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Abstract. This paper develops a new storage-optimal algorithm that provably solves almost
all semidefinite programs (SDPs). This method is particularly effective for weakly constrained SDPs
under appropriate regularity conditions. The key idea is to formulate an approximate complementar-
ity principle: Given an approximate solution to the dual SDP, the primal SDP has an approximate
solution whose range is contained in the eigenspace with small eigenvalues of the dual slack matrix.
For weakly constrained SDPs, this eigenspace has very low dimension, so this observation signifi-
cantly reduces the search space for the primal solution. This result suggests an algorithmic strategy
that can be implemented with minimal storage: (1) solve the dual SDP approximately; (2) compress
the primal SDP to the eigenspace with small eigenvalues of the dual slack matrix; (3) solve the
compressed primal SDP. The paper also provides numerical experiments showing that this approach
is successful for a range of interesting large-scale SDPs.
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1. Introduction. Consider a semidefinite program (SDP) in the standard form

(P)
minimize tr(CX)
subject to \scrA X = b and X \succeq 0.

The primal variable is the symmetric, positive-semidefinite (psd) matrix X \in Sn
+.

The problem data comprises a symmetric (but possibly indefinite) objective matrix
C \in Sn, a right-hand-side b \in Rm, and a linear map \scrA : Rn\times n \rightarrow Rm with rank
m, which can be expressed explicitly as [\scrA H]i = tr(AiH), i = 1, . . . ,m, for some
symmetric Ai \in Sn and any H \in Rn\times n. The notation tr(\cdot ) stands for the trace
operation: tr(A) =

\sum n
i=1 aii for any A \in Rn\times n with (i, j)th entry aij \in R.
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2696 DING, YURTSEVER, CEVHER, TROPP, AND UDELL

SDPs form a class of convex optimization problems with remarkable modeling
power. But SDPs are challenging to solve because they involve a matrix variable
X \in Sn

+ \subset Rn\times n whose dimension n can rise into the millions or billions. For example,
when using a matrix completion SDP in a recommender system, n is the number
of users and products; when using a phase retrieval SDP to visualize a biological
sample, n is the number of pixels in the recovered image. In these applications, most
algorithms are prohibitively expensive because their storage costs are quadratic in n.

How much memory should be required to solve this problem? Any algorithm
must be able to query the problem data and to report a representation of the solution.
Informally, we say that an algorithm uses optimal storage if the working storage is no
more than a constant multiple of the storage required for these operations [76]. (See
subsection 1.2 for a formal definition.)

It is not obvious how to develop storage-optimal SDP algorithms. To see why,
recall that all weakly constrained SDPs (m = \scrO (n)) admit low-rank solutions [8, 55],
which can be expressed compactly in factored form. For these problems, a storage-
optimal algorithm cannot even instantiate the matrix variable! One natural idea is to
introduce an explicit low-rank factorization of the primal variable X and to minimize
the problem over the factors [16].

Methods built from this idea provably work when the size of the factors is suffi-
ciently large [12]. However, recent work [69] shows that they cannot provably solve
all SDPs with optimal storage; see section 2.

In contrast, this paper develops a new algorithm that provably solves all regular
SDPs, i.e., SDPs with strong duality, unique primal and dual solutions, and strict
complementarity. These standard conditions hold not only generically [5, Definition
19] but also in many applications [25]. We defer the detailed description of these
conditions to subsection 1.1.

Our method begins with the Lagrange dual of the primal SDP (P),

(D)
maximize b\top y
subject to C  - \scrA \top y \succeq 0

with dual variable y \in Rm. The vector b\top is the transpose of b, and the linear map
\scrA \top : Rm \rightarrow Rn\times n is the adjoint of the linear map \scrA . Note the range of \scrA \top is in
Sn because C and Ais are symmetric. It is straightforward to compute an approxi-
mate solution to the dual SDP (D) with optimal storage using methods described in
section 6. The challenge is to recover a primal solution from the approximate dual
solution.

To meet this challenge, we develop a new approximate complementarity principle
that holds for the regular SDP: Given an approximate dual solution y, we prove that
there is a primal approximate solution X whose range is contained in the eigenspace
with small eigenvalues of the dual slack matrix C  - \scrA \top y. This principle suggests an
algorithm: we solve the primal SDP by searching over matrices with the appropriate
range. This recovery problem is a (much smaller) SDP that can be solved with optimal
storage.

1.1. Regularity assumptions. First, assume that the primal (P) has a solu-
tion, say, X \star , and the dual (D) has a unique solution y \star . We require that strong
duality holds:

p \star := tr(CX \star ) = b\top y \star =: d \star .(1.1)

The condition (1.1) follows, for example, from Slater's constraint qualification.
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SOLVING SDP USING APPROXIMATE COMPLEMENTARITY 2697

Strong duality and feasibility imply that the solutionX \star and the dual slack matrix
C  - \scrA \top y \star satisfy the complementary slackness condition:

X \star (C  - \scrA \top y \star ) = 0,(1.2)

which implies that

rank(X \star ) + rank(C  - \scrA \top y \star ) \leq n.

To ensure that the SDP is not degenerate, we make the stronger assumption that
every solution pair (X \star , y \star ) satisfies the stronger strict complementarity condition:

rank(X \star ) + rank(C  - \scrA \top y \star ) = n.(1.3)

Note that these assumptions ensure that all solutions have the same rank and therefore
that the primal solution is actually unique [43, Corollary 2.5]. In particular, the rank
r \star of the solution X \star satisfies the Barvinok--Pataki bound ( r \star +1

2 ) \leq m.
To summarize, all results in this paper hold under the regularity assumptions: pri-

mal attainability, dual uniqueness, strong duality, and strict complementarity. These
conditions hold for any SDP with attainable primal and dual solutions outside of
a set of Lebesgue measure 0 [5]. Many structured SDP, such as those arising from
relaxation of combinatorial problems like MaxCut, are also regular [25].

1.2. Optimal storage. Following [76], let us quantify the storage necessary to
solve every SDP (P) that satisfies our assumptions in subsection 1.1 and that admits
a solution with rank r \star .

First, it is easy to see that \Theta (nr \star ) numbers are sufficient to represent the rank-r \star 
solution in factored form. This cost is also necessary because every rank-r \star matrix is
the solution to some SDP from our problem class.

To hide the internal complexity of the optimization problem (P), we will interact
with the problem data using data access oracles. Suppose we can perform any of the
following operations on arbitrary vectors u, v \in Rn and y \in Rm:

u \mapsto \rightarrow Cu and (u, v) \mapsto \rightarrow \scrA (uv\top ) and (u, y) \mapsto \rightarrow (\scrA \top y)u.(1.4)

These oracles enjoy simple implementations in many concrete applications. The input
and output of these operations clearly involve storing \Theta (m+ n) numbers.

In summary, any method that uses these data access oracles to solve every SDP
from our class must store \Omega (m+nr \star ) numbers. We say a method uses optimal storage
if it provably solves the SDP using working storage \scrO (m+ nr \star ).

For many interesting problems, the number m of constraints is proportional to
the dimension n. Moreover, the rank r \star of the solution is constant or logarithmic
in n. In this case, a storage-optimal algorithm has working storage \~\scrO (n), where the
tilde suppresses log-like factors.

Remark 1.1 (applications). The algorithmic framework we propose is most useful
when the problem data has an efficient representation and the three operations (1.4)
can be implemented with low arithmetic cost, as when the matrix C and the linear
map \scrA are sparse or structured. This favorable situation is common in practice, for
example, in the MaxCut relaxation [33], matrix completion [61], phase retrieval [20,
68], and community detection [48]. See [57] for some other examples. We expect that
(most of) the regularity assumptions used in this paper are satisfied for (most of)
these problems; indeed, [25] verifies regularity for many of these problems.
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2698 DING, YURTSEVER, CEVHER, TROPP, AND UDELL

1.3. From strict complementarity to storage optimality. Suppose that we
have computed the exact unique dual solution y \star . Complementary slackness (1.2) and
strict complementarity (1.3) ensure that

range(X \star ) \subset null(C  - \scrA \top y \star ) and dim(null(C  - \scrA \top y \star )) = rank(X \star ).

Hence the slack matrix identifies the range of the primal solution.
Let r \star be the rank of the primal solution. Construct an orthonormal matrix

V \star \in Rn\times r \star whose columns span null(C  - \scrA \top y \star ). The compression of the primal
problem (P) to this subspace is

(1.5)
minimize tr(CV \star SV \star 

\top )

subject to \scrA (V \star SV \star 
\top ) = b and S \succeq 0.

The variable S \in Sr \star 
+ is a low-dimensional matrix when r \star is small. If S \star is a solution

to (1.5), then X \star = V \star S \star V \star 
\top is a solution to the original SDP (P).

This strategy for solving the primal SDP can be implemented with a storage-
optimal algorithm. Indeed, the variable y in the dual SDP (D) has length m, so there
is no obstacle to solving the dual with storage \Theta (m + n) using the subgradient type
method described in section 6. We can compute the subspace V \star using the randomized
range finder [34, Algorithm 4.1] with storage cost \Theta (nr \star ). Last, we can solve the
compressed primal SDP (1.5) using working storage \Theta (m+n+r2 \star ) via the matrix-free
method from [24, 53]. The total storage is the optimal \Theta (m+ nr \star ). Furthermore, all
of these algorithms can be implemented with the data access oracles (1.4).

Hence---assuming exact solutions to the optimization problems---we have devel-
oped a storage-optimal approach to the SDP (P), summarized in Table 1, left.

1.4. The approximate complementarity principle. A major challenge re-
mains: one very rarely has access to an exact dual solution! Rather, we usually have
an approximate dual solution, obtained via some iterative dual solver.

This observation motivates us to formulate a new approximate complementarity
principle. For now, assume that r \star is known. Given an approximate dual solution y,
we can construct an orthonormal matrix V \in Rn\times r \star whose columns are eigenvectors
of C  - \scrA \top y with the r \star smallest eigenvalues. Roughly speaking, the primal prob-
lem (P) admits an approximate solution X whose range is contained in range(V ).
We show the approximate solution is close to the true solution as measured in terms
of suboptimality, infeasibility, and distance to the solution set.

We propose to recover the approximate primal solution by solving the semidefinite
least-squares problem

(MinFeasSDP)
minimize 1

2

\bigm\| \bigm\| \scrA (V SV \top ) - b
\bigm\| \bigm\| 2

subject to S \succeq 0

Table 1
Exact and practical primal recovery.

Step Exact primal recovery Practical primal recovery
1 Compute dual solution y \star Compute approximate dual solution y
2 Compute basis V \star Compute r \star eigenvectors

for null(C  - \scrA \top y \star ) of C  - \scrA \top y with smallest eigenvalues;
collect as columns of matrix V

3 Solve the compressed SDP (1.5) Solve (MinFeasSDP)
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SOLVING SDP USING APPROXIMATE COMPLEMENTARITY 2699

with variable S \in Sr \star 
+ . Given a solution \^S to (MinFeasSDP), we obtain an (infeasible)

approximate solution Xinfeas = V \^SV \top to the primal problem.
In fact, it is essential to relax our attention to infeasible solutions because the

feasible set of (P) should almost never contain a matrix with range V ! This observa-
tion was very surprising to us, but it seems evident in retrospect (for example, using
a dimension-counting argument together with Lemma A.1).

The resulting framework appears in Table 1, right. This approach for solving (P)
leads to storage-optimal algorithms for the same reasons described in subsection 1.3.
Our first main result ensures that this technique results in a provably good solution
to the primal SDP (P).

Theorem 1.2 (main theorem, informal). Instate the regularity assumptions of sub-
section 1.1. Suppose the dual vector y has suboptimality \epsilon := d \star  - b\top y \leq const. Con-
sider the primal reconstruction Xinfeas obtained by solving (MinFeasSDP). Then we
may bound the distance between Xinfeas to the primal solution X \star by

\| Xinfeas  - X \star \| F
= \scrO (

\surd 
\epsilon ).

The constant in the \scrO depends on the problem data \scrA , b, and C.

We state and prove the formal result as Theorem 4.1. As stated, this guarantee
requires knowledge of the rank r \star of the solution; in section 5, we obtain a similar
guarantee using an estimate for r \star .

1.5. Paper organization. We discuss related work in section 2 with a focus on
storage. Section 3 contains an overview of our notation and more detailed problem
assumptions. Section 4 uses the approximate complementarity principle to develop
practical, robust, and theoretically justified compressed SDPs such as (MinFeasSDP)
for solving (P). These compressed SDPs are accompanied by detailed bounds on the
quality of the computed solutions as compared with the true solution. Section 5
contains practical suggestions in solving these compressed SDPs such as choosing
parameters and checking the solution quality numerically. Next, we turn to algorithms
for solving the dual SDP: we explain how to compute an approximate dual solution
efficiently in section 6, which provides the last ingredient for a complete method to
solve (P). Section 7 shows numerically that the method is effective in practice. We
conclude the paper with a discussion on contributions and future research directions
in section 8.

2. Related work. Semidefinite programming can be traced to a 1963 paper of
Bellman and Fan [10]. Related questions emerged earlier in control theory, starting
from Lyapunov's 1890 work on stability of dynamical systems. There are many classic
applications in matrix analysis, dating to the 1930s. Graph theory provides another
rich source of examples, beginning in the 1970s. See [13, 67, 65, 15] for more history
and problem formulations.

2.1. Interior-point methods. The first reliable algorithms for semidefinite
programming were interior-point methods (IPMs). These techniques were introduced
independently by Nesterov and Nemirovski [51, 52] and Alizadeh [3, 4].

The success of these SDP algorithms motivated new applications. In particular,
Goemans and Williamson [33] used semidefinite programming to design an approxi-
mation algorithm to compute the maximum-weight cut in a graph. Early SDP solvers
could only handle graphs with a few hundred vertices [33, section 5], although com-
putational advances quickly led to IPMs that could solve problems with thousands of
vertices [11].
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2700 DING, YURTSEVER, CEVHER, TROPP, AND UDELL

IPMs form a series of unconstrained problems whose solutions are feasible for the
original SDP, and move toward the solutions of these unconstrained problems using
Newton's method. As a result, IPMs converge to high accuracy in very few iterations
but require substantial work per iteration. To solve a standard-form SDP with an
n \times n matrix variable and with m equality constraints (without further structural
assumptions), a typical IPM requires \scrO (

\surd 
n log( 1\epsilon )) iterations to reach a solution with

accuracy \epsilon (in terms of objective value) [50] and \scrO (mn3 + m2n2 + m3) arithmetic
operations per iteration [6], so \scrO (

\surd 
n log( 1\epsilon )(mn3+m2n2+m3)) arithmetic operations

in total. Further, a typical IPM requires at least \Theta (n2 +m +m2) working memory,
and storing the data takes \Theta (n2m) memory [6].

As a consequence, these algorithms are not effective for solving large problem
instances, unless they enjoy a lot of structure. Hence researchers began to search for
methods that could scale to larger problems.

2.2. First-order methods. One counterreaction to the expense of IPMs was
to develop first-order optimization algorithms for SDPs. This line of work began in
the late 1990s, and it accelerated as SDPs emerged in the machine learning and signal
processing literature in the 2000s.

Early on, Helmberg and Rendl [36] proposed a spectral bundle method for solving
an SDP in dual form, and they showed that it converges to a dual solution when the
trace of X \star is constant. In contrast to IPMs, the spectral bundle method has low
per-iteration complexity. On the other hand, the convergence rate is not known, and
there is no convergence guarantee on the primal side, so there is no explicit control
on the storage and arithmetic costs.

Popular first-order algorithms include the proximal gradient method [59], acceler-
ated variants [9], and the alternating direction method of multipliers [30, 31, 14, 54].
These methods provably solve the original convex formulation of (P). But they all
store the full primal matrix variable, so they are not storage-efficient.

Recently, Friedlander and Macedo [29] have proposed a novel first-order method
that is based on gauge duality, rather than Lagrangian duality. This approach converts
an SDP into an eigenvalue optimization problem. The authors propose a mechanism
for using a dual solution to construct a primal solution. This paper is similar in
spirit to our approach, but it lacks an analysis of the accuracy of the primal solution.
Moreover, it only applies to problems with a positive-definite objective, i.e., C \succ 0.

2.3. Storage-efficient first-order methods. Motivated by problems in signal
processing and machine learning, a number of authors have revived the conditional
gradient method (CGM) [28, 44]. In particular, Hazan [35] suggested using CGM for
semidefinite programming. Clarkson [23] developed a new analysis, and Jaggi [38],
showed how this algorithm applies to a wide range of interesting problems.

The appeal of the CGM is that it computes an approximate solution to an SDP
as a sum of rank-one updates; each rank-one update is obtained from an approximate
eigenvector computation. In particular, after t iterations, the iterate has rank at
most t. This property has led to the exaggeration that CGM is a ``storage-efficient""
optimization method when terminated early enough. Unfortunately, CGM converges
very slowly, so the iterates do not have controlled rank. The literature describes many
heuristics for attempting to control the rank of the iterates [56, 74], but these methods
all lack guarantees.

Some of the authors of this paper [76] have shown how to use CGM to design
a storage-optimal algorithm for a class of SDPs by sketching the decision variable.
Concurrently with the present work, sketching methods have been extended to yield
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SOLVING SDP USING APPROXIMATE COMPLEMENTARITY 2701

storage-optimal solvers for standard-form SDP by using algorithms that generalize
CGM [73, 72, 75].

We also mention a subgradient method developed by Renegar [58] that can be
used to solve either the primal or the dual SDP. Renegar's method has a computational
profile similar to CGM, and it does not have controlled storage costs.

2.4. Factorization methods. There is also a large class of heuristic SDP algo-
rithms based on matrix factorization. The key idea is to factorize the matrix variable
X = FF\top , F \in Rn\times r and to reformulate the SDP (P) as

minimize tr(CFF\top )
subject to \scrA (FF\top ) = b.

(2.1)

We can apply a wide range of nonlinear programming methods to optimize (2.1) with
respect to the variable F . In contrast to the convex methods described above, these
techniques only offer incomplete guarantees on storage, arithmetic, and convergence.

The factorization idea originates in the paper [37] of Homer and Peinado. They
focused on the MaxCut SDP, and the factor F was a square matrix, i.e., r = n.
These choices result in an unconstrained nonconvex optimization problem that can
be tackled with a first-order optimization algorithm.

Theoretical work of Barvinok [8] and Pataki [55] demonstrates that the primal
SDP (P) always admits a solution with rank r, with

\bigl( 
r+1
2

\bigr) 
\leq m. (Note, however, that

the SDP can have solutions with much lower or higher rank.)
Inspired by the existence of low-rank solutions to SDP, Burer and Monteiro [16]

proposed to solve the optimization problem (2.1) where the variable F \in Rn\times p is
constrained to be a tall matrix (p \ll n). The number p is called the factorization
rank. It is clear that every rank-r solution to the SDP (P) induces a solution to the
factorized problem (2.1) when p \geq r. Burer and Monteiro applied a limited-memory
BFGS algorithm to solve (2.1) in an explicit effort to reduce storage costs.

In subsequent work, Burer and Monteiro [17] proved that, under technical con-
ditions, the local minima of the nonconvex formulation (2.1) are global minima of
the SDP (P), provided that the factorization rank p satisfies

\bigl( 
p+1
2

\bigr) 
\geq m + 1. As a

consequence, algorithms based on (2.1) often set the factorization rank p \approx 
\surd 
2m, so

the storage costs are \Omega (n
\surd 
m).

Unfortunately, a recent result of Waldspurger and Walters [69, Theorem 2 and
Remark 2] demonstrates that the formulation (2.1) cannot lead to storage-optimal
algorithms for interesting SDPs which are verified to be regular in [25]. In particular,
suppose that the feasible set of (P) satisfies a mild technical condition and contains a
matrix with rank one. Whenever the factorization rank satisfies

\bigl( 
p+1
2

\bigr) 
+ p \leq m, there

is a set of cost matrices C with positive Lebesgue measure for which the factorized
problem (2.1) has (1) a unique global optimizer with rank one and (2) at least one
suboptimal local minimizer, while the original SDP has a unique primal and dual
solution that satisfy strict complementarity. In this situation, the variable in the
factorized SDP actually requires \Omega (n

\surd 
m) storage, which is not optimal if m = \omega (1).

In view of this negative result, we omit a detailed review of the literature on the
analysis of factorization methods. See [69] for a full discussion.

3. Basics and notation. Here we introduce some additional notation and some
metrics for evaluating the quality of a solution and the conditioning of an SDP.

3.1. Notation. We will work with the Frobenius norm \| \cdot \| 
F
, the \ell 2 operator

norm \| \cdot \| 
op
, and its dual, the \ell 2 nuclear norm \| \cdot \| \ast . We reserve the symbols \| \cdot \| and
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2702 DING, YURTSEVER, CEVHER, TROPP, AND UDELL

\| \cdot \| 2 for the norm induced by the canonical inner product of the underlying real vector
space.1

For a matrix B \in Rd1\times d2 , we arrange its singular values in decreasing order:

\sigma 1(B) \geq \cdot \cdot \cdot \geq \sigma min(d1,d2)(B).

Define \sigma min(B) = \sigma min(d1,d2)(B) and \sigma max(B) = \sigma 1(B), and let \sigma min>0(B) denote the

smallest nonzero singular value of B. For a linear operator \scrB : Sd1 \rightarrow Rd2 , we define

\sigma min(\scrB ) = min
\| A\| =1

\| \scrB (A)\| and \| \scrB \| 
op

= max
\| A\| =1

\| \scrB (A)\| .

We use analogous notation for the eigenvalues of a symmetric matrix. In partic-
ular, the map \lambda i(\cdot ) : Sn \rightarrow R reports the ith largest eigenvalue of its argument.

3.2. Optimal solutions. Instate the notation and regularity assumptions from
subsection 1.1. Define the slack operator Z : Rn \rightarrow Sn that maps a putative dual
solution y \in Rm to its associated slack matrix Z(y) := C  - \scrA \top y. We omit the
dependence on y if it is clear from the context.

Let the rank of primal solution being r \star and denote its range as \scrV  \star . We also fix
an orthonormal matrix V \star \in Rn\times r \star whose columns span \scrV  \star . Introduce the subspace
\scrU  \star = range(Z(y \star )), and let U \star \in Rn\times (n - r \star ) be a fixed orthonormal basis for \scrU  \star . We
have the decomposition \scrV  \star + \scrU  \star = Rn\times n.

For a matrix V \in Rn\times r, define the compressed cost matrix and constraint map

CV := V \top CV and \scrA V (S) := \scrA (V SV \top ) for S \in Sr.(3.1)

In particular, \scrA V \star 
is the compression of the constraint map onto the range of X \star .

3.3. Conditioning of the SDP. Our analysis depends on conditioning prop-
erties of the pair of primal (P) and dual (D) SDPs.

First, we measure the strength of the complementarity condition (1.2) using the
spectral gaps of the primal solution X \star and dual slack matrix Z(y \star ):

\lambda min>0(X \star ) and \lambda min>0(Z(y \star )).

These two numbers capture how far we can perturb the solutions before the comple-
mentarity condition fails.

Second, we measure the robustness of the primal solution to perturbations of the
problem data b using the quantity

\kappa :=
\sigma max(\scrA )

\sigma min(\scrA V  \star )
.(3.2)

This term arises because we have to understand the conditioning of the system
\scrA V \star 

(S) = b of linear equations in the variable S \in Sr \star .

3.4. Quality of solutions. We measure the quality of a primal matrix variable
X \in Sn

+ and a dual vector y \in Rm in terms of their suboptimality, their infeasibility,
and their distance to the true solutions. Table 2 gives formulas for these quantities.

1For symmetric matrices, we regard the trace inner product as the canonical one. For the
Cartesian product Sn \times Rm, we regard the sum of trace inner product on Sn and the dot product
on Rm as the canonical one.
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SOLVING SDP USING APPROXIMATE COMPLEMENTARITY 2703

Table 2
Quality of a primal matrix X \in Sn

+ and a dual vector y \in Rm.

Primal matrix X Dual vector y

Suboptimality (\epsilon ) tr(CX) - p \star d \star  - b\top y

Infeasibility (\delta ) max\{ \| \scrA X  - b\| , ( - \lambda min(X))+\} ( - \lambda min(Z(y)))+
Distance to solution (d) \| X  - X \star \| F \| y  - y \star \| 2

We say that a matrix X is an (\epsilon , \delta )-solution of (P) if its suboptimality \epsilon p(X) is
at most \epsilon and its infeasibility \delta p(X) is at most \delta .

The primal suboptimality \epsilon p(X) and infeasibility \delta p(X) are both controlled by
the distance dp(X) to the primal solution:

\epsilon p(X) \leq \| C\| 
F
dp(X) and \delta p(X) \leq max\{ 1, \| \scrA \| 

op
\} dp(X).(3.3)

We can also control the distance of a dual vector y and its slack matrix Z(y) from
their optima using the following quadratic growth lemma.

Lemma 3.1 (quadratic growth). Instate the regularity assumptions from subsec-
tion 1.1. For any dual feasible y with dual slack matrix Z(y) := C  - \scrA \top y and dual
suboptimality \epsilon = \epsilon d(y) = d \star  - b\top y, we have

\| (Z(y), y) - (Z(y \star ), y \star )\| \leq 1

\sigma min(\scrD )

\Biggl[ 
\epsilon 

\lambda min>0(X \star )
+

\sqrt{} 
2\epsilon 

\lambda min>0(X \star )
\| Z(y)\| 

op

\Biggr] 
,

(3.4)

where the linear operator \scrD : Sn \times Rm \rightarrow Sn \times Sn is defined by

\scrD (Z, y) := (Z  - (U \star U \star 
\top )Z(U \star U \star 

\top ), Z +\scrA \top y).

The orthonormal matrix U \star is defined in subsection 3.2. The quantity \sigma min(\scrD ) is
defined as \sigma min(\scrD ) := min\| (Z,y)\| =1 \| (Z  - (U \star U \star 

\top )Z(U \star U \star 
\top ), Z +\scrA \top y)\| .

The proof of Lemma 3.1 can be found in Appendix A. The name quadratic growth
arises from a limit of inequality (3.4): when \epsilon is small, the second term in the bracket

dominates the first term, so \| y  - y \star \| 22 = \scrO (\epsilon ) [27].

4. Reduced SDPs and approximate complementarity. In this section, we
describe two reduced SDP formulations, and we explain when their solutions are nearly
optimal for the original SDP (P). We can interpret these results as constructive proofs
of the approximate complementarity principle.

4.1. Reduced SDPs. Suppose that we have obtained a dual approximate so-
lution y and its associated dual slack matrix Z(y) := C  - \scrA \top y. Let r be a rank
parameter, which we will discuss later. Construct an orthonormal matrix V \in Rn\times r

whose range is an r-dimensional invariant subspace associated with the r smallest
eigenvalues of the dual slack matrix Z(y). Our goal is to compute a matrix X with
range V that approximately solves the primal SDP (P).

Our first approach minimizes infeasibility over all psd matrices with range V :

(MinFeasSDP)
minimize 1

2 \| \scrA V (S) - b\| 2
subject to S \succeq 0

with variable S \in Sr. Given a solution \^S, we can form an approximate solution
Xinfeas = V \^SV \top for the primal SDP (P). This is the same method from subsection 1.4.
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2704 DING, YURTSEVER, CEVHER, TROPP, AND UDELL

Table 3
Comparison of (MinFeasSDP) and (MinObjSDP) given a feasible \epsilon -suboptimal dual vector y.

Assumption and quality (MinFeasSDP) (MinObjSDP)

Require r = r \star ? Yes No
Suboptimality \scrO (\kappa 

\surd 
\epsilon ) \scrO (

\surd 
\epsilon )

Infeasibility \scrO (\kappa 
\surd 
\epsilon ) \scrO (

\surd 
\epsilon )

Distance to the solution \scrO (\kappa 
\surd 
\epsilon ) Remark 4.8

Our second approach minimizes the objective value over all psd matrices with
range V , subject to a specified limit \delta on infeasibility:

(MinObjSDP)
minimize tr(CV S)
subject to \| \scrA V (S) - b\| \leq \delta and S \succeq 0

with variable S \in Sr. Given a solution \~S, we can form an approximate solution
Xobj = V \~SV \top for the primal SDP (P).

As we will see, both approaches lead to satisfactory solutions to the original
SDP (P) under appropriate assumptions. Theorem 4.1 addresses the performance
of (MinFeasSDP), while Theorem 4.6 addresses the performance of (MinObjSDP).
Table 3 summarizes the hypotheses we impose to study each of the two problems, as
well as the outcomes of the analysis.

The bounds in this section depend on the problem data and rely on assumptions
that are not easy to check. We discuss how to check the quality of Xinfeas and Xobj

in section 5.

4.2. Analysis of (MinFeasSDP). First, we establish a result that connects
the solution of (MinFeasSDP) with the solution of the original problem (P).

Theorem 4.1 (analysis of (MinFeasSDP)). Instate the regularity assumptions
in subsection 1.1. Moreover, assume the solution rank r \star is known. Set r = r \star . Let
y \in Rm be feasible for the dual SDP (D) with suboptimality \epsilon = \epsilon d(y) = d \star  - b\top y <
c1, where the constant c1 > 0 depends only on \scrA , b, and C. Then the threshold
T := \lambda n - r(Z(y)) obeys

T := \lambda n - r(Z(y)) \geq 1

2
\lambda n - r(Z(y \star )) > 0,

and we have the bound

\| Xinfeas  - X \star \| F
\leq (1 + 2\kappa )

\biggl( 
\epsilon 

T
+

\sqrt{} 
2
\epsilon 

T
\| X \star \| op

\biggr) 
.(4.1)

This bound shows that \| Xinfeas  - X \star \| 2F = \scrO (\epsilon ) when the dual vector y is \epsilon sub-
optimal. Notice this result requires knowledge of the solution rank r \star . The proof
of Theorem 4.1 occupies the rest of this section.

4.2.1. Primal optimizers and the reduced search space. The first step in
the argument is to prove that X \star is near the search space \{ V SV \top : S \in Sr

+\} of the
reduced problems.

Lemma 4.2. Instate the regularity assumptions in subsection 1.1. Further sup-
pose y \in Rm is feasible and \epsilon -suboptimal for the dual SDP (D), and construct
the orthonormal matrix V as in subsection 4.1. Assume that the threshold T :=
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SOLVING SDP USING APPROXIMATE COMPLEMENTARITY 2705

\lambda n - r(C  - \scrA \top y) > 0. Define PV (X) = V V \top XV V \top , and PV \bot (X) = X  - PV (X) for
any X \in Sn. Then for any solution X \star of the primal SDP (P),

\| PV \bot (X \star )\| F
\leq \epsilon 

T
+

\sqrt{} 
2
\epsilon 

T
\| X \star \| op

and \| PV \bot (X \star )\| \ast \leq \epsilon 

T
+ 2

\sqrt{} 
r
\epsilon 

T
\| X \star \| op

.

To prove the lemma, we will utilize the following result (proved in Appendix B)
which bounds the distance to subspaces via the inner product. This result might be
of independent interest.

Lemma 4.3. Suppose X,Z \in Sn are both positive semidefinite. Let V \in Rn\times r

be the matrices formed by the eigenvectors with the smallest r eigenvalues of Z. Let
\epsilon = tr(XZ) and PV (X) = V V \top XV V \top . If T = \lambda n - r(Z) > 0, then

\| X  - PV (X)\| 
F
\leq \epsilon 

T
+

\sqrt{} 
2
\epsilon 

T
\| X\| 

op
, and \| X  - PV (X)\| \ast \leq \epsilon 

T
+ 2

\sqrt{} 
r
\epsilon 

T
\| X\| 

op
.

Now we are ready to prove Lemma 4.2.

Proof of Lemma 4.2. We shall utilize Lemma 4.3. Simply set Z in Lemma 4.3 to
be C - \scrA \top y from the approximate dual solution y and X to be the primal solution X \star .
Using strong duality in the following step (a) and feasibility of X \star in the following
step (b), we have

\epsilon = b\top y \star  - b\top y
(a)
= tr(CX \star ) - b\top y

(b)
= tr(CX \star ) - (\scrA X \star )

\top y = tr(X \star Z).

Hence, we can apply Lemma 4.3 to obtain the bounds in Lemma 4.2.

4.2.2. Relationship between the solutions of (MinFeasSDP) and (P).
Lemma 4.2 shows that any solution X \star of (P) is close to its compression V V \top X \star V V \top 

onto the range of V . Next, we show that Xinfeas is also close to V V \top X \star V V \top . We
can invoke strong convexity of the objective of (MinFeasSDP) to achieve this goal.

Lemma 4.4. Instate the assumptions and notation from Lemma 4.2. Assume
\sigma min(\scrA V ) > 0 and that the threshold T = \lambda n - r(Z(y)) > 0. Then

\| Xinfeas  - X \star \| F
\leq 
\biggl( 
1 +

\sigma max(\scrA )

\sigma min(\scrA V )

\biggr) \biggl( 
\epsilon 

T
+

\sqrt{} 
2
\epsilon 

T
\| X \star \| op

\biggr) 
,(4.2)

where X \star is any solution of the primal SDP (P).

Proof. Since we assume that \sigma min(\scrA V ) > 0, we know the objective of (Min

FeasSDP), f(S) = 1
2 \| \scrA V (S) - b\| 22, is \sigma 2

min(\scrA V )-strongly convex, and so the solu-
tion S \star is unique. We then have for any S \in Sr

f(S) - f(S \star )
(a)

\geq tr(\nabla f(S \star )\top (S  - S \star )) +
\sigma 2
min(\scrA V )

2
\| S  - S \star \| 2

F

(b)

\geq \sigma 2
min(\scrA V )

2
\| S  - S \star \| 2

F
,

(4.3)

where step (a) uses strong convexity and step (b) is due to the optimality of S \star .
Since \scrA X \star = b, we can bound the objective of (MinFeasSDP) by \| PV (X) - X \star \| F

:\bigm\| \bigm\| \scrA V (V
\top XV ) - b

\bigm\| \bigm\| 
2
= \| \scrA (PV (X) - X \star )\| 2 \leq \sigma max(\scrA ) \| PV (X) - X \star \| F

.(4.4)
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2706 DING, YURTSEVER, CEVHER, TROPP, AND UDELL

Combining pieces, we know that S \star satisfies

\bigm\| \bigm\| S \star  - V \top X \star V
\bigm\| \bigm\| 2

F

(a)

\leq 2

\sigma 2
min(\scrA V )

(f(V \top X \star V ) - f(S \star ))
(b)

\leq \sigma 2
max(\scrA )

\sigma 2
min(\scrA V )

\| X \star  - PV (X \star )\| 2F

(c)

\leq \sigma 2
max(\scrA )

\sigma 2
min(\scrA V )

\biggl( 
\epsilon 

T
+

\sqrt{} 
2
\epsilon 

T
\| X \star \| op

\biggr) 2

,

where step (a) uses (4.3), step (b) uses (4.4) for X = X \star and f(S \star ) \geq 0, and step (c)
uses Lemma 4.2. Lifting to the larger space Rn\times n, we see\bigm\| \bigm\| V S \star V \top  - X \star 

\bigm\| \bigm\| 
F
\leq 
\bigm\| \bigm\| V S \star V \top  - PV (X \star )

\bigm\| \bigm\| 
F
+ \| X \star  - PV (X)\| 

F

(a)
=
\bigm\| \bigm\| S \star  - V \top X \star V

\bigm\| \bigm\| 
F
+ \| X \star  - PV (X \star )\| F

(b)

\leq 
\biggl( 
1 +

\sigma max(\scrA )

\sigma min(\scrA V )

\biggr) \biggl( 
\epsilon 

T
+

\sqrt{} 
2
\epsilon 

T
\| X \star \| op

\biggr) 
.

Here we use the unitary invariance of \| \cdot \| 
F
in (a). The inequality (b) is due to our

bound above for S \star and Lemma 4.2.

4.2.3. Lower bounds for the threshold and minimum singular value.
Finally, we must confirm that the extra hypotheses of Lemma 4.4 hold, i.e., T > 0
and \sigma min(\scrA V ) > 0.

We explain the intuition here. Strict complementarity forces \lambda n - r(Z(y \star )) > 0. If
Z is close to Z(y \star ), then we expect that T > 0 by continuity. When X \star is unique,
Lemma A.1 implies that null(\scrA V \star 

) = \{ 0\} . As a consequence, \sigma min(\scrA V \star 
) > 0. If V is

close to V \star , then we expect that \sigma min(\scrA V ) > 0 as well. We have the following rigorous
statement.

Lemma 4.5. Instate the hypotheses of Theorem 4.1. Then

T = \lambda n - r(Z(y)) \geq 1

2
\lambda n - r(Z(y \star ));

\sigma min(\scrA V ) \geq 
1

2
\sigma min(\scrA V  \star ) > 0.

Proof. We first prove the lower bound on the threshold T . Using \| (Z, y)  - 
(Z(y \star ), y \star )\| \geq \| Z  - Z(y \star )\| op

\geq \| Z\| 
op
 - \| Z(y \star )\| op

and quadratic growth (Lemma 3.1),
we have

\| Z\| 
op
 - \| Z(y \star )\| op

\leq 1

\sigma min(\scrD )

\Biggl( 
\epsilon 

\lambda min>0(X \star )
+

\sqrt{} 
2\epsilon 

\lambda min>0(X \star )
\| Z\| 

op

\Biggr) 
.

Thus for sufficiently small \epsilon , we have \| Z\| 
op

\leq 2 \| Z(y \star )\| op
. Substituting this bound

into the previous inequality gives

\| (Z, y) - (Z(y \star ), y \star )\| \leq 1

\sigma min(\scrD )

\Biggl( 
\epsilon 

\lambda min>0(X \star )
+

\sqrt{} 
4\epsilon 

\lambda min>0(X \star )
\| Z(y \star )\| op

\Biggr) 
.(4.5)

Weyl's inequality tells us that \lambda n - r(Z(y \star )) - T \leq \| Z  - Z(y \star )\| op
. Using (4.5), we see

that for all sufficiently small \epsilon , T := \lambda n - r(C  - \scrA \top y) \geq 1
2\lambda n - r(Z(y \star )).

Next we prove the lower bound on\scrA V . We have \sigma min(\scrA V  \star ) > 0 by Lemma A.1. It
will be convenient to align the columns of V with those of V  \star for our analysis. Consider
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the solution O \star to the orthogonal Procrustes problem O \star = argmin
OO\top =I,O\in Rr\times r

\| V O  - V  \star \| . Since \sigma min(\scrA V ) = \sigma min(\scrA V O \star 
) for orthonormal O \star , without loss of

generality, we suppose we have already performed the alignment and V is V O \star in the
following.

Let S1 = argmin\| S\| F=1 \| \scrA V (S)\| 2. Then we have

(4.6)

\sigma min(\scrA V \star 
) - \sigma min(\scrA V ) \leq \| \scrA V \star 

(S1)\| 2  - \| \scrA V (S1)\| 2
\leq 
\bigm\| \bigm\| \scrA (V  \star S1(V

 \star )\top ) - \scrA (V S1V
\top )
\bigm\| \bigm\| 
2

\leq \| \scrA \| 
op

\bigm\| \bigm\| V  \star S1(V
 \star )\top  - (V S1V

\top )
\bigm\| \bigm\| 

F
.

Defining E = V  - V  \star , we bound the term
\bigm\| \bigm\| V  \star S1(V

 \star )\top  - (V S1V
\top )
\bigm\| \bigm\| 

F
as

(4.7)

\bigm\| \bigm\| V  \star S1(V
 \star )\top  - (V S1V

\top )
\bigm\| \bigm\| 

F
=
\bigm\| \bigm\| ES1(V \star )

\top + V \star S1E
\top + ES1E

\top 
\bigm\| \bigm\| 

F
(a)

\leq 2 \| E\| 
F
\| V \star S1\| F

+ \| E\| 2
F
\| S1\| F

(b)
= 2 \| E\| 

F
+ \| E\| 2

F
,

where (a) uses the triangle inequality and the submultiplicativity of the Frobenius
norm. We use the orthogonality of the columns of V and of V  \star and the fact that
\| S1\| F

= 1 in step (b).
A variant of the Davis--Kahan inequality [71, Theorem 2] asserts that \| E\| 

F
\leq 

4 \| Z  - Z(y \star )\| F
/\lambda min>0(Z(y \star )). Combining this fact with inequality (4.5), we see

\| E\| 
op

\rightarrow 0 as \epsilon \rightarrow 0. Now using (4.7) and (4.6), we see that for all sufficiently small

\epsilon , \sigma min(\scrA V ) \geq 1
2\sigma min(\scrA V  \star ) > 0.

4.2.4. Proof of Theorem 4.1. Instate the hypotheses of Theorem 4.1. Now,
Lemma 4.5 implies that \sigma min(\scrA V ) > 0 and that T > 0. Therefore, we can in-
voke Lemma 4.4 to obtain the stated bound on \| Xinfeas  - X \star \| F

.

4.3. Analysis of (MinObjSDP). Next, we establish a result that connects
the solution to (MinObjSDP) with the solution to the original problem (P).

Theorem 4.6 (analysis of (MinObjSDP)). Instate the regularity assumptions
in subsection 1.1. Moreover, assume r \geq r \star . Let y \in Rm be feasible for the dual
SDP (D) with suboptimality \epsilon = \epsilon d(y) = d \star  - b\top y < c2, where the constant c2 > 0
depends only on \scrA , b, and C. Then the threshold T := \lambda n - r(Z(y)) obeys

T := \lambda n - r(Z(y)) \geq 1

2
\lambda n - r(Z(y \star )) > 0.

Introduce the quantities

\delta 0 := \sigma max(\scrA )

\biggl( 
\epsilon 

T
+

\sqrt{} 
2
\epsilon 

T
\| X \star \| op

\biggr) 
;

\epsilon 0 := min

\biggl\{ 
\| C\| 

F

\biggl( 
\epsilon 

T
+

\sqrt{} 
2
\epsilon 

T
\| X \star \| op

\biggr) 
, \| C\| 

op

\biggl( 
\epsilon 

T
+

\sqrt{} 
2
r\epsilon 

T
\| X \star \| op

\biggr) \biggr\} 
.

If we solve (MinObjSDP) with the infeasibility parameter \delta = \delta 0, then the resulting
matrix Xobj is an (\epsilon 0, \delta 0)-solution to (P).

If in addition C = I, then Xobj is superoptimal with 0 \geq \epsilon 0 \geq  - \epsilon 
T .

The analysis in Theorem 4.1 of (MinFeasSDP) requires knowledge of the solution
rank r \star , and the bounds depend on the conditioning \kappa . In contrast, Theorem 4.6 does
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2708 DING, YURTSEVER, CEVHER, TROPP, AND UDELL

not require knowledge of r \star , and the bounds do not depend on \kappa . Table 3 compares
our findings for the two optimization problems Theorems 4.1 and 4.6.

Remark 4.7. The quality of the primal reconstruction depends on the ratio be-
tween the threshold T and the suboptimality \epsilon . The quality improves as the subop-
timality \epsilon decreases, so the primal reconstruction approaches optimality as the dual
estimate y approaches optimality. The threshold T is increasing in the rank estimate
r, and so the primal reconstruction improves as r increases. Since r controls the
storage required for the primal reconstruction, we see that the quality of the primal
reconstruction improves as our storage budget increases.

Remark 4.8. Using the concluding remarks of [63], the above bound on subop-
timality and infeasibility shows that the distance between Xobj and X \star is at most
\scrO (\epsilon 1/4). Here, the \scrO (\cdot ) notation omits constants depending on \scrA , b, and C.

The proof of Theorem 4.6 occupies the rest of this subsection.

4.3.1. Bound on the threshold via quadratic growth. We first bound T
when the suboptimality of y is bounded. This bound is a simple consequence of
quadratic growth (Lemma 3.1).

Lemma 4.9. Instate the hypotheses of Theorem 4.6. Then

T := \lambda n - r(Z(y)) \geq 1

2
\lambda n - r(Z(y \star )) > 0.

Proof. The proof follows exactly the same line (without even changing the nota-
tion) as the proof of Lemma 4.5 in assuring \lambda n - r \star (Z(y)) > 0, by noting \lambda n - r(Z(y \star )) >
0 whenever r \geq n - rank(Z(y \star )).

4.3.2. Proof of Theorem 4.6. Lemma 4.2 shows that any primal solution
X \star is close to V V \top X \star V V \top =: PV (X \star ). We must ensure that PV (X \star ) is feasible for
(MinObjSDP). This is achieved by setting the infeasibility parameter in (MinObjSDP)
as

\delta := \sigma max(\scrA )

\left(  \epsilon 

T
+

\sqrt{} 
2
\epsilon \| X \star \| op

T

\right)  .

This choice also guarantees all solutions to (MinObjSDP) are \delta -feasible.
The solution to (MinObjSDP) is \delta 0-feasible by construction. It remains to show

the solution is \epsilon 0-suboptimal. We can bound the suboptimality of the feasible point
PV (X \star ) to produce a bound on the suboptimality of the solution to (MinObjSDP).
We use H\"older's inequality to translate the bound on the distance between PV (X \star )
and X \star , from Lemma 4.2, into a bound on the suboptimality:

tr(C(PV (X \star ) - X \star ))

\leq \epsilon 0 := min

\biggl\{ 
\| C\| 

F

\biggl( 
\epsilon 

T
+

\sqrt{} 
2
\epsilon 

T
\| X \star \| op

\biggr) 
, \| C\| 

op

\biggl( 
\epsilon 

T
+

\sqrt{} 
2
r\epsilon 

T
\| X \star \| op

\biggr) \biggr\} 
.

Thus PV (X \star ) is \epsilon 0 suboptimal. Since PV (X \star ) is also feasible for (MinObjSDP), the
solution to (MinObjSDP) is also \epsilon 0 suboptimal.

To prove the improvement for the case C = I, we first complete V to form a
basis W = [U V ] for Rn, where U = [vr+1, . . . , vn] \in Rn\times (n - r) and where vi is the
eigenvector of Z associated with the ith smallest eigenvalue. Define X1 = U\top X \star U
and X2 = V \top X \star V . We first note that
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tr(X \star ) = tr(W\top X \star W ) = tr(X1) + tr(X2) and tr(X2) = tr(V V \top X \star V V \top ).

We can bound tr(X1) using the following inequality:

\epsilon 
(a)
= tr(ZX \star ) =

n\sum 
i=1

\lambda n - i+1(Z)v\top i X \star vi
(b)

\geq T

n\sum 
i=r+1

v\top i X \star vi = tr(UX \star U
\top ) = tr(X1).

Here step (a) is due to strong duality and we use v\top i X \star vi \geq 0 in step (b) as X \star \succeq 0.
Combining pieces and tr(X1) \geq 0 as X1 \succeq 0, we find that

tr(X \star ) \geq tr(V V \top X \star V V \top ) \geq tr(X \star ) - 
\epsilon 

T
.

This completes the argument.

5. Computational aspects of primal recovery. The previous section intro-
duced two methods, (MinFeasSDP) and (MinObjSDP), to recover an approximate
primal from an approximate dual solution y. It contains theoretical bounds on sub-
optimality, infeasibility, and distance to the solution set of the primal SDP (P). We
summarize this approach as Algorithm 5.1.

In this section, we turn this approach into a practical optimal storage algorithm
by answering the following questions:

1. How should we solve (MinFeasSDP) and (MinObjSDP)?
2. How should we choose \delta in (MinObjSDP)?
3. How should we choose the rank parameter r?
4. How can we estimate the suboptimality, the infeasibility, and (possibly) the

distance to the solution to use as stopping conditions?
In particular, our choices for algorithmic parameters should not depend on any quan-
tities that are unknown or difficult to compute. We address each question in turn.

For this discussion, let us quantify the cost of the three data access oracles (1.4).
We use the mnemonic notation LC , L\scrA , and L\scrA \top for the respective running time
(denominated in flops) of the three operations.

5.1. Solving MinFeasSDP and MinObjSDP. Suppose that we have a dual
estimate y \in Rm and that we have chosen r = \scrO (r \star ) and \delta . Each recovery prob-
lem, (MinFeasSDP) and (MinObjSDP), is an SDP with an r \times r decision variable
and m linear constraints. We now discuss how to solve them with optimal storage
\scrO (m+ nr). First, we present four operators that form the computational core of all
the storage-optimal algorithms we consider here. We list their input and output di-
mension, storage requirement (sum of input output dimensions), and time complexity
in evaluating these operators in Table 4.

Algorithm 5.1 Primal recovery via (MinFeasSDP) or (MinObjSDP).

Require: Problem data \scrA , C, and b; dual vector y and positive integer r
1: Compute an orthonormal matrix V \in Rn\times r whose range is an invariant subspace

of C  - \scrA \top y associated with the r smallest eigenvalues.
2: Option 1: Solve (MinFeasSDP) to obtain a matrix \^S1 \in Sr

+.

3: Option 2: Solve (MinObjSDP) by setting \delta = \gamma \| \scrA V ( \^S1)  - b\| with some \gamma \geq 1,
where \^S1 is obtained from solving (MinFeasSDP). Obtain \^S2.

4: return (V, S1) for option 1, and (V, S2) for option 2.
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2710 DING, YURTSEVER, CEVHER, TROPP, AND UDELL

Table 4
Required operators for solving MinFeasSDP and MinObjSDP. The operators P\bfB \delta 

and P\bfS r
+

are

projections of the \ell 2 norm ball B\delta : = \{ y \in Rm | \| y\| 2 \leq \delta \} and of the PSD matrices of side
dimension r, Sr

+, respectively.

Operator Input Output Storage req. Time compl.

\scrA V S \in Sr \scrA V (S) \in Rm r2 +m \scrO (r2L\scrA )

\scrA \top 
V y \in Rm V \top (\scrA \top (y))V \in Sr m+ r2 \scrO (rL\scrA \top + nr2)

P\bfB \delta 
y \in Rm P\bfB \delta 

(y) \in Rm 2m \scrO (m)
P\bfS r

+
S \in Sr P\bfS r

+
(S) \in Sr 2r2 \scrO (r3)

Any algorithm that uses a constant number of calls to these operators at each
iteration (and at most \scrO (m+nr) additional storage) achieves optimal storage \scrO (m+
nr). To be concrete, we describe algorithms to solve (MinFeasSDP) and (MinObjSDP)
that achieve optimal storage. Many other algorithmic choices are possible.

\bullet For (MinFeasSDP), we can use the accelerated projected gradient method
[50]. This method uses the operators \scrA V ,\scrA \top 

V , and P\bfS r
+
. Each iteration

requires one call each to \scrA V , \scrA \top 
V , and P\bfS r

+
and a constant number of additions

in Rm and Sr
+. Hence the per-iteration flop count is \scrO (r2L\scrA + rL\scrA \top +m+

r2n). As for storage, the accelerated projected gradient method requires
\scrO (m + r2) working memory to store the residual \scrA V (S)  - b, the computed
gradient, and iterates of size r2. Hence this method is storage optimal.

\bullet For (MinObjSDP), we can use the Chambolle--Pock method [21] as described
in [26, section SM1]. This method requires access to the operators \scrA V ,\scrA \top 

V ,
P\bfB \delta 

, and P\bfS r
+
. It also stores the matrix CV = V TCV \in Rr\times r explicitly. We

can compute CV in r2LC time and store it using r2 storage. Each iteration
requires one call each to \scrA V , \scrA \top 

V , P\bfB \delta 
, and P\bfS r

+
and a constant number of

additions in Rm and Sr
+. Hence the per-iteration flop count is \scrO (r2L\scrA +

rL\scrA \top + m + r2n). As for storage, the Chambolle--Pock method requires
\scrO (m+ r2) working memory to store the residual \scrA V (S) - b, one dual iterate
of size m, two primal iterates of size r2, and a few intermediate quantities of
size r2 or m. Hence the method is again storage optimal.

5.2. Choosing the rank parameter \bfitr . Theorem 4.1 shows that (Min
FeasSDP) recovers the solution when the rank estimate r is accurate. Alas, as r
increases, (MinFeasSDP) can have multiple solutions. Hence it is important to use
information about the objective function as well (e.g., using (MinObjSDP)) to recover
the solution to (P)---in theory. In practice, we find that (MinFeasSDP) recovers the

primal solution well so long as r satisfies the Barvinok--Pataki bound r(r+1)
2 \leq m.

Theorem 4.6 shows that (MinObjSDP) is more robust and provides useful re-
sults so long as the rank estimate r exceeds the true rank r \star . Indeed, the quality
of the solution improves as r increases. A user seeking the best possible solution to
(MinObjSDP) should choose the largest rank estimate r for which the SDP
(MinObjSDP) can still be solved, given computational and storage limitations.

It is tempting to consider the spectrum of the dual slack matrix C  - \scrA \top y, and in
particular its smallest eigenvalues, to guess the true rank of the solution. We do not
know of any reliable rules that use this idea.

5.3. Choosing the infeasibility parameter \bfitdelta . To solve (MinObjSDP), we
must choose a bound \delta on the acceptable infeasibility. (Recall that (MinObjSDP)
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SOLVING SDP USING APPROXIMATE COMPLEMENTARITY 2711

is generally not feasible when \delta = 0.) This bound can be chosen using the result of
(MinFeasSDP). Concretely, solve (MinFeasSDP) to obtain a solutionXinfeas. Then set
\delta = \gamma \| \scrA V (Xinfeas) - b\| 2 for some \gamma \geq 1. This choice guarantees that (MinObjSDP)
is feasible. In our numerics, we find \gamma = 1.1 works well.2

5.4. Bounds on suboptimality, infeasibility, and distance to the solution
set. Suppose we solve either (MinObjSDP) or (MinFeasSDP) to obtain a primal esti-
mate X = Xobj or X = Xinfeas. How can we estimate the suboptimality, infeasibility,
and distance of X to the solution set of (P)?

The first two metrics are straightforward to compute. We can bound the sub-
optimality by \epsilon p(X) \leq tr(CX)  - b\top y. We can compute the infeasibility as \delta p(X) =
\| \scrA X  - b\| 2. In the optimization literature, scaled versions of the suboptimality and
infeasibility called KKT residuals [70, 47, 77] are generally used as stopping criteria.

The distance to the solution requires additional assumptions, such as surjectivity
of the restricted constraint map \scrA V . With these assumptions, Lemma 4.4 yields a
computable (but possibly loose) bound. We refer the interested reader to the supple-
ment [26].

6. Computational aspects of the dual SDP (D). The previous two subsec-
tions showed how to efficiently recover an approximate primal solution from an ap-
proximate dual solution. We now discuss how to (approximately) solve the dual SDP
(D) with optimal storage and with a low per-iteration computational cost. Together,
the (storage-optimal) dual solver and (storage-optimal) primal recovery compose a
new algorithm for solving regular SDPs with optimal storage.

6.1. Exact penalty formulation. It will be useful to introduce an uncon-
strained version of the dual SDP (D), parametrized by a real positive number \alpha ,
which we call the penalized dual SDP:

(6.1) maximize b\top y + \alpha min\{ \lambda min(C  - \scrA \top y), 0\} .

That is, we penalize vectors y that violate the dual constraint C  - \scrA \top y \succeq 0.
Problem (6.1) is an exact penalty formulation for the dual SDP (D). Indeed,

problem (6.1) is the dual of the primal SDP (P) enhanced with a trace constraint
tr(X) \leq \alpha : problem (6.1) can be rewritten as maxy minX\succeq 0,\bft \bfr (X)\leq \alpha tr(CX) + (b  - 
\scrA X)\top y. The following lemma shows that the solution of problem (6.1) and the
solution set of the dual SDP (D) are the same when \alpha is large enough. The proof is
based on [60, Theorem 7.21].

Lemma 6.1. Instate the assumptions in subsection 1.1. If b \not = 0 and \alpha > tr(X \star ),
then the penalized dual SDP (6.1) and the dual SDP (D) have the same solution y \star .

Proof of Lemma 6.1. We first note that the dual solution y \star is the only solution
to min\lambda max(\scrA \top y - C)\leq 0  - b\top y. Using [60, Theorem 7.21], we know that the penalty form
(6.1) has y \star as its only solution as long as \alpha > \alpha 0 for any \alpha 0 \geq 0 satisfying the KKT
condition:

b \in \alpha 0\scrA (\partial (\lambda max( - Z(y \star )))) and \alpha 0\lambda max( - Z(y \star )) = 0.

This is the case by noting X \star \in tr(X \star )\partial (\lambda max( - Z(y \star )), tr(X \star )\lambda max( - Z(y \star )) = 0,
and \scrA (X \star ) = b. Hence we can choose \alpha 0 = tr(X \star ).

2It is sometimes possible to choose \delta directly without solving (MinFeasSDP) [26, Theorem SM2.1];
however, this approach is rarely practical.
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Algorithm 6.1 Dual algorithm + primal recovery.

Require: Problem data \scrA , C and b
Require: Positive integer r and an iterative algorithm \scrG for solving the dual SDP
1: for k = 1, 2, . . . do
2: Compute the kth dual yk via kth iteration of \scrG 
3: Compute a recovered primal \^Xk = V \^SV \top using primal recovery, Algorithm 5.1.
4: end for

Remark 6.2. The objective of problem (6.1) lower bounds the optimal value p \star 
for any y \in Rm when \alpha \geq tr(X \star ). In contrast, the dual SDP (P) provides a valid
bound only if y is feasible.

Thus, as long as we know an upper bound on the nuclear norm of the primal solution,
then we can solve problem (6.1) to find the dual optimal solution y \star . It is often easy
to find a bound on \| X \star \| \ast :

1. Nuclear norm objective. Suppose the objective in (P) is \| X\| \ast = tr(X).
Problems using this objective include matrix completion [19], phase retrieval
[20], and covariance estimation [22]. In these settings, it is generally easy to
find a feasible solution or to bound the objective via a spectral method. (See
[41] for matrix completion and [18] for phase retrieval.)

2. Constant trace constraints. Suppose the constraint \scrA X = b enforces tr(X) =
\beta for some constant \beta . Problems with this constraint include MaxCut [33],
community detection [48], and PhaseCut in [68]. Then any \alpha > \beta serves
as an upper bound. In the powerflow problem [7, 46], we have constraints
Xii \leq \beta i for alli. Then any \alpha >

\sum n
i=1 \beta i serves as an upper bound. (The

powerflow problem does not directly fit into our standard form (P), but a
small modification of our framework can handle the problem.)

When no such bound is available, we may search over \alpha numerically. For example,
solve problem (6.1) for \alpha = 2, 4, 8, . . . , 2d for some integer d (perhaps, in parallel,
simultaneously). Since any feasible y for the dual SDP (D) may be used to recover
the primal, using (MinFeasSDP) and (MinObjSDP), we can use any approximate
solution of the penalized dual SDP, problem (6.1), for any \alpha , as long as it is feasible
for the dual SDP.

Alternatively, we can use the method of [58] to solve (D) directly if a strictly
feasible dual point is known. For example, when C \succ 0, y = 0 \in Rm is strictly
feasible.

6.2. Computational cost and convergence rate for primal approxima-
tion. Suppose we have an iterative algorithm \scrG to solve the dual problem. Denote
by yk the kth iterate of \scrG . Each dual iterate yk generates a corresponding primal
iterate using either (MinFeasSDP) or (MinObjSDP). We summarize this approach to
solving the primal SDP in Algorithm 6.1.

The primal iterates Xk generated by Algorithm 6.1 converge to a solution of
the primal SDP (P) by our theory.3 However, it would be computational folly to
recover the primal at every iteration: the primal recovery problem is much more

3Iterative algorithms for solving the dual SDP (D) may not give a feasible point y. If a strictly
feasible point is available, we can produce a sequence of feasible points from a sequence of (possibly
infeasible) iterates by averaging the sequence with the strictly feasible point; see [26, Lemmas SM3.1
and SM3.2]. This technique preserves the convergence rate. Alternatively, our theory can be extended
to handle the infeasible case; we omit this analysis for simplicity.
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SOLVING SDP USING APPROXIMATE COMPLEMENTARITY 2713

computationally challenging than a single iteration of most methods for solving the
dual. Hence, to determine when (or how often) to recover the primal iterate from the
dual, we would like to understand how quickly the recovered primal iterates converge
to the solution of the primal problem.

To simplify exposition as we discuss algorithms for solving the dual, we reformu-
late the penalized dual SDP as a convex minimization problem,

(6.2) minimize g\alpha (y) : =  - b\top y + \alpha max\{ \lambda max( - C +\scrA \top y), 0\} ,

which has the same solution set as the penalized dual SDP (6.1).
We focus on the convergence of suboptimality and infeasibility, as these two quan-

tities are easier to measure than distance to the solution set. Recall from Table 3 that

\epsilon -optimal dual feasible y
MinObjSDP -  -  -  -  -  -  -  -  -  - \rightarrow 

or MinFeasSDP
(\scrO (

\surd 
\epsilon ),\scrO (

\surd 
\epsilon ))-primal solution X(6.3)

if \kappa = \scrO (1). Thus the convergence rate of the primal sequence depends strongly on
the convergence rate of the algorithm we use to solve the penalized dual SDP.

6.2.1. Subgradient methods, storage cost, and per-iteration time cost.
We focus on subgradient-type methods for solving the penalized dual SDP (6.1),
because the objective g\alpha is nonsmooth but has an efficiently computable subgradient.
Any subgradient method follows a recurrence of the form

(6.4) y0 \in Rm and yk+1 = yk  - \eta kgk,

where gk is a subgradient of g\alpha at yk and \eta k \geq 0 is the step size. Subgradient-
type methods differ in the methods for choosing the step size \eta k and in their use of
parallelism. However, they are all easy to run for our problem because it is easy to
compute a subgradient of the dual objective with penalty g\alpha .

Lemma 6.3. Let Z = C  - \scrA \top y. The subdifferential of the function g\alpha is

\partial g\alpha (y) =

\left\{     
 - b+ conv\{ \alpha \scrA (vv\top ) | Zv = \lambda min(Z)v\} , \lambda min(Z) < 0,

 - b, \lambda min(Z) > 0,

 - b+ \beta conv\{ \alpha \scrA (vv\top ) | Zv = \lambda min(Z)v, \beta \in [0, 1]\} , \lambda min(Z) = 0.

This result follows directly via standard subdifferential calculus from the subdifferen-
tial of the maximum eigenvalue \lambda max(\cdot ). Thus our storage cost is simply \scrO (m + n),
where m is due to storing the decision variable y and the gradient gk, and n is
due to the intermediate eigenvector v \in Rn. The main computational cost in com-
puting a subgradient of the objective in (6.2) is computing the smallest eigenvalue
\lambda min(C  - \scrA \top y) and the corresponding eigenvector v of the matrix C  - \scrA \top y. Since
C - \scrA \top y can be efficiently applied to vectors (using the data access oracles (1.4)), we
can compute this eigenpair efficiently using the randomized Lanczos method [42].

6.2.2. Convergence rate of the dual and primal. The best available subgra-
dient method [40] has convergence rate \scrO (1/\epsilon ) when the quadratic growth condition
is satisfied. (This result does not seem to appear in the literature for SDP; however,
it is a simple consequence of [40, Table 1] together with the quadratic growth con-
dition proved in Lemma 3.1.) Thus, our primal recovery algorithm has convergence
rate \scrO (1/

\surd 
\epsilon ), using the relation between dual convergence and primal convergence

in (6.3). Unfortunately, the algorithm in [40] involves many unknown constants. In
practice, we recommend using dual solvers that require less tuning such as AcceleGrad
[45], which is the one we used in section 7.
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Table 5
Problems for numerics.

MaxCut Matrix completion

minimize 1
\xi 
tr( - LX)

subject to diag(X) = 1
\beta 
1

X \succeq 0

minimize 1
\xi 
(tr(W1) + tr(W2))

subject to Xij = 1
\beta 

\=Xij , (i, j) \in \Omega \Bigl[ 
W1 X

X\top W2

\Bigr] 
\succeq 0

7. Numerical experiments. This section demonstrates the effectiveness of our
methods numerically. We first show that Algorithm 5.1 (primal recovery) recovers an
approximate primal given an approximate dual solution. Next, we show that Algo-
rithm 6.1 with primal recovery achieves reasonable accuracy (10 - 1 \sim 10 - 2) for large-
scale SDP, e.g., 105 \times 105, with substantially lower storage requirements compared to
other SDP solvers.

We test our methods on the MaxCut and matrix completion SDPs, defined in
Table 5.

For MaxCut, L is the Laplacian of a given graph. For matrix completion, \Omega is the
set of indices of the observed entries of the underlying simulated matrix \=X \in Rn1\times n2 .
We set \xi = \| L\| 

F
and \beta = 1.1n for MaxCut and \xi = 1\surd 

n1+n2
and \beta = 2.2

\bigm\| \bigm\| \=X
\bigm\| \bigm\| 
\ast for

matrix completion in all experiments.
Problem scaling. We can improve the conditioning of the penalized dual problem

by reparametrizing the problem with a rescaled objective and constraints. These
changes preserve the solution set (up to a simple rescaling). A reasonable scaling
is crucial in practice, since we use first-order methods to solve the dual. In our
experiments, we scale the problem (the choice of \beta and \xi ) so that the cost matrix
\| C\| 

F
= 1 and the penalty parameter in (6.1) \alpha = 1. This scaling also ensures the

trace of the solution is independent of the problem size n, which makes it easier to
compare performance across different problems.

7.1. Primal recovery. Our first experiment confirms numerically that Algo-
rithm 5.1 (primal recovery) recovers an approximate primal from an approximate
dual solution, validating our theoretical results. As an example, we present results for
the MaxCut SDP from the G1 dataset from the GSet group[2] (with n = 800 nodes).
Results for matrix completion and for other MaxCut problems are similar; correspond-
ing experiments for matrix completion can be found in [26, subsection SM5.3]. To
evaluate our method, we compare the recovered primal with the primal dual solution
X \star , y \star obtained with SeDuMi, an interior point solver [62]. Empirically, the rank of
the primal solution r \star = 13.

We perturb the true dual solution y \star to generate approximate dual solutions

y = y \star + \varepsilon s \| y \star \| 2 ,

where \varepsilon is the noise level, which we vary from 1 to 10 - 5, and s is a uniformly random
vector on the unit sphere inRm. For each perturbed dual y and for each rank estimate
r \in \{ r \star , 3r \star \} , we first solve (MinFeasSDP) to obtain a solution Xinfeas, and then
solve (MinObjSDP) with \delta = 1.1 \| \scrA Xinfeas  - b\| 2. We measure the suboptimality

of the perturbed dual using the relative suboptimality | p \star +g\alpha (y)| 
| p \star | . We measure the

distance of the recovered primal to the solution in three ways: relative suboptimality
| tr(CX)  - p \star | /p \star , relative infeasibility \| \scrA X  - b\| /\| b\| , and relative distance to the
solution set \| X  - X \star \| F

/ \| X \star \| F
.
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(a) (MinFeasSDP).

(b) (MinObjSDP).

Fig. 1. The plots show the primal recovery performance of (MinFeasSDP) (upper) and
(MinObjSDP) (lower) in terms of (relative) primal suboptimality | tr(CX)  - p \star | /p \star , (relative) in-
feasibility gap \| \scrA X - b\| /\| b\| , and (relative) distance to solution \| X  - X \star \| F / \| X \star \| F. The horizontal

axis is (relative) dual suboptimality
| p \star +g\alpha (y)| 

| p \star | . The blue dots corresponds to the choice r = r \star and

the red dots corresponds to the choice r = 3r \star in Algorithm 6.1.

Figure 1 shows distance of the recovered primal to the solution. The blue dots
show the primal recovered using r = r \star , while the red dots show the primal recovered
using r = 3r \star . The blue and red curves are fit to the dots of the same color to provide
a visual guide. The red line (r = 3r \star ) generally lies below the blue line (r = r \star ),
which confirms that larger ranks produce more accurate primal reconstructions.

These plots show that the recovered primal approaches the true primal solution as
the dual suboptimality approaches zero, as expected from our theory.4 From Table 3,
recall that we expect the primal solution recovered from an \epsilon suboptimal dual solution
to converge to the true primal solution as \scrO (

\surd 
\epsilon ) with respect to all three measures.

The plots confirm this scaling for distance to solution and infeasibility, while subopti-
mality decays even faster than predicted by our theory. By construction, the primal
suboptimality of (MinObjSDP) is smaller than that of (MinFeasSDP); however, the
plots measure primal suboptimality by its absolute value. The kink in the curves
describing primal suboptimality for (MinObjSDP) separates suboptimal primal so-
lutions (to the left) from superoptimal solutions (to the right). Finally, notice that
3r \star = 39 is close to the Barvinok--Pataki bound. Interestingly, (MinFeasSDP) still
performs better with this large feasible set (r = 3r \star ) than with a smaller one (r = r \star ),
although our theory does not apply.

4To be precise, the theory we present in Theorems 4.1 and 4.6 requires the approximate dual
solution to be feasible, while y may be infeasible in our experiments. An extension of our results can
show similar bounds when y is infeasible but g\alpha (y) is close to  - d \star .
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Fig. 2. Storage considerations. We compare storage cost of Algorithm 6.1 with different choices
of r against other SDP solvers: Mosek, SDPT3, SeDuMi, and SDPNAL+. Each marker represents
one problem instance. See subsection 7.2 for details.

7.2. Storage considerations. In this section, we demonstrate that our meth-
ods require significantly less storage compared to existing algorithms. Below, our
method Algorithm 6.1 is labeled as CSSDP (complementary slackness SDP).

We compare Algorithm 6.1 with AcceleGrad as the dual solver against Mosek
[49], SDPT3 [66], SeDuMi [62], and SDPNAL+ [64]. Figure 2 shows that the storage
required for these methods scales with the side length n of the primal variable. Each
datapoint corresponds to a problem instance from GSet [2] and DIMACS10 [1] groups
for MaxCut, and a simulated problem for matrix completion.5

The plots show that other methods all exceed our storage limit when n \sim 104.
In contrast, our method scales linearly with the dimension (for any r) and can tackle
problems with n = 106.

7.3. Detailed comparison with other SDP solvers. In this section, we com-
pare the empirical performance of our methods against other SDP solvers for medium
size MaxCut problems. We solve the MaxCut problem with all 67 datasets from
the GSet group. We present only problems with dimension n \geq 7000; additional
comparisons can be found in [26, subsection SM5.7]. We use Algorithm 6.1 with
AcceleGrad as the dual solver. We solve both (MinFeasSDP) and (MinObjSDP)
(with \delta = 1.1 \| \scrA Xinfeas  - b\| 2) with r = \{ 10, \lceil 

\surd 
2n\rceil \} . We compare with other SDP

solvers: Mosek, SDPT3, SeDuMi, and SDPNAL+. We set all solver tolerances to
10 - 4; for AcceleGrad, we stop when the norm of the average of all past subgradients
is < 10 - 4.

Table 6 reports the DIMACS measures [39],6 cut value after rounding, total run-
time, and storage cost of each method for each dataset. Our method is labeled
CSSDP MF (i.e., (MinFeasSDP)) or MO (i.e., (MinObjSDP)). For larger problems,
our method significantly outperforms other solvers in terms of storage as well as run-
time. For the G67 dataset (n = 104), our methods are more than \sim 10 times faster,
and they use \sim 100 times less storage.

5We generate rank 5 random matrices \=X = UV \in Rn1\times n2 where U \in \{ \pm 1\} n1\times 5 and V \in 
\{ \pm 1\} 5\times n2 are random sign matrices. We vary the dimensions by setting n = 75c, m = 50c and
varying c = 10, 100, 1000, . . . . The 25(n1 + n2) log(n1 + n2) observations are chosen uniformly at
random.

6DIMACS measures are basically KKT errors and common in comparing performance of solvers.
The quantities err1 and err2 measure the primal infeasibility, err3 and err4 measure the dual in-
feasibility, err5 measures the primal-dual gap, and err6 measures the violation in complementary
slackness. See [39] and [26, SM5.2.1] for more details.
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With these stopping criteria, the DIMACS measures [39] for each solver reach
10 - 3 \sim 10 - 5. We argue this accuracy suffices: recall that the MaxCut SDP is a
relaxation from which a rounding scheme7 generates a cut from the SDP solution
X \star . To support our claim, we evaluate and compare the cut values after rounding
and compare them to the cut values after rounding a high accuracy solution obtained
with SDPT3 by setting its stopping criteria gaptol and inftol to 10 - 12. After
rounding, we find the moderately accurate solution from our solver provides a better
cut than the high-accuracy solution obtained with SDPT3!

7.4. Convergence rate and runtime for large-scale SDP. We investigate
the empirical convergence of our algorithm for the MaxCut problem with the small-
world graph from the DIMACS10 group with n = 105 nodes and for the matrix com-
pletion problem with simulated data (as described in footnote 5) with n = n1 + n2 =
125,000 and m \sim 3.6 \times 107 constraints. We work with large problems beyond the
limits of other solvers in subsection 7.2 to demonstrate the scalability of our methods.

We run AcceleGrad to solve the dual problem (6.1) and save the dual variable y
at iterations 1, 10, 102, 103, . . . . For each case, we consider both (MinFeasSDP) and
(MinObjSDP) for recovering the primal variable. Since we do not know the optimal
solution, we track performance using the following relative feasible (feas.) gap and
relative primal-dual (p-d) gap:

relative feas. gap:
\| \scrA (X) - b\| 2
\| b\| \infty + 1

; relative p-d gap:
| tr(CX) + g\alpha (y)| 

| tr(CX)| + | g\alpha (y)| + 1
.

(7.1)

We note that tr(CX) + g\alpha (y) bounds primal suboptimality due to Lemma 6.1. It is
traditional to use tr(CX) - b\top y; however, here y is not necessarily dual feasible and so
this simpler measure does not bound primal suboptimality. Note these two measures
completely characterize the convergence: a primal dual pair (X, y) is optimal if and
only if their relative feasibility gap and primal-dual gap are 0. We also measure the
total runtime: the time spent to solve the dual problem (up to that iteration) plus
the time spent to recover the primal variable (at that iteration).

We present the results of this experiment in Figure 3.8 The solid lines and dotted
lines represent (MinFeasSDP) and (MinObjSDP), respectively. As can be seen, the
proposed method solves each problem to moderate accuracy in a reasonable time
when the rank parameter is sufficiently large; ranks of 10--100 suffice. These ranks are
far smaller than the Barvinok--Pataki bound. Once again (MinFeasSDP) empirically
outperforms (MinObjSDP).

In the plots, we connect the points according to the iteration counter in Figure 3:
the top point on each line corresponds to iteration 1 (of the dual solver). We empir-
ically observe that the primal recovery is faster from more accurate dual iterates, so
earlier iterates sometimes correspond to longer runtimes.

Last, we remark that the method works well on matrix completion problems,
although the problem has multiple dual solutions [25, Theorem 5.1]. Hence the nu-
merical evidence suggests that our method is effective even when our assumptions
fail.

7Let u \star be an eigenvector that corresponds to the largest eigenvector of X \star . In practice, sign(u \star )
provides an excellent solution to the MaxCut problem, while the randomized rounding [32] yields a
near-optimal solution with guarantees.

8Results for the MaxCut problem and the matrix completion in terms of DIMACS measures can
be found in Figure 4 and [26, subsection SM5.8], respectively.
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(a) MaxCut: smallworld from DIMACS10 (n = m = 105).

(b) Matrix Completion: simulated data (n = 125\prime 000, m \approx 3.6\times 107).

Fig. 3. Convergence rate and runtime. Convergence of Algorithm 6.1 with (MinFeasSDP) as
the solid line and (MinObjSDP) as the dotted line. Primal recovery from accurate dual iterates is
both more accurate and faster, so primal iterates recovered from early dual iterates can be dominated
by those recovered from later iterates.

(a) MaxCut, DIMACS measures vs. iteration counter.

(b) MaxCut, DIMACS measures vs. time.

Fig. 4. Convergence of Algorithm 6.1 measured by DIMACS errors with MinFeasSDP as the
solid line and MinObjSDP as the dotted line for the MaxCut problem in subsection 7.4.

7.5. Additional numerics. Interested readers may find details of the imple-
mentation, discussion on how to measure the solution quality, and additional numer-
ics with alternate dual solvers (6.1), performance on other datasets, and a detailed
comparison of our methods to existing solvers in [26, section SM5].

8. Conclusion and discussion. This paper presents a new theoretically justi-
fied method to recover an approximate solution to a primal SDP from an approximate
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solution to a dual SDP, using complementarity between the primal and dual optimal
solutions. We present two concrete algorithms for primal recovery, which offer guar-
antees on the suboptimality, infeasibility, and distance to the solution set of the re-
covered primal under the regular conditions on the SDP. The proposed method gives
an advantage over existing solvers for large-scale, weakly constrained SDPs with an
efficient data representation.

We use this primal recovery method to develop a storage-optimal algorithm to
solve regular SDP: use any first-order algorithm to solve a penalized version of the
dual problem, and recover a primal solution from the dual. This method requires
O(m + nr) storage: the storage is linear in the number of constraints m and in the
side length n of the SDP variable, when the target rank r of the solution is fixed. These
storage requirements improve on the storage requirements that guarantee convergence
for nonconvex factored (Burer--Monteiro) methods to solve the SDP, which scale as
O(

\surd 
mn). Furthermore, we show that no method can use less storage without a more

restrictive data access model or a more restrictive representation of the solution. We
demonstrate numerically that our algorithm is able to solve SDPS of practical interest
including MaxCut and matrix completion.

In this work, we focused on SDPs with equality constraints only. Generalizing
these ideas to handle SDPs with inequality constraints constitutes important future
work.

Appendix A. Lemmas for section 1. To establish Lemma 3.1, we prove a
lemma concerning the operator \scrA V \star 

.

Lemma A.1. Instate the hypothesis of subsection 1.1. Then null(\scrA V  \star ) = \{ 0\} .
Proof of Lemma A.1. Suppose by way of contradiction that ker(\scrA V \star 

) \not = \{ 0\} . Let
S \in ker(\scrA V \star 

), so \scrA V \star 
(S) = 0. Recall X \star = V \star S \star (V \star )

\top for some unique S \star \succ 0.
Hence for some \alpha 0 > 0, S \star + \alpha S \succeq 0 for all | \alpha | \leq \alpha 0. Now pick any \alpha with
| \alpha | \leq \alpha 0 to see \scrA (X\alpha ) = \scrA V \star (S \star + \alpha S) = \scrA V \star (S \star ) + 0 = b. Hence the matrix X\alpha 

is feasible for all | \alpha | \leq \alpha 0. But we can always find some | \alpha | \leq \alpha 0, \alpha \not = 0, so that
tr(CX\alpha ) = p \star + \alpha tr(CV \star (SV \star )

\top ) \leq p \star . This contradicts the assumption that X \star is
unique. Hence we must have null(\scrA V \star 

) = \{ 0\} .
Proof of Lemma 3.1. Consider the linear operator \scrD defined in Lemma 3.1. An

argument similar to the proof of Lemma A.1 shows ker(\scrD ) = \{ 0\} [26, Lemma SM4.1].
Hence

\| (Z(y), y) - (Z(y \star ), y \star )\| \leq 1

\sigma min(\scrD )
\| \scrD (Z(y) - Z(y \star ), y  - y \star )\| .

By utilizing Lemma 4.3 with X = Z(y) and Z = X \star and noting \epsilon = tr(Z(y)X \star ) =
\epsilon d(y) = b\top y \star  - b\top y (from strong duality), we see that\bigm\| \bigm\| Z(y) - (U \star )(U \star )\top Z(y)(U \star )(U \star )\top 

\bigm\| \bigm\| 
F
\leq \epsilon 

\lambda min>0(X \star )
+

\sqrt{} 
2\epsilon 

\lambda min>0(X \star )
\| Z(y)\| 

op
.

We also have \scrD (Z(y) - Z(y \star ), y - y \star ) = (Z(y) - (U \star )(U \star )\top Z(y)(U \star )(U \star )\top , 0). Com-
bining this equality and the above pieces, we get the results in Lemma 3.1.

Appendix B. Lemmas from section 4. We first prove Lemma 4.3 concerning
the distance to subspaces and the inner product.

Proof of Lemma 4.3. Complete V to form a basis W = [V ;U ] for Rn, where

U = [v1, . . . , vn - r+1] \in Rn\times (n - r) and where vi is the eigenvector of Z associated with
the ith largest eigenvalue.
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Rotating into the coordinate system formed by W = [V ;U ], let us compare X
and its projection into the space spanned by V , PV (X) := V V \top XV V \top ,

W\top XW =

\biggl[ 
U\top XU U\top XV
V \top XU V \top XV

\biggr] 
, and W\top PV (X)W =

\biggl[ 
0 0
0 V \top XV

\biggr] 
.

Let X1 = U\top XU , B = U\top XV , and X2 = V \top XV . Using the unitary invariance of
\| \cdot \| 

F
, we have PV \bot (X) := X  - V V \top XV V \top satisfying\bigm\| \bigm\| X  - V V \top XV V \top \bigm\| \bigm\| 

F
= \| PV \bot (X)\| 

F
=
\bigm\| \bigm\| W\top XW  - W\top V V \top XV V \top W

\bigm\| \bigm\| 
F

=

\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ X1 B
B 0

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 
F

.
(B.1)

A similar equality holds for \| \cdot \| \ast . Thus we need only bound the terms X1 and B.
Let us first get a bound on X1. Since all the vectors in U have corresponding

eigenvalues at least as large as the threshold T = \lambda n - r(Z) > 0, and Z \succeq 0 by
assumption, we have

\epsilon 
(a)
=

n\sum 
i=1

\lambda i(Z)v\top i Xvi \geq T

n - r+1\sum 
i=1

v\top i Xvi = tr(UXU\top ) = tr(X1)
(b)
= \| X1\| \ast \geq \| X1\| F

,

(B.2)

where we use \epsilon = tr(ZX) in step (a) and X1 \succeq 0 in step (b). Next, we show a bound
on B: \bigm\| \bigm\| BB\top \bigm\| \bigm\| 

\ast 

(a)

\leq \| X2\| op
tr(X1)

(b)

\leq \epsilon 

T
\| X2\| op

(c)

\leq \epsilon 

T
\| X\| 

op
.(B.3)

Here in step (a), we use Lemma B.1 for W\top XW = [
X1 B

B\top X2
]. In step (b), we use the

bound \epsilon 
T \geq \| X1\| \ast proved in (B.2). In step (c), we use \| X2\| op

\leq \| X\| 
op
. We also have

that

(B.4)

\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ 0 B
B\top 0

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 2
F

= tr

\biggl( \biggl[ 
BB\top 0
0 B\top B

\biggr] \biggr) 
= 2 tr(BB\top ) = 2

\bigm\| \bigm\| BB\top 
\bigm\| \bigm\| 
\ast .

Combining pieces, we bound the error in the Frobenius norm:

\bigm\| \bigm\| X  - V V \top XV V \top \bigm\| \bigm\| 
F

(a)

\leq \| X1\| F
+

\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ 0 B
B\top 0

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 
F

(b)

\leq \epsilon 

T
+

\sqrt{} 
2\epsilon 

T
\| X\| 

op
,(B.5)

where step (a) uses (B.1) and the triangle inequality; step (b) uses the inequality
\epsilon 
T \geq \| X1\| F

in (B.2) for bounding the term \| X1\| F
, and uses (B.3), and (B.4) for the

other term. Similarly, we may bound the error in the nuclear norm:\bigm\| \bigm\| X \star  - V V \top X \star V V \top \bigm\| \bigm\| 
\ast 

(a)

\leq \| X1\| \ast +
\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ 0 B

B\top 0

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 
\ast 

(b)

\leq \epsilon 

T
+ 2

\sqrt{} 
r\epsilon 

T
\| X \star \| op

.

Step (a) follows step (a) in (B.5). Step (b) first uses \| [ 0 B
B\top 0

]\| \leq 
\surd 
2r\| [ 0 B

B\top 0
]\| as

[ 0 B
B\top 0

] has rank at most 2r, and then uses the same reasoning as step (b) in (B.5).

Based on the Shur complement and Von Neumann's trace inequality, the following
lemma is proved in [26, subsection SM4.1].

Lemma B.1. Suppose Y = [ A B
B\top D

] \succeq 0. Then \| A\| 
op
tr(D) \geq 

\bigm\| \bigm\| BB\top 
\bigm\| \bigm\| 
\ast .
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