈v|)⊗k dv =

(
d + k− 1

k

)−1
PSym(k) k ∈N,

(14)

The pre-factor (d+k−1
k )

−1
= dim

(
Sym(k)

)−1
follows

from the fact that F(k) has unit trace.
This closed-form expression is very useful. In partic-

ular, it implies that the uniform POVM {d|v〉〈v|}v∈Sd is
almost an isometry. Fix X ∈Hd and compute

(d + 1)
∫

Sd
d〈v|X|v〉|v〉〈v|dv

=(d + 1)dtr1

(
X⊗ I

∫
Sd
(|v〉〈v|)⊗2 dv

)
=2tr1

(
X⊗ IPSym(2)

)
, (15)

where tr1(A ⊗ B) = tr(A)B denotes the partial trace
over the first tensor factor. The projector onto the totally
symmetric subspace of two parties has an explicit repre-
sentation: PSym(2) = 1

2 (I + F), where F denotes the flip

operator, i.e. F|x〉 ⊗ |y〉 = |y〉 ⊗ |x〉 for all |x〉, |y〉 ∈ Cd

and extend it linearly to the entire tensor product. In-
serting this explicit characterization into Eq. (33) yields

(d + 1)
∫

Sd
d〈v|X|v〉|v〉〈v|dv =tr1 (X⊗ I (I + F))

=X + tr(X)I. (16)

We emphasize that the full symmetry of the uniform
POVM is not required to derive this formula: Eq. (14)
for k = 2 is sufficient. This motivates the following defi-
nition:

Definition 1 (2-design). A (finite) set of m rank-one projec-
tors {|vi〉〈vi|}m

i=1 is called a (complex-projective) 2-design
if

1
m

m

∑
i=1

(|vi〉〈vi|)⊗2 =

(
d + 1

2

)−1
PSym(2) .

Taking the partial trace of this expression yields

1
m

m

∑
i=1
|vi〉〈vi| =

1
d

I,

highlighting that each 2-design is proportional to a

POVM M =
{

d
m |vi〉〈vi|

}m

i=1
. Moreover, viewed as a

mapM : Hd → Rm, every such POVM obeys

M†M(X) =
d2

m2

m

∑
i=1
〈vi|X|vi〉|vi〉〈vi| =

d (X + tr(X)I)

(d + 1)m

for any X ∈Hd, which can be readily inverted:(
M†M

)−1
(X) =

m
d
((d + 1)X− tr(X)I) . (17)

Inserting this formula into the closed-form expression of
the linear-inversion estimator yields

L̂n =
(
M†M

)−1 (
M†( f )

)
(18)

=
(
M†M

)−1
(

d
m

m

∑
i=1

fi|vi〉〈vi|
)

=
m

∑
i=1

fi ((d + 1)|vi〉〈vi| − tr (|vi〉〈vi|) I)

=(d + 1)
m

∑
i=1

fi|vi〉〈vi| − I (19)

for any frequency vector fn ∈ Rm. Mathematically, this
is a consequence of the fact that 2-design POVMs “al-
most” form a tight frame on Hd. The close connection
to well-behaved, tomographically complete, rank-one
POVMs has spurred considerable interest in the identifi-
cation of 2-designs. Over the past decades, the following
concrete examples have been identified:

(i) Equiangular lines (SIC POVMs): a family of m
unit vectors |v1〉, . . . , |vm〉 ∈ Sd is equiangular, if∣∣〈vi, vj〉

∣∣2 is constant for all i 6= j. The maximal car-
dinality of such a set is m = d2 in which case the
angle must be fixed:

∣∣〈vi, vj〉
∣∣2 = 1

d+1 . Such max-
imal sets of equiangular lines are known to form
2-designs [25] and have been termed symmetric, in-
formationally complete (SIC) POVMs. This nomen-
clature underlines the importance of Eq. (16) for
the original quantum motivation of the study of
equiangular lines. While several explicit construc-
tions of SIC POVMs exist, the general question of
their existence remains an intriguing open prob-
lem.

(ii) Mutually unbiased bases (MUBs): Two orthonormal
bases {|bi〉}d

i=1 and {|ci〉}d
i=1 of Cd are mutually un-

biased if
∣∣〈bi, cj〉

∣∣2 = 1
d for all 1 ≤ i, j ≤ d. The

study of such mutually unbiased bases (MUBs)
has a rich history in quantum mechanics that dates
back to Schwinger [36]. It is known that at most
(d + 1) pairwise mutually unbiased bases can ex-
ist in dimension d and explicit algebraic construc-
tions are known for prime power dimensions (d =
pk). Klappenecker and Roettler [26] showed that
maximal sets of MUBs are guaranteed to form 2-
designs.

(iii) stabilizer states (STABs): the stabilizer formalism is
one of the cornerstones of quantum computation,
fault tolerance and error correction, see e.g. [37].
Let Pk be the Pauli group on k qubits (d = 2k),
i.e. the group generated by k-fold tensor products
of the elementary Pauli matrices. It is then pos-
sible to find maximal abelian subgroups S ⊂ Pk



8

of size d = 2k. Since all matrices W ∈ S com-
mute, they can be simultaneously diagonalized
and determine a single unit vector which is the
joint eigenvector with eigenvalue +1 of all the ma-
trices in S (provided that −I /∈ S). Such vec-
tors are called stabilizer states (STAB) and the group
S ⊂ Pk is its associated stabilizer group. A total of
m = 2k ∏k

i=0
(
di + 1

)
= 2

1
2 k2+o(k) different stabi-

lizer states can be generated this way. The union
of all of them is actually known to form a 3-design
[38–40] and, therefore, also a 2-design. The latter
is also a consequence of earlier results [27, 28]

B. Pauli observables

For d = 2k, the Pauli matrices W1, . . . , Wd2 ∈ Hd
arise from all possible k-fold tensor products of elemen-
tary Pauli matrices

{
I, σx, σy, σz

}
⊂ H2. They are well-

known to form a unitary operator basis:

X =
1
d

d2

∑
i=1

tr (WiX)Wi, (20)

for all X ∈ Hd. While they do constitute observables,
Pauli matrices by themselves are not POVMs. How-
ever, every observable Wi may be associated with a two-
outcome POVM Mi =

{
P±i
}

=
{

1
2 (I + Wi)

}
. The

union
⋃d2

i=1Mi of all these 2-outcome POVMs consitutes
a linear mapM : Hd → R2m that obeys

M†M(X) =
d2

∑
i=1

(
tr
(

P+
i X
)

P+
i + tr

(
P−i X

)
P−i
)

=
d2

∑
i=1

1
2
(tr(X)I + tr(WiX)Wi)

=
d
2
(dtr(X)I + X) ,

where the last line is due to Eq. (20). Once more, this
expression can be readily inverted:

(
M†M

)−1
(X) =

2
d

X− 2tr(X)

d2 + 1
I.

Before we continue, we note that one Pauli matrix is
equal to the identity, say W1 = I, and the associated
POVM is trivial. Hence, we suppose that n copies of ρ

are distributed equally among all d2 − 1 non-trivial 2-
Outcome POVMsMi. We denote the resulting frequen-
cies by [ f ]±i and suppress the dependence on the num-
ber of samples. Then, the explicit solution to the least

squares problem becomes

L̂n =
(
M†M

)−1 (
M†( fn)

)
=
(
M†M

)−1
(I) +

d2

∑
i=2

∑
o=±

[ f ]oi
(
M†M

)−1
(Po

i )

=
2

d(d2 + 1)
I +

d2

∑
i=2

[ f ]+i

(
1
d
(I + Wi)−

d
d2 + 1

I

)

+
d2

∑
i=2

[ f ]−i

(
1
d
(I−Wi)−

d
d2 + 1

)

=
1
d

d2

∑
i=2

(
[ f ]+i − [ f ]−i

)
Wi +

2 + ∑d2

i=2

(
[ f ]+i + [ f ]−i

)
d(d2 + 1)

I.

We can simplify this expression further by noticing that
each 2-outcome POVM is dichotomic: either + or − is
observed for every run. This implies [ f ]+i + [ f ]−i = 1

and, by extension, ∑d2

i=2

(
[ fi]

+
i + [ fi]

−
i

)
= d2− 1. Hence,

L̂n =
1
d

d2

∑
i=2

(
[ f ]+i − [ f ]−i

)
Wi +

1
d

I

=
1
d

d2

∑
i=1

(
[ f ]+i − [ f ]−i

)
Wi, (21)

because [ f ]+1 = 1. This is the formula from the main text
and has a compelling interpretation: the difference µ̂i =

[ fi]
+
i − [ fi]

−
i is an empirical estimate for the expectation

value µi = tr (WiX) of the i-th Pauli observable. Finally,
note that this estimator is again unbiased with respect to
random fluctuations in the sample statistics:

E
[
L̂n
]
=

1
d

d

∑
i=1

tr (Wiρ)Wi = ρ. (22)

C. Pauli basis measurements

Before considering the general case, we find it instruc-
tive to consider the single qubit case in more detail. For
now, fix d = 2 and note that there are three non-trivial
Pauli matrices σs with s ∈ {x, y, z}. We may associate
each σs with a 2-outcome POVM that is also a basis mea-
surement: 1

2 (I± σs) = |b(s)± 〉〈b
(s)
± |. For s 6= s′∣∣∣〈b(s)± , b(±)o′ 〉

∣∣∣2 =
1
4

tr ((I± σs) (I± σs′)) =
1
2

,

because σs, σs′ and σsσs′ have vanishing trace. This im-
plies that the six vectors |b(s)o 〉〈b

(s)
o | with o ∈ {±1} form

a maximal set of 3 = (d + 1) mutually unbiased bases.
Such vector sets form spherical 2-designs and Eq. (16)
ensures for any X ∈Hd

∑
s,o
〈b(s)o |X|b

(s)
o 〉|b

(s)
o 〉〈b

(s)
o | = (X + tr(X)I) = 3D1/3(X).

(23)
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Here, D1/3 : Hd → Hd denotes a single-qubit depolar-
izing channel with loss parameter p = 1

3 .
This behavior extends to multi-qubit systems, i.e. d =

2k. Suppose that we perform k local (single-qubit) Pauli
measurements on a k-qubit state ρ ∈ Hd. Then, there
are a total of k potential combinations that we label by a
string s = (s1, . . . , sk) ∈ {x, y, z}k. Each of them corre-
sponds to a POVMM(s) with 2k = d outcomes that we
label by o = (o1, . . . , ok) ∈ {±1}k. The POVM element
associated with index s and outcome o has an appealing
tensor-product structure: |b(s)o 〉〈b

(s)
o | =

⊗k
i=1 |b

(si)
oi 〉〈b

(si)
oi |.

LetM =
⋃

sM(s) : Hd → R3k ×R2k
denote the union

of all such basis measurements. Then, the following for-
mula is true for tensor product matrices X =

⊗k
i=1 Xi

and Xi ∈H2:

M†M(X) = ∑
s,o
〈b(s)o |X|b

(s)
o 〉|b

(s)
o 〉〈b

(s)
o |

=
k⊗

i=1

(
∑
si ,oi

〈b(si)
oi |Xi|b

(si)
oi 〉|b

(si)
oi 〉〈b

(si)
oi |
)

=3k
k⊗

i=1

D(Xi) = 3kD⊗k
1/3(X), (24)

where we have used Eq.(23). Linear extension ensures
that this formula remains valid for arbitrary matrices
X ∈ Hd. Since the single qubit depolarizing channel is
invertible, the same is true for its k-fold tensor product
and we conclude(

M†M
)−1

(X) =
1
3k

(
D⊗k

1/3

)−1
(X).

Inserting this explicit expression into the closed-form
expression for the least squares estimator yields

L̂n =
(
M†M

)−1 (
M†( f )

)
=

1
3k ∑

s,o
[ f ](s)o

(
D⊗k

1/3

)−1 (
|b(s)o 〉〈b

(s)
o |
)

,

as advertised in the main text. Here, [ f ](s)o is assumed to

be a frequency approximation to p(s)
o = 〈b(s)o |ρ|b

(s)
o 〉.

We conclude this section with a single-qubit obser-
vations that allows for characterizing this expression
in a more explicit fashion. Note that one may rewrite
D1/3(X) as tr(X)

2 I + 1
6 ∑s tr (σsX) σs. This facilitates the

computation of the single-qubit inverse:

D−1
1/3 (X) =

tr(X)

2
I +

3
2 ∑

s
tr (σsX) σs

and, in particular

D−1
1/3

(
|b(s)± 〉〈b

(s)
± |
)
=

1
2

(
D−1(I)±D−1(σs)

)
=

1
2
(I± 3σs) = 3|b(s)± 〉〈b

(s)
± | − I.

This in turn implies

L̂n =
1
3k ∑

s,o
[ f ](s)o

k⊗
i=1

(
3|b(si)

oi 〉〈b
(si)
oi | − I

)
. (25)

which, again, is an unbiased estimator with respect to
random fluctuations in the sample statistics.

Finally, we also point out another consequence that
will be important later on:(

D−1
1/3

(
|b(s)o 〉〈b

(s)
o |
))2

=5D3/5

(
|b(s)o 〉〈b

(s)
o |
)

, (26)

where D3/5 is another single-qubit depolarizing chan-
nel.

VII. THE MATRIX BERNSTEIN INEQUALITY AND
CONCENTRATION IN OPERATOR NORM

Scalar concentration inequalities provide sharp
bounds on the probability of a sum of independent
random variables deviating from their mean. Classical
examples include Hoeffding’s, Chernoff’s and Bern-
stein’s inequality – all of which have found widespread
use in a variety of scientific disciplines. The main results
of this work are based on a matrix generalizations of
these classical statements – in particular the matrix
Bernstein inequality developed by one of the authors, see
[24, Theorem 1.4].

Theorem 3 (Matrix Bernstein inequality). Consider a
sequence of n independent, hermitian random matrices
A1, . . . , An ∈Hd. Assume that each Ai satisfies

E [Ai] = 0 and ‖Ai‖∞ ≤ R almost surely.

Then, for any t > 0

Pr

[∥∥∥∥∥ n

∑
i=1

(Ai −E [Ai])

∥∥∥∥∥
∞

≥ t

]
≤
{

d exp
(
− 3t2

8σ2

)
t ≤ σ2

R ,

d exp
(
− 3t

8R
)

t ≥ σ2

R ,

where σ2 =
∥∥∑n

i=1 E
[
A2

i
]∥∥

∞.

First results of this kind originate in Banach space the-
ory [41–44] and were later independently developed in
quantum information theory [45, 46]. Further advances
by Oliveira [47] and and one of the authors [24] led to
the result that we employ here. We refer to the mono-
graph [24] for a detailed exposition of related work and
history.

Similar to the scalar Bernstein inequality, the tail be-
havior in Theorem 3 consists of two regimes. Small de-
viations are suppressed in a subgaussian fashion, while
larger deviations follow a subexponential decay. The
ratio σ2

R marks the transition from one regime into the
other. We also note in passing that this result recovers
the scalar Bernstein inequality for d = 1 (H1 ' R).
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A. Concentration for structured POVM measurements

For structured measurements (2-designs) we may
rewrite the (plain) least squares estimator (19) as

L̂n =(d + 1)
m

∑
i=1

[ fn]i |vi〉〈vi| − I =
1
n

m

∑
i=1

Xi,

where each Xi is an i.i.d. copy of the random matrix
X ∈ Hd that assumes (d + 1)|vk〉〈vk| − I with probabil-
ity d

m 〈vk|ρ|vk〉 for all k ∈ [m]. Unbiasedness with respect
to the sample statistics ensures E

[
L̂n
]
= E [X] = ρ.

Hence, L̂n − ρ is a sum of iid, centered random matri-
ces 1

n (Xi −E [Xi]). These obey

‖Xi −E [Xi] ‖∞ =
1
n
‖(d + 1)|vk〉〈vk| − I− ρ‖∞ ≤

d
n
=: R,

where k ∈ [m] is arbitrary. Next, note that the random
matrix X obeys

E
[
(X−E [X])2

]
=E

[
X2
]
−E [X]2 = E

[
X2
]
− ρ2

and also

E
[

X2
]
=

m

∑
k=1

d
m
〈vk|ρ|vk〉 ((d + 1)|vk〉〈vk| − I)2

=
d(d2 − 1)

N

N

∑
k=1
〈vk|ρ|vk〉|vk〉〈vk|+ I

=(d− 1) (ρ + I) + I,

according to Eq. (16). This allows us to bound the vari-
ance parameter:∥∥∥∥∥ 1

n

n

∑
i=1

(
1
n
(X−E [X]

)2
∥∥∥∥∥

∞

=
1
n

∥∥∥(d + 1)ρ + dI− ρ2
∥∥∥

∞

≤2d
n

=: σ2.

The ratio σ2

R = 2 indicates that any choice of τ ∈ [0, 2]
will fall into the subgaussian regime of the matrix Bern-
stein inequality and Theorem 3 yields

Pr
[∥∥L̂n − ρ

∥∥
∞ ≥ τ

]
=Pr

[∥∥∥∥∥ 1
n

n

∑
i=1

(Xi −E [Xi])

∥∥∥∥∥
∞

≥ τ

]

≤de−
3τ2n
16d . (27)

B. Concentration for (global) Pauli observables

We assume that the total number of samples n is dis-
tributed equally among the d2 different Pauli measure-
ments. Similar to before, unbiasedness (22) and the ex-
plicit characterization of the LI estimator (21) allow us

to write

L̂n − ρ =
d2

∑
k=1

1
n

n/d2

∑
i=1

(
X(k)

i −E
[

X(k)
i

])
.

Here, each X(k)
i is an independent instance of the

random matrix X(k) = ±dWk with probability
1
2 (1± tr(Wkρ)) each. This is a sum of centered random
matrices that are independent, but in general not iden-
tically distributed. However, independence alone suf-
fices for applying Theorem 3. We note in passing that
this would not be the case for earlier (weaker) versions
of the matrix Bernstein inequality. Bound

1
n

∥∥∥X(k)
i −E

[
X(k)

i

]∥∥∥
∞
=

d
n
‖(1± tr (Wiρ)) I‖∞ ≤

2d
n

=: R

and use the fact that

E

[(
X(k)

i −E
[

X(k)
i

])2
]
=E

[(
X(k)

)2
]
−E

[
X(k)

]2

≤E

[(
X(k)

)2
]

(28)

(in the positive semidefinite order) to considerably sim-
plify the variance computation:

d2

n

∥∥∥∥∥ d2

∑
k=1

E

[(
X(k)

)2
]∥∥∥∥∥

∞

=
1
n

∥∥∥∥∥ d2

∑
k=1

I

∥∥∥∥∥
∞

=
d2

n
=: σ2,

because
(

X(k)
)2

= 1
d2 I. Applying Theorem 3 yields

Pr
[∥∥L̂n − ρ

∥∥
∞ ≥ τ

]
≤ de−

3τ2 ñ
8 τ ∈ [0, d/2] .

C. Concentration for Pauli-basis measurements

Once more, we assume that the total budget of sam-
ples n is distributed equally among all 3k Pauli basis
choices. Unbiasedness of the LI estimator together with
the explicit description (25) allows us to once more inter-
pret L̂n − ρ as a sum of independent, centered random
matrices:

L̂n − ρ = ∑
s

1
n

n/3k

∑
i=1

(
X(s)

i −E
[

X(s)
i

])
.

For each s ∈ {x, y, z}k, X(s)
i is an independent copy of

the random matrix

X(s) =
k⊗

i=1

(
3|b(si)

oi 〉〈b
(si)
oi | − I

)



11

with probability 〈b(s)o |ρ|b
(s)
o 〉 for each o ∈ {±1}k.

Jensen’s inequality implies

1
n

∥∥∥X(s) −E
[

X(s)
]∥∥∥

∞
≤ 2

n

∥∥∥X(s)
∥∥∥

∞

=
2
n

k

∏
i=1

∥∥∥3|b(si)
oi 〉〈b

(si)
oi − I

∥∥∥
∞
=

2k+1

n
=: R.

For the variance, we once more use (28) and compute

1
n ∑

s
E
(

X(s)
)2

=∑
s,o
〈b(s)o |ρ|b

(s)
o 〉

k⊗
i=1

(
D−1

(
|b(s)o 〉〈b

(s)
o |
))2

=∑
s

∑
o
〈b(s)o |ρ|b

(s)
o 〉

k⊗
i=1

5
3
D3/5

(
|b(s)o 〉〈b

(s)
o |
)

=5kD⊗k
3/5

(
1
3k ∑

s,o
〈b(s)o |ρ|b

(s)
o 〉|b

(s)
o 〉〈b

(s)
o |
)

=5kD⊗k
3/5

(
D⊗k

1/3 (ρ)
)
=

5k

n
D⊗k

1/5(ρ),

where we have used Eq. (26) and the fact that the combi-
nation of two depolarizing channels is again a depolar-
izing channel. This expression can be evaluated explic-
itly. For α ⊂ [k], let trα(ρ) denote the partial trace over
all indices contained in α. Then, for X =

⊗k
j=1 Xj ∈Hd

5kD⊗k
1/5

 k⊗
j=1

Xj

 =
k⊗

j=1

(
tr(Xj)I + Xj

)
= ∑

α⊂[k]
2|α|trα(X)⊗ I⊗α

and this extends linearly to all of Hd ' H⊗k
2 . Conse-

quently,

∥∥∥∥∥ 1
n ∑

s
E

[(
X(s)

)2
]∥∥∥∥∥

∞

=
1
n

∥∥∥∥∥∥ ∑
α⊂[k]

2|α|trα(ρ)⊗ I⊗α

∥∥∥∥∥∥
∞

≤ 1
n ∑

α⊂[k]
2|α|‖trα(ρ)‖∞‖I⊗α‖∞

≤ 1
n ∑

α⊂[k]
2|α| =

1
n

k

∑
j=0

(
k
j

)
2j

=
(2 + 1)k

n
=

3k

n
=: σ2.

This estimate is actually tight for pure product states of
the form ρ = (|ψ〉〈ψ|)⊗k. We may now apply Theorem 3
to conclude

Pr
[∥∥L̂n − ρ

∥∥
∞ ≥ τ

]
≤ d exp

(
− 3nτ2

8× 3k

)
τ ∈ [0, 1] .

VIII. CONVERSION OF CONFIDENCE REGIONS
FROM OPERATOR NORM TO TRACE NORM

The final ingredient for the framework presented in
this manuscript is a reliable way to transform operator-
norm closeness of the (plain) least squares estimator L̂n
into a statement about closeness of the PLS estimator ρ̂n
in trace distance. Recall that the optimization problem
(13) admits an analytic solution [19]. Let Udiag(λ)U† be
an eigenvalue decomposition of L̂n. Then,

ρ̂n = Udiag
(
[λ− x01]+

)
U†, (29)

where x0 is chosen such that tr(ρ̂n) = 1 and [y]+i =
max {[y]i , 0} denotes thresholding on non-negative
components. This solution is unique, provided that
tr
(

L̂n
)
= 1, which is the case for all the least squares

estimators we consider.
The conversion from closeness in operator norm to

closeness in trace norm will introduce a factor that is
proportional to the effective rank of the density matrix ρ,
rather than a full dimensional factor. For r ∈ N, we de-
fine the best rank-r approximation ρr of a quantum state
ρ ∈Hd as the optimal feasible point of

σr(ρ) = minimize
rank(Z)≤r

‖ρ− Z‖1. (30)

This problem can be solved analytically. Let ρ =

∑d
i=1 λi|xi〉〈xi| be an eigenvalue decomposition with

eigenvalues arranged in non-increasing order. Then,

Z] =
r

∑
i=1

λi|xi〉〈xi|, and σr(ρ) =
d

∑
i=r+1

λi = 1− tr(ρr),

highlighting that the best rank-r approximation is sim-
ply a truncation onto the r largest contributions in the
eigenvalue decomposition. This truncated description is
accurate if the residual error σr(ρ) is small. If this is the
case it is reasonable to say that ρ is well approximated
by a rank-r matrix Z] and has effective rank r.

Proposition 1. Suppose that L̂n ∈ Hd obeys tr
(

L̂n
)
= 1

and ‖L̂n − ρ‖∞ ≤ τ for some quantum state ρ ∈ Hd and
τ ≥ 0. Then, for any r ∈N the PLS estimator ρ̂n obeys

‖ρ̂n − ρ‖1 ≤ 4rτ + 2 min {σr(ρ), σr (ρ̂n)} ,

where σr(ρ) is defined in Eq. (30).

The statement readily follows from combining two
auxiliary results. The first one states that the threshold
value x0 in the analytic solution of ρ̂n must be small if
L̂n is operator-norm close to a quantum state.

Lemma 1. Instantiate the assumptions from Proposition 1.
Then, the threshold value in Eq. (29) obeys x0 ∈ [0, τ].
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Proof. By assumption L̂n has unit trace. If it is in addition
psd, ρ̂n = L̂n, because L̂n is already a quantum state
and the projection is trivial (x0 = 0) Otherwise, L̂n is
indefinite and unit trace ensures that the positive part
dominates. Hence, x0 must be strictly positive to enforce
tr(ρ̂n) = 1.

For the upper bound, let P ∈ Hd denote the or-
thogonal projection onto the range of ρ̂n. Then, ρ̂n =
P
(

L̂n − x0I
)

P = PL̂nP− x0P, according to Eq. (29). In
semidefinite order, this implies

ρ̂n =P(L̂n − ρ)P− x0P + PρP

≤
(
‖L̂n − ρ‖∞ − x0

)
P + PρP

≤ (τ − x0) P + PρP,

where the last line follows from the assumption ‖L̂n −
ρ‖∞ ≤ τ. The trace preserves semidefinite order and we
conclude

0 ≤ tr (ρ̂n)− tr (PρP) ≤ (τ − x0) tr (P)

which implies an upper bound of τ (tr(P) > 0).

The second technical lemma generalizes a result that
is somewhat folklore in quantum information theory:
the “effective rank” of a difference of two quantum
states is proportional to the minimal rank of the two
density operators involved.

Lemma 2. Fix r ∈ N and let ρ, σ ∈ Hd be quantum states.
Then,

‖ρ− σ‖1 ≤ 2r‖ρ− σ‖∞ + 2 min {σr(ρ), σr(σ)} ,

where the residual error σr(·) was defined in Eq. (30).

Proof. We can without loss of generality assume σr(ρ) ≤
σr(σ). Decompose ρ into ρr + ρc, where ρr is the best
rank-r approximation (30) and ρc = ρ − ρr denotes
the “tail”. By construction, both ρr and ρc are posi-
tive semidefinite matrices that obey σr(ρ) = tr(ρc) =
1− tr(ρr). The triangle inequality then implies

‖ρ− σ‖1 ≤ ‖ρr − σ‖1 + σr(ρ),

because ‖ρc‖1 = σr(ρ). Next, let P+, P− ∈ Hd be the
projections onto the positive and non-positive ranges of
ρr − σ. By construction, P+ has rank at most rank(ρr) =
r and the trace norm equals

‖ρr − σ‖1 = tr (P+(ρr − σ))− tr (P−(ρr − σ)) .

On the other hand,

σr(ρ) = tr(σ− ρr) = −tr (P+(ρr − σ))− tr (P−(ρr − σ)) ,

because P+ + P− = I. Combining both relations yields

‖ρr − σ‖1 =2tr (P+(ρr − σ)) + σr(ρ)

≤2tr (P+(ρ− σ)) + σr(ρ)

≤2‖P+‖∞‖ρ− σ‖1 + σr(ρ),

where we have used tr(P+ρc) ≥ 0 and Hoelder’s in-
equality. Finally, note that ‖P+‖1 = rank(P+) = r by
construction and the claim follows.

The main result of this section is a rather straightfor-
ward combination of these two technical statements.

Proof of Proposition 1. Fix r ∈ N and use, Lemma 2 to
conclude

‖ρ̂n − ρ‖1 ≤ 2r‖ρ̂n − ρ‖∞ + 2 min {σr(ρ), σr (ρ̂n)} .

Next, note that according to (29), ρ̂n may be viewed as
the positive definite part of the matrix L̂n − x0I. Such
a restriction to the positive part can never increase the
operator norm distance to another positive semidefinite
matrix. Hence,

‖ρ̂n − ρ‖∞ ≤ ‖L̂n − ρ‖∞ + |x0|‖I‖∞ ≤ 2τ,

where the last inequality follows from Lemma 1.

IX. PROOF OF THE MAIN RESULT

By now we have everything in place to provide a com-
plete proof of the main result of this work.

Theorem 4. Let ρ ∈ N be a state. Suppose that we either
perform n structured POVM measurements (set g(d) = 2d),
n Pauli observable measurements (set g(d) = d2), or n Pauli
basis measurements (set g(d) = d1.6). Then, for any r ∈ N

and ε ∈ [0, 1],the PLS estimator ρ̂n (13) obeys

Pr [‖ρ̂n − ρ‖1 ≥ ε + 2 min {σr(ρ), σr(ρ̂n)}] ≤ de
− nε2

43g(d)r2 ,

where σr(ρ), σr(ρ̂n) denote the residual error of approximat-
ing ρ and ρ̂n by a rank-r matrix (30).

Note that Theorem 1 is an immediate conse-
quence of this more general result: simply set
r = min {rank(ρ), rank(ρ̂n)} which in turn ensures
min {σr(ρ), σr(ρ̂n)} = 0.

However, unlike this specification, Theorem 4 does
feature an additional degree of freedom. The parame-
ter r ∈ N allows for interpolating between small values
(small sampling rate, but a potentially large reconstruc-
tion error) and large values (high sampling rate, but
low reconstruction error). This tradeoff is particulary
benign for quantum states that are approximately low-
rank. Due to experimental imperfections, such states
arise naturally in many experiments that aim at gener-
ating a pure quantum state. We illustrate this by means
of the following caricature of a faulty state preparation
protocol. Suppose that an apparatus either produces a
target state |ψ〉〈ψ| perfectly, or fails completely, in the
sense that it outputs a maximally mixed state. Then, the
resulting state is

ρ = (1− p)|ψ〉〈ψ|+ p
d

I,

where p ∈ [0, 1] denotes the probability of failure. This
state has clearly full rank and Corollary 1 requires at
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least n ≥ 43 g(d)d2

ε2 log(d/δ) samples to estimate it up to
trace-norm accuracy ε with high probability. In contrast,
Theorem 4 ensures that already n ≥ 43 g(d)

ε2 log(d/δ)
samples suffice to ensure that, with high probability, the
PLS estimator obeys ‖ρ̂n− ρ‖1 ≤ ε+ 2p. For sufficiently
high success probabilities/low accuracy (ε ≥ 2p/d) this
clearly outperforms the original statement.

Proof of Theorem 4. We illustrate the proof for structured
POVMs – the other settings are completely analogous.
Fix ε ∈ [0, 1], r ∈ N and set τ = ε

4r . Then, the main re-
sult of Sec. VII A – Equation (27) – ensures that the least
squares estimator L̂n obeys∥∥L̂n − ρ

∥∥
∞ ≤ τ =

ε

4r
(31)

with probability of failure bounded by de−
ε2n

86dr2 . As-
suming that this condition is true, Proposition 1 readily
yields ‖ρ̂n − ρ‖1 ≤ ε + 2 min {σr(ρ), σr(ρ̂n)}.

X. IMPROVED CONVERGENCE GUARANTEES FOR
THE UNIFORM POVM

All the convergence results derived so far feature an
additional log(d)-factor. This is a consequence of the
matrix Bernstein inequality that proved instrumental in
deriving these results. One can show that such an ad-
ditional factor necessarily features in all matrix concen-
tration inequalities that are based on exclusively first
and second moments of the random matrices in ques-
tion [48].

However, the following question remains: is this
log(d)-factor in Theorem 1 an artifact of the proof tech-
nique, or is it an intrinsic feature of tomography via pro-
jected least squares?

In this section we rule out the second possibility: a dif-
ferent proof technique allows for avoiding this log(d)-
factor, provided that the POVM is sufficiently symmet-
ric and well-behaved. More precisely, we re-visit the
uniform POVM {d|v〉〈v|dv}v∈Sd and exploit the fact that
Eq. (14) completely characterizes all moments of the re-
sulting outcome distribution. This opens the door for
applying very strong proof techniques from large di-
mensional probability theory that found wide-spread
applications in a variety of subjects, including com-
pressed sensing [49] and, more recently, quantum infor-
mation theory [50]. We believe that this technique may
be of independent interest and find it therefore worth-
while to present it in a self-contained fashion. Roughly
speaking, it is based on the following steps:

(o) Reformulation: the operator norm of a random her-
mitian matrix A ∈ Hd admits a variational defini-
tion:

‖A‖∞ = max
y∈Sd
|〈y|A|y〉| . (32)

(i) Discretization: replace the maximization over the
entire complex unit sphere Sd by a maximization
over a finite point set N that covers Sd to suffi-
ciently high accuracy (covering net).

(ii) Concentration: fix y ∈ N and show that the
scalar random variable sy = 〈y|A|y〉 concentrates
sharply around its expectation value.

(iii) Union bound: apply a union bound over all |N |
random variables sy to obtain an upper bound on
the operator norm ‖A‖∞.

Ideally the tail bound from (iii) is sharp enough to
”counter-balance” the |N |-pre-factor that results from
the union bound in step (iv). Should this be not the case,
more sophisticated methods, like generic chaining [51],
may still allow for drawing non-trivial conclusions. For-
tunately, for the task at hand, this turns out to not be
necessary and the rather naive strategy sketched above
suffices to achieve a result that is (provably) optimal up
to a constant factors:

Theorem 5. Suppose that we perform n independent uni-
form POVM measurements on a quantum state ρ ∈ Hd.
Then, the associated least squares estimator L̂n obeys

Pr
[∥∥L̂n − ρ

∥∥
∞ ≥ τ

]
≤ 2 exp

(
c1d− c2nτ2

)
,

In particular, n ≥ C d
τ2 log(1/δ) suffices to ensure ‖L̂n −

ρ‖∞ ≤ τ with probability at least 1− δ. Here c1, c2, C > 0
denote constants of sufficient size.

No effort has been made to optimize the constants.
The proof presented here yields c1 = 2 log(3) and c2 =

1
480 which could be further improved by a more careful
analysis. Importantly, the second part of this statement
can be combined with Proposition 1 to readily deduce
the last technical result of the main text:

Corollary 2 (Re-statement of Theorem 5). For any rank-
r state ρ, a number of n ≥ C r2d

ε2 log(1/δ) uniform POVM

measurements suffice to ensure ‖ρ̂]
(n) − ρ‖1 ≤ ε with proba-

bility at least 1− δ.

Not only does this statement reproduce the best
known sampling rates for tomography with indepen-
dent measurements [15], it also exactly matches lower
bounds on the minimal sample complexity associated
with any tomographic procedure that may apply in this
setting [16, Table I].

The remainder of this section is dedicated to proving
Theorem 5. For the sake of accessibility, we will divide
this proof into three subsections that contain the steps
summarized above.
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A. Step I: Reformulation and discretization

Suppose that we perform n uniform POVM measure-
ments on a fixed quantum state ρ ∈ Hd. Then, the least
squares estimator is equivalent to a sum of i.i.d. random
matrices:

L̂n =
1
n

n

∑
i=1

Xi.

Each Xi is an independent copy of the random matrix X
that assumes the value (d+ 1)|v〉〈v| − I with probability
d〈v|ρ|v〉dv and v may range over the entire complex unit
sphere. Unbiasedness of this estimator in turn implies

‖L̂n − ρ‖∞ =

∥∥∥∥∥ 1
n

n

∑
i=1

(Xi −E [Xi])

∥∥∥∥∥
∞

=max
y∈Sd

∣∣∣∣∣〈y| 1n n

∑
i=1

(Xi −E [Xi]) |y〉
∣∣∣∣∣ .

Next, we employ a result that is somewhat folklore in
random matrix theory, see e.g. [52, Lemma 5.3]. It states
that the maximum over the entire unit sphere may be
replaced by a maximum over certain finite point sets,
called covering nets: A covering-net of Sd with fineness
θ > 0 is a finite set of unit vectors

{
zj
}N

j=1 ⊆ Sd that
covers the entire (complex) unit sphere in the sense that
every y ∈ Sd is at least θ-close to a point in the net.

Lemma 3. Let Nθ =
{

zj
}N

j=1 be a covering net of Sd with
fineness θ. Then, for any matrix A ∈Hd:

max
j∈[N]

∣∣〈zj|A|zj〉
∣∣ ≤ ‖A‖∞ ≤

1
1− 2θ

max
j∈[N]

∣∣〈zj|A|zj〉
∣∣ .

This result highlights that already a rather coarse net
suffices to get reasonable approximations to the opera-
tor norm. Here, we choose θ = 1

4 which, while certainly
not optimal, simplifies exposition. In particular,

∥∥L̂n − ρ
∥∥

∞ ≤ 2 max
j∈[N]

∣∣∣∣∣ 1n n

∑
j=1
〈zj|Xi −E [Xi] |zj〉

∣∣∣∣∣ , (33)

where the maximization is over a covering net of fine-
ness θ = 1

4 .

B. Step II: concentration

Note that the right hand side of Eq. (33) corresponds
to a maximum over N different random variables – each
of them labeled by a unit vector zj in the net. Let z ∈ Sd

be such a vector. Then, the associated random variable
itself corresponds to an empirical average of n i.i.d. vari-
ables:

sz = 〈z|X−E [X] |z〉.

Clearly, sz obeys E [sz] = 0 and, more importantly, has
sub-exponential moment growth. While this follows di-
rectly from the fact that sz is bounded, the following
result highlights that this tail-behavior is actually inde-
pendent of the ambient dimension.

Lemma 4. Fix z ∈ Sd. Then for any integer p ≥ 2, the
random variable sz obeys

E [|sz|p] ≤ 27× 6p−2 p!

We divert the proof of this statement to the end of this
section and content ourselves with emphasizing that the
closed form expression of the frame operator (14) is es-
sential for bounding all moments simultaneously. More
relevant to the task at hand is that such a moment behav-
ior ensures that the tails of the distribution of sz follow
an exponential decay: Pr [|sz| ≥ t] ≤ e−ct, where c is a
constant independent of the dimension d. Strong clas-
sical concentration inequalities apply for sums of i.i.d.
random variables that exhibit such sub-exponential be-
havior. We choose to apply a rather general version
of the classical Bernstein inequality, see e.g. [49, Theo-
rem 7.30].

Theorem 6. Let s1, . . . , sn ∈ R i.i.d. copies of a mean-zero
random variable s that obeys E [|s|p] ≤ p!Rp−2σ2/2 for all
integers p ≥ 2, where R, σ2 > 0 are constants. Then, for all
t > 0,

Pr

[∣∣∣∣∣ n

∑
i=1

si

∣∣∣∣∣ ≥ t

]
≤ 2 exp

(
− t2/2

nσ2 + Rt

)
.

Lemma 4 ensures that the random variable sz meets
this requirement with σ2 = 54 and R = 6. Hence,
the following Corollary is an immediate consequence of
Theorem 6.

Corollary 3. Fix z ∈ Sd. Then, for any t ∈ [0, 1]

Pr

[∣∣∣∣∣ 1n n

∑
i=1
〈z|Xi −E [Xi] |z〉

∣∣∣∣∣ ≥ t

]
≤ 2e−

nt2
120 .

C. Step III: union bound

Recall that Eq. (33) upper-bounds ‖L̂n − ρ‖∞ by a
maximum over finitely many random variables, each
of which is controlled by the strong exponential tail in-
equality from Corollary 3. To exploit this, we fix τ ∈
[0, 1] and apply a union bound (also known as Boole’s
inequality) over all these different random variables to
obtain

Pr
[∥∥L̂n − ρ

∥∥
∞ ≥ τ

]
≤Pr

[
max
j∈[N]

∣∣∣∣∣ 1n n

∑
j=1
〈zj|Xi −E [Xi] |zj〉

∣∣∣∣∣ ≥ τ

2

]

≤N max
j∈[N]

Pr

[∣∣∣∣∣ 1n n

∑
j=1
〈zj|Xi −E [Xi] |zj〉

∣∣∣∣∣ ≥ τ

2

]
≤ 2Ne−

nτ2
480 ,
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where the last line is due to Corollary 3 Here, N = |N 1
4
|

denotes the cardinality of a covering net for the com-
plex unit sphere Sd with fineness θ = 1

4 . The com-
plex unit sphere admits an isometric embedding into
the real-valued unit sphere in 2d-dimensions: Map real-
and imaginary parts of each complex vector component
onto two distinct real parameters. This map preserves
Euclidean lengths and, by extension, also the geome-
try of the unit sphere. Volumetric upper bounds on
the cardinality of covering nets for the 2d-dimensional
real-valued unit sphere are widely known, see e.g. [49,

Proposition C.3] and [52, Lemma 5.2]: |Nθ | ≤
(
1 + 2

θ

)2d
.

Since a fineness of θ = 1
4 suffices for our purpose, we

can conclude N ≤ 32d and consequently,

Pr
[∥∥L̂n − ρ

∥∥
∞ ≥ τ

]
≤ 2× 32de−

nτ2
480 = 2e2 log(3)d− nτ2

480

This concludes the proof of Theorem 5.

D. Proof of Lemma 4

Recall that, by assumption, the random matrix X as-
sumes the value X = (d + 1)|v〉〈v| − I with probability
〈v|ρ|v〉dv, where v may range over the entire complex
unit sphere Sd. Moreover, E [X] = ρ. For fixed z ∈ Sd,
we may therefore write

sz =〈z|X−E [X] |z〉 = (d + 1)〈v|B|v〉,

where B = |z〉〈z| − 1+〈z|ρ|z〉
d+1 I ∈ Hd has bounded trace

norm

‖B‖1 ≤ 1 + (1 + 〈z|ρ|z〉) ≤ 3. (34)

Next, recall a basic identity from matrix analysis that
states

|〈v|B|v〉| = |tr (|v〉〈v|B)| ≤ tr (|v〉〈v| |B|) ,

where |B| =
√

B2 denotes the absolute value of the
matrix B. Also, the Schatten-p norms of matrices and
their absolute values coincides, in particular ‖B‖1 =
tr(|B|) = ‖ |B| ‖1. We can use this trick to absorb the
absolute value in the moment computation. More pre-
cisely, fix an integer p ≥ 2 and note that E [|sz|p] obeys

E
[
|(d + 1)〈v|B|v〉|p

]
≤ (d + 1)pE

[
tr (|v〉〈v| |B|)p] .

We can now include the distribution of the random ma-
trices X, and – by extension – |v〉〈v| – to compute

E [|sz|p] ≤(d + 1)pE
[
tr (|v〉〈v| |B|)p]

=d(d + 1)p
∫

Sd
〈v|ρ|v〉tr (|v〉〈v| |B|)p dv

=d(d + 1)ptr
(∫

Sd
(|v〉〈v|))⊗(p+1) ρ⊗ |B|⊗p

)
=d(d + 1)p

(
d + p
p + 1

)−1
tr
(

PSym(p+1)ρ⊗ |B|⊗p
)

,

FIG. 3: log trace distance error vs. log sample size for different
prime dimensions d. Inset: ordinary plot of the same data.

where the last equation is due to Eq. (14). Next, we note
that Hoelder’s inequality implies

tr
(

PSym(p+1)ρ⊗ |B|⊗p
)
≤ ‖PSymp+1‖∞‖ρ‖1‖ |B| ‖

p
1 ≤ 3p,

because PSym(p+1) is an orthogonal projector, ρ is a quan-
tum state and B is bounded in trace norm (34). For the
remaining pre-factor we use the crude bound

d(d + 1)p
(

d + p
p + 1

)−1
≤ (p + 1)! ≤ 3× 2p−2 p!

to establish the statement.

XI. ADDITIONAL NUMERICAL EXPERIMENTS

Maximal sets of mutually unbiased bases (MUBs)
form a structured POVM (2-design) that lends itself to
numerical investigation. Efficient algebraic construc-
tions of MUBs exist in prime power dimensions d = pk

[53–55]. To further underline the implicit advantage of
low-rank we fix a prime dimension d and choose a pure
state uniformly from the Haar measure on the complex
unit sphere in d dimensions. We compute the outcome
probabilities for each of the d + 1 different MUB mea-
surements. We then sample outcomes from each dis-
tribution a total of n

d+1 times and compute the estima-
tor ρ̂n associated with the total frequency statistics. Fig-
ure 3 shows the relation between reconstruction error (in
trace distance) and the number of samples per basis on a
log− log-scale for different prime dimensions between
d = 100 and d = 200. This figure suggests that the rate
of convergence only depends linearly on the ambient di-
mension – the additional log(d)-factor in the main result
for structured POVMs is barely visible.
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