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Abstract. This paper introduces the Nystr\"om preconditioned conjugate gradient (PCG) algo-
rithm for solving a symmetric positive-definite linear system. The algorithm applies the randomized
Nystr\"om method to form a low-rank approximation of the matrix, which leads to an efficient pre-
conditioner that can be deployed with the conjugate gradient algorithm. Theoretical analysis shows
that the preconditioned system has constant condition number as soon as the rank of the approx-
imation is comparable with the number of effective degrees of freedom in the matrix. The paper
also develops adaptive methods that provably achieve similar performance without knowledge of the
effective dimension. Numerical tests show that Nystr\"om PCG can rapidly solve large linear systems
that arise in data analysis problems, and it surpasses several competing methods from the literature.

Key words. conjugate gradient, cross-validation, kernel method, linear system, Nystr\"om
approximation, preconditioner, randomized algorithm, regularized least-squares, ridge regression
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1. Motivation. In their elegant 1997 textbook on numerical linear algebra [44],
Trefethen and Bau write,

In ending this book with the subject of preconditioners, we find
ourselves at the philosophical center of the scientific computing of
the future. . . Nothing will be more central to computational science in
the next century than the art of transforming a problem that appears
intractable into another whose solution can be approximated rapidly.
For Krylov subspace matrix iterations, this is preconditioning. . .we
can only guess where this idea will take us.

The next century has since arrived, and one of the most fruitful developments in
matrix computations has been the emergence of new algorithms that use randomness
in an essential way. This paper explores a topic at the nexus of preconditioning and
randomized numerical linear algebra. We will show how to use a randomized matrix
approximation algorithm to construct a preconditioner for an important class of linear
systems that arises throughout data analysis and scientific computing.

1.1. The preconditioner. Consider the regularized linear system

(1.1) (A+ \mu I)x= b where A\in Rn\times n is symmetric psd and \mu \geq 0.

Here and elsewhere, psd abbreviates the term ``positive semidefinite."" This type of
linear system emerges whenever we solve a regularized least-squares problem. We will
design a class of preconditioners for the problem (1.1).
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RANDOMIZED NYSTR\"OM PRECONDITIONING 719

Throughout this paper, we assume that we can access the matrix A through
matrix-vector products x \mapsto \rightarrow Ax, commonly known as matvecs . The algorithms that
we develop will economize on the number of matvecs, and they may not be appropriate
in settings where matvecs are very expensive or there are cheaper ways to interact
with the matrix.

For a rank parameter \ell \in N, the randomized Nystr\"om approximation of A takes
the form

(1.2) \^Anys = (A\Omega )(\Omega TA\Omega )\dagger (A\Omega )T where \Omega \in Rn\times \ell is standard normal.

This matrix provides the best psd approximation of A whose range coincides with the
range of the sketch A\Omega . The randomness in the construction ensures that \^Anys is a
good approximation to the original matrix A with high probability [25, sec. 14].

We can form the Nystr\"om approximation with sketch size \ell , using \ell matvecs with
A, plus some extra arithmetic. See Algorithm 2.1 for the implementation details.

Given the eigenvalue decomposition \^Anys = U \^\Lambda UT of the randomized Nystr\"om
approximation, we construct the Nystr\"om preconditioner:

(1.3) P =
1

\^\lambda \ell + \mu 
U(\^\Lambda + \mu I)UT + (I  - UUT ).

In a slight abuse of terminology, we refer to \ell as the rank of the Nystr\"om precondi-
tioner. The key point is that we can solve the linear system Py = c very efficiently,
and the action of P - 1 dramatically reduces the condition number of the regularized
matrix A\mu =A+ \mu I.

We propose using (1.3) in conjunction with the preconditioned conjugate gradient
(PCG) algorithm. Each iteration of PCG involves a single matvec with A, and a single
linear solve with P . When the preconditioned matrix P - 1A\mu has a modest condition
number, the algorithm converges to a solution of (1.1) very quickly. See Algorithm
5.1 for pseudocode for Nystr\"om PCG.

The idea of using the randomized Nystr\"om approximation to construct the pre-
conditioner in (1.3) was suggested by P.-G. Martinsson in the survey [25, sec. 17],
but it has not been implemented or analyzed. An earlier (folklore) preconditioner
with similar motivation uses a partial eigendecomposition to form a preconditioner of
the form (1.3); for instance, in [14], this idea is called a ``deflating preconditioner.""
However, as computing an exact partial eigendecomposition is prohibitively expen-
sive for large problems, these deflating preconditioners are rarely used. Randomized
numerical linear algebra, such as the randomized Nystr\"om approximation used here,
provides the key ingredient to make such a preconditioner practical.

1.2. Guarantees. This paper contains the first comprehensive study of the pre-
conditioner (1.3), including theoretical analysis and testing on prototypical problems
from data analysis and machine learning. One of the main contributions is a rigor-
ous method for choosing the rank \ell to guarantee good performance, along with an
adaptive rank selection procedure that performs well in practice.

A key quantity in our analysis is the effective dimension of the regularized matrix
A+ \mu I. That is,

(1.4) deff(\mu ) = tr
\bigl( 
A(A+ \mu I)\dagger 

\bigr) 
=

n\sum 
j=1

\lambda j(A)

\lambda j(A) + \mu 
,

where (A+ \mu I)\dagger is the Moore--Penrose pseudoinverse. Our definition differs slightly
from the literature [1, 4], which uses (A+ \mu I) - 1; the definition we use allows for the
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720 Z. FRANGELLA, J. A. TROPP, AND M. UDELL

effective dimension to be defined even when \mu = 0, in which case it equals the rank
of A. The effective dimension measures the degrees of freedom of the problem after
regularization. It may be viewed as a (smoothed) count of the eigenvalues larger than
\mu . Many real-world matrices exhibit strong spectral decay, so for \mu > 0 the effective
dimension is typically much smaller than the nominal dimension n. As we will discuss,
the effective dimension also plays a role in a number of machine learning papers [1, 2,
4, 7, 22] that consider randomized algorithms for solving regularized linear systems.

Our theory tells us the randomized Nystr\"om preconditioner P is successful when
its rank \ell is proportional to the effective dimension.

Theorem 1.1 (randomized Nystr\"om preconditioner). Let A \in S+n (R) be a psd
matrix, and write A\mu = A + \mu I, where the regularization parameter \mu > 0. Define
the effective dimension deff(\mu ) as in (1.4). Construct the randomized preconditioner
P from (1.2) and (1.3) with rank parameter \ell = 2 \lceil 1.5deff(\mu )\rceil +1. Then the condition
number of the preconditioned system satisfies

(1.5) E
\bigl[ 
\kappa 2(P

 - 1/2A\mu P
 - 1/2)

\bigr] 
< 28.

Theorem 1.1 is a restatement of Theorem 5.1.
Simple probability bounds follow from (1.5) via Markov's inequality. For example,

P
\bigl\{ 
\kappa 2(P

 - 1/2A\mu P
 - 1/2)\leq 56

\bigr\} 
> 1/2.

The main consequence of Theorem 1.1 is a convergence theorem for PCG with the
randomized Nystr\"om preconditioner.

Corollary 1.2 (Nystr\"om PCG: Convergence). Construct the preconditioner P
as in Theorem 1.1, and condition on the event \{ \kappa 2(P

 - 1/2A\mu P
 - 1/2)\leq 56\} . Solve the

regularized linear system (1.1) using Nystr\"om PCG, starting with an initial iterate
x0 = 0. After t iterations, the relative error \delta t satisfies

\delta t :=
\| xt  - x \star \| A\mu 

\| x \star \| A\mu 

< 2 \cdot (0.77)t , where A\mu x \star = b.

The error norm is defined as \| u\| 2A\mu 
= uTA\mu u. In particular, t\geq \lceil 3.9 log(2/\epsilon )\rceil itera-

tions suffice to achieve relative error \epsilon .

Although Theorem 1.1 gives an interpretable bound for the rank \ell of the precon-
ditioner, we cannot instantiate it without knowledge of the effective dimension. To
address this shortcoming, we have designed adaptive methods for selecting the rank
in practice (subsection 5.4).

Finally, as part of our investigation, we will also develop a detailed understanding
of Nystr\"om sketch-and-solve, a popular algorithm in the machine learning literature
[1, 4]. Our analysis highlights the deficiencies of Nystr\"om sketch-and-solve relative to
Nystr\"om PCG.

1.3. Example: Ridge regression. As a concrete example, we consider the \ell 2

regularized least-squares problem, also known as ridge regression. This problem takes
the form

(1.6) minimizex\in Rd

1

2n
\| Gx - b\| 2 + \mu 

2
\| x\| 2,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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RANDOMIZED NYSTR\"OM PRECONDITIONING 721
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Fig. 1. Ridge regression: CG versus Nystr\"om PCG. For the shuttle-rf data set, Nystr\"om PCG
converges to machine precision in 13 iterations, while CG stalls. See subsections 1.3 and 6.2.

where G\in Rn\times d and b\in Rn and \mu > 0. By calculus, the solution to (1.6) also satisfies
the regularized system of linear equations

(1.7)

\biggl( 
1

n
GTG+ \mu I

\biggr) 
x=

1

n
GT b.

A direct method to solve (1.7) requires O(nd2) flops, which is prohibitive when n
and d are both large. Instead, when n and d are large, iterative algorithms, such as
the conjugate gradient method (CG), become the tools of choice. Unfortunately, the
ridge regression linear system (1.7) is often very ill-conditioned, and CG converges
very slowly.

Nystr\"om PCG can dramatically accelerate the solution of (1.7). As an example,
consider the shuttle-rf dataset (subsection 6.2). The matrix G has dimension 43,300\times 
10,000, while the preconditioner is based on a Nystr\"om approximation with rank
\ell = 800. Figure 1 shows the progress of the residual as a function of the iteration
count. Nystr\"om PCG converges to machine precision in 13 iterations, while CG stalls.

1.4. Comparison to prior randomized preconditioners. Prior proposals
for randomized preconditioners [3, 28, 36] accelerate the solution of highly overdeter-
mined or underdetermined least-squares problems using the sketch-and-precondition
paradigm [25, sec. 10]. For n \geq d, these methods require \Omega (d3) computation to fac-
tor the preconditioner. In contrast, the randomized Nystr\"om preconditioner applies
to any symmetric positive-definite linear system and can be significantly faster for
regularized problems. See subsection 5.2.2 for more details.

1.5. Roadmap. Section 2 contains an overview of the Nystr\"om approximation
and its key properties. Section 3 studies the role of the Nystr\"om approximation in
estimating the inverse of the regularized matrix. We analyze the Nystr\"om sketch-and-
solve method in Algorithm 4.1, and we give a rigorous performance bound for this
algorithm. Section 5 presents a full treatment of Nystr\"om PCG, including theoretical
results and guidance on numerical implementation. Computational experiments in
section 6 demonstrate the power of Nystr\"om PCG for three different applications
involving real data sets.

1.6. Notation. We write Sn(R) for the linear space of n \times n real symmetric
matrices, while S+n (R) denotes the convex cone of real psd matrices. The symbol \preceq 
denotes the Loewner order on Sn(R). That is, A \preceq B if and only if the eigenvalues

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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722 Z. FRANGELLA, J. A. TROPP, AND M. UDELL

of B  - A are all nonnegative. The function tr[\cdot ] returns the trace of a square matrix.
The map \lambda j(A) returns the jth largest eigenvalue of A; we may omit the matrix if
it is clear. As usual, \kappa 2 denotes the \ell 2 condition number. We write \| M\| for the
spectral norm of a matrix M . For a psd matrix A, we write \| u\| 2A = uTAu for the
A-norm. Given A \in Sn(R) and 1 \leq \ell \leq n, the symbol \lfloor A\rfloor \ell refers to any best rank-\ell 
approximation to A relative to the spectral norm. For A \in S+n (R) and \mu \geq 0, the
regularized matrix is abbreviated A\mu =A+\mu I. For A\in S+n (R) and \mu \geq 0 the effective
dimension of A\mu is defined as deff(\mu ) = tr(A(A+ \mu I)\dagger ). For A \in S+n (R), the p-stable
rank of A is defined as srp(A) = \lambda  - 1

p

\sum n
j>p \lambda j . For A \in S+n (R), we denote the time

taken to compute a matvec with A by Tmv.

2. The Nystr\"om approximation. Let us begin with a review of the Nystr\"om
approximation and the randomized Nystr\"om approximation.

2.1. Definition and basic properties. The Nystr\"om approximation is a nat-
ural way to construct a low-rank psd approximation of a psd matrix A \in S+n (R). Let
X \in Rn\times \ell be an arbitrary test matrix. The Nystr\"om approximation of A with respect
to the range of X is defined by

(2.1) A\langle X\rangle = (AX)(XTAX)\dagger (AX)T \in S+n (R).

The Nystr\"om approximation is the best psd approximation of A whose range coincides
with the range of AX. It has a deep relationship with the Schur complement and
with Cholesky factorization [25, sec. 14].

The Nystr\"om approximation enjoys several elementary properties that we record
in the following lemma.

Lemma 2.1. Let A\langle X\rangle \in S+n (R) be a Nystr\"om approximation of the psd matrix
A\in S+n (R). Then the following hold:

1. The approximation A\langle X\rangle is psd and has rank at most \ell .
2. The approximation A\langle X\rangle depends only on range(X), that is

range(A\langle X\rangle )\subset range(X).

3. In the Loewner order, A\langle X\rangle \preceq A.
4. In particular, the eigenvalues satisfy \lambda j( \^A)\leq \lambda j(A) for each 1\leq j \leq n.

The proof of Lemma 2.1, item 3 is not completely obvious. It is a consequence of
the fact that we may express \^Anys =A1/2\Pi A1/2, where \Pi is an orthogonal projector.

2.2. Randomized Nystr\"om approximation. How should we choose the test
matrix X so that the Nystr\"om approximation A\langle X\rangle provides a good low-rank model
for A? Surprisingly, we can obtain a good approximation simply by drawing the test
matrix at random. See [45] for theoretical justification of this claim.

Let us outline the construction of the randomized Nystr\"om approximation. Draw
a standard normal test matrix \Omega \in Rn\times \ell where \ell is the sketch size, and compute the
sketch Y = A\Omega . By Lemma 2.1, the sketch size \ell is equal to the rank of \^Anys with
probability 1; hence we use these terms interchangeably. The Nystr\"om approximation
(2.1) is constructed directly from the test matrix \Omega and the sketch Y :

(2.2) \^Anys =A\langle \Omega \rangle = Y (\Omega TY )\dagger Y T .

The formula (2.2) is not numerically sound. We refer the reader to Algorithm 2.1 for
a stable and efficient implementation of the randomized Nystr\"om approximation [23,
45, 30]. Conveniently, Algorithm 2.1 returns the truncated eigendecomposition \^Anys =

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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RANDOMIZED NYSTR\"OM PRECONDITIONING 723

Algorithm 2.1 Randomized Nystr\"om Approximation [23, 45, 30]

Input: Psd matrix A\in S+n (R), rank \ell 

Output: Nystr\"om approximation in factored form \^Anys =U \^\Lambda UT

1: \Omega = randn(n, \ell )  \triangleleft Gaussian test matrix
2: \Omega = qr(\Omega ,0)  \triangleleft Thin QR decomposition
3: Y =A\Omega  \triangleleft \ell matvecs with A
4: \nu = eps(norm(Y, 'fro'))  \triangleleft Compute shift
5: Y\nu = Y + \nu \Omega  \triangleleft Shift for stability
6: C = chol(\Omega TY\nu )
7: B = Y\nu /C
8: [U,\Sigma ,\sim ] = svd(B,0)  \triangleleft Thin SVD

9: \^\Lambda =max\{ 0,\Sigma 2  - \nu I\}  \triangleleft Remove shift, compute eigs

U \^\Lambda UT , where U \in Rn\times \ell is an orthonormal matrix whose columns are eigenvectors
and \^\Lambda \in R\ell \times \ell is a diagonal matrix listing the eigenvalues, which we often abbreviate
as \^\lambda 1, . . . , \^\lambda \ell .

The randomized Nystr\"om approximation described in this section has a key dif-
ference from the Nystr\"om approximations that have traditionally been used in the
machine learning literature [1, 4, 9, 15, 48]. In machine learning settings, the Nystr\"om
approximation is usually constructed from a sketch Y that samples random columns
from the matrix (i.e., the random test matrix \Omega has 1-sparse columns). In contrast,
Algorithm 2.1 computes a sketch Y via random projection (i.e., the test matrix \Omega is
standard normal). In most applications, we have strong reasons (subsection 2.2.3) for
preferring random projections to column sampling.

2.2.1. Cost of randomized Nystr\"om approximation. Throughout the pa-
per, we write Tmv for the time required to compute a matrix-vector product (matvec)
with A. Forming the sketch Y =A\Omega with sketch size \ell requires \ell matvecs, which costs
Tmv\ell . The other steps in the algorithm have arithmetic cost O(n\ell 2). Hence, the total
computational cost of Algorithm 2.1 is O(Tmv\ell + \ell 2n) operations. The storage cost is
O(\ell n) floating-point numbers.

For Algorithm 2.1, the worst-case performance occurs when A is dense and un-
structured. In this case, forming Y costs O(n2\ell ) operations. However, if we have
access to the columns of A, then we may reduce the cost of forming Y to O(n2 log \ell )
by using a structured test matrix \Omega , such as a scrambled subsampled randomized
Fourier transform (SSRFT) map or a sparse map [25, 45].

2.2.2. A priori guarantees for the randomized Nystr\"om approximation.
In this section, we present an a priori error bound for the randomized Nystr\"om ap-
proximation. The result improves over previous analyses [15, 16, 45] by sharpening
the error terms. This refinement is critical for the analysis of the preconditioner.

Proposition 2.2 (randomized Nystr\"om approximation: Error). Consider a psd
matrix A\in S+n (R) with eigenvalues \lambda 1 \geq \cdot \cdot \cdot \geq \lambda n. Choose a sketch size \ell \geq 4, and draw
a standard normal test matrix \Omega \in Rn\times \ell . Then the rank-\ell Nystr\"om approximation
\^Anys computed by Algorithm 2.1 satisfies

(2.3) E\| A - \^Anys\| \leq min
2\leq p\leq \ell  - 2

\left[  \biggl( 1 + 2(\ell  - p)

p - 1

\biggr) 
\lambda \ell  - p+1 +

2e2\ell 

p2  - 1

\left(  \sum 
j>\ell  - p

\lambda j

\right)  \right]  .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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724 Z. FRANGELLA, J. A. TROPP, AND M. UDELL

The proof of Proposition 2.2 may be found in subsection SM1.1.
Proposition 2.2 shows that, in expectation, the randomized Nystr\"om has several

appealing features. Many other approximations \^Anys provide a good rank-\ell approxi-
mation to A. The first term in the bound is comparable with the spectral-norm error
\lambda \ell  - p+1 in the optimal rank-(\ell  - p) approximation, \lfloor A\rfloor \ell  - p. The second term in the
bound is comparable with the trace-norm error

\sum 
j>\ell  - p \lambda j in the optimal rank-(\ell  - p)

approximation.
Proposition 2.2 is better understood via the following simplification.

Corollary 2.3. Instate the assumptions of Proposition 2.2. For p \geq 2 and
\ell = 2p - 1, we have the bound

E\| A - \^Anys\| \leq 
\biggl( 
3 +

4e2

p
srp(A)

\biggr) 
\lambda p.

The p-stable rank, srp(A) = \lambda  - 1
p

\sum n
j=p \lambda j, reflects decay in the tail eigenvalues.

Corollary 2.3 shows that the Nystr\"om approximation error is on the order of \lambda p

when the rank parameter \ell = 2p  - 1. The constant depends on the p-stable rank
srp(A), which is small when the tail eigenvalues decay quickly starting at \lambda p. This
bound is critical for establishing our main results (Theorems 4.2 and 5.1).

2.2.3. Random projection versus column sampling. Most papers in the
machine learning literature [1, 4] construct Nystr\"om approximations by sampling col-
umns at random from an adaptive distribution. In contrast, for most applications, we
advocate using an oblivious random projection of the matrix to construct a Nystr\"om
approximation.

Random projection has several advantages over column sampling. First, column
sampling offers no computational advantage when we only have black-box matvec
access to the matrix, while random projections are natural in this setting and possess
stronger performance guarantees. Second, it can be very expensive to obtain adaptive
distributions for column sampling. Indeed, computing approximate ridge leverage
scores costs just as much as solving the ridge regression problem directly using random
projections [10, Theorem 2]. Third, even with a good sampling distribution, column
sampling produces higher variance results than random projection, so it is far less
reliable.

On the other hand, we have found that there are a few applications where it is
more effective to compute a randomized Nystr\"om preconditioner using column sam-
pling in lieu of random projections. In particular, this seems to be the case for kernel
ridge regression (subsection 6.5). Indeed, the entries of the kernel matrix are given by
an explicit formula, so we can extract full columns with ease. Sampling \ell columns may
cost only O(\ell n) operations, whereas a single matvec generally costs O(n2). Further-
more, kernel matrices usually exhibit fast spectral decay, which limits the performance
loss that results from using column sampling in lieu of random projection.

3. Approximating the regularized inverse. Let us return to the regularized
linear system (1.1). The solution to the problem has the form x \star = (A+\mu I) - 1b. Given
a good approximation \^A to the matrix A, it is natural to ask whether \^x= ( \^A+\mu I) - 1b
is a good approximation to the desired solution x \star .

There are many reasons why we might prefer to use \^A in place of A. In particular,
we may be able to solve linear systems in the matrix \^A+ \mu I more efficiently. On the
other hand, the utility of this approach depends on how well the inverse ( \^A+ \mu I) - 1

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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RANDOMIZED NYSTR\"OM PRECONDITIONING 725

approximates the desired inverse (A+\mu I) - 1. The next result addresses this question
for a wide class of approximations that includes the Nystr\"om approximation.

Proposition 3.1 (regularized inverses). Consider psd matrices A, \^A \in S+n (R),
and assume that the difference E =A - \^A is psd. Fix \mu > 0. Then

(3.1) \| ( \^A+ \mu I) - 1  - (A+ \mu I) - 1\| \leq 1

\mu 

\| E\| 
\| E\| + \mu 

.

Furthermore, the bound (3.1) is attained when \^A= \lfloor A\rfloor \ell for 1\leq \ell \leq n.

The proof of Proposition 3.1 may be found in subsection SM1.1.1. It is based on
[5, Lemma X.1.4].

Proposition 3.1 has an appealing interpretation. When \| A - \^A\| is small in com-
parison to the regularization parameter \mu , the approximate inverse ( \^A + \mu I) - 1 can
serve in place of the inverse (A+ \mu I) - 1.

4. Nystr\"om sketch-and-solve. The simplest mechanism for using the Nystr\"om
approximation is an algorithm called Nystr\"om sketch-and-solve. This section intro-
duces the method, its implementation, and its history. We also provide a general
theoretical analysis that sheds light on its performance. In spite of its popularity, the
Nystr\"om sketch-and-solve method is rarely worth serious consideration.

4.1. Overview. Given a rank-\ell Nystr\"om approximation \^Anys of the psd matrix
A, it is tempting to replace the regularized linear system (A+\mu I)x= b with the proxy
( \^Anys + \mu I)x = b. Indeed, we can solve the proxy linear system in O(\ell n) time using
the Sherman--Morrison--Woodbury formula [17, eqn. (2.1.4)].

Lemma 4.1 (approximate regularized inversion). Consider any rank-\ell matrix \^A
with eigenvalue decomposition \^A=U \^\Lambda UT . Then

(4.1) ( \^A+ \mu I) - 1 =U(\^\Lambda + \mu I) - 1UT +
1

\mu 
(I  - UUT ).

We refer to the approach in this paragraph as the Nystr\"om sketch-and-solve al-
gorithm because it is modeled on the sketch-and-solve paradigm that originated in
[39].

See Algorithm 4.1 for a summary of the Nystr\"om sketch-and-solve method. The
algorithm produces an approximate solution \^x to the regularized linear system (1.1)
in time O(Tmv\ell + \ell 2n). The arithmetic cost is much faster than a direct method,
which costs O(n3). It can also be faster than running CG for a long time at a cost of
O(Tmv) per iteration. The method looks attractive if we only consider the runtime,
and yet. . .

Nystr\"om sketch-and-solve only has one parameter, the rank \ell of the Nystr\"om
approximation, which controls the quality of the approximate solution \^x. When \ell \ll n,
the method has an appealing computational profile. As \ell increases, the approximation

Algorithm 4.1 Nystr\"om sketch-and-solve

Input: Psd matrix A\in S+n (R), right-hand side b, regularization \mu , rank \ell 
Output: Approximate solution \^x to (1.1)

1: [U, \^\Lambda ] = RandomizedNystr\"omApproximation(A,\ell )

2: Use (4.1) to compute \^x= ( \^Anys + \mu I) - 1b

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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726 Z. FRANGELLA, J. A. TROPP, AND M. UDELL

quality increases, but the computational burden becomes heavy. We will show that,
alas, an accurate solution to the linear system actually requires \ell \approx n, at which point
the computational benefits of Nystr\"om sketch-and-solve evaporate completely.

In summary, Nystr\"om sketch-and-solve is almost never the right algorithm to use.
We will see that Nystr\"om PCG generally produces much more accurate solutions with
a similar computational cost.

4.2. Guarantees and deficiencies. Using Proposition 3.1 together with the a
priori guarantee in Proposition 2.2, we quickly obtain a performance guarantee for
Algorithm 4.1.

Theorem 4.2. Fix p \geq 2, and set \ell = 2p  - 1. For a psd matrix A \in S+n (R),
construct a randomized Nystr\"om approximation \^Anys using Algorithm 2.1. Then the
approximation error for the inverse satisfies

(4.2) E
\bigm\| \bigm\| (A+ \mu I) - 1  - ( \^Anys + \mu I) - 1

\bigm\| \bigm\| \leq \biggl( 3 + 4e2

p
srp(A)

\biggr) 
\lambda p

\mu \cdot (\lambda p + \mu )
.

Define x \star = (A + \mu I) - 1b, and select \ell = 2 \lceil 1.5deff(\epsilon \mu )\rceil + 1. Then the approximate
solution \^x computed by Algorithm 4.1 satisfies

(4.3) E
\biggl[ 
\| \^x - x \star \| 2
\| x \star \| 2

\biggr] 
\leq 26\epsilon .

The proof of Theorem 4.2 may be found in Appendix A.1.
Theorem 4.2 tells us how accurately we can hope to solve linear systems using

Nystr\"om sketch-and-solve (Algorithm 4.1). A sketch size \ell =O(deff(\epsilon \mu )) is needed to
guarantee relative error \epsilon . When \epsilon \mu is small, we anticipate that deff(\epsilon \mu )\approx n. In this
setting, Nystr\"om sketch-and-solve has no computational value: it is as expensive as a
direct method. As a concrete example, let \mu = 10 - 4 and suppose we want six digits of
accuracy, i.e., \epsilon = 10 - 6. Then we must hope to find a sketch size \ell so that \lambda \ell \sim 10 - 10

to achieve the required accuracy; and \ell \ll n so the method offers a computational
advantage. It is rare to find a matrix whose spectrum decays rapidly enough to
satisfy both these constraints! Our analysis is sharp in its essential respects, so the
pessimistic assessment is irremediable.

4.3. History. Nystr\"om sketch-and-solve has a long history in the machine learn-
ing literature. It was introduced in [48] to speed up kernel-based learning, and it plays
a role in many subsequent papers on kernel methods. In this context, the Nystr\"om
approximation is typically obtained using column sampling [1, 4, 48], which has its
limitations (subsection 2.2.3). More recently, Nystr\"om sketch-and-solve has been ap-
plied to speed up approximate cross-validation [43].

The analysis of Nystr\"om sketch-and-solve presented above differs from previous
analysis. Prior works [1, 4] focus on the kernel setting, and they use properties of
column sampling schemes to derive learning guarantees. In contrast, we bound the
relative error for a Nystr\"om approximation based on a random projection. Our overall
approach extends to column sampling if we replace Proposition 2.2 by an appropriate
analogue, such as Gittens's results [15].

5. Nystr\"om preconditioned conjugate Gradient. We now present our main
algorithm, Nystr\"om PCG. This algorithm produces high accuracy solutions to a reg-
ularized linear system by using the Nystr\"om approximation \^Anys as a preconditioner.
We provide a rigorous estimate for the condition number of the preconditioned system,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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RANDOMIZED NYSTR\"OM PRECONDITIONING 727

and we prove that Nystr\"om PCG leads to fast convergence for regularized linear sys-
tems. In contrast, we have shown that Nystr\"om sketch-and-solve cannot be expected
to yield accurate solutions.

5.1. The preconditioner. In this section, we introduce the optimal low-rank
preconditioner, and we argue that the randomized Nystr\"om preconditioner provides
an approximation that is easy to compute.

5.1.1. Motivation. As a warmup, suppose we knew the eigenvalue decomposi-
tion of the best rank-\ell approximation of the matrix: \lfloor A\rfloor \ell = V\ell \Lambda \ell V

T
\ell . How should

we use this information to construct a good preconditioner for the regularized linear
system (1.1)?

Consider the family of symmetric psd matrices that act as the identity on the
orthogonal complement of range(V\ell ). Within this class, we claim that the following
matrix is the optimal preconditioner :

(5.1) P \star =
1

\lambda \ell +1 + \mu 
V\ell (\Lambda \ell + \mu I)V T

\ell + (I  - V\ell V
T
\ell ).

The optimal preconditioner P \star requires O(n\ell ) storage, and we can solve linear sys-
tems in P \star in O(n\ell ) time. Whereas the regularized matrix A\mu has condition number
\kappa 2(A\mu ) = (\lambda 1 + \mu )/(\lambda n + \mu ), the preconditioner yields

(5.2) \kappa 2(P
 - 1/2
 \star A\mu P

 - 1/2
 \star ) =

\lambda \ell +1 + \mu 

\lambda n + \mu 
.

This is the minimum possible condition number attainable by a preconditioner from
the class that we have delineated. It represents a significant improvement when
\lambda \ell +1\ll \lambda 1. The proofs of these claims are straightforward; for details, see subsection
SM1.1.2.

5.1.2. Randomized Nystr\"om preconditioner. It is expensive to compute
the best rank-\ell approximation \lfloor A\rfloor \ell accurately. In contrast, we can compute the
rank-\ell randomized Nystr\"om approximation \^Anys efficiently (Algorithm 2.1). Further-
more, we have seen that \^Anys approximates A nearly as well as the optimal rank-\ell 
approximation (Corollary 2.3). These facts lead us to study the randomized Nystr\"om
preconditioner, proposed in [25, sec. 17] without a complete justification.

Consider the eigenvalue decomposition \^Anys = U \^\Lambda UT , and write \^\lambda \ell for its \ell th
eigenvalue. The randomized Nystr\"om preconditioner and its inverse take the form

(5.3)
P =

1

\^\lambda \ell + \mu 
U(\^\Lambda + \mu I)UT + (I  - UUT );

P - 1 = (\^\lambda \ell + \mu )U(\^\Lambda + \mu I) - 1UT + (I  - UUT ).

Like the optimal preconditioner P \star , the randomized Nystr\"om preconditioner (5.3) is
cheap to apply and to store. We may hope that it damps the condition number of the
preconditioned system P - 1/2A\mu P

 - 1/2 nearly as well as the optimal preconditioner
P \star . We will support this intuition with a rigorous bound (Proposition 5.3).

5.2. Nystr\"om PCG. We can obviously use the randomized Nystr\"om precondi-
tioner within the framework of PCG. We call this approach Nystr\"om PCG, and we
present a basic implementation in Algorithm 5.1. In the case of very ill-conditioned
least-squares problems, it is sometimes preferable to use other Krylov methods such
as LSQR [32] over CG. We have not found the need to use such methods as we focus

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/0

1/
23

 to
 1

31
.2

15
.1

43
.1

76
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



728 Z. FRANGELLA, J. A. TROPP, AND M. UDELL

Algorithm 5.1 Nystr\"om PCG

Input: Psd matrix A, right-hand side b, initial guess x0, regularization parameter
\mu , sketch size \ell , solution tolerance \eta 

Output: Approximate solution \^x to regularized system (1.1)

1: [U, \^\Lambda ] = RandomizedNystr\"omApproximation(A,\ell )
2: r0 = b - (A+ \mu I)x0

3: z0 = P - 1r0  \triangleleft using (5.3)
4: p0 = z0
5: while \| r\| 2 > \eta 
6: v= (A+ \mu I)p0
7: \alpha = (rT0 z0)/(p

T
0 v0)  \triangleleft compute step size

8: x= x0+\alpha p0  \triangleleft update solution
9: r= r0  - \alpha v  \triangleleft update residual
10: z = P - 1r  \triangleleft find search direction via (5.3)
11: \beta = (rT z)/(rT0 z0)
12: x0\leftarrow x, r0\leftarrow r, p0\leftarrow z + \beta p0, z0\leftarrow z

on regularized problems and are preconditioning, so that \kappa 2(P
 - 1/2A\mu P

 - 1/2)\ll u - 1,
where u is machine precision, Nevertheless, the Nystr\"om precondtioner is easily ex-
tended to LSQR; one may use P - 1/2 as a right-preconditioner with P as in (5.3).

More precisely, Algorithm 5.1 uses left-preconditioned CG. This algorithm implic-
itly works with the unsymmetric matrix P - 1A\mu , rather than the symmetric matrix
P - 1/2A\mu P

 - 1/2. The two variants of PCG yield identical sequences of iterates [38], but
the former is more efficient. For ease of analysis, our theoretical results are presented
in terms of the symmetrically preconditioned matrix.

5.2.1. Complexity of Nystr\"om PCG. Nystr\"om PCG first constructs the ran-
domized Nystr\"om approximation and then solves the regularized linear system with
PCG. We have already discussed the cost of constructing the Nystr\"om approximation
(subsection 2.2.1). PCG requires O(Tmv) operations per iteration, and it uses a total
of O(n) additional storage.

For the regularized linear system (1.1), Theorem 5.1 and Corollary 5.2 demon-
strate that it suffices to choose the sketch size \ell = 2 \lceil 1.5deff(\mu )\rceil +1. In this case with
high probability, the overall runtime needed for Nystr\"om PCG to obtain \epsilon -relative
error in the A\mu -norm is

O
\bigl( 
deff(\mu )

2n+ Tmv(deff(\mu ) + log(1/\epsilon ))
\bigr) 

operations.

When the effective dimension deff(\mu ) is modest, Nystr\"om PCG is very efficient.
In contrast, subsection 4.2 shows that the running time for Nystr\"om sketch-and-

solve has the same form---with deff(\epsilon \mu ) in place of deff(\mu ). That is, Nystr\"om PCG
can produce solutions whose residual norm is close to machine precision, whereas it
is impossible to obtain high precision solutions efficiently with Nystr\"om sketch-and-
solve.

5.2.2. Comparison to other randomized preconditioning methods. Here
we discuss Nystr\"om PCG in the context of prior work on randomized preconditioning
[3, 18, 22, 28, 36] based on sketch-and-precondition and related ideas. All these prior
methods were developed for least-squares problems. We summarize the complexity of
each method for regularized least-squares problems in Table 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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RANDOMIZED NYSTR\"OM PRECONDITIONING 729

Table 1
Regularized least-squares: Complexity of prior randomized preconditoning methods versus

Nystr\"om PCG. The table compares the complexity of Nystr\"om PCG and state-of-the-art random-
ized preconditioning methods in the overdetermined case n\geq d, assuming we can access A only via
matrix-vector products. The sketch-and-precondition preconditioner is constructed from a sketch SA,
where S \in Rm\times n is a (1\pm \gamma ) Gaussian subspace embedding with sketch size \Omega (d/\gamma ) and \gamma \in (0,1). The
time to compute the sketch is O(Tmvd/\gamma ) and the iteration complexity follows from the argument in
[50, sect. 2.6]. For AdaIHS, we use a sketch constructed from a Gaussian subspace embedding with
sketch size O(deff(\mu )/\rho ) where \rho \in (0,0.18). The complexity of AdaIHS follows from [22, Theorem 5].
Similarly, the construction in [18] uses a Gaussian test matrix. Let \~\kappa \ell = (\ell \lambda \ell +

\sum 
j>\ell \lambda j)/\mu . Then

the overall runtime of sketched-preconditioned SVRG follows from [18, Theorem 1] and the runtime
of randomized block Krylov method used to construct the preconditioner [29, 25]. The complexity of
Nystr\"om PCG is derived from Theorem 5.1 and Corollary 5.2.

Method Complexity References

Sketch-and-precondition O
\Bigl( 
T\mathrm{m}\mathrm{v}d/\gamma + d3/\gamma + T\mathrm{m}\mathrm{v}

\mathrm{l}\mathrm{o}\mathrm{g}(1/\epsilon )
\mathrm{l}\mathrm{o}\mathrm{g}(1/\gamma )

\Bigr) 
[3, 28, 36]

AdaIHS O
\Bigl( 
(T\mathrm{m}\mathrm{v}d\mathrm{e}ff/\rho + dd2\mathrm{e}ff/\rho 

2) log(d\mathrm{e}ff/\rho ) + T\mathrm{m}\mathrm{v}
\mathrm{l}\mathrm{o}\mathrm{g}(1/\epsilon )
\mathrm{l}\mathrm{o}\mathrm{g}(1/\rho )

\Bigr) 
[22]

Sketched preconditioned O(T\mathrm{m}\mathrm{v}\ell log(n) + d\ell 2 log2(n)) [18]

SVRG +O(T\mathrm{m}\mathrm{v} + \~\kappa \ell + d2) log(1/\epsilon ))

Nystr\"om PCG O(T\mathrm{m}\mathrm{v}d\mathrm{e}ff + dd2\mathrm{e}ff + T\mathrm{m}\mathrm{v} log(1/\epsilon )) This work

The time to construct the sketch-and-precondition preconditioner is always larger
than that of the Nystr\"om preconditioner, since deff <d and \gamma < 1. Indeed, construct-
ing the preconditioner for sketch-and-precondition costs \Omega (d3), which is the same as
a direct method when d=\Omega (n) and is prohibitive for high-dimensional problems. In
contrast, Nystr\"om PCG is amenable to problems with large d and runs much faster
than sketch-and-precondition whenever deff(\mu )\ll d. We note the analysis of sketch-
and-precondition can likely be improved to require only a sketch size of O(deff(\mu )/\gamma ).
However, this improvement by itself is only of theoretical value as deff(\mu ) is almost
never known beforehand. Thus, without an adaptive scheme or method to estimate
deff(\mu ), the best a priori sketch size one can select with sketch-and-precondition meth-
ods is O(d/\gamma ). The Nystr\"om preconditioner also enjoys wider applicability then
sketch-and-precondition: it applies to square-ish systems, whereas the others only
work for strongly overdetermined or underdetermined problems. Nystr\"om PCG also
improves slightly on the complexity of AdaIHS: while both scale linearly in d, Nystr\"om
PCG removes unnecessary logarithmic factors and the constant \rho < 0.18.

Of the methods presented in Table 1, sketched preconditioned SVRG [18] is clos-
est to our approach. The authors of [18] construct a preconditioner from a randomized
low-rank approximation to be deployed with the SVRG algorithm [19]. However, while
both use a randomized low-rank approximation to construct the preconditioner, the
methods differ significantly. In particular, [18] constructs the randomized precon-
ditioner using the randomized block Krylov scheme in [29], which is significantly
more expensive than Algorithm 2.1 used for Nystr\"om PCG. Indeed, the randomized
block Krylov scheme requires \ell -matvecs with A O(log(n)) times and O(log(n)) costly
orthogonalizations, which are needed for numerical stability [25]. Hence sketched pre-
conditioned SVRG is considerably slower than Nystr\"om PCG; see Table 1. Moreover,
the theory in [18] also lacks any connection with the effective dimension and provides
no theoretical or practical guidance for selecting the rank \ell . Last, note SVRG (unlike
PCG) is typically used in settings where a full pass through the data, i.e., a matvec,
is too expensive. A preconditioner that requires multiple full passes through the data
is an odd choice in this setting.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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730 Z. FRANGELLA, J. A. TROPP, AND M. UDELL

In the context of kernel ridge regression (KRR), the random features method
of [2] may be viewed as a randomized preconditioning technique. The authors of
[2] prove convergence guarantees for the polynomial kernel with a (large) sketch size
\ell =O(deff(\mu )

2). In contrast, Nystr\"om PCG can be used for KRR with any kernel and
requires only the smaller sketch size \ell =O(deff(\mu )) to obtain fast convergence.

Finally, in a pure statistical learning setting, where the primary concern is test-
set error and not residual tolerance, fast approximate methods for KRR are also
available. The current state of the art is the Falkon algorithm from [37], which shares
important commonalities with Nystr\"om sketch-and-solve. Instead of working with full
kernel, it works with Kn\ell \in Rn\times \ell , where Kn\ell is computed with respect to \ell -centers
randomly sampled from the training set. Let d \star eff(\mu ) denote the effective dimension
of the population kernel. Then under appropriate conditions and with \ell =O(d \star eff(\mu )),
[37] shows Falkon obtains generalization error comparable to that of exact methods,
with runtime O(nd \star eff(\mu ) log(n) + d \star eff(\mu )

3). Thus, in principle, Falkon should run
much faster than Nystr\"om PCG or random features PCG from [2] and yield nearly
identical statistical performance on the test set. We have found Falkon does run
faster, but there are gaps in performance relative to Nystr\"om PCG that cannot be
improved by increasing the number of centers. That is, to obtain the best statistical
performance, there is still a benefit to solving the problem to modest accuracy. See
subsection 6.5 for numerical comparison and further discussion. Furthermore, Falkon
only applies to vanilla KRR and kernelized logistic regression [26], and not to Gaussian
processes, an application where Nystr\"om PCG might prove useful. Moreover, the
Gaussian processes literature [12, 47] has found exact inference yields better learning
performance than approximate methods.

In summary, Nystr\"om PCG applies to a wider class of problems than prior ran-
domized preconditioners and enjoys stronger theoretical guarantees for regularized
problems. Nystr\"om PCG also outperforms other randomized preconditioners numer-
ically (section 6).

5.2.3. Block Nystr\"om PCG. The Nystr\"om preconditioner can also precon-
dition the block CG algorithm [31] to solve regularized linear systems with multiple
right-hand sides, as appear in applications to approximate cross validation [43], influ-
ence functions [20], and hyperparameter optimization [24]. Blocking provides advan-
tages both in convergence rate and in memory management. The orthogonalization
preprocessing proposed in [11] ensures numerical stability for block Nystr\"om PCG
without further orthogonalization steps during the iteration.

5.3. Analysis of Nystr\"om PCG. We now turn to the analysis of the random-
ized Nystr\"om preconditioner P . Theorem 5.1 provides a bound for the rank \ell of the
Nystr\"om preconditioner that reduces the condition number of A\mu to a constant. In
this case, we deduce that Nystr\"om PCG converges rapidly (Corollary 5.2).

Theorem 5.1 (Nystr\"om preconditioning). Suppose we construct the Nystr\"om
preconditioner P in (5.3) using Algorithm 2.1 with sketch size \ell = 2 \lceil 1.5deff(\mu )\rceil + 1.
Using P to precondition the regularized matrix A\mu results in the condition number
bound

E
\bigl[ 
\kappa 2(P

 - 1/2A\mu P
 - 1/2)

\bigr] 
< 28.

The proof of Theorem 5.1 may be found in subsection 5.3.3.
Theorem 5.1 has several appealing features. Many other authors have noticed that

the effective dimension controls sample size requirements for particular applications
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RANDOMIZED NYSTR\"OM PRECONDITIONING 731

such as discriminant analysis [7], ridge regression [22], and kernel ridge regression
[1, 4]. In contrast, our result holds for any regularized linear system.

Our argument makes the role of the effective dimension conceptually simpler,
and it leads to explicit, practical parameter recommendations. Indeed, the effective
dimension deff(\mu ) is essentially the same as the sketch size \ell that makes the approx-
imation error \| A  - \^Anys\| proportional to \mu . In previous arguments, such as those
in [1, 4, 7], the effective dimension arises because the authors reduce the analysis to
approximate matrix multiplication [8], which produces inscrutable constant factors.

We also note that Theorem 5.1 easily extends to the column sampling schemes
using Proposition 5.3 and results from [1] to control \| E\| . This is particularly at-
tractive for kernel problems, as the Nystr\"om preconditioner may be constructed in
O(n\ell 2) operations. For the case of uniform column sampling, the key quantity is the
maximal marginal degrees of freedom

dmof(\mu ) = n\| diag(A(A+ n\mu I) - 1)\| \infty .

Clearly, dmof(\mu )\geq deff(\mu ), and is generally significantly larger. Combining our results
with those from [1], we can conclude a similar result to Theorem 5.1 using a rank
of size \ell = O(dmof(\mu ) log(n)). Thus the guarantees for uniform column sampling are
considerably worse than those of random projection. In practice we have found the
bound on \ell for uniform column sampling to be very pessimistic; see subsection 6.5 for
corroborating numerical evidence.

Theorem 5.1 ensures that Nystr\"om PCG converges quickly.

Corollary 5.2 (Nystr\"om PCG: Convergence). Define P as in Theorem 5.1,
and condition on the event \{ \kappa 2(P

 - 1/2A\mu P
 - 1/2)\leq 56\} . If we initialize Algorithm 5.1

with initial iterate x0 = 0, then the relative error \delta t in the iterate xt satisfies

\delta t =
\| xt  - x \star \| A\mu 

\| x \star \| A\mu 

< 2 \cdot (0.77)t , where A\mu x \star = b.

In particular, after t= \lceil 3.8 log(2/\epsilon )\rceil iterations, we have relative error \delta t < \epsilon .

The proof of Corollary 5.2 is an immediate consequence of the standard con-
vergence result for CG [44, Theorem 38.5, p. 299]. See Appendix A.2. Note that
Corollary 5.2 also immediately implies the total number of matvecs required to reach
an \epsilon -accurate solution in the A-norm.

5.3.1. Analyzing the condition number. The first step in the proof of Theo-
rem 5.1 is a deterministic bound on how the preconditioner (5.3) reduces the condition
number of the regularized matrix A\mu . Let us emphasize that this bound is valid for
any rank-\ell Nystr\"om approximation, regardless of the choice of test matrix.

Proposition 5.3 (Nystr\"om preconditioner: Deterministic bound). Let \^A =
U \^\Lambda UT be any rank-\ell Nystr\"om approximation, with \ell th largest eigenvalue \^\lambda \ell , and let
E = A  - \^A be the approximation error. Construct the Nystr\"om preconditioner P
as in (5.3). Then the condition number of the preconditioned matrix P - 1/2A\mu P

 - 1/2

satisfies

(5.4)

max

\biggl\{ \^\lambda \ell + \mu 

\lambda n + \mu 
,1

\biggr\} 
\leq \kappa 2(P

 - 1/2A\mu P
 - 1/2)

\leq 
\Bigl( 
\^\lambda \ell + \mu + \| E\| 

\Bigr) 
min

\biggl\{ 
1

\mu 
,

\^\lambda \ell + \lambda n + 2\mu 

(\^\lambda \ell + \mu )(\lambda n + \mu )

\biggr\} 
.
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732 Z. FRANGELLA, J. A. TROPP, AND M. UDELL

For the proof of Proposition 5.3 see Appendix A.1.1. It turns out that the only
properties of the Nystr\"om approximation we require in Proposition 5.3 are that \^A is
psd and E = A - \^A \succeq 0. Thus, Proposition 5.3 also applies to any preconditioner of
the form (5.3) constructed from a matrix \^A that possesses these two properties.

To interpret the result, recall the expression (5.2) for the condition number in-
duced by the optimal preconditioner. Proposition 5.3 shows that the Nystr\"om pre-
conditioner may reduce the condition number almost as well as the optimal precondi-
tioner. Equation (5.4) shows that the price we pay for using an efficiently computable
preconditioner is the condition number of the preconditioned system depending upon
our approximation error \| E\| . This is natural given that the preconditioner is con-
structed from \^A, a perturbed version of A. Hence we expect P to behave like a
perturbed version of P \star , which is precisely the content of Proposition 5.3.

In particular, when \| E\| = O(\mu ), the condition number of the preconditioned
system is bounded by a constant, independent of the spectrum of A. This follows
as \^\lambda \ell \leq \lambda \ell and \| E\| dominates \lambda \ell . In this setting, Nystr\"om PCG is guaranteed to
converge quickly.

5.3.2. The effective dimension and sketch size selection. How should we
choose the sketch size \ell to guarantee that \| E\| =O(\mu )? Corollary 2.3 shows how the
error in the rank-\ell randomized Nystr\"om approximation depends on the spectrum of
A through the eigenvalues of A and the tail stable rank. In this section, we present
a lemma which demonstrates that the effective dimension deff(\mu ) controls both quan-
tities. As a consequence of this bound, we will be able to choose the sketch size \ell 
proportional to the effective dimension deff(\mu ).

Recall from (1.4) that the effective dimension of the matrix A is defined as

(5.5) deff(\mu ) = tr(A(A+ \mu I)+) =

n\sum 
j=1

\lambda j(A)

\lambda j(A) + \mu 
.

As previously mentioned, deff(\mu ) may be viewed as a smoothed count of the eigenvalues
larger than \mu . Thus, one may expect that \lambda k(A)\lesssim \mu for k\gtrsim deff(\mu ). This intuition is
correct, and it forms the content of Lemma 5.4.

Lemma 5.4 (effective dimension). Let A \in S+n (R) with eigenvalues \lambda 1 \geq \lambda 2 \geq 
\cdot \cdot \cdot \geq \lambda n. Let \mu > 0 be the regularization parameter, and define the effective dimension
as in (5.5). The following statements hold.

1. Fix \gamma > 0. If j \geq (1 + \gamma  - 1)deff(\mu ), then \lambda j \leq \gamma \mu .
2. If k\geq deff(\mu ), then k - 1

\sum 
j>k \lambda j \leq (deff(\mu )/k) \cdot \mu .

The proof of Lemma 5.4 may be found in Appendix A.1.2.
Lemma 5.4, item 1 captures the intuitive fact that there are no more than 2deff(\mu )

eigenvalues larger than \mu . Similarly, item 2 states that the effective dimension controls
the sum of all the eigenvalues whose index exceeds the effective dimension. It is
instructive to think about the meaning of these results when deff(\mu ) is small.

5.3.3. Proof of Theorem 5.1. We are now prepared to prove Theorem 5.1.
The key ingredients in the proof are Proposition 2.2, Proposition 5.3, and Lemma 5.4.

Proof of Theorem 5.1. Fix the sketch size \ell = 2 \lceil 1.5deff(\mu )\rceil + 1. Construct
the rank-\ell randomized Nystr\"om approximation \^Anys with eigenvalues \^\lambda j . Write E =
A - \^Anys for the approximation error. Form the preconditioner P via (5.3). We must
bound the expected condition number of the preconditioned matrix P - 1/2A\mu P

 - 1/2.
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RANDOMIZED NYSTR\"OM PRECONDITIONING 733

First, we apply Proposition 5.3 to obtain a deterministic bound that is valid for
any rank-\ell Nystr\"om preconditioner:

\kappa 2(P
 - 1/2A\mu P

 - 1/2)\leq 
\^\lambda \ell + \mu + \| E\| 

\mu 
\leq 2 +

\| E\| 
\mu 

.

The second inequality holds because \^\lambda \ell \leq \lambda \ell \leq \mu . This is a consequence of Lemma
2.1, item 4 and Lemma 5.4, item 1 with \gamma = 1. We rely on the fact that \ell \geq 2deff(\mu ).

Decompose \ell = 2p  - 1 where p = \lceil 1.5deff(\mu )\rceil + 1. Take the expectation, and
invoke Corollary 2.3 to obtain

E
\bigl[ 
\kappa 2(P

 - 1/2A\mu P
 - 1/2)

\bigr] 
\leq 2 +

\biggl( 
3 +

4e2

p
srp(A)

\biggr) 
(\lambda p/\mu ).

By definition, srp(A) \cdot \lambda p =
\sum 

j\geq p \lambda j . To complete the bound, apply Lemma 5.4 twice.
We use item 1 with \gamma = 2 and item 2 with k= p - 1 = \lceil 1.5deff(\mu )\rceil to reach

E
\bigl[ 
\kappa 2(P

 - 1/2A\mu P
 - 1/2)

\bigr] 
\leq 2 +

3 \cdot 2\mu + 4e2 \cdot 2\mu /3
\mu 

< 2 + 26= 28,

which is the desired result.

5.4. Practical parameter selection. In practice, we may not know the regu-
larization parameter \mu in advance, and we rarely know the effective dimension deff(\mu ).
As a consequence, we cannot enact the theoretical recommendation for the rank of the
Nystr\"om preconditioner: \ell = 2 \lceil 1.5deff(\mu )\rceil +1. Instead, we need an adaptive method
for choosing the rank \ell . Below, we outline three strategies.

5.4.1. Strategy 1: Adaptive rank selection by a posteriori error estima-
tion. The first strategy uses the posterior condition number estimate adaptively in a
procedure the repeatedly doubles the sketch size \ell as required. Recall that Proposition
5.3 controls the condition number of the preconditioned system:

(5.6) \kappa 2(P
 - 1/2A\mu P

 - 1/2)\leq 
\^\lambda \ell + \mu + \| E\| 

\mu 
, where E =A - \^Anys.

We get \^\lambda \ell for free from Algorithm 2.1, and we can compute the error \| E\| inexpensively
with the randomized power method [21]; see Algorithm SM4.1 in section SM4. Thus,
we can ensure the condition number is small by making \| E\| and \^\lambda \ell fall below some
desired tolerance. The adaptive strategy proceeds to do this as follows. We compute
a randomized Nystr\"om approximation with initial sketch size \ell 0, and we estimate the
error \| E\| using randomized powering. If \| E\| is smaller than a prescribed tolerance,
then we accept the rank-\ell 0 approximation. If the tolerance is not met, then we double
the sketch size, update the approximation, and estimate \| E\| again. The process
repeats until the estimate for \| E\| falls below the tolerance or it breaches a threshold
\ell max for the maximum sketch size. Algorithm C.1 uses the following stopping criteria
\| E\| \leq TolErr and \^\lambda \ell \leq TolRat for tolerances TolErr and TolRat. The stopping criterion
on \^\lambda \ell does not seem to be necessary in practice, as it is usually an order of magnitude
small than \| E\| , but it is needed for Theorem 5.5. Based on numerical experience,
we recommend the choices TolErr = \tau \mu ,TolRat = \tau \mu /10 for \tau \in [1,100]. For full
algorithmic details of adaptive rank selection by estimating \| E\| , see Algorithm C.1
in Appendix C.
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734 Z. FRANGELLA, J. A. TROPP, AND M. UDELL

The following theorem shows that with high probability, Algorithm C.1 terminates
with a modest sketch size in at most a logarithmic number of steps, and PCG with
the resulting preconditioner converges rapidly.

Theorem 5.5. Run Algorithm C.1 with initial sketch size \ell 0 and tolerances
TolErr = \tau \mu ,TolRat = \tau \mu /11, where \tau \geq 1, and let \~\ell = 2\lceil 2deff( \delta \tau \mu 11 )\rceil + 1. Then
with probability at least 1 - \delta the following hold:

1. Algorithm C.1 doubles the sketch size at most \lceil log2(
\~\ell 
\ell 0
)\rceil times.

2. The final sketch size \ell satisfies

\ell \leq 4

\biggl\lceil 
2deff

\biggl( 
\delta \tau \mu 

11

\biggr) \biggr\rceil 
+ 2.

3. With the preconditioner constructed from Algorithm C.1, Nystr\"om PCG con-

verges in at most \lceil log(2/\epsilon )
log(1/\tau 0)

\rceil iterations, where \tau 0 =

\surd 
1+12\tau /11 - 1\surd 
1+12\tau /11+1

.

Theorem 5.5 immediately implies the following concrete guarantee.

Corollary 5.6. Set \tau = 44 and \delta = 1/4 in Algorithm C.1. Then with probability
at least 3/4 the folloiwng hold:

1. Algorithm C.1 doubles the sketch size at most \lceil log2(
\~\ell 
\ell 0
)\rceil times.

2. The final sketch size \ell satisfies

\ell \leq 4\lceil 2deff(\mu )\rceil + 2.

3. With the preconditioner constructed from Algorithm C.1, Nystr\"om PCG con-
verges in at most \lceil 3.48 log(2/\epsilon )\rceil iterations.

5.4.2. Strategy 2: Adaptive rank selection by monitoring \^\bfitlambda \ell /\bfitmu . The
second strategy is almost identical to the first, except we monitor the ratio \^\lambda \ell /\mu 
instead of \| E\| /\mu . Strategy 2 doubles the approximation rank until \^\lambda \ell /\mu falls below
some tolerance (say, 10) or the sample size reaches the threshold \ell max. The approach is
justified by the following proposition, which shows that once the rank \ell is sufficiently
large, with high probability, the exact condition number differs from the empirical
condition number (\^\lambda \ell + \mu )/\mu by at most a constant.

Proposition 5.7. Let \tau \geq 0 denote the tolerance and \delta > 0 a given failure
probability. Suppose the rank of the randomized Nystr\"om approximation satisfies \ell \geq 
2\lceil 2deff(\tau \mu ))\rceil + 1. Then

(5.7) P

\Biggl\{ \Biggl( 
\kappa 2(P

 - 1/2A\mu P
 - 1/2) - 

\^\lambda \ell + \mu 

\mu 

\Biggr) 
+

\leq \tau 

\delta 

\Biggr\} 
\geq 1 - \delta ,

where X+ =max\{ X,0\} .
This strategy has the benefit of saving a bit of computation and is preferable

when a moderately small residual is sufficient, e.g., in machine learning problems
where training error only loosely predicts test error.

5.4.3. Strategy 3: Choose \ell as large as the user can afford. The third
strategy is to choose the rank \ell as large as the user can afford. This approach is
coarse, and it does not yield any guarantees on the cost of the Nystr\"om PCG method.

Nevertheless, once we have constructed a rank-\ell Nystr\"om approximation we can
combine the posterior estimate of the condition number used in strategy 1 with the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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RANDOMIZED NYSTR\"OM PRECONDITIONING 735

standard convergence theory of PCG to obtain an upper bound for the iteration count
of Nystr\"om PCG. This gives us advance warning about how long it may take to solve
the regularized linear system. As in strategy 1 we compute the error \| E\| in the
condition number bound inexpensively with the randomized power method.

6. Applications and experiments. In this section, we study the performance
of Nystr\"om PCG on real-world data from three different applications: ridge regression,
kernel ridge regression, and approximate cross-validation. The experiments demon-
strate the effectiveness of the preconditioner and our strategies for choosing the rank
\ell compared to other algorithms in the literature: on large datasets, we find that our
method outperforms competitors by a factor of 5--10 (Tables 3 and 8).

6.1. Preliminaries. We implemented all experiments in MATLAB R2019a and
MATLAB R2021a on a server with 128 Intel Xeon E7-4850 v4 2.10GHz CPU cores
and 1056GB. Except for the very large scale datasets (n \geq 105), every numerical
experiment in this section was repeated twenty times; tables report the mean over
the twenty runs, and the standard deviation (in parentheses) when it is nonzero. We
highlight the best-performing method in a table in bold.

We select hyperparameters of competing methods by grid search to optimize per-
formance. This procedure tends to be very charitable to the competitors, and it may
not be representative of their real-world performance. Indeed, grid search is compu-
tationally expensive, and it cannot be used as part of a practical implementation. A
detailed overview of the experimental setup for each application may be found in the
appropriate section of section SM2, and additional numerical results in section SM3.

6.2. Ridge regression. In this section, we solve the ridge regression problem
(1.7) described in subsection 1.3 on some standard machine learning data sets (Ta-
ble 2) from OpenML [46] and LIBSVM [6]. The effective dimension deff(\mu ) and the
numerical rank of these matrices provide insight into the difficulty of each problem.
These are reported in Table 2. We compare Nystr\"om PCG to standard CG and two
randomized preconditioning methods, the sketch-and-precondition method of Rokhlin
and Tygert (R\&T) [36] and the Adaptive Iterative Hessian Sketch (AdaIHS) [22].

6.2.1. Experimental overview. We perform two sets of experiments: comput-
ing regularization paths on CIFAR-10 and Guillermo, and random features regression
[34, 35] on shuttle, smallNORB, Higgs, YearMSD, and covtype with specified values
of \mu . The values of \mu may be found in subsection SM2.1. We use the Euclidean

Table 2
Ridge regression dataset statistics: The table reports the effective dimension and numerical rank

(in double precision) of each dataset. For CIFAR-10 and Guillermo, we report deff(\mu ) using the value
of \mu on the regularization path that yields the best test error. The numerical rank (NumRank) of a
matrix A \in Rn\times n with eigenvalues \lambda 1 \geq \cdot \cdot \cdot \geq \lambda k is max\{ k : \lambda k \geq \lambda 1\epsilon \} , the number of eigenvalues
larger than machine precision \epsilon scaled by the spectral norm of A.

Dataset n d \bfitd \mathrm{e}ff(\bfitmu ) NumRank

CIFAR-10 40,000 3,072 1,258 3,072

Guillermo 16,000 4,297 1,885 2,000

smallNorb-rf 24,300 10,000 1,806 6,812

shuttle-rf 43,300 10,000 439 853

Higgs-rf 800,000 10,000 936 10,000

YearMSD-rf 463,715 15,000 7,262 15,000

covtype-binary 464,810 15,000 14,629 15,000

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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736 Z. FRANGELLA, J. A. TROPP, AND M. UDELL

norm \| r\| 2 of the residual as our stopping criteria and declare convergence when
\| r\| 2 \leq 10 - 10. For both sets of experiments, we use Nystr\"om PCG with adaptive rank
selection (Algorithm C.1 in Appendix C). For experimental details, see subsection
SM2.1.

The regularization path experiments solve (1.7) over a regularization path \mu = 10j ,
where j = 3, . . . , - 6. We first solve the problem for the largest \mu and then solve for
progressively smaller \mu by warm starting from the previous solution. We allow every
method at most 500 iterations to reach the desired tolerance, for each value of \mu .

We report the test error achieved on each dataset in Appendix B.1. We also
compare to the test-error obtained by a sketch-and-solve approach that approximates
the inverse using the Nystr\"om preconditioner, and which is known to admit good
learning guarantees under appropriate conditions [1, 4].

6.2.2. Computing the regularization path. Figure 2 shows how the effective
dimension deff(\mu ) varies with the regularization parameter \mu on two small datasets. We
see that the effective dimension reaches our chosen maximum sketch size, \ell max = 0.5d
for CIFAR-10 and \ell max = 0.4d for Guillermo, when \mu is small enough. For CIFAR-10,
Nystr\"om PCG chooses a rank much smaller than the effective dimension for small
values of \mu , yet the method still performs well (Figure 3).

Figure 3 show the effectiveness of each method for computing the entire regular-
ization path. Nystr\"om PCG is the fastest almost uniformly. The one exception is on
CIFAR-10, where R\&T performs better for the smallest regularization parameter, for
which deff(\mu )\approx d. That is, the O(d3) cost of forming the R\&T preconditioner is not
worthwhile unless deff(\mu )\approx d and the regularization is negligible.

AdaIHS is rather slow. It increases the sketch size parameter several times along
the regularization path. Each time, AdaIHS must form a new sketch of the matrix,
approximate the Hessian, and compute a Cholesky factorization.

6.2.3. Random features regression. Table 3 compares the performance of
Nystr\"om PCG, AdaIHS, and R\&T PCG for random features regression. Table 3
shows that Nystr\"om PCG performs best on all datasets for all metrics. The most
striking feature is the difference between sketch sizes: AdaIHS and R\&T require
much larger sketch sizes than Nystr\"om PCG, leading to greater computation time
and higher storage costs. Table 3, in conjunction with Table 2, shows the adaptive
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Fig. 2. Ridge regression: Adaptive sketch size selection. Nystr\"om PCG with adaptive rank
selection (Algorithm C.1) selects a preconditioner whose rank is less than or equal to the effective
dimension. Error bars for the rank selected by the adaptive algorithm are so small that they are not
visible in the graph: The behavior of the adaptive algorithm is essentially deterministic across runs.
See subsection 6.2.2.
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(c) CIFAR 10: Residual versus \mu 
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Fig. 3. Ridge regression: Runtime and residual. Nystr\"om PCG either is the fastest method,
or it is competitive with the fastest method, for all values of the regularization parameter \mu . CG is
generally the slowest method. All the methods reliably achieve the target residual along the entire
regularization path, except for ordinary CG at small values of \mu . See subsection 6.2.2.

scheme in subsection 5.4.1 effectively selects a rank on the order of deff(\mu ) when the
effective dimension is small or moderate.

Nystr\"om PCG also works well for sketch sizes smaller than the effective dimension.
For example, on YearMSD-rf, Nystr\"om PCG converges quickly despite a rank three
times smaller than deff(\mu ). For covtype-rf, where deff(\mu ) \sim d, the convergence is no
longer as fast, but it still outperforms R\&T, owing to the expensive O(d3) cost of
constructing the preconditioner. Thus, even in settings where deff(\mu ) \sim d, Nystr\"om
PCG may still be faster than R\&T when d is large enough. For a discussion on
the statistical performance of Nystr\"om PCG and the test set error obtained on all
datasets, see Appendix B.1.

6.3. Approximate cross-validation. In this subsection we use our precon-
ditioner to compute approximate leave-one-out cross-validation (ALOOCV), which
requires solving a large linear system with multiple right-hand sides.

6.3.1. Background. Cross-validation is an important machine-learning tech-
nique to assess and select models and hyperparameters. Generally, it requires refitting
a model on many subsets of the data, so it can take quite a long time. The worst cul-
prit is leave-one-out cross-validation (LOOCV), which requires running an expensive
training algorithm n times. Recent work has developed approximate leave-one-out
cross-validation (ALOOCV), a faster alternative that replaces model retraining by a
linear system solve [13, 33, 49]. In particular, these techniques yield accurate and
computationally tractable approximations to LOOCV.
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738 Z. FRANGELLA, J. A. TROPP, AND M. UDELL

Table 3
Ridge regression: Nystr\"om PCG versus AdaIHS and R\&T PCG. Nystr\"om PCG outperforms

AdaIHS and R\&T PCG in iteration (\#iters) and runtime for all datasets. Nystr\"om PCG also
requires much less storage (sfinal). For Nystr\"om PCG, the estimated condition number of the pre-
conditioned system \kappa PCG is computed using the upper bound in Proposition 5.3.

Dataset Method sfi\mathrm{n}\mathrm{a}\mathrm{l} \bfitkappa \mathrm{P}\mathrm{C}\mathrm{G} \#iters Runtime (s)

AdaIHS 10,000 - 66.9 (0.933) 66.9 (5.27)

shuttle-rf R\&T PCG 20,000 - 60.15 242.6 (12.24)

NysPCG 800 4.17 (0.161) 13.1 (1.47) 9.78 (0.943)

AdaIHS 12,800 - 38.7 (1.42) 41.0 (2.46)

smallNORB-rf R\&T PCG 20,000 - 34.5 (1.31) 181.5 (6.53)

NysPCG 800 18.5 (0.753) 31.5 (0.489) 6.67 (0.372)

AdaIHS 30,000 - 44 1,327.3

YearMSD-rf R\&T PCG 30,000 - 49 766.5

NysPCG 2,000 22.7 22 209.7

AdaIHS 6,400 - 55 1,052.7

Higgs-rf R\&T PCG 20,000 - 53 607.4

NysPCG 800 23.8 28 91.26

AdaIHS 30,000 - 211 1,633.5

covtype-rf R\&T PCG 30,000 - 50 846.4

NysPCG 2000 2.12e+4 430 540.05

Table 4
ALOOCV datasets and experimental parameters. For each dataset we consider two values of

\mu ; we also report the exact effective dimension

Dataset n d \%nz(A) \bfitmu \bfits \mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t} d\mathrm{e}ff(\mu )

Gisette 6,000 5,000 99.1\% 1 850 116

1e-4 948

real-sim 72,308 20,958 0.245\% 1e-4 500 891

1e-4 6,686

rcv1.binary 20,242 47,236 0.157\% 1e-4 500 779

1e-8 3,463

SVHN 73,257 3,072 100\% 1 850 10
1e-4 674

To present the approach, we consider the infinitesimal jackknife (IJ) approxima-
tion to LOOCV [13, 42]. The IJ approximation computes

(6.1) \~\theta 
n/j
IJ = \^\theta +

1

n
H - 1(\^\theta )\nabla \theta l(\^\theta , aj),

where H(\^\theta )\in Rd\times d is the Hessian of the loss function at the solution \^\theta , for each data-
point aj . The main computational challenge is computing the inverse Hessian vector
product H - 1(\^\theta )\nabla \theta l(\^\theta , aj). When n is very large, we can also subsample the data and
average (6.1) over the subsample to estimate ALOOCV. Since ALOOCV solves the
same problem with several right-hand sides, blocked PCG methods (here, Nystr\"om
blocked PCG) are the tool of choice to efficiently solve for multiple right-hand sides
at once. To demonstrate the idea, we perform numerical experiments on ALOOCV
for logistic regression. The datasets we use are all from LIBSVM [6]; see Table 4.
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RANDOMIZED NYSTR\"OM PRECONDITIONING 739

6.3.2. Experimental overview. We perform two sets of experiments in this
section. The first set of experiments uses Gisette and SVHN to test the efficacy
of Nystr\"om sketch-and-solve. These datasets are small enough that we can factor
H(\theta ) using a direct method. We also compare to block CG and block PCG with the
computed Nystr\"om approximation as a preconditioner. To assess the error due to
an inexact solve for datapoint aj , let x \star (aj) = H - 1(\theta )\nabla \theta l(\^\theta , aj). For any putative
solution \^x(aj), we compute the relative error \| \^x(aj) - x \star (aj)\| 2/\| x \star (aj)\| 2. We average
the relative error over 100 datapoints aj .

The second set of experiments uses the larger datasets real-sim and rcv1.binary
and small values of \mu , the most challenging setting for ALOOCV. We restrict our
comparison to block Nystr\"om PCG versus the block CG algorithm, as Nystr\"om sketch-
and-solve is so inaccurate in this regime. We employ Algorithm C.1 to construct the
preconditioner for block Nystr\"om PCG.

6.3.3. Nystr\"om sketch-and-solve. As predicted, Nystr\"om sketch-and-solve
works poorly (Table 5). When \mu = 1, the approximate solutions are modestly accurate,
and the accuracy degrades as \mu decreases to 10 - 4. The experimental results agree with
the theoretical analysis presented in Algorithm 4.1, which indicate that sketch-and-
solve degrades as \mu decreases. In contrast, block CG and block Nystr\"om PCG both
provide high-quality solutions for each datapoint for both values of the regularization
parameter.

6.4. Large scale ALOOCV experiments. Table 6 summarizes results for
block Nystr\"om PCG and block CG on the larger datasets. When \mu = 10 - 4, block
Nystr\"om PCG offers little or no benefit over block CG because the data matrices are
very sparse (see Table 4) and the rcv1 problem is well-conditioned (see table SM2).

Table 5
ALOOCV: Small datasets. The error for a given value of \mu is the maximum relative error on

100 randomly sampled datapoints, averaged over 20 trials.

Nystr\"om Block

Dataset \bfitmu sketch-and-solve Block CG Nystr\"om PCG

Gisette 1 4.99e--2 2.68e--11 2.58e--12

Gisette 1e--4 1.22e--0 1.19e--11 6.59e--12

SVHN 1 9.12e--5 2.80e--13 1.26e--13

SVHN 1e--4 3.42e--1 2.01e--10 1.41e--11

Table 6
ALOOCV: Large datasets. Block Nystr\"om PCG outperforms block CG for small \mu .

Dataset \bfitmu Method \#iters Runtime (s)

1e--4 Block CG 12 11.06 (0.874)
rcv1

1e--4 Block Nystr\"om PCG 10 11.87 (0.767)

1e--8 Block CG 52 39.03 (2.97)
rcv1

1e--8 Block Nystr\"om PCG 15 24.1 (1.79)

1e--4 Block CG 12 23.04 (2.04)
realsim

1e--4 Block Nystr\"om PCG 8 19.05 (1.10)

1e--8 Block CG 90 163.7 (12.3)
realsim

1e--8 Block Nystr\"om PCG 32 68.9 (5.30)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/0

1/
23

 to
 1

31
.2

15
.1

43
.1

76
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



740 Z. FRANGELLA, J. A. TROPP, AND M. UDELL

For \mu = 10 - 8, block Nystr\"om PCG reduces the number of iterations substantially,
but the speedup is negligible. The data matrix A is sparse, which reduces the benefit
of the Nystr\"om method. Block CG also benefits from the presence of multiple right-
hand sides just as block Nystr\"om PCG. Indeed, O'Leary proved that the convergence
of block CG depends on the ratio (\lambda s + \mu )/(\lambda n + \mu ), where s is is the number of
right-hand sides [31]. Consequently, multiple right-hand sides precondition block CG
and accelerate convergence. We expect bigger gains over block CG when A is dense.

6.5. Kernel ridge regression. Our last application is kernel ridge regression
(KRR), a supervised learning technique that uses a kernel to model nonlinearity in
the data. KRR leads to large dense linear systems that are challenging to solve.

6.5.1. Background. We briefly review KRR [40]. Given a dataset of inputs
xi \in \scrD , their corresponding outputs bi \in R for i = 1, . . . , n, and a kernel function
\scrK (x, y), KRR finds a function f \star :\scrD \rightarrow R in the associated reproducing kernel Hilbert
space \scrH that best predicts the outputs for the given inputs. The solution f \star \in \scrH 
minimizes the square error subject to a complexity penalty:

(6.2) f \star = argmin
f\in \scrH 

1

2n

n\sum 
i=1

(f(xi) - bi)
2 +

\mu 

2
\| f\| 2\scrH ,

where \| \cdot \| \scrH denotes the norm on \scrH . Define the kernel matrix K \in Rn\times n with entries
Kij =\scrK (xi, xj). The representer theorem [41] states the solution to (6.2) is

f \star (x) =

n\sum 
i=1

\alpha i\scrK (x,xi),

where \alpha = (\alpha 1, . . . , \alpha n) solves the linear system

(6.3) (K + n\mu I)\alpha = b.

Solving the linear system (6.3) is the computational bottleneck of KRR. Direct fac-
torization methods to solve (6.3) are prohibitive for large n as their costs grow as
n3; for n > 104 or so, iterative methods are generally preferred. However, K is often
extremely ill-conditioned, even with the regularization term n\mu I. As a result, CG for
Problem (6.3) converges slowly.

6.5.2. Experimental overview. We use Nystr\"om PCG (NysPCG) to solve
several KRR problems derived from classification problems on real-world datasets
from [6, 46]. For all experiments, we use the Gaussian kernel \scrK (x, y) = exp( - \| x  - 
y\| 2/(2\sigma 2)). Following [2], we take a machine learning perspective: the objective
is to minimize test set error rather than to achieve the smallest possible residual.
We compare our method to random features PCG (rfPCG), proposed in [2]. We
do not compare to vanilla CG as it is much slower than NysPCG and rfPCG. We
also compare to Falkon [37], a state-of-the-art scalable approximation method for
kernel ridge regression. For Falkon, we use the author's MATLAB implementation
provided here: https://github.com/LCSL/FALKON paper. This implementation is
more optimized than the implementations of NysPCG and rfPCG, making use of
C++ for several important steps. Thus, the comparison to rfPCG and NysPCG
made here is very favorable to Falkon.

Either all datasets come with specified test sets, or we create one from a random
80--20 split. The PCG tolerance, \sigma , and \mu were all chosen to achieve good performance
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Table 7
Kernel ridge regression datasets and experimental parameters. The table shows experimental

parameters and estimates of the effective dimension and numerical rank (see Table 2) of each kernel
in single precision. These estimates are computed using sketching methods as described in [27].

Dataset n d n\bfc \bfl \bfa \bfs \bfs \bfe \bfs \bfitmu \bfitsigma Tol \bfitd \mathrm{e}ff(\bfitn \bfitmu ) NumRank

ijcnn1 49,990 49 2 1e-6 0.5 1e-3 5,269 > 12,498

MNIST 60,000 784 10 1e-7 5 1e-4 > 15,000 > 15,000

Sensorless 48,509 48 11 1e-8 0.8 1e-4 1,948 2,331

SensIT 78,823 100 3 1e-8 3 1e-3 8,186 9,216

MiniBooNE 104,052 50 2 1e-7 5 1e-4 522 1,065

EMNIST 105,280 784 47 1e-6 8 1e-3 17,079 > 26,320

Santander 160,000 200 2 1e-6 7 1e-3 > 40,000 > 40,000

on the test sets (see Table 8 below). In particular, the test set error on a given dataset
saturates or increases if PCG (either rfPCG or NysPCG) is not stopped after reaching
the selected tolerance. Both rfPCG and NysPCG were allowed to run for a maximum
of 500 iterations. We report statistics for each dataset and experimental parameters
in Table 7.

In addition, Table 7 also reports estimates of the effective dimension and the
numerical rank for each kernel matrix. For these KRR systems, computing the exact
effective dimension and numerical rank is too expensive, even in single precision.
Instead, we use procedures described in [27] to estimate the effective dimension and
numerical rank (in single precision) of the kernel matrix, and report only a lower
bound on the effective dimension or numerical rank if the estimate exceeds \lceil 0.25n\rceil .

We run two sets of experiments. For the datasets with n < 105, the ``oracle""
method uses the a posteriori best parameters for rfPCG (the rank of random fea-
tures approximation used to construct the preconditioner) and NysPCG (the sketch
size \ell ), chosen by grid search, which we call Or-rfPCG and Or-NysPCG, respectively.
We also compare to the adaptive NysPCG algorithm (Ada-NysPCG) described in
subsection 5.4.2. We restrict values for \ell and the rank of the random features approx-
imation to be less than 10,000 to ensure the preconditioners are cheap to apply and
store. Ada-NysPCG for each dataset was initialized at \ell = 2,000, which is smaller
than 0.05n for all datasets. For the datasets with n \geq 105, we restrict both \ell and
the rank of the random features approximation to 1, 000, which corresponds to less
than 0.01n. This fixed-rank setting allows us to see how both methods perform
in the situation where the size of the preconditioner is restricted owing to memory
constraints. We then run both algorithms until they reach the desired tolerance or
the maximum number of iterations. Falkon's main hyperparameter is the number
of centers, which is typically taken to be a small fraction of the training set. For
our experiments, we selected the number of centers via grid search using the grid
\{ \lceil 0.01n\rceil , \lceil 0.025n\rceil , \lceil 0.05n\rceil , \lceil 0.075n\rceil , \lceil 0.1n\rceil \} . The number of iterations used for solv-
ing the Falkon linear system is fixed at 20, matching the setting used by the authors
in https://github.com/LCSL/FALKON paper for datasets satisfying n\lesssim 106.

We use column sampling to construct the Nystr\"om preconditioner for all KRR
problems. On these problems, random projection takes longer and yields similar
performance (with somewhat lower variance).

6.5.3. Experimental results. Table 8 summarizes the results for the KRR
experiments. Table 8 shows that both versions of Nystr\"om PCG perform better than

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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742 Z. FRANGELLA, J. A. TROPP, AND M. UDELL

Table 8
Kernel ridge regression: Ranks, iteration count, and total runtime. We denote random features

PCG and Nystr\"om PCG by rfPCG and NysPCG, respectively. The prefixes Or and Ada stand
for oracle and adaptive. NysPrec is a sketch-and-solve style method that applies the inverse of the
Nystr\"om preconditioner to the right-hand side. The total runtime for rfPCG and both variants of
NysPCG also includes the time required to compute the kernel matrix. All variants of NysPCG
uniformly outperform rfPCG, in both runtime and number of iterations. NysPCG also attains the
best test error across all problem instances.

Rank or Total Test
Dataset Method \#centers \#iters Runtime (s) error

Or-rfPCG 3,000 63.8(2.66) 56.2(2.33)

icjnn1 Ada-NysPCG 2,000 43.7(1.77) 49.9(1.47) 1.25\%

Or-NysPCG 3,000 31.8(0.835) 51.2(1.60)

NysPrec 3,000 - 6.09(0.151) 7.06\%

Falkon 4,999 - 4.60(0.122) 1.39\%

Or-rfPCG 9,000 314.5(2.88) 291.4(6.93)

MNIST Ada-NysPCG 6,000 (1,716) 78.5(17.65) 185.8(46.39) 1.22\%

Or-NysPCG 4,000 77.9(2.08) 129.4(2.08)

NysPrec 4,000 - 31.36(0.427) 34.57\%

Falkon 6,000 - 7.01(0.288) 1.98\%

Or-rfPCG 5,000 55.4(2.35) 56.5(3.96)

Sensorless Ada-NysPCG 2,000 22.0(0.510) 40.0(1.26) 2.05\%

Or-NysPCG 2,000 21.7(0.571) 39.3(1.63)

NysPrec 2,000 - 9.21(0.248) 3.91\%

Falkon 3,639 - 3.12(0.214) 2.16\%

Or-rfPCG 7,000 68.0(4.31) 146.0(6.19)

SensIT Ada-NysPCG 2,000 47.8(1.72) 120.9(2.43) 12.83\%

Or-NysPCG 2,000 48.7(3.40) 112.4(6.41)

NysPrec 2,000 - 14.10(0.321) 22.55\%

Falkon 7,883 - 17.55(0.494) 13.05\%

rfPCG 1,000 92 240.8

MiniBooNE NysPCG 1,000 72 224.0 7.93\%

NysPrec 1,000 - 9.06 8.90\%

Falkon 10,046 - 43.03 7.96\%

rfPCG 1,000 154 753.1

EMNIST NysPCG 1,000 32 386.3 15\%

NysPrec 1,000 - 9.21 26.90\%

Falkon 10,528 - 24.5 17.57\%

rfPCG 1,000 160 1019.7

Santander NysPCG 1,000 31 374.1 8.90\%

NysPrec 1,000 - 13.66 19.24\%

Falkon 16,000 - 43.06 9.26\%

random features preconditioning on all the datasets considered. Nystr\"om PCG also
uses less storage. In the fixed-rank setting with the larger scale datasets, Nystr\"om
PCG performs better than random features PCG. The second column in Table 8
shows that the adaptive strategy proposed in subsection 5.4.2 to select the sketch size
\ell works very well. In contrast, it is difficult to choose the rank for random features
preconditioning: the authors of [2] provide no guidance except for the polynomial
kernel. Moreover, the success of Nystr\"om PCG is robust to reaching the effective
dimension. Indeed, on MNIST, EMNIST, and Santander, Table 7 shows \ell is much
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Fig. 4. Falkon saturates: Falkon's performance saturates as the number of centers increases
from 0.01n to 0.5n, and always underperforms Nystr\"om PCG. Furthermore, once the number of
centers reaches 0.5n, Falkon runs slower than Nystr\"om PCG.

smaller than deff(\mu ), yet Nystr\"om PCG still converges quickly using the constructed
preconditioner. This robustness is important from the viewpoint of practice, for as
Table 7 reveals, the effective dimension deff(\mu ) is often large.

Table 8 shows that good test set error is obtained on all datasets. Significantly,
Nystr\"om PCG yields lower test set error than approximate methods such as Falkon
and a sketch-and-solve style method that simply applies the inverse of the Nystr\"om
preconditioner to the right-hand side (NysPrec). However, Falkon and NysPrec run
considerably faster as they work with only a subsample of the kernel matrix. We also
see that Falkon generally outperforms NysPrec. The gap between Nystr\"om PCG and
Falkon can be quite large, such as with EMNIST where Nystr\"om PCG obtains an
error of 15.00\% compared to the 17.57\% obtained by Falkon. Furthermore, we found
that this gap persisted even as we varied the number of centers from 0.01n to 0.5n, at
which point Falkon becomes more expensive than Nystr\"om PCG; see Figure 4. Our
observation that exact methods outperform approximate methods is consistent with
findings in [2], which noted a similar performance gap between random features PCG
and the basic random features method of [34]. Thus, even in the statistical learning
setting, solving the problem more accurately using the full data does yield improved
performance.

7. Conclusion. We have shown that Nystr\"om PCG delivers a strong benefit
over standard CG both in the theory and in practice, thanks to the ease of parameter
selection, on a range of interesting large-scale computational problems including ridge
regression, kernel ridge regression, and ALOOCV. In our experience, Nystr\"om PCG
outperforms all generic methods for solving large-scale dense linear systems with spec-
tral decay. It is our hope that this paper motivates further research on randomized
preconditioning for solving large-scale linear systems and offers a useful speedup to
practitioners.

Appendix A. Proofs of main results. This appendix contains full proofs
of the main results that are substantially novel (Theorem 4.2, Proposition 5.3, and
Corollary 5.2). The supplement contains proofs of results that are similar to existing
work but do not appear explicitly in the literature.

A.1. Proof Theorem 4.2. This result contains the analysis of the Nystr\"om
sketch-and-solve method. We begin with (4.2), which provides an error bound that
compares the regularized inverse of a psd matrix A with the regularized inverse of
the randomized Nystr\"om approximation \^Anys. Since 0 \preceq \^Anys \preceq A, we can apply
Proposition 3.1 to obtain a deterministic bound for the discrepancy:
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744 Z. FRANGELLA, J. A. TROPP, AND M. UDELL

\| ( \^Anys + \mu I) - 1  - (A+ \mu I) - 1\| \leq 1

\mu 

\| E\| 
\| E\| + \mu 

, where E =A - \^Anys.

The function f(t) = t/(t + \mu ) is concave, so we can take expectations and invoke
Jensen's inequality to obtain

E\| ( \^Anys + \mu I) - 1  - (A+ \mu I) - 1\| \leq 1

\mu 

E\| E\| 
E\| E\| + \mu 

.

Inserting the bound (2.3) on E\| E\| from Corollary 2.3 gives

E\| ( \^Anys + \mu I) - 1  - (A+ \mu I) - 1\| \leq 1

\mu 
\cdot (3 + 4e2srp(A)/p)\lambda p

\mu + (3+ 4e2srp(A)/p)\lambda p
.

To conclude, observe that the denominator of the second fraction exceeds \mu + \lambda p.
Now, let us establish (4.3), the error bound for Nystr\"om sketch-and-solve. Intro-

duce the solution \^x to the Nystr\"om sketch-and-solve problem and the solution x \star to
the regularized linear system:

( \^Anys + \mu I)\^x= b and (A+ \mu I)x \star = b.

We may decompose the regularized matrix as A+ \mu I = \^Anys + \mu I +E. Subtract the
two equations in the last display to obtain

( \^Anys + \mu I)(\^x - x \star ) - Ex \star = 0.

Rearranging to isolate the error in the solution, we have

\^x - x \star = ( \^Anys + \mu I) - 1Ex \star .

Take the norm, apply the operator norm inequality, and use the elementary bound
\| ( \^Anys + \mu I) - 1\| \leq \mu  - 1. We obtain

\| \^x - x \star \| 2
\| x \star \| 2

\leq \| E\| 
\mu 

.

Finally, take the expectation and repeat the argument used to control E\| E\| /\mu in the
proof of Theorem 5.1.

A.1.1. Proof of Proposition 5.3. Let \^A = U \^\Lambda UT be a rank-\ell Nystr\"om ap-
proximation constructed from an arbitrary test matrix, whose \ell th eigenvalue is \^\lambda \ell .
Proposition 5.3 provides a deterministic bound on the condition number of the regu-
larized matrix A\mu after preconditioning with

P =
1

\^\lambda \ell + \mu 
U(\^\Lambda + \mu I)UT + (I  - UUT ).

We remind the reader that this argument is completely deterministic.
First, note that the preconditioned matrix P - 1/2A\mu P

 - 1/2 is psd, so

\kappa 2(P
 - 1/2A\mu P

 - 1/2) =
\lambda 1(P

 - 1/2A\mu P
 - 1/2)

\lambda n(P - 1/2A\mu P - 1/2)
.

Let us begin with the upper bound on the condition number. We have the decompo-
sition

(A.1) P - 1/2A\mu P
 - 1/2 = P - 1/2( \^A+ \mu I)P - 1/2 + P - 1/2EP - 1/2,
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RANDOMIZED NYSTR\"OM PRECONDITIONING 745

owing to the relation A\mu = \^A+ \mu I +E. Recall that the error matrix E is psd, so the
matrix P - 1/2EP - 1/2 is also psd.

First, we bound the maximum eigenvalue. Weyl's inequalities imply that

\lambda 1(P
 - 1/2A\mu P

 - 1/2)\leq \lambda 1(P
 - 1/2( \^A+ \mu I)P - 1/2) + \lambda 1(P

 - 1/2EP - 1/2).

To determine \lambda 1(P
 - 1/2( \^A+\mu I)P - 1/2)+, we write \^A+\mu I =U(\^\Lambda +\mu I)UT +\mu U\bot U

T
\bot ,

where U\bot is an orthonormal basis for the eigenvectors orthogonal to U . From this
and the definition of P - 1, we obtain

P - 1/2( \^A+ \mu I)P - 1/2 = (\^\lambda \ell + \mu )UUT + \mu U\bot U
T
\bot .

The preceding display immediately yields \lambda 1(P
 - 1/2( \^A+\mu I)P - 1/2) = \^\lambda \ell +\mu . We now

turn to bounding \lambda 1(P
 - 1/2EP - 1/2). When \ell < n, we have \lambda 1(P

 - 1) = 1. Therefore,

\lambda 1(P
 - 1/2EP - 1/2) = \lambda 1(P

 - 1E)\leq \lambda 1(P
 - 1)\lambda 1(E) = \lambda 1(E) = \| E\| .

In summary,

(A.2) \lambda 1(P
 - 1/2A\mu P

 - 1/2)\leq \^\lambda \ell + \mu + \| E\| .

For the minimum eigenvalue, we first assume that \mu > 0. Apply Weyl's inequality to
(A.1) to obtain to obtain

(A.3)
\lambda n(P

 - 1/2A\mu P
 - 1/2)\geq \lambda n(P

 - 1/2( \^A+ \mu I)P - 1/2) + \lambda n(P
 - 1/2EP - 1/2)

\geq \lambda n(P
 - 1/2( \^A+ \mu I)P - 1/2) = \mu .

Combining (A.2) and (A.3), we reach

\kappa 2(P
 - 1/2A\mu P

 - 1/2)\leq 
\^\lambda \ell + \mu + \| E\| 

\mu 
.

This gives a bound for the maximum in case \mu > 0.
If we only have \mu \geq 0, then a different argument is required for the smallest ei-

genvalue. Assume that A is positive definite, in which case \^\lambda \ell > 0. As P - 1/2A\mu P
 - 1/2

is symmetric positive definite we have

\lambda n(P
 - 1/2A\mu P

 - 1/2) =
1

\lambda 1(P 1/2A - 1
\mu P 1/2)

.

Conjugating by A
1/2
\mu P - 1/2 and using similarity, we obtain the equality

\lambda 1(P
1/2A - 1

\mu P 1/2) = \lambda 1(A
 - 1/2
\mu PA - 1/2

\mu ).

Hence it suffices to produce an upper bound for \lambda 1(A
 - 1/2
\mu PA

 - 1/2
\mu ). To that end, we

expand

\lambda 1(A
 - 1/2
\mu PA - 1/2

\mu ) = \lambda 1

\biggl( 
A - 1/2

\mu 

\biggl( 
1

\^\lambda \ell + \mu 
( \^A+ \mu UUT ) + (I  - UU)T

\biggr) 
A - 1/2

\mu 

\biggr) 
\leq 1

\^\lambda \ell + \mu 
\lambda 1

\Bigl( 
A - 1/2

\mu ( \^A+ \mu UUT )A - 1/2
\mu 

\Bigr) 
+ \lambda 1

\biggl( 
A - 1/2

\mu 

\bigl( 
I  - UUT

\bigr) 
A - 1/2

\mu 

\biggr) 
.
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746 Z. FRANGELLA, J. A. TROPP, AND M. UDELL

The second inequality is Weyl's. Since \^A \preceq A, we have \^A+ \mu UUT \preceq A\mu . The last
display simplifies to

\lambda 1(A
 - 1/2
\mu PA - 1/2

\mu )\leq 1

\^\lambda \ell + \mu 
+

1

\lambda n + \mu 
.

Putting the pieces together with (A.2), we obtain

\kappa 2(P
 - 1/2A\mu P

 - 1/2)\leq (\^\lambda \ell + \mu + \| E\| )
\biggl( 

1

\^\lambda \ell + \mu 
+

1

\lambda n + \mu 

\biggr) 
.

Thus,

\kappa 2(P
 - 1/2A\mu P

 - 1/2)\leq 
\Bigl( 
\^\lambda \ell + \mu + \| E\| 

\Bigr) 
min

\biggl\{ 
1

\mu 
,

\^\lambda \ell + \lambda n + 2\mu 

(\^\lambda \ell + \mu )(\lambda n + \mu )

\biggr\} 
.

This formula is valid when A is positive definite or when \mu > 0.
We now prove the lower bound on \kappa 2(P

 - 1/2A\mu P
 - 1/2). Returning to (A.1) and

invoking Weyl's inequalities yields

\lambda 1(P
 - 1/2A\mu P

 - 1/2)\geq \lambda 1(P
 - 1/2( \^A+ \mu I)P - 1/2) + \lambda n(P

 - 1/2EP - 1/2)\geq \^\lambda \ell + \mu .

For the smallest eigenvalue we observe that

\lambda n(P
 - 1/2A\mu P

 - 1/2) = \lambda n(A\mu P
 - 1)\leq \lambda n(A\mu )\lambda 1(P

 - 1) = \lambda n + \mu ,

where the last inequality in the preceding display follows from the identity

\lambda j(AB)\leq \lambda j(A)\lambda 1(B),

which holds for symmetric positive definite matrices A and B. Combining the last
two displays, we obtain

\^\lambda \ell + \mu 

\lambda n + \mu 
\leq \kappa 2(P

 - 1/2A\mu P
 - 1/2).

Condition numbers always exceed one, so

max

\biggl\{ \^\lambda \ell + \mu 

\lambda n + \mu 
,1

\biggr\} 
\leq \kappa 2(P

 - 1/2A\mu P
 - 1/2).

This point concludes the argument.

A.1.2. Proof of Lemma 5.4. Lemma 5.4 establishes the central facts about
the effective dimension. First, we prove item 1. Fix a parameter \gamma \geq 1, and set
j \star = max\{ 1 \leq j \leq n : \lambda j > \gamma \mu \} . We can bound the effective dimension below by the
following mechanism:

deff(\mu ) =
n\sum 

j=1

\lambda j

\lambda j + \mu 
\geq 

j \star \sum 
j=1

\lambda j

\lambda j + \mu 
\geq j \star \cdot 

\lambda j \star 

\lambda j \star + \mu 
.

We have used the fact that t \mapsto \rightarrow t/(1 + t) is increasing for t \geq 0, Solving for j \star , we
determine that

j \star \leq (1 + \mu /\lambda j \star )deff(\mu )< (1 + \gamma  - 1)deff(\mu ).
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RANDOMIZED NYSTR\"OM PRECONDITIONING 747

The last inequality depends on the definition of j \star . This is the required result.
Item 2 follows from a short calculation:

1

k

\sum 
j>k

\lambda j =
\lambda k + \mu 

k

\sum 
j>k

\lambda j

\lambda k + \mu 
\leq \lambda k + \mu 

k

\sum 
j>k

\lambda j

\lambda j + \mu 

=
\lambda k + \mu 

k

\left(  deff(\mu ) - 
k\sum 

j=1

\lambda j

\lambda j + \mu 

\right)  \leq \lambda k + \mu 

k

\biggl( 
deff(\mu ) - 

k\lambda k

\lambda k + \mu 

\biggr) 

=
\mu deff(\mu )

k
+ \lambda k

\biggl( 
deff(\mu )

k
 - 1

\biggr) 
\leq \mu deff(\mu )

k
.

The last inequality depends on the assumption that k\geq deff(\mu ).

A.2. Proof of Corollary 5.2. This result gives a bound for the relative error \delta t
in the iterates of PCG. Recall the standard convergence bound for CG [44, Theorem
38.5]:

\delta t \leq 2

\biggl( \sqrt{} 
\kappa 2(P - 1/2A\mu P - 1/2) - 1\sqrt{} 
\kappa 2(P - 1/2A\mu P - 1/2) + 1

\biggr) t

.

We conditioned on the event that \{ \kappa (P - 1/2A\mu P
 - 1/2) \leq 56\} . On this event, the

relative error must satisfy

\delta t < 2

\Biggl( \surd 
56 - 1\surd 
56 + 1

\Biggr) t

\leq 2 \cdot (0.77)t.

Solving for t, we see that \delta t < \epsilon when t\geq \lceil 3.8 log(1/\epsilon )\rceil . This concludes the proof.

A.3. Proof of Theorem 5.5. Theorem 5.5 establishes that with high probability
Algorithm C.1 terminates in a logarithmic number of steps, the sketch size remains
O(deff(\delta \tau \mu )), and PCG with the preconditioner constructed from the output converges
quickly.

Proof. We first recall with the tolerances chosen in Theorem 5.5 that Algorithm
C.1 terminates when the event

\scrE = \{ \| E\| \leq \tau \mu \} \cap 
\Bigl\{ 
\^\lambda \ell \leq 

\tau \mu 

11

\Bigr\} 
holds. Observe that conditioned on \scrE , Proposition 5.3 yields

\kappa 2(P
 - 1/2A\mu P

 - 1/2)\leq 
\^\lambda \ell + \mu + \| E\| 

\mu 
\leq 1 +

\biggl( 
1 +

1

11

\biggr) 
\tau = 1+

12

11
\tau .

Statement 3 now follows from the above display and the standard convergence theorem
for CG.

Now, if Algorithm C.1 terminates with N \leq \lceil log2(\~\ell /\ell 0)\rceil  - 1 steps of sketch size
doubling, then \scrE holds with probability 1. Statement 3 then follows by our initial
observation, while statements 1 and 2 hold trivially. Hence statements 1--3 all hold if
the algorithm terminates in N \leq \lceil log2(\~\ell /\ell 0)\rceil  - 1 steps.
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748 Z. FRANGELLA, J. A. TROPP, AND M. UDELL

Thus to conclude the proof, it suffices to show that if N \geq \lceil log2(\~\ell /\ell 0)\rceil , then \scrE 
holds with probability at least 1  - \delta , which implies that statements 1--3 hold with
probability at least 1 - \delta , as above.

We now show that \scrE holds with probability at least 1 - \delta when N = \lceil log2(\~\ell /\ell 0)\rceil .
To see this note that when N = \lceil log2(\~\ell /\ell 0)\rceil , we have \ell \geq \~\ell . Consequently, we may
invoke Proposition 2.2 with p= \lceil 2deff( \delta \tau \mu 11 )\rceil + 1 and Lemma 5.4 to show

E[\| E\| ]
(1)

\leq 3\lambda p +
2e2

p

\left(  n\sum 
j=p

\lambda j

\right)  
(2)

\leq 3
\delta \tau \mu 

11
+ 2e2

deff(\delta \tau \mu /11)

p

\delta \tau \mu 

11
(3)

\leq 3

11
\delta \tau \mu +

2e2

2

\delta \tau \mu 

11
=

\biggl( 
3 + e2

11

\biggr) 
\delta \tau \mu \leq \delta \tau \mu ,

where step (1) uses Proposition 2.2, step (2) uses items 1 and 2 of Lemma 5.4 with
\gamma = 1, and step (3) follows from p\geq 2deff(\delta \tau \mu ). Thus,

E[\| E\| ]\leq \delta \tau \mu .

By Markov's inequality,

P\{ \| E\| > \tau \mu \} \leq \delta .

Hence \{ \| E\| \leq \tau \mu \} holds with probability at least 1 - \delta . Furthermore, by Lemma 5.4 we
have \{ \^\lambda \ell \leq \delta \tau \mu /11\} with probability 1 as \^\lambda \ell \leq \lambda \ell \leq \lambda p. Thus when N = \lceil log2(\~\ell /\ell 0)\rceil ,
\scrE holds with probability at least 1 - \delta , and this immediately implies statements 1 and
3. Statement 2 follows as

\ell = 2N \ell 0 \leq 2log2(\~\ell /\ell 0)+1\ell 0 = 2\~\ell = 4

\biggl\lceil 
2deff

\biggl( 
\delta \tau \mu 

11

\biggr) \biggr\rceil 
+ 2,

where in the first inequality we used \lceil x\rceil \leq x+ 1; this completes the proof.

A.4. Proof of Proposition 5.7. Proposition 5.7 shows once \ell = \Omega (deff(\tau \mu )),
then with high probability \kappa 2(P

 - 1/2A\mu P
 - 1/2) differs from (\^\lambda \ell + \mu ) by at most a

constant.

Proof. Proposition 5.3 implies that\Biggl( 
\kappa 2(P

 - 1/2A\mu P
 - 1/2) - 

\^\lambda \ell + \mu 

\mu 

\Biggr) 
+

\leq \| E\| 
\mu 

.

Combining the previous display with Markov's inequality yields

P

\Biggl\{ \Biggl( 
\kappa 2(P

 - 1/2A\mu P
 - 1/2) - 

\^\lambda \ell + \mu 

\mu 

\Biggr) 
+

>
\tau 

\delta 

\Biggr\} 
\leq \delta 

\tau 

E[\| E\| ]
\mu 

.
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RANDOMIZED NYSTR\"OM PRECONDITIONING 749

Table 9
Ridge regression: Test set error. We report the relative error for regression tasks and the

misclassification rate for classification tasks. Nystr\"om PCG outperforms the Nystr\"om preconditioner
on nearly all the datasets.

Dataset Method Test set error

Nystr\"om Preconditioner 9.51\%
CIFAR-10

Nystr\"om PCG 8.67\%

Nystr\"om Preconditioner 32.5\%
Guillermo

Nystr\"om PCG 32.6\%

Nystr\"om Preconditioner 0.20\%
shuttle-rf

Nystr\"om PCG 0.22\%

Nystr\"om Preconditioner 57.92\%
smallnorb-rf

Nystr\"om PCG 16.14\%

Nystr\"om Preconditioner 5.48e--3
YearMSD-rf

Nystr\"om PCG 4.55e--3

Nystr\"om Preconditioner 3.49\%
Higgs-rf

Nystr\"om PCG 0.05\%

Nystr\"om Preconditioner 20.76\%
Covtype-rf

Nystr\"om PCG 9.39\%

Now, our choice of \ell combined with Proposition 2.2 and Lemma 5.4 implies that
E[\| E\| ]\leq \tau \mu . Hence we have

P

\Biggl\{ \Biggl( 
\kappa 2(P

 - 1/2A\mu P
 - 1/2) - 

\^\lambda \ell + \mu 

\mu 

\Biggr) 
+

>
\tau 

\delta 

\Biggr\} 
\leq \delta ,

which implies the desired claim.

Appendix B. Additional numerical results.

B.1. Ridge regression experiments. Here, we report the test error obtained
on datasets considered in subsection 6.2 and the implications of these results.

Table 9 compares the test error obtained using the Nystr\"om PCG solution with
that of a sketch-and-solve approach we call Nystr\"om preconditioner , which uses P - 1

(the inverse of the Nystr\"om preconditioner) to approximate (1/nATA+ \mu I) - 1.
Nystr\"om PCG outperforms, especially on the larger datasets n \geq 105, and even

for datasets where the effective dimension is small, such as Higgs-rf. Hence even in
the statistical learning setting, where one only cares about test error, solving the ridge
regression problem accurately improves statistical performance.

Appendix C. Adaptive rank selection via a posteriori error estimation.
The pseudocode for adaptive rank selection by a priori error estimation is given in
Algorithm C.1. The code is structured to reuse use the previously computed \Omega and
Y , resulting in significant computational savings. The error \| E\| is estimated from q
iterations of the randomized power method on the error matrix A - U \^\Lambda UT .
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750 Z. FRANGELLA, J. A. TROPP, AND M. UDELL

Algorithm C.1 Adaptive Randomized Nystr\"om Approximation

Input: symmetric psd matrix A, initial rank \ell 0, maximum rank \ell max, number of
power iterations for estimating E, error tolerance TolErr, ratio tolerance TolRat

1: Y = [ ],\Omega = [ ], E = Inf, and \^\lambda \ell = Inf
2: m= \ell 0
3: while E >TolErr and \^\lambda \ell /\mu >TolRat do
4: Generate Gaussian test matrix \Omega 0 \in Rn\times m

5: [\Omega 0,\sim ] = qr(\Omega 0,0)
6: Y0 =A\Omega 0

7: \Omega = [\Omega \Omega 0] and Y = [Y Y0]
8: \nu =

\surd 
n eps(norm(Y,2))

9: Y\nu = Y + \nu \Omega ,
10: C = chol(\Omega TY\nu )
11: B = Y\nu /C
12: Compute [U,\Sigma ,\sim ] = svd(B,0)

13: \^\Lambda =max\{ 0,\Sigma 2  - \nu I\}  \triangleleft remove shift

14: E =RandomizedPowerErrEst(A,U, \^\Lambda , q)  \triangleleft estimate error
15: m\leftarrow \ell 0, \ell 0\leftarrow 2\ell 0  \triangleleft double rank if tolerances are not met
16: If \ell 0 > \ell max then
17: \ell 0 = \ell 0 - m  \triangleleft when \ell 0 > \ell max, reset to \ell 0 = \ell max

18: m= \ell max  - \ell 0
19: Generate Gaussian test matrix \Omega 0 \in Rn\times m

20: [\Omega 0,\sim ] = qr(\Omega 0,0)
21: Y0 =A\Omega 0

22: \Omega = [\Omega \Omega 0] and Y = [Y Y0]
23: \nu =

\surd 
n eps(norm(Y,2))  \triangleleft compute final approximation and break

24: Y\nu = Y + \nu \Omega ,
25: C = chol(\Omega TY\nu )
26: B = Y\nu /C
27: Compute [U,\Sigma ,\sim ] = svd(B,0)

28: \^\Lambda =max\{ 0,\Sigma 2  - \nu I\} 
29: break

Output: Nystr\"om approximation (U, \^\Lambda )
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