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Preface

“I know of scarcely anything so apt to impress the imagination as the wonderful
form of cosmic order expressed by the law of frequency of error. The law would
have been personified by the Greeks if they had known of it. It reigns with serenity
and complete self-effacement amidst the wildest confusion. The larger the mob,
the greater the apparent anarchy, the more perfect is its sway. It is the supreme
law of unreason.”

—Sir Francis Galton, 1889

ACM 217 is a second-year graduate course on high-dimensional probability, designed
for students in computing and mathematical sciences. We discuss phenomena that
emerge from probability models with many degrees of freedom, tools for working with
these models, and a selection of applications to computational mathematics.

Course overview
After an introductory lecture that describes the character of high-dimensional prob-
ability, the course is divided into three parts. The first part concerns concentration
inequalities, a family of results that describe situations when a random variable typically
takes values close to its mean. The second part develops bounds for the suprema
of random processes, with a focus on Gaussian processes. The third part turns to
questions about empirical processes, random processes that arise from sampling points
from a population.

These notes
The Winter 2021 edition of ACM 217 is the fourth instantiation of a class that initially
focused on concentration inequalities and that has expanded to include other topics
in high-dimensional probability. This year, the course was more mathematical than
some previous editions, with less attention to tools and applications. This slant may
not serve applied students well, and it is possible that future versions of the course will
strike a different balance between theory and practice.

These lecture notes document ACM 217 as it was taught in Winter 2021. The notes
were transcribed by the students as part of their coursework, and they were edited
lightly by the instructor. They are intended as a record for the students who have
taken the course. Other readers should beware that this course is neither refined nor
especially coherent. There is no warranty about correctness. Furthermore, these notes
have been prepared using many sources and without appropriate scholarly citations. This
version has been updated with corrections identified during the Winter 2023 term.

Prerequisites
The prerequisites for this course are differential and integral calculus (e.g., Caltech
Math 1ac), fluency with linear algebra (e.g., ACM 104 and ACM 107), and a thorough
grounding in probability (e.g., ACM 116 and ACM 117). Exposure to functional analysis
(e.g., ACM 105) is valuable but not essential.



viii

Supplemental textbooks
There is no required textbook for the course. Highly recommended resources include

• [Tro15a] Tropp, An introduction to matrix concentration inequalities, 2015.
• [van16] van Handel, Probability in high dimensions, 2016.
• [Ver18] Vershynin, High-dimensional probability, 2018.

Vershynin’s book is an elegant introduction to ideas from high-dimensional probability,
focusing on basic technical methods, useful results, and stylized applications. Van
Handel’s lecture notes are more systematic and mathematical, and they are concerned
with general phenomena that emerge from high-dimensional probability models. My
monograph treats all the basic matrix concentration inequalities, along with many
applications in computational mathematics. These notes draw extensively from these
references.

Some other relevant surveys and books include

• [Bar05] Barvinok, “Concentration of measure,” 2005.
• [BLM13] Boucheron et al., “Concentration inequalities,” 2013.
• [FR13] Foucart and Rauhut, A mathematical introduction to compressed sensing,

2012.
• [Led01] Ledoux, The concentration of measure phenomenon, 2001.
• [LT11] Ledoux and Talagrand, Probability in Banach spaces, 1991.
• [Ros11] Ross, “Fundamentals of Stein’s method,” 2011.
• [Tro17] Tropp, “ACM 217: Lecture notes on concentration inequalities,” 2017.
• [Tro19] Tropp, “Matrix concentration and computational linear algebra,” 2019.
• [van17] van Handel, “Structured random matrices,” 2017.
• [Ver12] Vershynin, “Introduction to the non-asymptotic analysis of random

matrices,” 2012.
• [Wai19] Wainwright, High-dimensional statistics, 2019.

Most of these references are freely available online, or they can be downloaded from
the Caltech library.
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Notation and Definitions

The notation in this course is standard in probability theory and related fields.

Set theory
The Pascal notation := and =: generates a definition. Sets without any particular
internal structure are denoted with sans serif capitals: A,B, E. Collections of sets are
written in a calligraphic font: A,B,F.

The natural numbers ℕ := {1, 2, 3, . . . }. Ordered tuples and sequences are written
with parentheses, e.g.,

(𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑛) or (𝑎1, 𝑎2, 𝑎3, . . . )

Alternative notations include things like (𝑎𝑖 : 𝑖 ∈ ℕ) or (𝑎𝑖 )𝑖 ∈ℕ or simply (𝑎𝑖 ).

Real analysis
We write ℝ for the field of real numbers, equipped with the absolute value |·|. The
extended real numbers ℝ := ℝ ∪ {±∞} are defined with the usual rules of arithmetic
and order. In particular, we instate the conventions that 0/0 = 0 and 0 · ±∞ = 0. We
use the standard (American) notation for open and closed intervals, e.g.,

(𝑎, 𝑏) := {𝑥 ∈ ℝ : 𝑎 < 𝑥 < 𝑏} and [𝑎, 𝑏] := {𝑥 ∈ ℝ : 𝑎 ≤ 𝑥 ≤ 𝑏}.

Occasionally, we will visit the complex field ℂ.

Warning: Positive means ≥ 0! ■
In this course, we enforce the convention that positive means ≥ 0 and negative

means ≤ 0. For example, the positive integers compose the set ℤ+ := {0, 1, 2, 3, . . . },
and the positive reals compose the set ℝ+ := {𝑥 ∈ ℝ : 𝑥 ≥ 0}. When required, we
may deploy the phrase strictly positive to mean > 0 and strictly negative to mean < 0.
Similarly, increasing means “never going down” and decreasing means “never going
up.”

Linear algebra
We usually denote scalars with lowercase Roman (𝑎, 𝑏) or Greek (𝛼, 𝛽) letters. Low-
ercase boldface italics (𝒂 ,𝒃) refer to vectors. Uppercase boldface italics (𝑨,𝑩) are
associated with matrices or linear maps.

The symbol ∗ denotes the (conjugate) transpose of a vector or matrix. The operator
tr returns the trace of a square matrix. Nonlinear functions bind before the trace.

Norms and pseudonorms are denoted with double bars: ∥·∥. We typically add a
subscript to refer to a specific norm, such as the Euclidean norm ∥·∥ℓ2 .

Probability
Uppercase italic letters (near the end of the Roman alphabet) usually refer to (real)
random variables: 𝑊 ,𝑋 ,𝑌 , 𝑍 . For vector-valued random variables, we typically
use lowercase boldface italic: 𝒙 , 𝒚 , 𝒛 . Matrix-valued random variables will often be
denoted with uppercase boldface italic: 𝑿 ,𝒀 ,𝒁 .
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In some instances, random variables may take values in A Polish space is a complete, separable
metric space.

a Polish space Ω. You will
not miss much by assuming that Ω = ℝ or Ω = ℝ𝑛 . To avoid distracting technicalities,
we do not always decorate theorems with complete hypotheses. You should always
assume that random variables are sufficiently regular for the results to make sense
(e.g., having two finite moments or taking values in a Polish space).

We use small capitals for named distributions. For example, uniform or normal.
The symbol ∼ means “has the distribution.” We write “iid” for independent and
identically distributed.

The map ℙ {·} returns the probability of an event. The operator 𝔼[·] returns the
expectation of a random variable taking values in a linear space. We only include the
brackets when it is necessary for clarity, and we impose the convention that nonlinear
functions bind before the expectation.

The operator Var[·] returns the variance of a random variable, while Cov(·, ·)
computes the covariance of a pair of random variables. Occasionally, we may write
𝕄[·] for the median.



1. Introduction to HDP

Date: 5 January 2021 Scribe: Joel Tropp

Agenda:
1. What is HDP?
2. Applications of HDP
3. Nonasymptotic analysis
4. Concentration
5. Suprema
6. Universality
7. Phase transitions

Probability theory is the study of predictable phenomena that arise from randomness.
Although a simple probabilistic experiment has an unpredictable outcome, we can
still make confident statements about the aggregate behavior of a large number of
experiments. For example, if we flip a fair coin 100 times, we anticipate that it turns
up heads roughly half of the time. We would be shocked if this experiment yielded 97
heads, and we would rightly question whether the coin is indeed fair.

Classical limit laws offer detailed information about what happens when we increase
the number of experiments without bound. High-dimensional probability (HDP) studies
an intermediate regime: models where the number of random variables is large but
fixed. HDP also considers phenomena that occur in high-dimensional (linear) spaces.
We will see that many of the classical limit laws admit nonasymptotic variants that
quantify the precise role of the number of random variables or the dimension. While
results in HDP are usually not as lapidary as limit laws, they are far more useful for
applications in computational mathematics and statistics—which are finite by nature.

The goal of this course is to develop some of the core principles and mathematics
behind HDP, with applications to computational mathematics. The lectures will focus
primarily on the mathematics, while application material will be deferred to exercises
and problem sets.

1.1 HDP and its applications
To reiterate, high-dimensional probability refers to the study of probability models
that involve either a large number of random variables or random variables that take
values in a high-dimensional (linear) space. The overarching goal of this field is to
obtain quantitative, nonasymptotic statements that provide explicit information about
how probabilities depend on problem parameters.

1.1.1 Phenomena in HDP
There are a number of striking probabilistic phenomena that emerge in high dimensions.
Some of these behaviors can be regarded as nonasymptotic analogues of the classical
limit theorems, while others are novel contributions of the high-dimensional theory.

• Concentration. Even for a complicated random variable, it is often true that the
typical values are close to the median or expectation. Concentration theory
describes when this situation occurs and it quantifies the probability that the
random variable exhibits a large deviation from its mean. These results may be
viewed as nonasymptotic refinements of the weak law of large numbers.

• Suprema. In many applications, we encounter the supremum of a large number
of correlated random variables A random process is an indexed family

of random variables.
(aka the supremum of a random process). One

of the main tasks in HDP is to develop bounds on the expectation of this type
of random variable. These results can be viewed as deep improvements over
elementary maximal inequalities.
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• Universality. The central limit theorem shows that a standardized sum converges
weakly to a normal distribution under minimal assumptions on the distribution of
the summands. More general universality results describe other settings where a
complicated random variable has negligible dependence on the distribution of
the constituent random variables.

• Phase transitions. Many high-dimensional random variables have distinct regimes
of behavior. For instance, consider a statistical procedure that succeeds with
high probability when it has enough data and fails with high probability when it
lacks enough data. This shift in performance occurs over a very small increase in
the number of data points. These results are nonasymptotic realizations of 0–1
laws from classical probability theory.

The balance of this lecture provides further details about each one of these phenomena,
and it describes general principles that explain when we might expect to witness these
outcomes.

This course focuses on concentration phenomena, bounds for suprema, and ap-
plications of these bounds to empirical process theory. Lacking sufficient time, we
will not cover universality, but there is some related material in the CMS/ACM 117
lecture notes from 2019–2022. We will not treat phase transitions in any depth, but
the problem sets will explore one example from statistical signal processing.

1.1.2 Application areas
Over the last two decades, HDP has become an increasingly important tool for a wide
range of application areas:

• Numerical algorithms. Many contemporary algorithms in numerical linear algebra,
numerical analysis, and numerical optimization use randomness for efficiency or
robustness. For example, the randomized singular value decomposition algorithm
is a very effective method for computing truncated SVDs of large matrices that
challenge classical direct or iterative algorithms. Monte Carlo methods are a
core technique for computing high-dimensional integrals. Stochastic gradient
has become one of the workhorse algorithms in modern machine learning.

• Randomized algorithms. HDP tools are also central to the development and analysis
of other randomized computer algorithms. For example, methods for hashing
use (pseudo)random functions to summarize data. Algorithms for processing
streaming data are often based on random projections.

• Statistics and machine learning. Roughly, an empirical process is the
average value of a function at
observed (random) data points.

Probability models for data now involve large
numbers of variables and large numbers of observations. Core problems include
classification, clustering, feature selection, regression, and model identification.
Methods for studying empirical processes also depend heavily on HDP.

• Signal processing. A signal is just a function, with the
understanding that the function
carries information of some type.

Signal processing engineers often pose random models for
signals or for noise contaminating signals. Modern problems often involve very
high-dimensional signals or very large numbers of signals. Applications include
detection, estimation, prediction, and filtering.

• Information theory. Random codes play a key role in proving theorems about
channel capacity and compression. Furthermore, while practical codes are
structured, they mimic the behavior of random codes.

• Quantum information science. According to Born’s rule, the observation of a
quantum system yields a random outcome. As a consequence, probability is
at the heart of quantum mechanics and quantum computing. The number
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of degrees of freedom in a quantum system grows very quickly (because it is
modeling by a tensor product of subsystems), so HDP methods are relevant.

• Statistical mechanics. The basic insight behind statistical modeling of large physical
systems (e.g., a volume of gas) is that the overall behavior is often predictable,
even if components (e.g., individual molecules) are unpredictable. HDP is
relevant because of the large number of particles. Other applications include
study of percolation and spin glasses.

• Large random structures. HDP also arises in the mathematical study of large
random structures, including random matrices and random graphs.

• Asymptotic convex geometry. HDP has become a central tool in the study of
high-dimensional linear spaces and in high-dimensional convex geometry.

The lecturer’s personal interest in HDP arises from its application to randomized
numerical algorithms. Since we design the algorithms, our probabilistic analysis
provides valid insights on the performance of the algorithm.

Similarly, in statistics, (randomized) experimental design is a critical tool for
evaluating competing alternatives (e.g., vaccine versus placebo). In this setting, we
can have confidence that we make valid inferences because we control the assignment
of subjects to test conditions. Indeed, HDP has always had close connections with
statistics.

In contrast, many machine learning problems involve observational data, and we
have limited information about the mechanism that generates the data. In these
settings, strong assumptions like independence must be regarded with suspicion. It is
essential that practitioners validate probability models before trusting the outcomes of
mathematical analysis based on these models. These concerns are extra-mathematical,
but they do influence the choice of applications that we will discuss.

1.2 Nonasymptotic analysis
A key feature of HDP is the nonasymptotic analysis of large probability models. To
appreciate why the classical limit theorems are not adequate, let us recall the statement
of the weak law of large numbers.

Theorem 1.1 (Weak law of large numbers (WLLN)). Let 𝑋 be a real random variable
with expectation 𝔼𝑋 = 𝑚. Recall that iid means “independent

and identically distributed.” The
phrase “𝑋𝑖 is a copy of 𝑋 ” means that
𝑋𝑖 has the same distribution as 𝑋 .

Consider an iid sequence (𝑋𝑖 : 𝑖 ∈ ℕ) of copies of 𝑋 .
Form the running averages:

𝑋𝑛 :=
1
𝑛

∑︁𝑛

𝑖=1
𝑋𝑖 for 𝑛 ∈ ℕ.

Then, for each 𝑡 > 0, we have the limit

ℙ
{
|𝑋𝑛 −𝑚 | ≥ 𝑡

}
→ 0 as 𝑛 → ∞.

For each level 𝑡 , the probability that the running average 𝑋𝑛 deviates from the true
expectation 𝑚 = 𝔼𝑋 by more than 𝑡 vanishes as the number of terms 𝑛 increases.
Eventually, we can be as confident we desire that the running average approximates
the expectation as well as we require.

Example 1.2 (Survey sampling). The students at Hogwarts are selecting a new student
body president. Overall, an (unknown) proportion𝑝 ∈ [0, 1] prefer the candidate from
Gryffindor over the candidate from Slytherin. Given the importance of this election,
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the Wizard Times sends owls to 𝑛 random students (chosen with replacement) to ask
which candidate they prefer. For 𝑖 = 1, . . . , 𝑛, define

No value judgment is implied by the
definition of 𝑋𝑖 .

𝑋𝑖 =

{
1, student 𝑖 prefers Gryffindor;
0, student 𝑖 prefers Slytherin.

The sample average 𝑋𝑛 = 𝑛−1 ∑𝑛
𝑖=1 𝑋𝑖 is the empirical proportion of surveyed students

that prefer the candidate from Gryffindor. If the sample is chosen at random, then
𝔼𝑋𝑖 = 𝑝 and so 𝔼𝑋𝑛 = 𝑝 as well. For 𝑡 > 0, the WLLN ensures that

ℙ
{
|𝑋𝑛 − 𝑝 | ≥ 𝑡

}
→ 0 as 𝑛 → ∞.

That is, if enough students are surveyed, then the empirical proportion of votes for
Gryffindor is a good approximation of the true preferences of the entire student body.

A practical issue with this application is that the WLLN is an asymptotic claim. It
only tells us what happens in the large-sample limit, whereas there are only a finite
number of students to survey (at which point the population parameter 𝑝 is completely
determined). A more useful result would quantify the probability that a sample of size
𝑛 gives an approximation with error level 𝑡 to the true proportion 𝑝 . ■

This example makes it clear why nonasymptotic statements (𝑛 fixed) can be
essential for applications. Similar challenges arise many other settings in computational
mathematics. For example, a randomized algorithm must terminate after a finite
number of steps, so nonasymptotic analyses are more informative than limit theorems.

1.3 Concentration
In high-dimensional probability, the most basic phenomenon is that, under fairly weak
assumptions, a random variable typically takes values close to its mean.

Consider an independent family (𝑋1, . . . , 𝑋𝑛) of real random variables. For a
(measurable) function 𝑓 : ℝ𝑛 → ℝ, we can construct a real random variable

𝑍 := 𝑓 (𝑋1, . . . , 𝑋𝑛).

The random variable 𝑍 depends on a large number of independent inputs through
the intermediation of the function 𝑓 , and we can use this structural information to
understand the behavior of 𝑍 more deeply.

A concentration inequality controls the probability that the random variable 𝑍
deviates from its median 𝕄𝑍 or its expectation 𝔼𝑍 by a specified amount 𝑡 > 0:

ℙ {|𝑍 −𝕄𝑍 | ≥ 𝑡 } ≤ or
ℙ {|𝑍 − 𝔼𝑍 | ≥ 𝑡 } ≤ .

You can think about a concentration inequality as a quantitative version of the WLLN.
For contrast, a tail bound provides a one-sided deviation inequality (without absolute
values); we can combine a lower and an upper tail bound to reach a concentration
inequality.

Most elementary probability courses already include some of the fundamental
concentration results. First, Chebyshev’s inequality states that

ℙ {|𝑍 − 𝔼𝑍 | ≥ 𝑡 } ≤ Var[𝑍 ]
𝑡 2

for 𝑡 > 0. (1.1)
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That is, 𝔼𝑍 2 < +∞.This result is valid whenever 𝑍 has a finite second moment. It uses the variance to
summarize the fluctuations of the distribution: the smaller the variance, the sharper
the concentration. But it only delivers weak tail decay on the order of 𝑡 −2.

This approach is commonly, but
inaccurately, referred to the
Cramér–Chernoff method or the
Hoeffding method.

You may also be familiar with the Laplace transform method, which is due to
Bernstein. This technique yields a (one-sided) tail bound of the form

ℙ {𝑍 − 𝔼𝑍 ≥ 𝑡 } ≤ inf𝜃>0 e−𝜃𝑡 · 𝔼 e𝜃 (𝑍−𝔼𝑍 ) . (1.2)

This result is more limited than (1.1) because it is useful only when the upper tail of 𝑍
decays exponentially. That is, ℙ {𝑍 ≥ 𝑡 } ≤ 𝐶 e−𝑐𝑡 for all

𝑡 > 0 for certain constants 𝑐 ,𝐶 > 0.
It uses the moment generating function (mgf) to describe the

fluctuations of the distribution, and it can certify the fact that 𝑍 has exponential—or
better—tail decay.

Chebyshev’s inequality (1.1) and the Laplace transform method (1.2) are particu-
larly valuable for independent sums because the variance and the logarithm of the mgf
are additive. That is, we specialize to the case where

𝑍 =
∑︁𝑛

𝑖=1
𝑋𝑖 for independent (𝑋𝑖 ).

In this situation,
Var[𝑍 ] =

∑︁𝑛

𝑖=1
Var[𝑋𝑖 ], and

log𝔼 e𝜃 (𝑍−𝔼𝑍 ) =
∑︁𝑛

𝑖=1
log𝔼 e𝜃 (𝑋𝑖−𝔼𝑋𝑖 ) .

These facts allow us to exploit information about the individual summands 𝑋𝑖 to extract
more detailed information about the sum 𝑍 . In particular, if each of the summands 𝑋𝑖
has controlled variance (or mgf), then so does the sum 𝑍 .

For the more general case where 𝑍 = 𝑓 (𝑋1, . . . , 𝑋𝑛), it is harder to deploy
Chebyshev’s inequality and the Laplace transform method. To do so, we must deduce
bounds on the variance (or mgf) of 𝑍 from information about the function 𝑓 and its
random arguments 𝑋𝑖 . In the first part of the course, we will develop mathematical
techniques that allow us to do so. These results will lead to concentration inequalities
for many nonlinear functions.

The basic principle underlying modern concentration theory was enunciated by
Michel Talagrand in a 1996 paper [Tal96]:

“A random variable that depends (in a ‘smooth’ way) on the influence of many independent
variables (but not too much on any of them) is essentially constant.”

Our goal will be to understand what this statement means and how to quantify the
parentheticals.

1.4 Suprema
Many random variables arising in high-dimensional probability exhibit sharp con-
centration around the expectation. It is a remarkable fact that we can easily verify
concentration properties for many random variables of interest. Nevertheless, con-
centration inequalities provide no information about the size of the expectation!
Obtaining bounds for the expectation typically requires a separate (and more onerous)
investigation.

Although we cannot hope to address every possible example, we can specialize our
attention to classes of random variables that arise frequently in applications. For an
index set T, consider a real-valued random process:

X := (𝑋𝑡 : 𝑡 ∈ T) ∈ ℝT.
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In other words, the random process X comprises real random variables 𝑋𝑡 that are
indexed by points in 𝑡 ∈ T. The random variables 𝑋𝑡 may be correlated, and it is
helpful to think about 𝑋𝑡 as a smooth function of the index 𝑡 . From the process, we
can construct a real random variable of the form For now, let us ignore measurability

issues that can arise from this
definition.𝑍 := sup{𝑋𝑡 : 𝑡 ∈ T}.

This type of random variable appears in a huge number of situations. It is relatively
easy to obtain concentration inequalities for 𝑍 , but studying the behavior of 𝔼𝑍
requires a set of deep new ideas.

To indicate how suprema might appear, let us present a simple example involving
random matrices.

Example 1.3 (Operator norm of a random matrix). A random matrix in captivity:

𝑿 =


+1 −1 −1 −1
−1 −1 −1 +1
+1 +1 −1 +1



A random matrix is a random variable
𝑿 ∈ ℝ𝑚×𝑛 that takes values in a linear space of matrices. Equivalently, 𝑿 is a
rectangular array of real random variables that may or may not be independent. The
ℓ2 operator norm of the random matrix is defined as

∥𝑿 ∥ℓ2→ℓ2 := sup
{
𝒖∗𝑿𝒗 : ∥𝒖 ∥ℓ2 = 1, ∥𝒗 ∥ℓ2 = 1

}
.

We can regard the norm of the random matrix as the supremum of a random process
that is indexed by pairs 𝑡 = (𝒖 ,𝒗 ). The index set T is the Cartesian product of two
Euclidean unit spheres.

Observe that the family (𝒖∗𝑿𝒗 ) consists of correlated random variables. Indeed, if
we change the vector 𝒖 or 𝒗 by a small amount, then the bilinear form 𝒖∗𝑿𝒗 changes
by only a small amount. Nevertheless, the bilinear form can vary widely as the index
vectors range over the two unit spheres. ■

Studying the supremum of a random process X is challenging. Somehow, we
must account for the fact that the process may contain many elements with strong
correlation. In other words, if we know the value of one element of the process, then
the value of other “nearby” elements is likely to be similar (and in particular not much
larger). But more “distant” elements of the process are less correlated, and these may
contribute to an increase in the supremum. Thus, the supremum of the process reflects
both the rate at which the constituent random variables change and also the size of
the index set.

This insight leads to a principle that ultimately goes back to Kolmogorov:

If the elements of a random process vary in a “smooth” way with the index, then the
supremum of the process is controlled by the “complexity” of the index set.

In the second part of the course, we will work to implement the insights behind this
statement. The third part of the course contains applications of these ideas to signal
processing, statistics, and learning theory.

1.5 Universality
Another fundamental property of probability models in high-dimensions is that the
detailed distributions of the constituent random variables have a limited effect on the
overall behavior of the model. This idea dramatically generalizes the central limit
theorem (CLT).

Let 𝑋 be a random variable with finite second moment. Consider an iid sequence
(𝑋𝑖 : 𝑖 ∈ ℕ) of copies of 𝑋 . The CLT states that appropriately normalized partial sums
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of this sequence converge weakly to a normal distribution:

𝑛−1/2
∑︁𝑛

𝑖=1
𝑋𝑖 ⇝ normal(𝔼[𝑋 ],Var[𝑋 ]).

In other words, the limit only depends on the distribution of the random variable 𝑋
through its first and second moment. This is an example of a universality phenomenon
or an invariance principle.

Let us describe part of the argument behind one of the classic proofs of the CLT to
see how the result might extend. For a smooth function 𝑓 : ℝ → ℝ, we can expand 𝑓
in a Taylor series about zero:��𝑓 (𝑡 ) − [

𝑓 (0) + 𝑓 ′ (0) · 𝑡 + 1
2 𝑓

′′ (0) · 𝑡 2
] �� ≤ 1

6 ∥ 𝑓
′′′∥sup · |𝑡 |3.

Now, consider two real random variables 𝑋 and 𝑌 that share the same first and second
moment. Applying this formula with both 𝑋 and 𝑌 and taking the expectation, we can
reach the bound

|𝔼[ 𝑓 (𝑋 ) − 𝑓 (𝑌 )] | ≤ 1
6 ∥ 𝑓

′′′∥∞ ·
(
𝔼 |𝑋 |3 + 𝔼 |𝑌 |3

)
.

This formula shows that 𝔼 𝑓 (𝑋 ) ≈ 𝔼 𝑓 (𝑌 ) for every sufficiently smooth function 𝑓 .
In other words, the typical values of the random variable 𝑓 (𝑋 ) only reflect the first
two moments of 𝑓 . With some additional ideas, this argument lifts to multivariate
functions. As a particular consequence, this approach leads to a version of the CLT.

We summarize this idea in a general principle, attributed to Lindeberg:

A random variable that depends in a smooth way on the influence of many independent
random variables does not reflect their detailed distributions.

We will not pursue Lindeberg’s insight this term, but you may refer to your notes
from CMS/ACM 117 for an introduction. Van Handel’s notes [van16] also give a brief
treatment of these ideas.

1.6 Phase transitions
Last, we describe another phenomenon that occurs in high-dimensional probability
models. As you know, water presents in solid form below a temperature of 0◦ Celsius.
Ice melts into water as soon as the temperature becomes positive. It remains liquid
until the temperature passes 100◦ Celsius, when it rapidly changes into a gas.

Similarly, a probability model may exhibit a small number of characteristic behaviors
that depend on an underlying model parameter. As the parameter increases, the model
stably presents a single behavior. When the parameter passes a threshold, the behavior
quickly changes to a new regime. This is called a phase transition. It can be viewed as
a nonasymptotic counterpart to the 0–1 laws from classical probability.

Here is a concrete example arising from survey sampling.

Example 1.4 (Survey sampling). Among the students at Hogwarts, a proportion 𝑝 ∈ [0, 1]
prefer the Gryffindor candidate to the Slytherin candidate. We interrogate the
preferences of 𝑛 randomly chosen students (with replacement), and we record the iid
random variables 𝑋𝑖 ∼ bernoulli(𝑝). Now, consider whether a strict majority of the
sampled students vote in favor of the candidate from Gryffindor:

𝑓 (𝑋1, . . . , 𝑋𝑛) = 1
{
𝑛−1 ∑𝑛

𝑖=1 𝑋𝑖 >
1
2

}
= 1{majority vote for Gryffindor}.

It is an exercise to compute the expectation of this random variable as a function of 𝑝 .
Let us present a plot that illustrates the key outcome from this calculation:



Lecture 1: Introduction to HDP 8

In other words, it is extremely unlikely that the majority of the sample prefers
Gryffindor when 𝑝 ≪ 1

2 , while it is extremely likely that the majority of the sample
prefers Gryffindor when 𝑝 ≫ 1

2 . The key observation is that the transition between
the two regimes occurs over the narrow range 𝑝 = 1

2 ± 𝑛
−1/2. The larger the sample

size 𝑛, the sharper the transition. Indeed, as 𝑛 → ∞, the smooth curve converges to a
step function.

In contrast, one may consider a “junta” function:

𝑔 (𝑋1, . . . , 𝑋𝑛) = 1{𝑋1 = 1}.
That is, we record whether the first respondent prefers Gryffindor, and we ignore
everyone else’s vote. You may confirm that 𝑝 ↦→ 𝔼 𝑔 is a linear function; it exhibits no
sharp change in behavior. ■

This example generalizes to awider setting. A Boolean function is a map
𝑓 : {0, 1}𝑛 → {0, 1}.

For Boolean functions, we can formulate
a principle that describes when phase transitions take place.

Applied to a family of iid Bernoulli random variables with mean 𝑝 , a sufficiently symmetric
Boolean function exhibits a sharp phase transition as the parameter 𝑝 increases.

Justifying this claim requires a long excursion into the harmonic analysis of Boolean
functions, which would take us too far afield.

Later in this course, we will encounter a beautiful geometric phase transition
that occurs in statistical signal processing; this result is an easy consequence of
a deep comparison theorem for Gaussian processes. Many other types of high-
dimensional probability models exhibit phase transitions, including random graphs,
random matrices, spin glasses, and so forth. Unfortunately, we currently lack a unified
theory that captures all of these examples.

Notes
This lecture is inspired by Ramon van Handel’s notes [van16, Chap. 1].

Lecture bibliography
[Tal96] M. Talagrand. “A new look at independence”. In: Ann. Probab. 24.1 (1996), pages 1–

34.

[van16] R. van Handel. “Probability in High Dimensions”. APC 550 Lecture Notes, Princeton
Univ. 2016. url: https://web.math.princeton.edu/~rvan/APC550.pdf.
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2. Variance Bounds
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In this lecture, we begin our discussion of concentration inequalities. As described in
Section 2.3, a concentration inequality controls the probability that a random variable
deviates from some value (usually its median or expectation) by more than a specified
amount.

Most elementary probability courses cover Chebyshev’s inequality, which shows how
to establish a (weak) concentration inequality for a random variable whose variance is
known. In view of this result, it is productive to develop methods for bounding the
variance of a random variable.

Recall that the variance of a sum of independent variables is equal to the sum of
the variances of the individual terms. We will generalize this property to obtain a
bound on the variance of an arbitrary (measurable) function of independent random
variables. This important result is called the tensorization of variance.

By combining the tensorization result with representations for the variance, we
can easily derive the classic Efron–Stein–Steele inequality. By combining tensorization
with simple range bounds for the variance, we can derive the bounded differences
inequality for the variance. In the next lecture, we will see how these results lead us to
variance bounds based on functional inequalities.

2.1 Concentration and tails
Recall that a concentration inequality controls the probability that a real random
variable 𝑍 deviates from its median 𝕄𝑍 or its expectation 𝔼𝑍 by more than a
specified amount 𝑡 > 0. That is, we seek inequalities of the form

ℙ {|𝑍 −𝕄𝑍 | ≥ 𝑡 } ≤ ? or
ℙ {|𝑍 − 𝔼𝑍 | ≥ 𝑡 } ≤ ? .

The bounds depend on the structure of the random variable 𝑍 , as well as the level 𝑡 of
the deviation from the central tendency. In contrast, a tail bound provides a one-sided
deviation inequality (without absolute values); we can use the union bound to combine
a lower tail bound and an upper tail bound to reach a concentration inequality.

To motivate our development, we quote the basic principle underlying modern
concentration theory:

“A random variable that depends (in a ‘smooth’ way) on the influence of many independent
variables (but not too much on any of them) is essentially constant.”

—Michel Talagrand (1996)

Our goal in the first part of the course is to make sense out of this principle.
To that end, let us consider an independent family (𝑋1, . . . , 𝑋𝑛) of real random

variables. Given a (measurable) function 𝑓 : ℝ𝑛 → ℝ, we can construct the real
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random variable

𝑍 := 𝑓 (𝑋1, . . . , 𝑋𝑛).

The random variable 𝑍 clearly depends on a large number of independent inputs
through the intermediation of the function 𝑓 . We need to develop techniques for
measuring the “smoothness” of the function 𝑓 , and we must investigate what it means
for 𝑍 not to depend “too much” on a few inputs. Today’s lecture takes the first steps in
this program.

2.2 Variance
The simplest and most widely applicable concentration inequalities involve the variance
of a random variable.

Definition 2.1 (Variance). L2 consists of real random variables
that are square-integrable:
𝔼𝑋 2 < +∞.

Let 𝑍 be a real random variable in L2. The variance of 𝑍 is

Var[𝑍 ] := 𝔼(𝑍 − 𝔼𝑍 )2 = 𝔼𝑍 2 − (𝔼𝑍 )2. (2.1)

The definition of variance requires us to make a few comments on the notation that
we use for expectation.

Notation 2.2 (Expectation). As usual, we abuse notation by writing 𝔼𝑍 for the
expectation of the random variable 𝑍 , which is a constant real number. We
abbreviate 𝔼𝑍 2 B 𝔼[𝑍 2]. More generally, nonlinear functions always bind before
the expectation.

Given the variance of a random variable, we can bound the tails by means of
Chebyshev’s inequality.

Proposition 2.3 (Chebyshev). For each real random variable 𝑍 ∈ L2,

ℙ {|𝑍 − 𝔼𝑍 | ≥ 𝑡 } ≤ Var[𝑍 ]
𝑡 2

for all 𝑡 > 0. (2.2)

Exercise 2.4 (Chebyshev). Prove Proposition 2.3. Hint: Use Markov’s inequality.

From Chebyshev’s inequality, we realize that the variance of a random variable
provides information on its concentration about the mean. As a consequence, the
variance is a useful summary of how much the random variable deviates from its mean.
A useful alternative presentation is Recall that the standard deviation,

stdev, is the square root of the
variance. The wedge ∧ is the infix
minimum.

ℙ {|𝑍 − 𝔼𝑍 | ≥ 𝑡 · stdev[𝑍 ]} ≤ 1 ∧ 𝑡 −2.

This formulation indicates that the standard deviation is the typical scale on which the
random variable fluctuates around its mean. Chebyshev’s inequality only produces
weak tail decay: the probability of a fluctuation of more than 𝑡 times the standard
deviation is bounded by 𝑡 −2. We will establish much stronger concentration bounds
later in the course.

In the rest of this lecture, we will develop bounds for the variance that can be used
in concert with Chebyshev’s inequality to obtain concentration inequalities.
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2.3 Representations of variance
This section introduces two alternative representations of the variance of a random
variable.

The first representation states that the expectation is the point about which a
random variable has the minimum expected squared deviation. This result is the
starting point for the theory of conditional expectation.

Proposition 2.5 (Variance: Variational formula). Let 𝑍 be a real random variable in L2.
Then

Var[𝑍 ] = inf𝑎∈ℝ 𝔼(𝑍 − 𝑎)2. (2.3)

The infimum is attained at 𝑎 = 𝔼𝑍 .

Exercise 2.6 (Variance: Variational formula). Establish Proposition 2.5.

The second proposition states that the variance can be written as the expected
squared difference between two iid copies of the random variable.

Proposition 2.7 (Variance: Exchangeable pairs). Let 𝑍 , 𝑍 ′ ∈ L2 be iid real random variables.
Then The positive and negative parts of a

number are defined as

(𝑎 )+ B max{𝑎, 0};
(𝑎 )− B max{−𝑎, 0}.

Note that both are positive!

Var[𝑍 ] = 1
2 𝔼(𝑍 − 𝑍 ′)2 (2.4)

= 𝔼(𝑍 − 𝑍 ′)2+ (2.5)

= 𝔼(𝑍 − 𝑍 ′)2− . (2.6)

Exercise 2.8 (Variance: Exchangeable pairs). Prove Proposition 2.7.

As a consequence, for a random variable with small variance, two iid copies tend
to be close together in expected mean square. For future reference, we frame a related
definition.

Definition 2.9 (Exchangeable pairs). We say that a pair (𝑍 , 𝑍 ′) of random variables is
exchangeable if (𝑍 , 𝑍 ′) and (𝑍 ′, 𝑍 ) have the same distribution.

In particular, when (𝑍 , 𝑍 ′) is exchangeable, both random variables 𝑍 and 𝑍 ′ share the
same marginal distribution. In Proposition 2.7, since 𝑍 and 𝑍 ′ are iid random variables,
we can easily confirm that (𝑍 , 𝑍 ′) is an exchangeable pair of random variables. In
general, an exchangeable pair need not consist of independent random variables.

Exercise 2.10 (Exchangeable pairs). Find three different examples of an exchangeable pair
(𝑍 , 𝑍 ′) where 𝑍 is a standard normal random variable.

2.4 Variance bound
Next, we develop a simple bound for the variance of a random variable that takes
values in a bounded interval. In this case, the variance is always controlled by the
squared length of the interval.

Proposition 2.11 (Variance: Range bound). Let 𝑍 be a real random variable in L2 whose
support is contained in the interval [𝑎, 𝑏]. Then

Var[𝑍 ] ≤ 1
4 (𝑏 − 𝑎)2. (2.7)

Exercise 2.12 (Variance: Range bound). Establish Proposition 2.11. Show that the bound is
saturated by the random variable that places half its mass on each of the two endpoints.
Hint: Use Proposition 2.5.
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The variance bound in Proposition 2.11 does not reflect the “internal” structure of
𝑍 . For example, if the random variable places equal mass on the ends of the interval
(and nowhere else), then the variance bound is saturated. On the other hand, if the
random variable places most of its mass on a small sub-interval, then the variance
bound wildly overestimates the true variance.

This discussion suggests that Proposition 2.11 is not particularly useful in isolation.
To see how it can lead to more informative results, we will apply the proposition
to obtain nontrivial variance bounds for an independent sum of bounded random
variables.

2.5 Independent sums
Consider an independent family (𝑋1, . . . , 𝑋𝑛) of real random variables, each in L2.
Introduce the independent sum

𝑍 =
∑︁𝑛

𝑖=1
𝑋𝑖 with 𝔼[𝑍 ] =

∑︁𝑛

𝑖=1
𝔼[𝑋𝑖 ]. (2.8)

It is well known that the variance of an independent sum is the sum of the variances:

Var[𝑍 ] =
∑︁𝑛

𝑖=1
Var[𝑋𝑖 ]. (2.9)

The additivity property isolates the contributions of the individual arguments 𝑋𝑖 to the
total variance of 𝑍 .

Exercise 2.13 (Variance: Independent sum). Confirm (2.9).

Now, let us illustrate the power of the range bound, Proposition 2.11, by applying
it to the independent sum (2.8). Assume that each summand 𝑋𝑖 has support in an
interval [𝑎𝑖 , 𝑏𝑖 ] for 𝑖 = 1, . . . , 𝑛. Abbreviate the length 𝑐𝑖 B |𝑏𝑖 − 𝑎𝑖 | of the interval,
and introduce the vector 𝒄 B (𝑐1, . . . , 𝑐𝑛).

For each summand, invoke Proposition 2.11 conditionally. We arrive at the bound

Var[𝑍 ] =
∑︁𝑛

𝑖=1
Var[𝑋𝑖 ]

≤
∑︁𝑛

𝑖=1
1
4 (𝑏𝑖 − 𝑎𝑖 )

2 = 1
4 ∥𝒄 ∥

2
2. (2.10)

Thus, the standard deviation of the sum satisfies stdev[𝑍 ] ≤ 1
2 ∥𝒄 ∥2. We have obtained

an elegant bound on the variability of the sum in terms of the ranges of the individual
summands.

Exercise 2.14 (Variance of an independent sum: Range bound). Find circumstances where
the bound (2.10) holds with equality.

For comparison, let us give a worst-case bound on the range of the independent
sum 𝑍 :

range[𝑍 ] B (sup𝑍 ) − (inf 𝑍 ).
Using the additive structure of the sum and independence, we may compute that

range[𝑍 ] =
∑︁𝑛

𝑖=1
range[𝑋𝑖 ] ≤

∑︁𝑛

𝑖=1
(𝑏𝑖 − 𝑎𝑖 ) = ∥𝒄 ∥1

We may now identify circumstances where the standard deviation is much smaller
than the range of the independent sum.

Figure 2.1 illustrates two possibilities. When ∥𝒄 ∥2 ≪ ∥𝒄 ∥1, the standard deviation
of the sum is much smaller than its range and we obtain sharp concentration around
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Figure 2.1 (Concentration for an independent sum of bounded random variables). Concentration
properties of the sum 𝑍 depend on the relation between the bound 1

2 ∥𝒄 ∥2 for the
standard deviation and the bound ∥𝒄 ∥1 for the range. The vector 𝒄 lists the ranges of
the individual summands.

the expectation [left]. This situation occurs, for example, when all the individual ranges
𝑐𝑖 are similar in magnitude. On the other hand, when ∥𝒄 ∥2 ≈ ∥𝒄 ∥1, the standard
deviation of the sum and the range are comparable, and the sum exhibits only weak
concentration [right]. This situation occurs when a few of the individual ranges 𝑐𝑖 are
much larger than the others.

This discussion provides a nice illustration of Talagrand’s principle. The sum 𝑍 is a
very smooth function of the independent components 𝑋𝑖 . To make sure that the sum
concentrates sharply, we need to make sure that it does not depend too much on any
of the individual summands. We have quantified how much the sum depends on 𝑋𝑖 by
means of its range 𝑐𝑖 . Our results indicate that we achieve strong concentration for 𝑍
when none of the individual summands dominate the sum. Equivalently, none of the
𝑐𝑖 is outsized.

2.6 Tensorization of variance
The additivity law (2.9) appears to be a miraculous property of an independent sum.
Surprisingly, we can obtain a generalization of the additivity law that holds for a
general function of independent random variables. This result is called the tensorization
property of variance.

As before, consider an independent family (𝑋1, . . . , 𝑋𝑛) of real random variables.
For a (measurable) function 𝑓 : ℝ𝑛 → ℝ, we construct the real random variable

𝑍 B 𝑓 (𝑋1, . . . , 𝑋𝑛).

We always assume that 𝑍 is square integrable. Our goal is to control Var[𝑍 ] in terms
of the contributions from the individual 𝑋𝑖 . To that end, we need to introduce some
notation.

Definition 2.15 (Coordinatewise expectation). For 𝑖 = 1, . . . , 𝑛, the coordinatewise
expectation operator 𝔼𝑖 computes the expectation with respect to 𝑋𝑖 , while holding
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the remaining random variables (𝑋 𝑗 : 𝑗 ≠ 𝑖 ) fixed. That is,

𝔼𝑖 [𝑍 ] B 𝔼[𝑍 | 𝑋1, . . . , 𝑋𝑖−1, 𝑋𝑖+1, . . . , 𝑋𝑛].

This definition implicitly requires that the family (𝑋𝑖 ) is independent.

Let us emphasize that 𝔼𝑖 𝑍 is a random variable that depends on (𝑋 𝑗 : 𝑗 ≠ 𝑖 ). The
coordinatewise expectation operators have some useful algebraic properties that we
will exploit heavily.

• Idempotency. For each 𝑖 , we have 𝔼𝑖 [𝔼𝑖 𝑍 ] = 𝔼𝑖 𝑍 .
• Commutativity. For all 𝑖 , 𝑗 , we have 𝔼𝑖 [𝔼𝑗 𝑍 ] = 𝔼𝑗 [𝔼𝑖 𝑍 ].

We encourage the reader to confirm these facts, which depend on the independence
assumption.

Definition 2.16 (Coordinatewise variance). The coordinatewise variance Var𝑖 [𝑍 ] of 𝑍
with respect to 𝑋𝑖 is

Var𝑖 [𝑍 ] B 𝔼𝑖 (𝑍 − 𝔼𝑖 𝑍 )2 = 𝔼𝑖 𝑍
2 − (𝔼𝑖 𝑍 )2.

Note that the coordinatewise expectation Var𝑖 [𝑍 ] is a function of (𝑋 𝑗 : 𝑗 ≠ 𝑖 ).
We continue to use 𝔼 and Var to denote the total expectation and variance functions,

which average with respect to all sources of randomness. In this setting, 𝔼 = 𝔼1 . . .𝔼𝑛 .
With these notations, we can state an important theorem.

Theorem 2.17 (Variance tensorizes). With the prevailing notation and assumptions,

Var[𝑍 ] ≤ 𝔼
[∑︁𝑛

𝑖=1
Var𝑖 [𝑍 ]

]
. (2.11)

This result states that we can bound the variance of 𝑍 = 𝑓 (𝑋1, . . . , 𝑋𝑛) by
adding up the variance attributable to each of the individual 𝑋𝑖 . The terminology
“tensorization” derives from the fact that the probability measure of an independent
family (𝑋1, . . . , 𝑋𝑛) of random variables is the (tensor) product of the marginal
distributions. The variance of a function with respect to a product measure is controlled
by the sum of the variances with respect to the marginal distributions.

A few more remarks are in order. First, note that the tensorization theorem
generalizes our calculation (2.9) for independent sums. Indeed,

Var𝑖 [𝑍 ] = Var𝑖
[∑︁𝑛

𝑗=1
𝑋 𝑗

]
= Var[𝑋𝑖 ].

Thus, for an independent sum, the tensorization inequality for variances holds with
equality. This observation also indicates that an independent sum is the worst case for
tensorization; it is the function where the fluctuation due to each individual random
variable is highest.

Proof. The proof uses a Doob martingale to decompose the variance into contributions
from the individual random variables. This part of the argument is standard. Introduce
a collection (𝑌0,𝑌1, . . . ,𝑌𝑛) of random variables:

𝑌𝑖 B 𝔼[𝑍 | 𝑋1, . . . , 𝑋𝑖 ] = 𝔼𝑛 𝔼𝑛−1 . . .𝔼𝑖+1 [𝑍 ] for 𝑖 = 0, . . . , 𝑛.

In particular, 𝑌0 = 𝔼𝑍 and 𝑌𝑛 = 𝑍 .
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As an exercise, confirm that (𝑌𝑖 ) is a (Doob) martingale with respect to the natural
filtration F𝑖 B 𝜎 (𝑋1, . . . , 𝑋𝑖 ):

𝔼[𝑌𝑖+1 | 𝑋1, . . . , 𝑋𝑖 ] = 𝑌𝑖 for 𝑖 = 0, . . . , 𝑛 − 1.

Define the martingale differences Δ𝑖 B 𝑌𝑖 −𝑌𝑖−1 for 𝑖 = 1, . . . , 𝑛. We can express the
martingale property as

𝔼[Δ𝑖+1 | 𝑋1, . . . , 𝑋𝑖 ] = 0 for 𝑖 = 0, . . . , 𝑛 − 1.

It is a standard fact that martingale differences are orthogonal:

𝔼[Δ𝑖Δ𝑗 ] = 0 for all 𝑖 ≠ 𝑗 .

You should check this claim as well.
Using the martingale, we can write the variance of 𝑍 as a telescoping sum:

Var[𝑍 ] = 𝔼(𝑍 − 𝔼𝑍 )2

= 𝔼(𝑌𝑛 −𝑌0)2 = 𝔼
(
(𝑌𝑛 −𝑌𝑛−1) + (𝑌𝑛−1 −𝑌𝑛−2) + · · · + (𝑌1 −𝑌0)

)2
= 𝔼

(∑︁𝑛

𝑖=1
Δ𝑖
)2

=
∑︁𝑛

𝑖=1
𝔼[Δ2

𝑖 ].

The last relation follows because the martingale differences are zero mean and
orthogonal.

To continue, we will rewrite this expression to isolate the contributions from each
of the random variables 𝑋𝑖 . Instead of using conditional expectations, it is more
transparent to work with the coordinatewise expectations:

Var[𝑍 ] =
∑︁𝑛

𝑖=1
𝔼[Δ2

𝑖 ]

=
∑︁𝑛

𝑖=1
𝔼
(
(𝔼𝑛 · · ·𝔼𝑖+1 𝑍 ) − (𝔼𝑛 · · ·𝔼𝑖+1 𝔼𝑖 𝑍 )

)2
(a)
=

∑︁𝑛

𝑖=1
𝔼
(
𝔼𝑛 · · ·𝔼𝑖+1(𝑍 − 𝔼𝑖 𝑍 )

)2
(b)
≤

∑︁𝑛

𝑖=1
𝔼𝔼𝑛 · · ·𝔼𝑖+1(𝑍 − 𝔼𝑖 𝑍 )2

(c)
=

∑︁𝑛

𝑖=1
𝔼𝔼𝑖 (𝑍 − 𝔼𝑖 𝑍 )2

=
∑︁𝑛

𝑖=1
𝔼Var𝑖 [𝑍 ].

Step (a) comes from the linearity of conditional expectation, and step (b) comes
from Jensen’s inequality and the convexity of the square function. Step (c) comes
from the representation 𝔼 = 𝔼𝑛 . . .𝔼1 of the total expectation and the fact that
(𝔼𝑖 : 𝑖 = 1, . . . , 𝑛) is a family of commuting idempotent operators. Finally, we
recognize the coordinate variance. ■

2.7 Efron–Stein–Steele inequality
Tensorization is very powerful when combined with the variance representations and
bounds that we have already studied. In this section, we combine tensorization with the
exchangeable representation of variance to derive the Efron–Stein–Steele inequality.

We maintain the same notation from the previous section. In addition, we introduce
an independent copy (𝑋 ′

𝑖
) of the original independent sequence (𝑋𝑖 ). That is, each 𝑋 ′

𝑖
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is an independent copy of 𝑋𝑖 , independent from everything else. Define the random
variables

𝑍 (𝑖 ) B 𝑓 (𝑋1, . . . , 𝑋𝑖−1, 𝑋
′
𝑖 , 𝑋𝑖+1, . . . , 𝑋𝑛) for 𝑖 = 1, . . . , 𝑛.

Therefore„ 𝑍 (𝑖 ) is an exchangeable counterpart of 𝑍 obtained by refreshing the 𝑖 th
coordinate 𝑋𝑖 with a new draw 𝑋 ′

𝑖
from the same distribution.

We may now state the following corollary of the tensorization theorem.

Corollary 2.18 (Efron–Stein–Steele inequality). With prevailing notation and assumptions,

Var[𝑍 ] ≤ 1
2
𝔼
[∑︁𝑛

𝑖=1
(𝑍 − 𝑍 (𝑖 ) )2

]
. (2.12)

Proof. Apply the variational representation of the variance (Proposition 2.7) condition-
ally to see that

Var𝑖 [𝑍 ] = 1
2 𝔼𝑖 (𝑍 − 𝑍 (𝑖 ) )2.

Combine with the tensorization of variance (Theorem 2.17). ■

The Efron–Stein–Steele (ESS) inequality shows that we can control the variance of
𝑍 by measuring how much 𝑍 = 𝑓 (𝑋1, . . . , 𝑋𝑛) changes on average when we refresh
the 𝑖 th coordinate. When 𝑍 is insensitive to changes in each coordinate, we can think
of it as a smooth function of the inputs 𝑋𝑖 . Moreover, we anticipate that the variance
of 𝑍 is small relative to the range of 𝑍 when none of the coordinatewise variances
dominates.

The ESS inequality has a distinguished pedigree in statistics and combinatorics.
Here are high-level descriptions of some classic applications:

• Jackknife estimator of variance. The jackknife estimate of a parameter is obtained
by averaging estimates obtained from subsamples that omit one variable. The
ESS inequality was developed to analyze the behavior of the jackknife.

• Bin packing with random weights. In a bin packing problem, items of different
weights must be packed into containers, each with a maximum weight limit, in a
way that minimizes the number of containeds used. We can study the variance
of the number of bins needed by asking how the number of bins changes by
replacing each item with an item drawn from the same distribution.

• Random graphs. In a graph coloring problem, we color the vertices of a graph
such that no two adjacent vertices (sharing the same edge) have the same color.
The smallest number of colors needed to color a graph is called its chromatic
number. We can study the variance of the chromatic number of a random graph
by calculating how the chromatic number changes when we randomly add and
remove an edge. Although we can bound the variance, it is generally hard to
compute the expected chromatic number.

• Random traveling salesman problem. The traveling salesman problem asks us to
find the shortest path that visits each city exactly once and returns to the original
city, given a list of cities and the distance between each two cities. For random
city locations, we can study how the length of the optimal path changes when
we relocate one city. Although we can bound the variance, it is generally hard to
compute the expected length of a traveling salesman path.

• Maxima and minima of random processes. Some examples appear in the problem
set.



Lecture 2: Variance Bounds 18

2.8 Bounded differences
Finally, let us show how we can combine the range bound for variance with the
tensorization inequality to obtain a nonlinear analog of our range bound (2.10) for an
independent sum.

As usual, let 𝑍 = 𝑓 (𝑋1, . . . , 𝑋𝑛) be a function of independent random variables.
We define the 𝑖 th discrete “partial derivative” as

(D𝑖 𝑓 ) (𝑋1, . . . , 𝑋𝑛) B (range𝑖 𝑓 ) (𝑋1, . . . , 𝑋𝑛) (2.13)
B sup

𝑥∈supp(𝑋𝑖 )
𝑓 (𝑋1, . . . , 𝑋𝑖−1, 𝑥, 𝑋𝑖+1, . . . , 𝑋𝑛) (2.14)

− inf
𝑥 supp(𝑋𝑖 )

𝑓 (𝑋1, . . . , 𝑋𝑖−1, 𝑥, 𝑋𝑖+1, . . . , 𝑋𝑛). (2.15)

Note that D𝑖 𝑓 is a random variable that depends on (𝑋 𝑗 : 𝑗 ≠ 𝑖 ).
We have the following corollary of the tensorization of the variance. Compare

with (2.10).

Corollary 2.19 (Bounded differences). With prevailing notation and assumptions,

Var[𝑍 ] = Var[ 𝑓 ] ≤ 1
4
𝔼
[∑︁𝑛

𝑖=1
(D𝑖 𝑓 )2

]
. (2.16)

Proof. Apply the range bound for the variance (Proposition 2.11) conditionally to see
that

Var𝑖 [𝑍 ] ≤ 1
4 (D𝑖 𝑓 )

2.

Combine with the tensorization of variance (Theorem 2.17). ■

Exercise 2.20 (Bounded difference: Saturation). Show that the bound in Corollary 2.19
can hold with equality by considering the case of an independent sum.

The results in this section and the previous section show that changes of individual
coordinates of 𝑓 (𝑋1, . . . , 𝑋𝑛) control the variance of 𝑓 . In other words, we are
bounding the variance using some type of discrete derivative, which reflects the
smoothness of 𝑓 . One may wonder whether it is possible to obtain estimates in terms
of the ordinary (calculus) derivative. In the next lecture, we will explore this prospect.
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1. Poincaré intuition
2. Wirtinger’s inequality
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In the last lecture, we saw that the variance of a function of independent random
variables can be controlled in terms of the “discrete partial derivatives” of the function.
In this lecture, we will explore analogs involving the ordinary calculus derivative.

This shift in perspective leads us to study an important class of functional inequalities,
known as Poincaré inequalities. Such bounds play an important role in the modern
study of concentration phenomena and have wide-ranging applicability to the theory of
Markov chains and (stochastic) partial differential equations. It is not always possible
to obtain a Poincaré inequality for a general probability measure. When it is possible,
it often requires some ad hoc analysis.

We begin our study with intuitive reasoning and then describe the simplest Poincaré
inequality, Wirtinger’s inequality for the uniform measure on the torus. Next, we
give spectral and dynamical interpretations of this result. Finally, we conclude with a
discussion of the powerful Gaussian Poincaré inequality.

In this lecture, we write L2(𝜇) for the space L2(ℝ𝑛 ,B(ℝ𝑛), 𝜇) of real-valued
random variables on the probability space (ℝ𝑛 ,B(ℝ𝑛), 𝜇) with finite second
moments, where B(ℝ𝑛) is Borel 𝜎 -algebra on ℝ𝑛 .

3.1 Motivation for Poincaré inequalities
Consider an independent family (𝑋1, . . . , 𝑋𝑛) of real-valued random variables, and let
𝑓 : ℝ𝑛 → ℝ be a Borel measurable function. Define the real-valued random variable

𝑍 B 𝑓 (𝑋1, . . . , 𝑋𝑛).

Recall the bounded differences inequality, which may be interpreted as a bound on the
variance of 𝑍 in terms of the sum of squared first differences or “discrete derivatives”
of 𝑓 :

Var[𝑍 ] ≤ 1
4
𝔼
[∑︁𝑛

𝑖=1
|D𝑖 𝑓 |2

]
,

where

D𝑖 𝑓 B sup
𝑥∈supp(𝑋𝑖 )

𝑓 (𝑋1, . . . , 𝑋𝑖−1, 𝑥, 𝑋𝑖+1, . . . , 𝑋𝑛)

− inf
𝑥∈supp(𝑋𝑖 )

𝑓 (𝑋1, . . . , 𝑋𝑖−1, 𝑥, 𝑋𝑖+1, . . . , 𝑋𝑛).

While aesthetically nice and easy to prove using our previous results on tensorization
and variance bounds for L∞ random variables, the bounded difference inequality has
some limitations. First and foremost, the result only holds for functions 𝑓 bounded
almost surely. For example, it does not apply to polynomials in Gaussian random
variables. Second, the definition of D𝑖 is in terms of extrema and hence does not take
into account finer information about the fluctuations of 𝑋𝑖 in each coordinate of 𝑍 .
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One could imagine extending this idea of first differences to the continuum,
bounding the variance of 𝑍 by the expected squared Euclidean norm of the gradient of
𝑓 , sometimes called the “Dirichlet energy.” In this lecture, we turn toward the study of
such functional inequalities. In particular, Poincaré inequalities control the average size
of a function by the average size of its derivative.

In what follows, we emphasize functional notation by writing 𝑓 in place of 𝑍 . For
example, Var[𝑍 ] = Var[ 𝑓 ], where it is understood that these statements are the
same. To emphasize the underlying measure 𝜇, we use Var𝜇 [𝑍 ] = Var𝜇 [ 𝑓 ].

3.2 Poincaré inequality: Uniform distribution on the torus
Wirtinger’s inequality is one of the technically simplest examples of a Poincaré inequality.
To avoid complications, we will focus on periodic functions, even though this setting is
a little artificial. Problem 3.7 describes a more applicable result.

3.2.1 Functions on the torus
Introduce the one-dimensional torus:

𝕋 B ℝ/ℤ � [0, 1).

Since the torus is isomorphic to the unit circle, it carries a uniform distribution. We
can think about uniform(𝕋 ) as the restriction of the Lebesgue measure to [0, 1).

A function 𝑓 : 𝕋 → ℝ can be viewed as a function on [0, 1), extended periodically
to the real line. We define the class of continuously differentiable functions on the
torus:

C1(𝕋 ) B {𝑓 : 𝕋 → ℝ : 𝑓 , 𝑓 ′ continuous}.
To clarify, a continuous periodic function 𝑓 must be continuous across the right
endpoint: lim𝑡→1 𝑓 (𝑡 ) = 𝑓 (0). The derivative 𝑓 ′ of a function on the torus is the
ordinary derivative of the periodic extension to the real line, including at the right
endpoint 𝑡 = 1 of the fundamental region [0, 1).

3.2.2 Wirtinger’s inequality and its consequences
Now, consider a continuously differentiable function 𝑓 : 𝕋 → ℝ that has zero mean:∫ 1

0
𝑓 (𝑥) d𝑥 = 0. (3.1)

If 𝑓 is not identically zero, then it must have nontrivial positive and negative parts.
That is, the function must oscillate above and below the real axis. For this behavior to
occur, the derivative 𝑓 ′ must be large on average, as compared with 𝑓 . We formalize
this intuition in the following theorem.

Theorem 3.1 (Wirtinger). Let 𝑓 ∈ C1(𝕋 ) be a continuously differentiable function on
the torus, and assume that 𝑓 has zero mean (3.1). Then∫ 1

0
| 𝑓 (𝑥) |2 d𝑥 ≤ 1

(2𝜋)2
∫ 1

0
| 𝑓 ′ (𝑥) |2 d𝑥.
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Warning 3.2 (Wirtinger: Hypotheses). Theorem 3.1 requires the assumptions that
the function 𝑓 is periodic and continuously differentiable. We can weaken these
assumptions at the cost of increasing the Poincaré constant (see Problem 3.7). ■

We can reformulate Wirtinger’s inequality into probabilistic language, where it is
called a Poincaré inequality for the uniform distribution on the torus.

Corollary 3.3 (Poincaré: Uniform on torus). Let 𝜇 B uniform(𝕋 ). Consider a random
variable 𝑋 ∼ 𝜇 and a function 𝑓 : C1(𝕋 ) → ℝ. Then We need not assume 𝔼 𝑓 = 0 in

Corollary 3.3, since replacing
𝑓 ↦→ 𝑓 − 𝔼 𝑓 does not change either
side of the display in Corollary 3.3.
We also allow the right hand side to
be infinite.

Var[ 𝑓 (𝑋 )] ≤ 1
(2𝜋)2 𝔼

[
| 𝑓 ′ (𝑋 ) |2

]
.

We say that 1/(2𝜋)2 is the Poincaré constant of uniform(𝕋 ) for continuously differen-
tiable functions.

By tensorization, we can extend Corollary 3.3 to multivariate functions on a product
of tori. Note that these functions are periodic with respect to each coordinate. For
example, 𝕋 2 is isomorphic to a donut.

Corollary 3.4 (Multivariate Poincaré: Uniform on torus). Consider a family (𝑋1, . . . , 𝑋𝑛) of
iid uniform(𝕋 ) random variables. Let 𝑓 : 𝕋 𝑛 → ℝ be a continuous function on the
𝑛-fold product of the torus, where the first-order partial derivatives of 𝑓 are continuous.
Then the random variable 𝑍 = 𝑓 (𝑋1, . . . , 𝑋𝑛) satisfies the inequality

Var[ 𝑓 ] ≤ 1
(2𝜋)2 𝔼

[∑︁𝑛

𝑖=1
|𝜕𝑖 𝑓 |2

]
=

1
(2𝜋)2 𝔼

[
∥∇𝑓 ∥22

]
,

where ∥·∥2 is the ordinary ℓ2-norm of a vector.

Problem 3.5 (Multivariate Poincaré: Uniform on torus). Prove Corollary 3.4.

We can be simplified this result further if we further assume that 𝑓 is 𝐿-Lipschitz
with respect to the ℓ2 norm on the product 𝕋 𝑛 of tori. That is,

| 𝑓 (𝒙 ) − 𝑓 (𝒚 ) | ≤ 𝐿 · ∥𝒙 − 𝒚 ∥ℓ2 (𝕋𝑛 ) for all 𝒙 , 𝒚 ∈ 𝕋 𝑛 .

Let us emphasize that arithmetic with vectors in 𝕋 𝑛 is performedmoduloℤ. Rademacher’s
theorem states that the Lipschitz function 𝑓 satisfies

∥∇𝑓 (𝒙 )∥22 ≤ 𝐿2 (Lebesgue) almost everywhere on 𝕋 𝑛 .

Hence, by Corollary 3.4,

Var[ 𝑓 ] ≤ 𝐿2

(2𝜋)2 .

Thus we see that (periodic, continuous) Lipschitz functions of uniform random variables
have controlled variance, and hence they always exhibit concentration.

Warning 3.6 (Poincaré inequalities depend on the distribution). These results may not
hold when the random variables (𝑋1, . . . , 𝑋𝑛) are drawn from a distribution that is
not uniform, and they also depend on the class of functions that we consider. ■

Problem 3.7 (Wirtinger: Minimal assumptions). Consider the Sobolev space H1 [0, 1] of
weakly differentiable functions with 𝑓 , 𝑓 ′ ∈ L2 [0, 1]. For this class, prove that

max
{
∥ 𝑓 −𝑚 𝑓 ∥2 : ∥ 𝑓 ′∥2 ≤ 1 and 𝑓 (1/2) = 0

}
=

1
𝜋2 ,
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where 𝑚 𝑓 B
∫ 1
0 𝑓 (𝑥) d𝑥 is the mean. The maximizers are 𝑓 (𝑥) = ±

√
2 cos(𝜋𝑥)/𝜋 .

Hint: Use calculus of variations. First, develop a prior bound for the maximal value.
To establish that the maximizer exists, select a maximizing sequence and apply the
Rellich–Kondrakov theorem. Last, use the Lagrange multiplier theorem to find all
stationary points.

Deduce that the optimal Poincaré inequality for the uniform random variable
𝑋 ∼ uniform[0, 1] reads

Var[ 𝑓 (𝑋 )] ≤ 1
𝜋2 𝔼[ 𝑓

′ (𝑋 )2] for 𝑓 ∈ H1 [0, 1].

For an independent family (𝑋1, . . . , 𝑋𝑛) of copies of 𝑋 , conclude that

Var[ 𝑓 (𝑋1, . . . , 𝑋𝑛)] ≤
1
𝜋2 𝔼[∥∇𝑓 (𝑋1, . . . , 𝑋𝑛)∥22] for 𝑓 ∈ H1( [0, 1]𝑛).

In particular, when 𝑓 is 𝐿-Lipschitz, we have Var[ 𝑓 ] ≤ 𝐿2/𝜋2.

3.2.3 Proof of Theorem 3.1
We now prove Wirtinger’s inequality using Fourier analysis, omitting some technical
details about convergence of Fourier series. For example, see [Wei12] for a classical
treatment or [Rob20] for a general Hilbert space viewpoint.

Proof. (Wirtinger’s inequality). Let 𝜇 B uniform(𝕋 ). Recall that the system(√
2 sin(2𝜋𝑘𝑥),

√
2 cos(2𝜋𝑘𝑥) : 𝑘 ∈ ℕ

)
,

together with the constant function 1, composes a complete orthonormal system in
L2(𝜇).

Consider a function 𝑓 ∈ C1(𝕋 ) with zero mean (3.1). We may expand 𝑓 in a
Fourier series

𝑓 (𝑥) =
∑︁∞

𝑘=1
[𝑎𝑘 ·

√
2 cos(2𝜋𝑘𝑥) + 𝑏𝑘 ·

√
2 sin(2𝜋𝑘𝑥)],

where the coefficients ((𝑎𝑘 , 𝑏𝑘 ) : 𝑘 ∈ ℕ) may be found using orthonormality of the
sines and cosines. Note that the constant term, corresponding to the zero wavenumber
𝑘 = 0, is equal to zero because we have assumed 𝑓 has zero mean! The convergence
of this series is understood in the L2 sense.

Differentiating the series term-by-term using continuity of the derivative, we obtain

𝑓 ′ (𝑥) =
∑︁∞

𝑘=1
2𝜋𝑘 · [−𝑎𝑘 ·

√
2 sin(2𝜋𝑘𝑥) + 𝑏𝑘 ·

√
2 cos(2𝜋𝑘𝑥)].

By two applications of Parseval’s identity,∫ 1

0
| 𝑓 ′ (𝑥) |2 d𝑥 =

∑︁∞
𝑘=1

(2𝜋𝑘 )2
[
𝑎2
𝑘 + 𝑏

2
𝑘

]
≥ (2𝜋)2

∑︁∞
𝑘=1

[
𝑎2
𝑘 + 𝑏

2
𝑘

]
= (2𝜋)2

∫ 1

0
| 𝑓 (𝑥) |2 d𝑥.

This is the advertised inequality. Observe that equality holds if and only if 𝑓 is
proportional to sin(2𝜋𝑥) or cos(2𝜋𝑥). ■
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3.3 Spectral interpretation
The sharp Wirtinger’s inequality of the previous section is fundamentally a functional
analytic result that fits into the more general picture of the spectral theory of linear
operators [Rob20]. We study a particular linear operator that leads to the same sines
and cosines we saw previously, but emphasize that the conceptual approach is much
more general. We borrow some notation from the paper [COS20].

As before, we restrict our attention to real-valued functions defined on the torus 𝕋 .
That is, 𝑓 : 𝕋 → ℝ formally satisfies periodic boundary conditions In a sense, “periodic boundary

conditions” are not really boundary
conditions.𝑓 (0) = 𝑓 (1) and 𝑓 ′ (0) = 𝑓 ′ (1).

Further assume these functions are mean zero, as in (3.1). Define the linear space

¤L2(𝕋 1;ℝ) B
{
𝑓 : 𝕋 → ℝ :

∫ 1

0
| 𝑓 (𝑥) |2 d𝑥 < ∞,

∫ 1

0
𝑓 (𝑥) d𝑥 = 0

}
.

This linear space is equipped with the L2(𝕋 ) inner product ⟨·, ·⟩ and the associated
norm ∥·∥ to form a Hilbert space of functions.

Define the linear operator 𝑨 whose domain D(𝑨) is a dense subset of ¤L2(𝕋 ;ℝ) by
𝑨 : D(𝐴) → ¤L2(𝕋 ;ℝ)

𝑓 ↦→ 𝑨 𝑓 B −d2 𝑓
d𝑥2 .

This operator is simply the negative second derivative, or Laplacian, equipped with
periodic boundary conditions and restricted to mean zero functions. Under these con-
ditions, the operator 𝑨 is positive definite, with orthonormal eigenvalue–eigenfunction
pairs {(𝜆𝑘 , 𝜑𝑘 )}∞𝑘=1 given by Analogous results hold for higher

spatial dimensions.
𝜑2𝑗 (𝑥) =

√
2 cos(2𝜋 𝑗𝑥) and 𝜑2𝑗−1(𝑥) =

√
2 sin(2𝜋 𝑗𝑥);

𝜆2𝑗 = 𝜆2𝑗−1 = (2𝜋)2𝑗 2 > 0.

for 𝑗 ∈ ℕ. The system (𝜑𝑘 : 𝑘 ∈ ℕ) composes an orthonormal basis for ¤L2(𝕋 ;ℝ).
Hence, we may expand any 𝑓 ∈ ¤L2(𝕋 ;ℝ) into a series

𝑓 =
∑︁∞

𝑘=1
𝑓𝑘 𝜑𝑘 , where 𝑓𝑘 = ⟨𝜑𝑘 , 𝑓 ⟩.

By choosing the domain of 𝑨 to be

D(𝑨) B
{
𝑓 ∈ ¤L2(𝕋 ;ℝ) :

∑︁∞
𝑘=1

𝑘 4 𝑓 2𝑘 < ∞
}
,

one obtains a consistent definition.
We are now in a position to make the connection to Wirtinger’s inequality. Letting

𝑓 ∈ D(𝑨) and integrating by parts,∫ 1

0
| 𝑓 ′ (𝑥) |2 d𝑥 = −

∫ 1

0
𝑓 (𝑥) 𝑓 ′′ (𝑥) d𝑥 = ⟨𝑓 , 𝑨 𝑓 ⟩

by applying the periodic boundary conditions. Therefore, the Rayleigh quotient satisfies
⟨𝑓 , 𝑨 𝑓 ⟩
⟨𝑓 , 𝑓 ⟩ ≥ min

𝑔 ∈D(𝑨 )

⟨𝑔 , 𝑨𝑔 ⟩
⟨𝑔 , 𝑔 ⟩ = 𝜆min(𝑨) = (2𝜋)2,

where we have used the fact that 𝐴 is positive definite so the minimum of the Rayleigh
quotient is the smallest eigenvalue of 𝑨. This is precisely Wirtinger’s inequality:

∥ 𝑓 ∥2 = ⟨𝑓 , 𝑓 ⟩ ≤ 1
(2𝜋)2 ⟨𝑓 , 𝑨 𝑓 ⟩ =

1
(2𝜋)2 ∥ 𝑓

′∥2.
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Aside: In spectral graph theory, there are analogous results known as spectral gap
inequalities that involve the smallest nonzero eigenvalue of the positive semidefinite
graph Laplacian, which is often the second eigenvalue 𝜆2 > 0 = 𝜆1; hence the
terminology “spectral gap.” These tools find extensive applications in the study of
Markov chains.

3.4 Dynamical interpretation
Poincaré inequalities also find application in a dynamical setting. Consider the heat or
diffusion equation framed on the torus: This initial value problem can be

succinctly written as an abstract
equation on function space, using
notation of the previous section:

𝜕𝑡𝑢 = −𝑨𝑢, 𝑢 (0) = 𝑓 .


𝜕𝑢

𝜕𝑡
=
𝜕2𝑢

𝜕𝑥2 , on ℝ × 𝕋 ;

𝑢 (0, 𝑥) = 𝑓 (𝑥), for 𝑥 ∈ 𝕋 ;
𝑢 : ℝ × 𝕋 → ℝ.

Note that the periodic boundary conditions are implicit in the requirement that 𝑢 (𝑡 , ·)
is a function on the torus.

This is a basic linear partial differential equation arising in various fields of science,
engineering, and finance. It enjoys a canonical physical interpretation as a model
for the diffusion of temperature along a one-dimensional metal ring. For a more
probabilistic perspective, one may view the initial data 𝑓 to be a probability density:
𝑓 ≥ 0 a.e. and

∫ 1
0 𝑓 (𝑥) d𝑥 = 1, and thus the heat equation can be viewed as a model

for the evolution of this probability density under a specific stochastic process (i.e., the
Brownian motion diffusion process).

If 𝑓 has Fourier series representation

𝑓 (𝑥) = 𝑎0 +
∑︁∞

𝑘=1
[𝑎𝑘 ·

√
2 cos(2𝜋𝑘𝑥) + 𝑏𝑘 ·

√
2 sin(2𝜋𝑘𝑥)],

then one can show by inspection or separation of variables that

𝑢 (𝑡 , 𝑥) = 𝑎0 +
∑︁∞

𝑘=1
e−(2𝜋 )2𝑘2𝑡 · [𝑎𝑘 ·

√
2 cos(2𝜋𝑘𝑥) + 𝑏𝑘 ·

√
2 sin(2𝜋𝑘𝑥)].

This series representation (see Figure 3.1) implies that high frequencies in the initial
condition 𝑓 are damped very quickly, while the lower frequency components of 𝑓 take
longer to decay in time. With 𝜇 B uniform(𝕋 ), we can invoke L2(𝜇) orthonormality
to obtain the bound∫ 1

0
|𝑢 (𝑡 , 𝑥) − 𝑎0 |2 d𝑥 ≤ e−(2𝜋 )2𝑡

∫ 1

0
| 𝑓 (𝑥) − 𝑎0 |2 d𝑥.

Succinctly,
Var𝜇 [𝑢 (𝑡 , ·)] ≤ e−(2𝜋 )2𝑡 Var𝜇 [𝑢 (0, ·)].

We conclude that the rate of decay of the variance of solutions to the heat equation
on the torus is exponential and is controlled by the variance of the initial condition.
Note that the Poincaré constant 1/(2𝜋)2 controls the exponential rate of decay of the
variance.

Aside: The simple dynamical interpretation as presented here has much wider scope
in the areas of stochastic processes and (potentially stochastic) partial differential
equations), especially in the semigroup theory of these topics (see, e.g., [PS08;
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Figure 3.1 Evolution of the solution
to the heat equation with initial
condition 𝑓 .

Paz12]) or the convergence of Markov chains to stationary distributions.

3.5 The Gaussian Poincaré inequality
One may wonder whether it is possible to establish Poincaré inequalities for other
probability distributions. Indeed, there are many such examples. We conclude this
lecture with a fundamental Poincaré inequality for the Gaussian distribution. We will
prove this result using Hilbert space methods, similar in spirit to the arguments behind
Wirtinger’s inequality.

Theorem 3.8 (Gaussian Poincaré). Let 𝛾 B normal(0, 1). Draw a random variable
𝑍 ∼ 𝛾 , and consider a differentiable function 𝑓 : ℝ → ℝ with 𝑓 , 𝑓 ′ ∈ L2(𝛾 ).
Then So, the Poincaré constant of

normal(0, 1) is 1.Var[ 𝑓 (𝑍 )] ≤ 𝔼[| 𝑓 ′ (𝑍 ) |2].

Proof. Without loss of generality, we may assume that 𝑓 has mean zero: 𝔼 𝑓 (𝑍 ) = 0.
Define the (probabilist’s) Hermite polynomials The physicist’s Hermite polynomials

are a rescaled version of (𝐻𝑛 )
obtained by replacing
e−𝑥

2/2 ↦→ 𝑒−𝑥
2
.

(𝐻𝑛)∞𝑛=0 by

𝐻𝑛 (𝑥) B (−1)𝑛e𝑥2/2 d𝑛

d𝑥𝑛
e−𝑥

2/2 for 𝑥 ∈ ℝ.

The system (𝐻𝑛 : 𝑛 ∈ ℤ+) compmoses an orthogonal basis for L2(𝛾 ). For all
𝑛,𝑚 ∈ ℤ+ ,

Here, 𝛿𝑛𝑚 is the Kronecker delta.𝔼[𝐻𝑛 (𝑍 )𝐻𝑚 (𝑍 )] = ⟨𝐻𝑛 , 𝐻𝑚⟩L2 (𝛾 ) =
∫
ℝ

𝐻𝑛𝐻𝑚 d𝛾 = 𝑛! 𝛿𝑛𝑚 .

Hence, the function 𝑓 ∈ L2(𝛾 ) admits the expansion

𝑓 =
∑︁∞

𝑘=1
𝑎𝑘𝐻𝑘 where 𝑎𝑘 =

1
𝑘 !

⟨𝐻𝑘 , 𝑓 ⟩L2 (𝛾 ) .
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Since 𝑓 has mean zero and 𝐻0 = 1, it follows that the coefficient 𝑎0 = 0. Using the
fact that

𝐻 ′
𝑛 = 𝑛𝐻𝑛−1

and assuming the (𝑎𝑘 )∞𝑘=1 satisfy a sufficient summability condition, we compute∫
ℝ

| 𝑓 ′ |2 d𝛾 =
∑︁∞

𝑘=1
𝑘 2𝑎2

𝑘

∫
ℝ

|𝐻𝑘−1 |2 d𝛾

=
∑︁∞

𝑘=1
𝑘𝑎2

𝑘 · 𝑘 (𝑘 − 1)!

≥
∑︁∞

𝑘=1
𝑎2
𝑘 · 𝑘 !

=
∑︁∞

𝑘=1
𝑎2
𝑘

∫
ℝ

|𝐻𝑘 |2 d𝛾

=

∫
ℝ

| 𝑓 |2 d𝛾 .

This is the required result. ■

Similarly to Corollary 3.4, we have the following generalization to multivariate
functions.

Corollary 3.9 (Multivariate Gaussian Poincaré). Let 𝛾𝑛 B normal(0, I𝑛). Consider the
random vector 𝒛 ∼ 𝛾𝑛 and a differentiable function 𝑓 ∈ L2(𝛾𝑛). Then

Var[ 𝑓 (𝒛 )] ≤ 𝔼
[
∥∇𝑓 (𝒛 )∥22

]
.

Exercise 3.10 (Multivariate Gaussian Poincaré). Prove Corollary 3.9.

From our previous discussion, it follows that a Lipschitz function of a Gaussian
random vector has controlled variance. More precisely, assume that

| 𝑓 (𝒙 ) − 𝑓 (𝒚 ) | ≤ 𝐿 · ∥𝒙 − 𝒚 ∥2 for all 𝒙 , 𝒚 ∈ ℝ𝑛 .

Then we have the elegant variance bound

Var[ 𝑓 (𝒛 )] ≤ 𝐿2 where 𝒛 ∼ 𝛾𝑛 .

This result quantifies the concentration properties of a Lipschitz function of a standard
normal variable.

Aside: The Gaussian Poincaré inequality also enjoys spectral and dynamical inter-
pretations, but we need to replace the Laplacian with another differential operator.
Consider the Ornstein–Uhlenbeck linear differential operator 𝑨, defined by

(𝑨𝑢) (𝑥) B −d2𝑢
d𝑥2 (𝑥) + 𝑥

(
d𝑢
d𝑥

(𝑥)
)

for all 𝑢 ∈ D(𝑨) and 𝑥 ∈ ℝ. Connecting to probability, 𝑨 is (up to constants) the
infinitesimal generator of the Orstein–Uhlenbeck semigroup.

On an appropriate Gaussian Hilbert space, the eigenfunctions of the operator
𝑨 are the Hermite polynomials. The pair (1, 𝐻1) is the minimum eigenvalue and
eigenfunction of the operator 𝑨, restricted to zero mean functions. This is the
spectral analog of the fact that the Gaussian Poincaré constant is one.

We may consider the dynamical flow This equation models the evolution of
a particle diffusing on the real line
under the influence of friction.𝜕𝑡𝑢 = −𝑨𝑢, 𝑢 (0) = 𝑓
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on an appropriate Gaussian Hilbert state space. With 𝛾 B normal(0, 1), the
solution variance satisfies

Var𝛾 [𝑢 (𝑡 , ·)] ≤ e−𝑡 Var𝛾 [𝑢 (0, ·)].

This formula gives a dynamical interpretation of the Gaussian Poincaré inequality.
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4. Exponential Concentration

Date: 14 January 2021 Scribe: Ziyun Zhang

Agenda:
1. Laplace transform method
2. Hoeffding
3. Chernoff
4. Bernstein

Last time, we established some Poincaré inequalities, and we used them to bound the
variance of a nonlinear function of independent random variables. In this lecture, we
begin our study of exponential concentration inequalities. Today, we will consider
the case of an independent sum, and next time we will start to develop results on the
concentration of nonlinear functions.

Let 𝑍 be a real random variable in L2. Chebyshev’s inequality shows that

ℙ {|𝑍 − 𝔼𝑍 | ≥ 𝑡 · stdev[𝑍 ]} ≤ 1 ∧ 𝑡 −2 for all 𝑡 > 0.

In other words, the typical scale for fluctuations around the mean is the standard
deviation, stdev[𝑍 ] B

√︁
Var[𝑍 ]. By bounding the variance, we can obtain results on

the concentration of 𝑍 . Unfortunately, Chebyshev’s inequality only yields weak tail
decay of 𝑡 −2. Can we do better?

To understand the prospects, consider an independent family (𝑋1, . . . , 𝑋𝑛) of real
random variables in L2, and define the independent sum 𝑍 =

∑𝑛
𝑖=1 𝑋𝑖 . By additivity of

variance,
Var[𝑍 ] =

∑︁𝑛

𝑖=1
Var[𝑋𝑖 ].

This result allows us to decompose the variance of the sum into terms that reflect
the variability of individual summands. When the individual variances are small in
comparison with the total, we anticipate that the sum concentrates on a scale that is
small relative to the possible range of the random variable. By tensorization, similar
results hold for nonlinear random variables.

The central limit theorem states that a (standardized) sum of iid random variables
in L2 converges weakly to a standard normal distribution. The tails of the standard
normal distribution decay at a rate of exp(−𝑡 2/2). This rate is dramatically better than
what we achieve from Chebyshev’s inequality. One may wonder whether it is possible
to obtain concentration inequalities for a sum that reflect that rapid tail decay of the
normal distribution. In fact, this feat is possible if we are willing to make stronger
assumptions on the summands.

In this lecture, we will develop the Laplace transform method, an analog of
Chebyshev’s inequality that can certify exponential tail decay for a random variable.
We will show how to apply the Laplace transform method to a sum of independent,
bounded random variables. Depending on the assumptions that we pose on the
summands, we obtain several excellent tail bounds for the sum. In the next lecture,
we will extend this approach to nonlinear functions.

4.1 Laplace transform method
The basic approach to developing exponential concentration inequalities is called the
Laplace transform method.
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4.1.1 Moments and cumulants
To develop these ideas, we introduce two functions that package up information about
the tail decay of a random variable.

Definition 4.1 (Moment generating function; cumulant generating function). Let 𝑋 be a
real random variable. The moment generating function (mgf) of 𝑋 is

𝑚𝑋 (𝜃 ) := 𝔼 e𝜃𝑋 for 𝜃 ∈ ℝ.

The cumulant generating function function (cgf) of 𝑋 is

𝜉𝑋 (𝜃 ) := log𝔼 e𝜃𝑋 = log𝑚𝑋 (𝜃 ) for 𝜃 ∈ ℝ.

The mgf and cgf are well defined for all 𝜃 ∈ ℝ, but they can take the value +∞.

In practice, the mgf and cgf are only interesting for random variables where one of
the tails decays exponentially. For example,

ℙ {𝑋 ≥ 𝑡 } ≤ 𝐶 · e−𝑐𝑡 for all 𝑡 > 0.

In this case, the mgf and cgf finite for a strictly positive value of the parameter 𝜃 .

Example 4.2 (Bernoulli distribution: Mgf and cgf). Let 𝑋 ∼ bernoulli(𝑝) be a Bernoulli
random variable with expectation 𝑝 ∈ [0, 1]. The mgf and cgf satisfy

𝑚𝑋 (𝜃 ) = 1 + (e𝜃 − 1)𝑝 and 𝜉𝑋 (𝜃 ) ≤ (e𝜃 − 1)𝑝 for all 𝜃 ∈ ℝ.

These results follow from an easy calculation. ■

Example 4.3 (Normal distribution: Mgf and cgf). Let 𝑋 ∼ normal(0, 𝜎2) be a normal
random variable with mean zero and variance 𝜎2. The mgf and cgf take the form

𝑚𝑋 (𝜃 ) = e𝜃
2𝜎2/2 and 𝜉𝑋 (𝜃 ) = 1

2𝜃
2𝜎2 for all 𝜃 ∈ ℝ.

This result requires a nontrivial calculation. ■

Aside: You may wonder why the mgf and cgf are referred to as generating functions.
By a formal Taylor expansion,

𝑚𝑋 (𝜃 ) =
∑︁∞

𝑝=0

𝜃𝑝

𝑝!
· 𝔼𝑋 𝑝 .

As a consequence, the derivatives of the mgf at zero report the polynomial moments:

d𝑝

(d𝜃 )𝑝

����
𝜃=0

𝑚𝑋 (𝜃 ) = 𝔼𝑋 𝑝 for each 𝑝 ∈ ℕ.

In other words, the mgf is the exponential generating function of the sequence
(𝔼𝑋 𝑝 : 𝑝 ∈ ℕ) of polynomial moments.

Similarly, we can expand the cgf is the exponential generating function of a
sequence of numbers, called cumulants:

𝜉𝑋 (𝜃 ) =
∑︁∞

𝑝=1

𝜃𝑝

𝑝!
· 𝜅𝑝 (𝑋 ).
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The numbers 𝜅𝑝 are called the cumulants or semi-invariants of 𝑋 . In particular, we
have 𝜅0(𝑋 ) = 0 and 𝜅1(𝑋 ) = 𝔼𝑋 , and 𝜅2(𝑋 ) = Var[𝑋 ]. The first 𝑝 cumulants
can be written as a polynomial in the first 𝑝 polynomial moments and vice versa.
Although less familiar, the cumulants have very elegant mathematical properties.

4.1.2 Cgfs and tails
We can obtain a bound for the tail decay of a real random variable in terms of its cgf.

Proposition 4.4 (Laplace transform method). Let 𝑋 be a real random variable. Then

ℙ {𝑋 ≥ 𝑡 } ≤ inf𝜃>0 e−𝜃𝑡+𝜉𝑋 (𝜃 ) = exp
(
− sup𝜃>0(𝜃𝑡 − 𝜉𝑋 (𝜃 ))

)
,

ℙ {𝑋 ≤ 𝑡 } ≤ inf𝜃<0 e−𝜃𝑡+𝜉𝑋 (𝜃 ) = exp
(
− sup𝜃<0(𝜃𝑡 − 𝜉𝑋 (𝜃 ))

)
.

Proof. Fix a parameter 𝜃 > 0. Since 𝑡 ↦→ e𝜃𝑡 is strictly increasing,

ℙ {𝑋 ≥ 𝑡 } = ℙ
{
e𝜃𝑋 ≥ e𝜃𝑡

}
.

Since e𝜃𝑡 and e𝜃𝑋 are positive, we can apply Markov’s inequality to obtain

ℙ
{
e𝜃𝑋 ≥ e𝜃𝑡

}
≤ e−𝜃𝑡 𝔼 e𝜃𝑋 .

Optimize over 𝜃 > 0 to arrive at the upper tail. ■

Exercise 4.5 (Lower tails). Establish the lower tail bound in Proposition 4.4.

Example 4.6 (Normal distribution: Tails). We can invoke the Laplace transform method
to obtain an elegant tail bound for a normal random variable 𝑋 ∼ normal(0, 𝜎2).
Indeed, using Example 4.3,

ℙ {𝑋 ≥ 𝑡𝜎} ≤ exp
(
− sup𝜃>0(𝜃𝑡𝜎 − 1

2𝜃
2𝜎2)

)
= e−𝑡

2/2 for 𝑡 > 0.

The infimum is attained at 𝜃 = 𝑡 /𝜎 . We have obtained a very good bound for the
upper tail, showing normal-type decay on the scale of the standard deviation 𝜎 . A
similar bound applies to the lower tail of the normal distribution. ■

4.1.3 Additivity of the cgf
The Laplace transform method is an excellent tool for studying independent sums
because the cgf of an independent sum is additive.

Proposition 4.7 (The cgf is additive). Consider an independent family (𝑋1, . . . , 𝑋𝑛) of real
random variables, and define 𝑍 =

∑𝑛
𝑖=1 𝑋𝑖 . Then

𝜉𝑍 (𝜃 ) =
∑︁𝑛

𝑖=1
𝜉𝑋𝑖 (𝜃 ) for all 𝜃 ∈ ℝ.

Proof. Observe that

𝑚𝑍 (𝜃 ) = 𝔼 e𝜃
∑
𝑖 𝑋𝑖 = 𝔼

[∏
𝑖 e𝜃𝑋𝑖

]
=
∏

𝑖 𝔼 e𝜃𝑋𝑖 =
∏

𝑖 𝑚𝑋𝑖 (𝜃 ).

We have used the fact that the expectation of a product of independent random
variables equals the product of the expectations. Finally, take the logarithm and
recognize the cgfs. ■
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Example 4.8 (Binomial distribution: Tails). For a simple illustration of Proposition 4.7, let
us consider a binomial random variable 𝑍 ∼ bin(𝑛,𝑝) with mean 𝔼𝑍 = 𝑛𝑝 . Since
we can write 𝑍 as a sum of 𝑛 iid copies of the random variable 𝑋 ∼ bernoulli(𝑝),

𝜉𝑍 (𝜃 ) = 𝑛𝜉𝑋 (𝜃 ) ≤ (e𝜃 − 1) · 𝑛𝑝 for all 𝜃 ∈ ℝ.

We have used Example 4.2. Invoking the Laplace transform method,

ℙ {𝑍 − 𝑛𝑝 ≥ 𝑡 · 𝑛𝑝} ≤ exp
(
− sup𝜃>0(𝑡𝑛𝑝 − (e𝜃 − 1) · 𝑛𝑝)

)
=

(
e𝑡

(1 + 𝑡 )1+𝑡

)𝑛𝑝
for 𝑡 ≥ 0.

This is called the Chernoff bound for the binomial tail. It gives decay on the scale 𝑛𝑝
of the mean at the gamma rate 𝑡 −𝑡 , which is slightly faster than exponential. A related
result holds for the lower tail. ■

More generally, by combining the Laplace transform method and the additivity of
cgfs, we can control the tails of an independent sum using local information about the
summands. To pursue this approach, it suffices to produce upper bounds for the cgfs of
the summands. By careful engineering, this procedure leads to simple and appealing
concentration inequalities. In this lecture, we study three main examples:

1. Hoeffding’s inequality. Designed for bounded summands.
2. Chernoff’s inequality. Designed for bounded positive summands.
3. Bernstein’s inequality. Designed for bounded summands with small variance .

Although we focus on bounded summands, many of these results are valid in more
general scenarios.

4.1.4 Cramér’s theorem
The Laplace transform method is more than a clever trick. It actually produces sharp
asymptotic bounds for iid sums. Let us discuss this point briefly.

Consider an iid family (𝑋1, . . . , 𝑋𝑛) of copies of a real random variable 𝑋 whose
mgf is finite for some 𝜃 > 0. Combining Propositions 4.4 and 4.7, we arrive at the
bound

ℙ

{
1
𝑛

∑︁𝑛

𝑖=1
𝑋𝑖 ≥ 𝑡

}
≤ exp

(
− 𝑛 · sup𝜃>0(𝜃𝑡 − 𝜉𝑋 (𝜃 ))

)
.

When 𝑡 > 𝔼𝑋 , you may verify that the supremum occurs for strictly positive 𝜃 , so we
can relax the range of the supremum to 𝜃 ∈ ℝ. Let us introduce the rate function of
the random variable 𝑋 :

Λ𝑋 (𝑡 ) B sup𝜃 ∈ℝ (𝜃𝑡 − 𝜉𝑋 (𝜃 )).

The rate function is called the Fenchel–Legendre conjugate of the cgf; it is always a
lower-semicontinuous convex function. With this notation, we can rewrite the last
display as

1
𝑛

logℙ
{
1
𝑛

∑︁𝑛

𝑖=1
𝑋𝑖 ≥ 𝑡

}
≤ −Λ𝑋 (𝑡 ) for 𝑡 > 𝔼𝑋 .

Cramér’s theorem asserts that the last bound is asymptotically sharp (under minimal
conditions on 𝑋 ):

lim
𝑛→∞

1
𝑛

logℙ
{
1
𝑛

∑︁𝑛

𝑖=1
𝑋𝑖 ≥ 𝑡

}
= −Λ𝑋 (𝑡 ) for 𝑡 > 𝔼𝑋 .

In other words, the rate function describes the exact asymptotic behavior of an iid sum.
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4.2 Concentration for bounded summands
In this section, we develop our first packaged concentration inequality. This result,
attributed to Hoeffding, shows that an independent sum of bounded random variables
exhibits normal concentration.

4.2.1 Hoeffding’s cgf bound
The key ingredient in the proof of Hoeffding’s inequality is a cgf bound for a bounded
random variable. We will state and prove a sharp version of this result using an integral
representation for the cgf and an exponential tilting of the probability distribution.

Lemma 4.9 (Hoeffding cgf bound). Assume that 𝑎 ≤ 𝑋 ≤ 𝑏 . Then

𝜉𝑋 −𝔼𝑋 (𝜃 ) ≤ 1
8𝜃

2(𝑏 − 𝑎)2.

Proof. Without loss of generality, we may assume that 𝔼𝑋 = 0. Fix the parameter
𝜃 ∈ ℝ. Write the cgf as an integral:

𝜉𝑋 (𝜃 ) = log
∫ 𝑏

𝑎

e𝜃𝑥 d𝜇𝑋 ,

where𝜇𝑋 is the distribution of𝑋 , supported on [𝑎, 𝑏]. Observe that 𝜉𝑋 (0) = 𝜉 ′𝑋 (0) = 0
because 𝔼𝑋 = 0. We will control the cgf by bounding its second derivative and then
integrating the resulting inequality.

Let us compute the first derivative of 𝜉𝑋 with respect to 𝜃 .

𝜉 ′𝑋 (𝜃 ) =
∫ 𝑏

𝑎
𝑥e𝜃𝑥 d𝜇𝑋∫ 𝑏

𝑎
e𝜃𝑥 d𝜇𝑋

.

We have used bounded convergence to pass the derivative through the integral. Now,
define the tilted probability distribution:

d𝜈𝜃 (𝑥) B
e𝜃𝑥 d𝜇𝑋 (𝑥)∫ 𝑏

𝑎
e𝜃𝑦 d𝜇𝑋 (𝑦 )

.

Observe that
∫ 𝑏

𝑎
d𝜈𝜃 = 1, so 𝜈𝜃 is another probability measure supported on [𝑎, 𝑏].

With this new notation, we have

𝜉 ′𝑋 (𝜃 ) =
∫ 𝑏

𝑎

𝑥 d𝜈𝜃

In other words, 𝜉 ′
𝑋
(𝜃 ) is the mean of the tilted distribution 𝜈𝜃 .

Let us compute the second derivative of 𝜉𝑋 (𝜃 ). We have

𝜉 ′′𝑋 (𝜃 ) =
∫ 𝑏

𝑎
𝑥2e𝜃𝑥 d𝜇𝑋∫ 𝑏

𝑎
e𝜃𝑥 d𝜇𝑋

− ©­«
∫ 𝑏

𝑎
𝑥e𝜃𝑥 d𝜇𝑥∫ 𝑏

𝑎
e𝜃𝑥 d𝜇𝑥

ª®¬
2

=

∫ 𝑏

𝑎

𝑥2 d𝜈𝜃 −
(∫ 𝑏

𝑎

𝑥 d𝜈𝜃

)2
.

In the second line, we have recognized integrals with respect to the tilted probability
measure 𝜈𝜃 . As a consequence, 𝜉 ′′

𝑋
(𝜃 ) is the variance of the distribution 𝜈𝜃 , supported

on [𝑎, 𝑏]. Using the interpretation as a variance, we derive that

0 ≤ 𝜉 ′′𝑋 (𝜃 ) ≤ 1
4 (𝑏 − 𝑎)2,
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using the range bound for the variance (Proposition 2.11) from Lecture 2.
Finally, we use this result to bound the cgf itself. Invoking the fundamental theorem

of calculus twice,

𝜉𝑋 (𝜃 ) =
∫ 𝜃

0

∫ 𝑠

0
𝜉 ′′𝑋 (𝑡 ) d𝑡 d𝑠

≤
∫ 𝜃

0

∫ 𝑠

0

1
4 (𝑏 − 𝑎)2 d𝑡 d𝑠 = 1

8𝜃
2(𝑏 − 𝑎)2.

We rely on the facts that 𝜉𝑋 (0) = 𝜉 ′𝑋 (0) = 0. ■

Exercise 4.10 (Hoeffding cgf). Try to develop a shorter proof of Lemma 4.9 with the
constant 1 in place of the sharp constant 1/8.

4.2.2 Hoeffding’s inequality
With this cgf bound at hand, we can easily produce a concentration inequality for an
independent sum of bounded random variables.

Theorem 4.11 (Hoeffding). Consider an independent family (𝑋1, . . . , 𝑋𝑛) of real
random variables that satisfy 𝑎𝑖 ≤ 𝑋𝑖 ≤ 𝑏𝑖 for 𝑖 = 1, . . . , 𝑛. Construct the sum
𝑍 =

∑𝑛
𝑖=1 𝑋𝑖 , and introduce the variance proxy

𝑣 B
1
4

∑︁𝑛

𝑖=1
(𝑏𝑖 − 𝑎𝑖 )2.

Then

ℙ
{
|𝑍 − 𝔼𝑍 | ≥ 𝑡

√
𝑣
}
≤ 2e−𝑡

2/2 for all 𝑡 ≥ 0.

Proof. By linearity of expectation,

𝑍 − 𝔼𝑍 =
∑︁𝑛

𝑖=1
(𝑋𝑖 − 𝔼𝑋𝑖 ).

By the additivity of cgfs (Proposition 4.7) and the Hoeffding cgf bound (Lemma 4.9),
we have

𝜉𝑍−𝔼𝑍 (𝜃 ) =
∑︁𝑛

𝑖=1
𝜉𝑋𝑖−𝔼𝑋𝑖 (𝜃 ) ≤

1
8
𝜃 2

∑︁𝑛

𝑖=1
(𝑏𝑖 − 𝑎𝑖 )2 =

𝜃 2

2
𝑣.

By the Laplace transform method (Proposition 4.4),

ℙ
{
𝑍 − 𝔼𝑍 ≥ 𝑡

√
𝑣
}
≤ inf𝜃>0 exp(−𝜃𝑡

√
𝑣 + 𝜉𝑍−𝔼𝑍 (𝜃 ))

≤ inf𝜃>0 exp(−𝜃𝑡
√
𝑣 + 𝜃 2𝑣/2) = e−𝑡

2/2.

The infimum is achieved when 𝜃 = 𝑡 /
√
𝑣 . The lower tail bound follows from a similar

argument. Combine the two results using a union bound. ■

To understand the Hoeffding inequality, recall that the bounded difference inequal-
ity for the variance yields the comparison Var[𝑍 ] ≤ 𝑣 . Thus, we can interpret the
variance proxy 𝑣 as an upper bound that stands in for the variance. The Hoeffding
inequality shows that the independent sum 𝑍 has tail decay at least as fast as a normal
random variable with variance 𝑣 .

For comparison, the central limit theorem (CLT) suggests that the distribution
of 𝑍 should be close to a normal variable with variance Var[𝑍 ], assuming that the
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Figure 4.1 (Hoeffding). The Hoeffding bound shows that the tails of an independent sum
decay as fast as the tails of a normal random variable with variance 𝑣 . The number
𝑣 is called the variance proxy, and it reflects the sum of the squared ranges of the
summands.

summands have comparable size. Nevertheless, the CLT does not give good control on
the tails, so the concentration inequality gives a different perspective on the behavior
of an independent sum.

4.3 Concentration for bounded, positive summands
Next, we turn to a concentration inequality, due to Chernoff, that is suitable for random
variables that are bounded and positive. A new feature of this result is that the scale
for concentration depends on the size of the expectation, rather than the variance.

4.3.1 Chernoff’s cgf bound
The main task in proving Chernoff’s inequality is to develop an appropriate cgf bound.
This argument will be based on a graphical estimate for the exponential function.

Lemma 4.12 (Chernoff cgf bound). Assume that 0 ≤ 𝑋 ≤ 𝑏 . Then

𝜉𝑋 (𝜃 ) ≤
e𝜃𝑏 − 1
𝑏

· (𝔼𝑋 ) for all 𝜃 ∈ ℝ.

Proof. The idea of the proof is best conveyed graphically. Owing to the convexity of
the function 𝑥 ↦→ e𝜃𝑥 , we can bound it above on the interval [0, 𝑏] by a straight line
connecting the endpoints:

Converting this diagram into algebraic terms, we see that

𝑚𝑋 (𝜃 ) = 𝔼
[
e𝜃𝑋

]
≤ 𝔼

[
1 + e𝜃𝑏 − 1

𝑏
· 𝑋

]
= 1 +

(
e𝜃𝑏 − 1
𝑏

)
· 𝔼𝑋 .
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Figure 4.2 (Chernoff). The Chernoff inequalities show that an independent sum of
bounded, positive random variables has tails that decay at a rate similar to a gamma
random variable. The left tail has a normal decay, while the right tail has gamma decay.

The bracket is the point–slope form of the linear bound. Using the fact that log(1+𝑎) ≤
𝑎 for 𝑎 > −1, we conclude that

𝜉𝑋 (𝜃 ) = log𝑚𝑋 (𝜃 ) ≤
(
e𝜃𝑏 − 1
𝑏

)
· (𝔼𝑋 ).

This is the Chernoff cgf bound. ■

4.3.2 Chernoff’s inequalities
With this cgf bound at hand, we can obtain a concentration inequality for an indepen-
dent sum of bounded, positive random variables. This result is often used to count the
number of independent events that occur by applying it to a sum of indicator random
variables. Compare this result with Example 4.8.

Theorem 4.13 (Chernoff inequalities). Consider an independent family (𝑋1, . . . , 𝑋𝑛) of
positive random variables Note that all summands are bounded

above by the same number 𝑏 .
that satisfy 0 ≤ 𝑋𝑖 ≤ 𝑏 for each 𝑖 = 1, . . . , 𝑛. Construct

the sum 𝑍 =
∑𝑛
𝑖=1 𝑋𝑖 . Then

ℙ {𝑍 ≥ (1 + 𝑡 ) (𝔼𝑍 )} ≤
(

e𝑡

(1 + 𝑡 )1+𝑡

) (𝔼𝑍 )/𝑏
for 𝑡 > 0,

ℙ {𝑍 ≤ (1 − 𝑡 ) (𝔼𝑍 )} ≤
(

e−𝑡

(1 − 𝑡 )1−𝑡

) (𝔼𝑍 )/𝑏
for 𝑡 ∈ [0, 1].

Exercise 4.14 (Chernoff inequalities). Prove Theorem 4.13.

The Chernoff inequality yields gamma concentration. That is, the tails of a sum of
independent bounded random variables look like the tails of a gamma random variable
(Figure 4.2). The left tail behaves like a normal distribution e−𝑡

2/2, while the right tails
decays like 𝑡 −𝑡 , which is slightly faster than exponential.

The asymmetry stems from the positivity of the summands 𝑋𝑖 , which ensures that
the sum always increases as we add more terms. As a consequence, it is very hard
for the sum to be close to zero, which pushes the mass upward toward the mean. In
contrast, the sum can become quite large if a few summands take unusually large
values, which is why the upper tail bound is weaker.
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4.4 Concentration for bounded summands with small variance
Last, we develop a concentration inequality due to Bernstein that is suitable for bounded
summands that have small variance.

4.4.1 Bernstein’s cgf bound
As usual, our duty is to obtain a cgf bound for a single random variable. This argument
is based on a Taylor expansion of the exponential.

Lemma 4.15 (Bernstein cgf bound). Suppose that 𝑋 is a centered, bounded random
variable: 𝔼𝑋 = 0 and |𝑋 | ≤ 𝑏 almost surely. Then

𝜉𝑋 (𝜃 ) ≤
(𝜃 2/2) Var[𝑋 ]
1 − 𝑏 |𝜃 |/3 for all 𝜃 ∈ ℝ.

Proof. By Taylor expansion, we have

𝑚𝑋 (𝜃 ) = 𝔼[e𝜃𝑋 ] = 1 + 𝜃 · (𝔼𝑋 ) +
∑︁

𝑝≥2
𝜃𝑝

𝑝!
𝔼𝑋 𝑝

≤ 1 +
∑︁

𝑝≥2
|𝜃 |𝑝
𝑝!

(𝔼𝑋 2) · 𝑏𝑝−2

≤ 1 +
(
𝜃 2

2
Var[𝑋 ]

)
·
∑︁∞

𝑝=0

|𝜃 |𝑝
3𝑝

𝑏𝑝

= 1 + (𝜃 2/2) Var[𝑋 ]
1 − 𝑏 |𝜃 |/3 .

Taking the logarithm and using the fact that log(1 + 𝑎) ≤ 𝑎 for 𝑎 > −1, we obtain the
Bernstein cgf bound. ■

4.4.2 Bernstein’s inequality
We may now state Bernstein’s inequality for an independent sum. This result is
probably the single most useful concentration inequality for an independent sum. It is
widely applicable, and it provides accurate bounds for moderate deviations. There are
many extensions to this result that weaken the hypotheses.

Theorem 4.16 (Bernstein inequality). Consider an independent family (𝑋1, . . . , 𝑋𝑛) of
bounded, real random variables: |𝑋𝑖 − 𝔼𝑋𝑖 | ≤ 𝑏 for each 𝑖 = 1, . . . , 𝑛. Construct
the sum 𝑍 =

∑𝑛
𝑖=1 𝑋𝑖 . Then

ℙ {|𝑍 − 𝔼𝑍 | ≥ 𝑡 } ≤ 2 exp
(

−𝑡 2/2
Var[𝑍 ] + 𝑏𝑡 /3

)
for 𝑡 > 0.

Exercise 4.17 (Bernstein inequality). Prove Theorem 4.16. Hint: Choose the parameter
𝜃 = 𝑡 /(Var[𝑍 ] + 𝑏𝑡 /3).

To understand Bernstein’s inequality, we consider two parameter regimes. For
moderate 𝑡 , we obtain normal concentration. For large 𝑡 , we obtain exponential
concentration. See Figure 4.3. For small or medium 𝑡 , the tail bound looks like
exp(−𝑡 2/(2 Var[𝑍 ])), so it yields normal concentration determined by the actual
variance of the sum. (In contrast, the variance proxy in Hoeffding’s inequality depends
on the ranges of the random variables, and it can be far larger than the true variance.)
For large 𝑡 , the tail bound looks like exp(−2𝑡 /(3𝑏)), which gives exponential decay
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Figure 4.3 (Bernstein). Bernstein’s inequality shows that an independent sum of bounded
random variables has normal tail decay on the scale of the variance for moderate
deviations. For large deviations, the sum exhibits exponential tail decay on the scale of
the upper bound for the summands.

on the scale of the upper bound 𝑏 . These large deviations are driven by the occasional
situations where a few summands take unusually large values. These phenomena can
be observed empirically.
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Agenda:
1. Concentration entropy
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3. Entropy tensorizes
4. Entropy bounds
5. Bounded differences

Last time, we introduced exponential tail bounds for independent sums based on the
Laplace transform method. Today, we will begin to develop exponential concentration
inequalities for nonlinear functions of independent random variables.

Consider the random variable 𝑍 = 𝑓 (𝑋1, ..., 𝑋𝑛), where the family (𝑋𝑖 ) is indepen-
dent. Recall that the variance provides a way of understanding the fluctuations around
the mean. Using the Chebyshev inequality, we can get weak concentration bounds
from the variance. However, we want a stronger exponential concentration for 𝑍 so
that we have greater control over the tail decay.

To move from independent sums, where the variance is additive, to nonlinear
functions, we find inspiration in the fact that variance tensorizes:

Var[𝑍 ] ≤
∑︁𝑛

𝑖=1
𝔼Var𝑖 [𝑍 ].

That is, for a nonlinear function, the variance is controlled by the variance of individual
coordinates of 𝑓 .

To obtain exponential concentration results for nonlinear functions, we will study
notions of entropy, and we will show that entropy also tensorizes. Using a classic
argument, due the Herbst, we can derive concentration inequalities from entropy
bounds. This approach allows us to obtain exponential concentration for a nonlinear
function of independent random variables. In the simplest case, the variance proxy is
the same quantity that appeared in the bounded differences inequality for the variance.

5.1 Entropy for random variables
Entropy is a measure of the unpredictability or dispersion of a random variable.
In this section, we introduce some measures of entropy that are designed to study
concentration properties.

5.1.1 Entropy and relative entropy
We begin with some entropy-like functions defined for positive numbers.

Definition 5.1 (Entropy; relative entropy). The (negative) entropy is the convex function

We use the convention 0 log 0 = 0.ℎ (𝑡 ) B 𝑡 log 𝑡 for 𝑡 ∈ ℝ+.

For positive numbers 𝑎 and 𝑡 , the entropy of 𝑎 relative to 𝑡 is given by

We use the conventions D(0 ||0) = 0
and D(𝑎 ||0) = +∞ for 𝑎 > 0.

D(𝑎 || 𝑡 ) B 𝑎 (log𝑎 − log 𝑡 ) − (𝑎 − 𝑡 ) for 𝑎, 𝑡 ∈ ℝ+.

The function D is called the relative entropy or the generalized information divergence.

Let us take a moment to understand the basic properties of relative entropy. First,
note that the relative entropy is the Bregman divergence associated with the (univariate)



Lecture 5: Entropy and Concentration 39

Figure 5.1 Relative entropy is the
Bregman divergence associated
with the convex function ℎ.

entropy function ℎ:

D(𝑎 || 𝑡 ) = ℎ (𝑎) − ℎ (𝑡 ) − ℎ′ (𝑡 ) (𝑎 − 𝑡 ) for 𝑎 ≥ 0 and 𝑡 > 0.

In other words, we subtract from ℎ (𝑎) the first-order Taylor expansion of ℎ around
the point 𝑡 . As illustrated in Figure 5.1, the tangent line of a convex function is always
a lower bound, so we deduce that the divergence is positive:

D(𝑎 || 𝑡 ) ≥ 0 for all 𝑎, 𝑡 ≥ 0.

Equality holds if and only if 𝑎 = 𝑡 . Thus, we can regard the relative entropy as a
measure of the “distance” from the point 𝑎 to the point 𝑡 . Note, however, that the
relative entropy is not symmetric, nor does it satisfy the triangle inequality.

5.1.2 Concentration entropy
Next, we introduce a notion of concentration entropy that describes the fluctuation of
a random variable about its expected value.

Definition 5.2 (Concentration entropy). Let 𝑌 be a positive random variable. Define
the concentration entropy of 𝑌 to be the number

ent(𝑌 ) B 𝔼[𝑌 log𝑌 ] − (𝔼𝑌 ) log(𝔼𝑌 )
= 𝔼[𝑌 (log𝑌 − log(𝔼𝑌 )) − (𝑌 − 𝔼𝑌 )] = 𝔼[D(𝑌 || 𝔼𝑌 )].

In other words, the concentration entropy measures the average divergence of a
realization of 𝑌 from its expected value 𝔼𝑌 . Since the relative entropy is positive,

ent(𝑌 ) ≥ 0.

The last relation also follows from Jensen’s inequality and the fact that the entropy is
convex.

In fact, the expectation 𝔼𝑌 is the number from which the random variable 𝑌 has
the least average divergence.
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Exercise 5.3 (Infimal representation of entropy). Prove the variational formula ent(𝑌 ) =
inf𝑡>0 𝔼[D(𝑌 || 𝑡 )]. Hint: Differentiate with respect to 𝑡 .

Exercise 5.4 (Entropy of an exponential). Most commonly, we apply the concentration
entropy to a random variable of the form 𝑌 = e𝑍 where 𝑍 is a real random variable.
Calculate ent(𝑌 ) in terms of 𝑍 . Draw a connection with mgfs and cgfs.

Exercise 5.5 (Scale invariance). For a positive random variable 𝑌 , show that ent(𝑎𝑌 ) =
ent(𝑌 ) for all 𝑎 ∈ ℝ++. Deduce that ent(e𝑍 ) = ent(e𝑍−𝔼𝑍 ).

5.2 The Herbst argument
To understand why the concentration entropy is a valuable tool for understanding
concentration, we need to draw a connection with other concepts from the theory of
concentration. The next result shows that bounds for the concentration entropy lead
to bounds for the cgf. This observation is attributed to Herbst (unpublished work!),
and it is commonly called the Herbst argument.

Proposition 5.6 (Herbst). Consider an independent family (𝑋1, ..., 𝑋𝑛) of real random
variables, and form 𝑍 = 𝑓 (𝑋1, ..., 𝑋𝑛). Suppose that we have an entropy bound of the
form

ent(e𝜃𝑍 ) ≤ 1
2𝜃

2𝑣 ·𝑚𝑍 (𝜃 ) for 𝜃 ∈ ℝ.

As usual𝑚𝑍 is the mgf. Then the cgf of the centered random variable 𝑍 − 𝔼𝑍 admits
the bound

𝜉𝑍−𝔼𝑍 (𝜃 ) = log𝔼 e𝜃 (𝑍−𝔼𝑍 ) ≤ 1
2𝜃

2𝑣.

Proof. Without loss of generality, we may assume that 𝔼𝑍 = 0. (Why?) Thus, the cgf
satisfies 𝜉𝑍 (0) = 0 and 𝜉 ′ (𝑍 ) = 𝔼𝑍 = 0. For future reference, observe that

lim
𝜃→0

𝜃 −1𝜉𝑍 (𝜃 ) = 0

because of L’Hôpital’s rule.
Now, let us calculate a derivative:

d
d𝜃

[
1
𝜃
𝜉𝑍 (𝜃 )

]
=

1
𝜃
𝜉 ′𝑍 (𝜃 ) −

1
𝜃 2 𝜉𝑍 (𝜃 )

=
1
𝜃

𝔼[𝑍 e𝜃𝑍 ]

𝔼 e𝜃𝑍
− 1
𝜃 2 log𝔼 e𝜃𝑍

=
1
𝜃 2

𝔼[e𝜃𝑍 log e𝜃𝑍 ] − (𝔼 e𝜃𝑍 ) log𝔼 e𝜃𝑍

𝔼 e𝜃𝑍

=
1
𝜃 2

ent(e𝜃𝑍 )
𝑚𝑍 (𝜃 )

.

This formula shows how a bound on the entropy relative to the mgf is connected to the
rate of change of the cgf.

We will now combine the last two displays with the Fundamental Theorem of
Calculus to get bounds for the cgf in terms of the entropy. For 𝜃 > 0,

1
𝜃
𝜉𝑍 (𝜃 ) =

∫ 𝜃

0

d𝑠
𝑠2

· ent(e
𝑠𝑍 )

𝑚𝑍 (𝑠 )

≤
∫ 𝜃

0

d𝑠
𝑠2

· 1
2
𝑠2𝑣 =

1
2
𝜃𝑣.
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The second line follows because of our assumption on the entropy.
We deduce that 𝜉𝑍 (𝜃 ) ≤ 1

2𝜃
2𝑣 when 𝜃 > 0. A similar argument is valid when

𝜃 < 0. This point completes the proof. ■

Exercise 5.7 (Negative values of 𝜃 ). Complete the proof of Proposition 5.6 by deriving the
cgf bound for 𝜃 < 0.

We now know that a certain type of bound for ent(e𝜃𝑍 ) induces a bound on the cgf
𝜉𝑍−𝔼𝑍 . Therefore, if we have a quadratic bound on concentration entropy, we obtain
a quadratic bound on the cgf. A routine application of the Laplace transform method
yields normal concentration for 𝑍 .

Exercise 5.8 (Entropy and normal concentration). Deduce that the bound

ent(e𝜃𝑍 )
𝑚𝑍 (𝜃 )

≤ 1
2𝜃

2𝑣 for all 𝜃 ∈ ℝ

implies the concentration inequality

ℙ {|𝑍 − 𝔼𝑍 | ≥ 𝑡 } ≤ 2 e−𝑡
2/(2𝑣 ) for all 𝑡 ≥ 0.

Problem 5.9 (Entropy: Range bound). For a random variable 𝑍 with mean zero and
𝑎 ≤ 𝑍 ≤ 𝑏 , prove that

ent(e𝜃𝑍 )
𝑚𝑍 (𝜃 )

≤ 1
8𝜃

2(𝑏 − 𝑎)2.

Hint: Write the left-hand side in terms of the cgf 𝜉𝑍 (𝜃 ) and its derivative 𝜉 ′
𝑍
(𝜃 ).

Bound this expression using the fundamental theorem of calculus and Hoeffding’s cgf
inequality 𝜉 ′′

𝑍
(𝜃 ) ≤ 1

4 (𝑏 − 𝑎)2.

5.3 Entropy tensorizes
The concentration entropy is a powerful tool for studying concentration in large part
because it has a tensorization property, analogous with the tensorization property of
the variance. To state this result, we need a definition of coordinatewise entropy.

Definition 5.10 (Coordinatewise entropy). Consider an independent family (𝑋1, ..., 𝑋𝑛)
of random variables, and form 𝑌 = 𝑓 (𝑋1, ..., 𝑋𝑛). The coordinatewise entropy
describes the entropy production due to changes in the 𝑖 th coordinate:

ent𝑖 (𝑌 ) B 𝔼𝑖 [𝑌 (log𝑌 − log𝔼𝑖 𝑌 )].

Recall that 𝔼𝑖 is the expectation with respect to the 𝑖 th random variable 𝑋𝑖 only
and holding 𝑋 𝑗 for 𝑗 ≠ 𝑖 constant. Therefore, ent𝑖 is a function of (𝑋 𝑗 : 𝑗 ≠ 𝑖 ).

Now, we will show that the total entropy of a function of independent random
variables is controlled by the sum of the conditional entropies.

Theorem 5.11 (Entropy tensorizes). With the prevailing notation and assumptions,

ent(𝑌 ) ≤ 𝔼
[∑︁𝑛

𝑖=1
ent𝑖 (𝑌 )

]
.

In other words, the total fluctuation of 𝑌 around its mean is controlled by the sum
of the fluctuations due to changes in the individual coordinates. To prove this result,
we need the following fundamental fact about relative entropy.
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Proposition 5.12 (Relative entropy is convex). The function (𝑎, 𝑡 ) ↦→ D(𝑎 || 𝑡 ) is convex on
ℝ2

++.

Proof. Let ℎ be the univariate entropy function. Observe that the divergence can be
written as

D(𝑎 || 𝑡 ) = 𝑡 · ℎ (𝑎/𝑡 ) − (𝑎 − 𝑡 ).
In convex analysis, the bivariate function (𝑎, 𝑡 ) ↦→ 𝑡 ℎ (𝑎/𝑡 ) is called the perspective
transformation of the convex function ℎ. It is a standard fact that the perspective of a
convex function is convex. The second term is linear, so it does not affect the convexity
properties. ■

As a consequence of Proposition 5.12 and Jensen’s inequality, we have the relation

D(𝔼𝑌 || 𝔼𝑍 ) ≤ 𝔼D(𝑌 || 𝑍 ) for all positive random variables 𝑌 , 𝑍 .

The same kind of averaging inequality also holds conditionally.

Proof of Theorem 5.8. The proof is similar in spirit to the proof that the variance
tensorizes. We can decompose the concentration entropy using a Doob martingale.
This expression allows us to isolate the contribution of each individual random variable
𝑋𝑖 to the entropy.

Much as before, define

𝑌𝑖 = 𝔼1 . . .𝔼𝑖 𝑌 for each 𝑖 = 0, . . . , 𝑛.

By convention, 𝑌0 = 𝑌 and 𝑌𝑛 = 𝔼𝑌 . We have the telescoping sum

ent(𝑌 ) = 𝔼[𝑌 (log𝑌 − log𝔼𝑌 )]

= 𝔼
[
𝑌

(∑︁𝑛

𝑖=1
log𝑌𝑖−1 − log𝑌𝑖

)]
= 𝔼

[∑︁𝑛

𝑖=1
𝑌𝑖−1(log𝑌𝑖−1 − log𝔼𝑖 𝑌𝑖−1)

]
= 𝔼

[∑︁𝑛

𝑖=1
D(𝑌𝑖−1 || 𝔼𝑖 𝑌𝑖−1)

]
.

Recall that 𝑌𝑖−1 = 𝔼1 · · ·𝔼𝑖−1𝑌 . Therefore, we can apply Jensen’s inequality condi-
tionally to draw out the expectation 𝔼1 · · ·𝔼𝑖−1. Indeed,

ent(𝑌 ) ≤ 𝔼
[∑︁𝑛

𝑖=1
𝔼1 · · ·𝔼𝑖−1 D(𝑌 || 𝔼𝑖 𝑌 )

]
= 𝔼

[∑︁𝑛

𝑖=1
𝔼𝑖 D(𝑌 || 𝔼𝑖 𝑌 )

]
= 𝔼

[∑︁𝑛

𝑖=1
ent𝑖 (𝑌 )

]
.

We have liberally applied the fact that the coordinatewise expectations are commuting,
idempotent operators. ■

5.4 Entropy bounds
In the last section, we observed that we can control the entropy of a multivariate
function in terms of the coordinatewise entropies. Therefore, we can exploit bounds
on the entropy of a univariate function to obtain bounds for the total entropy.
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5.4.1 Entropy and exchangeability
First, we will show that the entropy can be bounded by a more symmetrical function
involving a pair of iid random variables. As a particular example, we can obtain an
elegant bound for the entropy of an exponential.

Proposition 5.13 (Exchangeable bound for entropy). Let 𝑌 ,𝑌 ′ be iid positive random
variables.

ent(𝑌 ) ≤ 1
2
𝔼[(𝑌 −𝑌 ′) (log𝑌 − log𝑌 ′)].

In particular, for iid real random variables 𝑍 , 𝑍 ′, we have

ent(e𝑍 ) ≤ 1
2
𝔼[(e𝑍 − e𝑍

′) (𝑍 − 𝑍 ′)].

Proof. For the first inequality, by convexity of the negative logarithm,

ent(𝑌 ) = 𝔼𝑌 [𝑌 (log𝑌 − log𝔼𝑌 ′ 𝑌 ′)]
≤ 𝔼𝑌 ,𝑌 ′ [𝑌 (log𝑌 − log𝑌 ′)].

We write 𝔼𝑋 for the expectation with respect to the randomness in a variable 𝑋 . The
second relation follows from Jensen’s inequality and independence. Since (𝑌 ,𝑌 ′) has
the same distribution as (𝑌 ′,𝑌 ), it also follows that

ent(𝑌 ) = ent(𝑌 ′) ≤ 𝔼𝑌 ,𝑌 ′ [𝑌 ′ (log𝑌 ′ − log𝑌 )].

Thus, by averaging,

ent(𝑌 ) = 1
2
𝔼[(𝑌 −𝑌 ′) (log𝑌 − log𝑌 ′)].

Substituting in the exponential 𝑌 = e𝑍 and 𝑌 ′ = e𝑍
′
, we discover that

ent(e𝑍 ) ≤ 1
2
𝔼[(e𝑍 − e𝑍

′) (𝑍 − 𝑍 ′)].

This is the required result. ■

5.4.2 Discrete MLS
We are now prepared to establish a univariate entropy bound, which is called a discrete
modified logarithmic Sobolev inequality (MLS). The terminology will be discussed in
more detail in subsequent lectures.

Theorem 5.14 (Discrete MLS). Let 𝑍 , 𝑍 ′ be iid real random variables. Then

ent(e𝑍 ) ≤ 1
2
𝔼
[
𝔼′ [(𝑍 − 𝑍 ′)2] · e𝑍

]
.

We write 𝔼′ for the expectation with respect to the randomness in 𝑍 ′.

Proof. The argument depends on a simple numerical inequality. For real 𝑎, 𝑏 ,

(𝑎 − 𝑏) (e𝑎 − e𝑏 ) = (𝑎 − 𝑏)2
∫ 1

0
e(1−𝜏 )𝑎+𝜏𝑏 d𝜏

≤ (𝑎 − 𝑏)2
∫ 1

0

[
(1 − 𝜏)e𝑎 + 𝜏e𝑏

]
d𝜏 = 1

2 (𝑎 − 𝑏)2(e𝑎 + e𝑏 ).
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The first relation follows from the Fundamental Theorem of Calculus, and the inequality
holds because the exponential function is convex.

Applying this inequality to the formula in Proposition 5.13,

ent(e𝑍 ) ≤ 1
2
𝔼[(𝑍 − 𝑍 ′) (e𝑍 − e𝑍

′)]

≤ 1
4
𝔼[(𝑍 − 𝑍 ′)2 · (e𝑍 + e𝑍

′)] = 1
2
𝔼
[
𝔼′ [(𝑍 − 𝑍 ′)2] · e𝑍

]
.

In the last step, we have used the fact that 𝑍 , 𝑍 ′ are iid. ■

Using tensorization, we obtain a multivariate extension of the last result. To
that end, we recall the notation that arose in the Efron–Stein–Steele inequality.
Consider an independent family (𝑋1, ..., 𝑋𝑛) of random variables, and form the function
𝑍 = 𝑓 (𝑋1, ..., 𝑋𝑛). Let (𝑋

′

𝑖
) be an independent draw of (𝑋𝑖 ), and define the function

𝑍 (𝑖 ) B 𝑓 (𝑋1, . . . , 𝑋
′
𝑖 , . . . , 𝑋𝑛) for 𝑖 = 1, . . . , 𝑛.

That is, 𝑍 (𝑖 ) is obtained from 𝑍 by refreshing the 𝑖 th coordinate𝑋𝑖 with an independent
copy 𝑋 ′

𝑖
. Conditional on the values (𝑋 𝑗 : 𝑗 ≠ 𝑖 ), the pair (𝑍 , 𝑍 (𝑖 ) ) is iid.

Corollary 5.15 (Multivariate discrete MLS). With the prevailing notation,

ent(e𝑍 ) ≤ 𝔼[𝑉 e𝑍 ], where 𝑉 =
1
2

∑︁𝑛

𝑖=1
𝔼′ (𝑍 − 𝑍 (𝑖 ) )2.

Here, 𝔼′ computes the expectation with respect to the randomness in (𝑋 ′
𝑖
) only.

Proof. The tensorization of entropy (Theorem 5.11) states that

ent(e𝑍 ) = 𝔼
[∑︁𝑛

𝑖=1
ent𝑖 (e𝑍 )

]
.

Applying the discrete MLS (Theorem 5.14) coordinatewise,

ent𝑖 (e𝑍 ) ≤
1
2
𝔼𝑖

[
𝔼′
𝑖 [(𝑍 − 𝑍 (𝑖 ) )2] · e𝑍

]
.

Combine the two displays to complete the proof. ■

The random variable𝑉 is the same quantity that appears in the Efron–Stein–Steele
inequality as a bound for the variance. It may be interpreted as an estimate of the
squared energy of the random variable 𝑍 at the random point (𝑋1, . . . , 𝑋𝑛).

5.5 From entropy bounds to concentration
Finally, we derive concentration inequalities from the entropy bounds in the last section.

5.5.1 Uniform bounds on the variance
The simplest setting for the discrete MLS (Corollary 5.15) occurs when the random
variance proxy𝑉 admits a uniform bound.

Corollary 5.16 (Discrete MLS: Uniform bound). With the prevailing notation, for 𝜃 ∈ ℝ,

ent(e𝜃𝑍 ) ≤ 1
2𝜃

2𝑣 ·𝑚𝑍 (𝜃 ) where 𝑣 =




∑︁𝑛

𝑖=1
𝔼′ (𝑍 − 𝑍 (𝑖 ) )2





∞
.

Recall that ∥·∥∞ is the essential supremum of a random variable.
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This result is an immediate consequence of Corollary 5.15. Combining this result
with the Herbst argument (Proposition 5.6), we see that

ℙ
{
|𝑍 − 𝔼𝑍 | ≥ 𝑡

√
𝑣
}
≤ e−𝑡

2/2 for all 𝑡 ≥ 0.

This is our first nonlinear concentration inequality.

5.5.2 Bounded differences inequality
To appreciate the content of Corollary 5.16, let us make a further estimate for the
uniform variance proxy 𝑣 . Recall our definition of the discrete “derivative” of a function:

(D𝑖 𝑓 ) B sup
𝑥∈supp(𝑋𝑖 )

𝑓 (𝑋1, ..., 𝑥, ..., 𝑋𝑛) − inf
𝑥∈supp(𝑋𝑖 )

𝑓 (𝑋1, ..., 𝑥, ..., 𝑋𝑛).

Since 𝑍 − 𝑍 (𝑖 ) only changes in the 𝑖 th coordinate, it is obvious that

𝔼′ (𝑍 − 𝑍 (𝑖 ) )2 ≤ (D𝑖 𝑓 )2.

Therefore, the variance proxy in Corollary 5.16 is bounded as

𝑣 ≤



∑︁𝑛

𝑖=1
(D𝑖 𝑓 )2





∞
.

These considerations lead to a bounded difference inequality.

Theorem 5.17 (Bounded differences). Consider an independent family (𝑋1, . . . , 𝑋𝑛) of
random variables, and consider a function 𝑓 : ℝ𝑛 → ℝ. Define the variance proxy

𝑣 B



∑︁𝑛

𝑖=1
(D𝑖 𝑓 )2





∞
.

Then
ℙ
{
|𝑍 − 𝔼𝑍 | ≥ 𝑡

√
𝑣
}
≤ 2e−𝑡

2/2 for all 𝑡 ≥ 0.

We have obtained normal concentration for a nonlinear function in terms of the
discrete derivatives. This result is an analog of Hoeffding’s inequality, proven in the
previous chapter. The constants here are worse than the result for independent sums,
but they can be improved with further care.

In the next lecture, we will see that the discrete MLS is just one example from a
larger class of modified logarithmic Sobolev inequalities. These results allow us to
prove more refined nonlinear concentration inequalities for particular distributions.

Exercise 5.18 (Bounded differences: Sharp constant). Deduce that Theorem 5.17 holds with
𝑣 replaced by 𝑣/4. Hint: Use Problem 5.9.
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In the last lecture, we used entropy as a tool for proving normal concentration for
nonlinear functions of independent random variables. Among other things, this
approach yields a bounded difference inequality where the variance proxy is the sum of
squared “discrete derivatives” of the random variable. In this lecture, we will develop
some nonlinear concentration inequalities involving the squared (calculus) derivative of
the random variable. The key input is a type of functional inequality called a modified
log-Sobolev inequality (MLSI).

6.1 Recap: Entropy and concentration
Let us begin with a review of the arguments from the last lecture. First, recall that the
relative entropy (or generalized information divergence) measures of distance between
two positive numbers:

Aside: The KL divergence often
arises in information theory and
statistical physics.

D(𝑎 || 𝑡 ) := 𝑎 (log𝑎 − log 𝑡 ) − (𝑎 − 𝑡 ) ≥ 0 for 𝑎, 𝑡 ≥ 0.

The relative entropy is positive and convex.
Next, we define the concentration entropy, which measures the average divergence

between a realization of a random variable and its mean.

Definition 6.1 (Concentration entropy). The entropy of a positive random variable 𝑌 is
given by

ent(𝑌 ) B 𝔼[D(𝑌 || 𝔼𝑌 )] = 𝔼[𝑌 (log𝑌 − log𝔼𝑌 )].

The concentration entropy is always positive, and it equals zero if and only if
the random variable 𝑌 is constant: 𝑌 = 𝔼𝑌 almost surely. The expectation plays a
distinguished role in the definition; indeed,

ent(𝑌 ) = inf𝑡>0 𝔼[D(𝑌 || 𝑡 )]. (6.1)

Like the variance, the concentration entropy tensorizes. That is, we can control the
entropy of a random variable in terms of the entropy produced by each coordinate.
Consider a positive function 𝑌 = 𝑓 (𝑋1, . . . , 𝑋𝑛) of independent random variables (𝑋𝑖 ).
The coordinatewise entropy is Notation: 𝔼𝑖 averages over only 𝑋𝑖 ,

holding (𝑋 𝑗 : 𝑗 ≠ 𝑖 ) fixed. The
symbol 𝔼 refers to the total
expectation, while 𝔼′ denotes the
expectation with respect to an
independent copy of the underlying
random variables.

ent𝑖 (𝑌 ) B 𝔼𝑖 [D(𝑌 || 𝔼𝑖 𝑌 )].

We can now state the tensorization theorem.
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Theorem 6.2 (Entropy tensorizes). With the prevailing notation,

ent(𝑌 ) ≤ 𝔼
[∑︁𝑛

𝑖=1
ent𝑖 (𝑌 )

]
.

This results follows from a Doob martingale decomposition and the convexity of the
information divergence.

Tensorization allows us to lift bounds for univariate entropy to obtain entropy
bounds for nonlinear functions of independent random variables.

Example 6.3 (Discrete MLSI). Let us consider the entropy of the exponential of a real
random variable 𝑍 . As discussed in the last lecture, we have the univariate discrete
MLSI:

ent(e𝑍 ) ≤ 1
2
𝔼
[
(𝑍 − 𝑍 ′)2 · e𝑍

]
,

where 𝑍 ′ is an independent copy of 𝑍 .
We can tensorize this univariate bound to obtain a discrete MLSI for a multivariate

function 𝑍 = 𝑓 (𝑋1, . . . , 𝑋𝑛) of independent random variables:

ent(e𝑍 ) ≤ 1
2
𝔼
[(∑︁𝑛

𝑖=1
(𝑍 − 𝑍 (𝑖 ) )2

)
· e𝑍

]
,

where 𝑍 (𝑖 ) = 𝑓 (𝑋1, . . . , 𝑋
′
𝑖
, . . . , 𝑋𝑛) and (𝑋 ′

𝑖
) is an independent copy of (𝑋𝑖 ). This

inequality can be rewritten as

ent(e𝑍 ) ≤ 1
2
𝔼[𝑉 e𝑍 ] where 𝑉 = 𝔼′

[∑︁𝑛

𝑖=1
(𝑍 − 𝑍 (𝑖 ) )2

]
.

The random variable𝑉 is a random proxy for the variance. Up to scaling, recall that𝑉
also appears on the right-hand side of the Efron–Stein–Steele inequality.

We can make use of this entropy inequality to get a parameterized bound that
depends quadratically on a parameter 𝑠 and is controlled by the maximum size of the
variance proxy𝑉 . In other words, The norm ∥ · ∥∞ returns the essential

supremum of a random variable.

ent(e𝑠𝑍 ) ≤ 𝑠2

2
∥𝑉 ∥∞ 𝔼[e𝑠𝑍 ], for 𝑠 ∈ ℝ.

Now, the Herbst argument yields bounds on the cgf. For 𝜃 > 0,

1
𝜃
𝜉𝑍−𝔼𝑍 (𝜃 ) =

∫ 𝜃

0

d𝑠
𝑠2

ent(e𝑠𝑍 )
𝔼 e𝑠𝑍

≤
∫ 𝜃

0

d𝑠
2
∥𝑉 ∥∞ =

𝜃

2
∥𝑉 ∥∞.

A similar bound holds for 𝜃 < 0. Finally, the Laplace transform method tells us that
𝑍 − 𝔼𝑍 has normal concentration with variance proxy ∥𝑉 ∥∞. See Problem Set 1,
Exercise 3.

To summarize, we used the discrete MLSI to bound the entropy by the mgf.
Using the Herbst argument and the Laplace transform method, we arrive at a normal
concentration inequality. ■
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6.2 Modified log-Sobolev inequalities and concentration
In the previous example, we developed a bound on the entropy using a uniform
estimate for the random variance proxy. This approach yields an entropic formulation
of the fact that the nonlinear random variable has normal concentration.

Nevertheless, this approach has several shortcomings. The discrete variance
proxy 𝑉 is not always easy to work with, and we might like results formulated in
terms of ordinary (calculus) derivatives. In addition, the bound only applies to the
case where the variance proxy admits a uniform bound, which excludes a number
of important examples (such as quadratic forms). In this lecture, we will develop
nonlinear concentration results involving derivatives. You will engage the second issue
on Problem Set 2.

Consider a real-valued function 𝑓 (𝑋 ) of a real random variable 𝑋 . In this discussion,
it is convenient to use functional notation for random variables. Informally, suppose
we can prove an inequality in one dimension of the form The symbol 𝑓 ′ denotes the derivative

of 𝑓 , not an independent copy.

ent(e𝑓 ) ≤ 1
2
𝔼
[
| 𝑓 ′ |2 e𝑓

]
.

This bound is also called a (modified) log-Sobolev inequality (MLSI). It is a “continuous”
analog of the discrete MLSI from Example 6.3. Note that the MLSI can be rewritten as

ent(e𝑓 ) ≤ 2𝔼
[ (
(e𝑓 /2)′

)2]
.

In other words, the right-hand side is related to the average energy of e𝑓 /2.
By tensorization, we can extend this inequality to a random variable of the form

𝑓 (𝑋1, . . . , 𝑋𝑛) where the 𝑋𝑖 are iid copies of 𝑋 . This step yields a multivariate MLSI:

ent(e𝑓 ) ≤ 1
2
𝔼
[
∥∇𝑓 ∥2 e𝑓

]
.

Applying the Herbst argument and the Laplace transform method, we obtain a normal
concentration inequality:

ℙ {| 𝑓 − 𝔼 𝑓 | ≥ 𝑡 } ≤ 2 e−𝑡
2/(2𝑣 ) where 𝑣 = ∥∥∇𝑓 ∥22∥∞.

In other words, the variance proxy 𝑣 is a uniform bound on the squared Euclidean
norm of the gradient, also known as the Dirichlet energy.

Recall that a Poincaré inequality controls the variance in terms of the expectation
of the Dirichlet energy:

Var[ 𝑓 ] ≤ 𝔼
[
∥∇𝑓 ∥22

]
.

We can see the univariate and multivariate MLSIs are a kind of entropic counterpart to
the Poincaré inequality. Whereas we only derived variance bounds from the Poincaré
inequality, the MLSI yields normal concentration.

As with Poincaré inequalities, we need to develop ad hoc arguments to establish
an MLSI for a particular random variable 𝑋 . An advantage of the discrete MLSI
(Example 6.3) is that it holds for any distribution. Later, we will encounter a convex
MLSI that holds for all bounded distributions—but only for convex functions.

Problem 6.4 (MLSI implies Poincaré). In fact, the MLSI is a stronger result that the
Poincaré inequality. Show that an MLSI implies a Poincaré inequality. Hint: Apply the
MLSI to the function log(1 +𝜂 𝑓 ) and take 𝜂 → 0.
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Problem 6.5 (Poincaré implies exponential concentation). In fact, the Poincaré inequality
can be used to obtain exponential concentration. To prove this fact, apply the Poincaré
inequality to e𝜃 𝑓 to obtain a recursive formula for the mgf.

Aside: (Modified) log-Sobolev inequalities have a very long history. They play an
important role in probability, analysis and mathematical physics. As with other
Sobolev inequalities, they quantify the idea that we can trade differentiability
properties for integrability properties. That is, we control a moment of a function
in terms of a moment of its derivative. Log-Sobolev inequalities are particularly
important because they extend to infinite-dimensional settings, whereas many
other types of Sobolev inequalities depend on the underlying dimension of the
space.

6.3 Rademacher MLSI
First, let us develop an MLSI for the simplest nontrivial probability distribution, the
Rademacher distribution. We will derive this result as a simple consequence of the
discrete MLSI, although we will not achieve sharp constants.

Recall that a Rademacher random variable 𝜀 ∼ uniform{±1}. Let us apply the
univariate discrete MLSI to the random variable 𝑓 (𝜀) where 𝑓 : {±1} → ℝ. After a
short calculation, we obtain

ent(e𝑓 (𝜀 ) ) ≤ 1
4
𝔼
[
( 𝑓 (+1) − 𝑓 (−1))2 e𝑓 (𝜀 )

]
.

We can interpret the first term in the expectation on the right-hand side as the square
of the discrete derivative of 𝑓 .

Now, consider an independent family (𝜀1, . . . , 𝜀𝑛) of Rademacher random variables
and a real random variable 𝑍 = 𝑓 (𝜀1, . . . , 𝜀𝑛). As in the last paragraph, we calculate
the expectation due to the randomness in the 𝑖 th coordinate as

𝔼′ (𝑍 − 𝑍 (𝑖 ) )2 = 1
2
[ 𝑓 (𝜀1, . . . ,+1, . . . , 𝜀𝑛) − 𝑓 (𝜀1, . . . ,−1, . . . , 𝜀𝑛)]2 =

1
2
(D𝑖 𝑓 )2.

We have used our standard notation D𝑖 for the “discrete derivative” in the 𝑖 th coordinate.
Hence, the random variance proxy of 𝑍 is

𝑉 =
1
2

∑︁𝑛

𝑖=1
(D𝑖 𝑓 )2.

Keep in mind that the variance proxy𝑉 is a function of 𝜀1, . . . , 𝜀𝑛 . We can interpret𝑉
as the squared Euclidean norm of the discrete gradient of 𝑓 . Using the multivariate
discrete MLSI from Example 6.3, we immediately obtain the following result.

Theorem 6.6 (Rademacher MLSI). With the prevailing notation

ent(e𝑓 ) ≤ 1
4
𝔼
[(∑︁𝑛

𝑖=1
(D𝑖 𝑓 )2

)
e𝑓
]
.

The theorem gives us a bound on the entropy of a nonlinear function of Rademacher
random variables using a random variance proxy. The entropy bound reflects the
energy, the sum of squared (discrete) derivatives.

Using the Herbst argument and the Laplace transform method, we obtain normal
concentration with variance proxy

𝑣 = ∥𝑉 ∥∞ = max𝜀𝑖
∑︁𝑛

𝑖=1

(
D𝑖 𝑓 (𝜀1, . . . , 𝜀𝑛)

)2
.
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In the next section, we will use this result to obtain bounds on the entropy of a standard
normal random variable.

Problem 6.7 (Rademacher MLSI: Optimal constants). For a univariate function 𝑓 : {±1} →
ℝ, prove that

ent(e𝑓 ) ≤ 1
8
𝔼[( 𝑓 (+1) − 𝑓 (−1))2 e𝑓 ]

Hint: Reduce to the case where 𝑓 (−1) = 0 and 𝑓 (+1) = 𝑠 . Check the case 𝑠 = 0.
Consider the derivatives of both sides with respect to 𝑠 .

6.4 Gaussian MLSI
In this section, we will derive MLSIs for the standard normal distribution. We begin with
the univariate case, and we use tensorization to obtain the multivariate generalization.

Theorem 6.8 (Gaussian MLSI: Univariate case). Let 𝛾 ∼ normal(0, 1). For a nice
function 𝑓 : ℝ → ℝ,

ent(e𝑓 (𝛾 ) ) ≤ 𝔼
[
( 𝑓 ′ (𝛾 ))2 e𝑓 (𝛾 )

]
. (6.2)

In fact, the inequality holds for all 𝑓 where the both sides are defined and finite.

Proof sketch. The key idea is to use the central limit theorem (CLT) to condense the
univariate MLSI for a standard normal random variable from the multivariate MLSI
for Rademacher random variables. To justify the calculations, assume that 𝑓 and its
derivatives 𝑓 ′, 𝑓 ′′ are bounded.

Consider the sequence of random variables

𝑍𝑛 B
1
√
𝑛

∑︁𝑛

𝑖=1
𝜀𝑖 .

As 𝑛 → ∞, the sequence (𝑍𝑛) converges weakly to a standard normal distribution by
the CLT.

To apply the Rademacher MLSI (Theorem 6.6), we need to compute discrete
derivatives. For each index 𝑖 = 1, . . . , 𝑛,

D𝑖 𝑓 = 𝑓

(
1
√
𝑛

(
+1 +

∑︁
𝑗≠𝑖

𝜀𝑗

))
− 𝑓

(
1
√
𝑛

(
−1 +

∑︁
𝑗≠𝑖

𝜀𝑗

))
=

2
√
𝑛
𝑓 ′

(
1
√
𝑛

∑︁𝑛

𝑖=1
𝜀𝑖

)
+ O(𝑛−1)

=
2
√
𝑛
𝑓 ′ (𝑍𝑛) +𝑂 (𝑛−1).

We have employed a first-order Taylor expansion of 𝑓 around the standardized sum
𝑍𝑛 , using the assumption that 𝑓 ′′ is bounded. Summing the squares of the discrete
derivatives, ∑︁𝑛

𝑖=1
(D𝑖 𝑓 )2 = 4𝑓 ′ (𝑍𝑛) +𝑂 (𝑛−1/2).

From Theorem 6.6, we obtain the bound

ent(e𝑓 ) ≤ 1
4
𝔼
[(∑︁𝑛

𝑖=1
(D𝑖 𝑓 )2

)
e𝑓
]

≈ 𝔼
[
𝑓 ′ (𝑍𝑛)2 e𝑓 (𝑍𝑛 )

]
→ 𝔼

[
𝑓 ′ (𝛾 )2 e𝑓 (𝛾 )

]
.
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The last limit follows from the CLT since we are considering a bounded, continuous
function of 𝑍𝑛 . ■

Now we can tensorize Theorem 6.8 to obtain a multivariate Gaussian MLSI.

Corollary 6.9 (Gaussian MLSI). Consider a standard normal random vector𝜸 ∼ normal(0, I𝑛)
and a (nice) function 𝑓 : ℝ𝑛 → ℝ. Then

ent(e𝑓 (𝜸 ) ) ≤ 𝔼
[
∥∇𝑓 (𝜸 )∥22 e𝑓 (𝜸 ) ] . (6.3)

Exercise 6.10 (Gaussian MLSI). Derive Corollary 6.9.

Corollary 6.9 leads to particularly simple results when the function 𝑓 is 𝐿-Lipschitz
with respect to the Euclidean norm. In this case, ∥∇𝑓 ∥22 ≤ 𝐿2 almost everywhere, and
we recognize that

ent(e𝑠 𝑓 ) ≤ 𝑠2𝐿2 𝔼[e𝑠 𝑓 ] for 𝑠 ∈ ℝ.

Invoking the Herbst argument, we learn that 𝑓 has normal concentration with variance
proxy 2𝐿2. The constant two is spurious, and it can be removed if we use the optimal
Gaussian MLSI.

Exercise 6.11 (Gaussian MLSI: Optimal constants). Using Problem 6.7, deduce that the
Gaussian MLSI holds with constant 1/2.

Aside: The Gaussian MLSI is intimately related to the convergence of the Ornstein–
Uhlenbeck (OU) process, which models the velocity of a massive Brownian particle
under the influence of friction.

The equilibrium distribution of the OU process is a standard normal distribution.
The generator of the OU process is the second-order differential operator 𝑨 𝑓 =

𝑓 ′′ − 𝑥 𝑓 ′, defined for (smooth) functions on the real line. The associated parabolic
PDE takes the form

𝜕𝑡𝑢𝑡 = 𝑨𝑢𝑡 , where 𝑢0 = 𝑓 .

The initial condition 𝑓 is a function on the real line, and 𝑢0 is the solution at time
𝑡 . The solutions converge to the constant function 𝑢∞(𝑥) = 𝔼[ 𝑓 (𝛾 )], where 𝛾 is a
standard normal random variable.

The (sharp) Gaussian MLSI implies that the concentration entropy of 𝑢𝑡 (𝛾 )
decays at an exponential rate:

ent(𝑢𝑡 (𝛾 )) ≤ e−𝑡 ent(𝑢0(𝛾 )) for 𝑡 ≥ 0.

The exponential decay in variance, promised by the Gaussian Poincaré inequality, is
a fact about the spectrum of the OU differential operator. In contrast, the Gaussian
MLSI requires deeper properties of the operator.

6.5 Convex MLSI
We derived MLSIs for the multivariate Gaussian distributions using the univariate
Gaussian MLSI, which in turn we calculated from the Rademacher MLSI. All of these
results required independent arguments. One may wonder whether there is a general
scheme for deriving MLSIs for a wider class of distributions.

In fact, there is a univariate MLSI that holds for any bounded distribution, but
only applies to the case of a convex function. We will establish this result and its
multivariate extension in this section.
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Theorem 6.12 (Convex MLSI: Univariate case). Consider a bounded, real random vari-
able 𝑋 taking values in [𝑎, 𝑏]. Let 𝑓 : [𝑎, 𝑏] → ℝ be a convex function. Then

ent(e𝑓 ) ≤ 1
2
(𝑏 − 𝑎)2 𝔼

[
( 𝑓 ′)2 e𝑓

]
. (6.4)

Proof. Using the variational formula for entropy (6.1),

ent(e𝑓 ) = inf𝑡>0 𝔼
[
e𝑓 (𝑋 ) (log e𝑓 (𝑋 ) − log(𝑡 )) − (e𝑓 (𝑋 ) − 𝑡 )

]
.

Fix a point 𝑦 ∈ argmin 𝑓 , and select 𝑡 = e𝑓 (𝑦 ) . Then

ent(e𝑓 ) ≤ 𝔼
[
e𝑓 (𝑋 ) ( 𝑓 (𝑋 ) − 𝑓 (𝑦 )) − (e𝑓 (𝑋 ) − e𝑓 (𝑦 ) )

]
= 𝔼

[
e𝑓 (𝑋 ) (e𝑓 (𝑦 )− 𝑓 (𝑋 ) − ( 𝑓 (𝑦 ) − 𝑓 (𝑋 )) − 1

) ]
= 𝔼

[
1
2
e𝑓 (𝑋 ) (𝑓 (𝑦 ) − 𝑓 (𝑋 )

)2]
.

We have used the fact that 𝑓 (𝑦 ) − 𝑓 (𝑋 ) ≤ 0 to instantiate the numerical inequality
e𝑡 − 𝑡 − 1 ≤ 1

2𝑡
2, valid for 𝑡 ≤ 0. Since 𝑓 is convex, it is supported by its tangent at

the random point 𝑋 . That is,

𝑓 (𝑦 ) − 𝑓 (𝑋 ) ≥ 𝑓 ′ (𝑋 ) (𝑦 − 𝑋 ).

Negating this inequality, we find that 0 ≤ 𝑓 (𝑋 ) − 𝑓 (𝑦 ) ≤ 𝑓 ′ (𝑋 ) (𝑋 − 𝑦 ). Taking the
square,

( 𝑓 (𝑋 ) − 𝑓 (𝑦 ))2 ≤ 𝑓 ′ (𝑋 )2(𝑋 − 𝑦 )2 ≤ 𝑓 ′ (𝑋 ) (𝑏 − 𝑎)2.
Combine the displays to complete the proof. ■

As usual, we may tensorize the univariate bound to obtain a multivariate convex
MLSI for an unusual class of functions.

Corollary 6.13 (Convex MLSI). Consider an independent family (𝑋1, . . . , 𝑋𝑛) of real
random variables taking values in the interval [𝑎, 𝑏]. A separately convex function is

convex when restricted to each
coordinate. This requirement is
weaker than convexity. See Problem
Set 1.

Let 𝑓 : ℝ𝑛 → ℝ be a separately
convex function. Then

ent(e𝑓 ) ≤ 1
2
(𝑏 − 𝑎)2 𝔼

[
∥∇𝑓 ∥2 e𝑓

]
. (6.5)

Exercise 6.14 (Convex MLSI). Derive Corollary 6.13.

As a consequence of Corollary 6.13, a convex and 𝐿-Lipschitz function of indepen-
dent, bounded random variables exhibits a normal upper tail. It is important to realize
that the corresponding lower tail inequality may not be valid. Indeed, we cannot follow
the same argument for the concave function −𝑓 .

The inequality (6.5) is analogous to the Hoeffding bound that we obtained in
Lecture 4. However, the uniform bound ∥∇𝑓 ∥2 ≤ 𝐿2 seems as if it may be wasteful.
A natural question that arises is whether we can obtain a Bernstein-type inequality
that better accounts for the typical size of the gradient. We investigate this question in
Problem Set 2.
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1. Symmetrization
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We have seen that Chebyshev’s inequality controls the tail of a random variable in
terms of its variance. The variance captures the typical (as opposed to worst-case)
fluctuation of the random variable, and it can often be effectively bounded (e.g., using
Poincaré inequalities). On the other hand, the resulting 𝑡 −2 tail bound is weaker than
we might hope. Indeed, we anticipate that an independent sum has subgaussian tails,
owing to the central limit theorem. We obtained this type of result using the Laplace
transform method and estimates for the cgf.

Unfortunately, the cgf involves an exponential moment. Bounding the cgf is
equivalent to bounding polynomial moments of all orders (see Exercise 3 in Problem set
1). Thus, the assumptions needed to control the cgf are stronger than the assumptions
needed to control the variance. Our estimates for the cgf of an independent sum depend
on the worst-case behavior of the summands. For example, the Hoeffding, Chernoff,
and Bernstein inequalities all assume that the random variables are bounded almost
surely. Likewise, the nonlinear tail bounds we obtained using modified log-Sobolev
inequalities involve the uniform norm of (some notion of) the gradient.

It is natural to wonder whether we can obtain polynomial tail decay for an
independent sum 𝑍 without assuming that the summands have moments of all orders.
In this lecture, we obtain bounds on the polynomial moments 𝔼 |𝑍 |𝑝 of the sum. By
Markov’s inequality, these estimates give us tail bounds of the form Given the function 𝑝 ↦→ 𝔼 |𝑍 |𝑝 for

all 𝑝 > 0, we can optimize the tail
bound over 𝑝 . The result is at least as
good as the best tail bound one
obtains using the Laplace transform
method.

ℙ {|𝑍 | ≥ 𝑡 } ≤ 𝔼 |𝑍 |𝑝
𝑡𝑝

, 𝑝 > 0, 𝑡 ≥ 0.

To bound these moments, we again look to the central limit theorem for inspiration.
The reason that an independent sum of zero-mean random variables has rapidly

decaying tails is that many of the summands cancel each other out. To make this
cancellation explicit, we develop a method called symmetrization to inject random
signs into the sum. This modification has a minimal effect on the size of the moments.

Afterward, we prove Khintchine’s inequality, which shows how the random signs
can be used to produce moment bounds. Finally, we combine symmetrization and
Khintchine’s inequality to derive polynomial moment bounds analogous to the Chernoff
and Bernstein cgf bounds. The newmoment inequalities involve the expected maximum
of the summands, rather than a uniform bound on the summands, so they give more
precise information than the exponential inequalities.

7.1 Symmetrization
Consider a sum

∑𝑛
𝑖=1(𝑋𝑖 − 𝔼𝑋𝑖 ) of iid centered random variables. This discussion is based on [van16,

Sec. 7.1]
Naïvely, we might

expect this sum to have order 𝑂 (𝑛) since it contains 𝑛 terms each of order 𝑂 (1).
However, the central limit theorem implies that this sum is likely to have order
𝑂 (

√
𝑛). The reason is that the summands are independent and have zero mean, so

they are likely to have opposite signs and cancel each other out. The random signs,
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sgn(𝑋𝑖 − 𝔼𝑋𝑖 ), are responsible for the subgaussian tail decay, while the magnitudes
|𝑋𝑖 − 𝔼𝑋𝑖 | only determine the width of the gaussian. This discussion suggests that,
in order to effectively bound moments of independent sums, we need to make the
random signs of the summands explicit and find a way to exploit them. The process of
making these signs explicit is called symmetrization:

Theorem 7.1 (Symmetrization). Consider an independent family (𝒙1, . . . , 𝒙𝑛) of
random variables taking values in a normed linear space, and let Φ : ℝ+ → ℝ+ be
increasing and convex. Then

𝔼𝒙 Φ
(


∑︁𝑛

𝑖=1
(𝒙 𝑖 − 𝔼 𝒙 𝑖 )




) ≤ 𝔼𝒙 ,𝜀 Φ
(
2



∑︁𝑛

𝑖=1
𝜀𝑖 (𝒙 𝑖 − 𝔼 𝒙 𝑖 )




) , (7.1)

Recall that a Rademacher random
variable 𝜀 ∼ uniform{±1}.

where (𝜀𝑖 ) comprises iid Rademacher variables, independent from (𝒙 𝑖 ).

Later in this lecture, we will employ this result when the summands 𝒙 𝑖 are real-
valued and the convex function Φ(𝑡 ) = 𝑡𝑝 . For an example where symmetrization is
used with matrix-valued random variables, see Problem Set 2.

Proof. For each index 𝑖 , let 𝒙 ′
𝑖
be an independent copy of 𝒙 𝑖 . The function 𝒙 ↦→ Φ(∥𝒙 ∥)

is convex, so Jensen’s inequality gives

𝔼𝒙 Φ
(


∑︁

𝑖
(𝒙 𝑖 − 𝔼 𝒙 𝑖 )




) = 𝔼𝒙 Φ
(


𝔼𝒙 ′

∑︁
𝑖
(𝒙 𝑖 − 𝒙 ′

𝑖 )



)

≤ 𝔼𝒙 ,𝒙 ′ Φ
(


∑︁

𝑖
(𝒙 𝑖 − 𝒙 ′

𝑖 )



) .

Because 𝒙 𝑖 − 𝒙 ′
𝑖
∼ 𝒙 ′

𝑖
− 𝒙 𝑖 and the family (𝒙 𝑖 ) is independent, we have∑︁

𝑖
(𝒙 𝑖 − 𝒙 ′

𝑖 ) ∼
∑︁

𝑖
𝜁𝑖 (𝒙 𝑖 − 𝒙 ′

𝑖 ) for all fixed signs 𝜁𝑖 ∈ {±1}.

Therefore, we can choose random signs 𝜀𝑖 and average to obtain

𝔼𝒙 ,𝒙 ′Φ
(


∑︁

𝑖
(𝒙 𝑖 − 𝒙 ′

𝑖 )



) = 𝔼𝒙 ,𝒙 ′,𝜺 Φ

(


∑︁
𝑖
𝜀𝑖 (𝒙 𝑖 − 𝒙 ′

𝑖 )



)

= 𝔼𝒙 ,𝒙 ′,𝜺 Φ
(


∑︁

𝑖
𝜀𝑖 (𝒙 𝑖 − 𝔼 𝒙 𝑖 ) −

∑︁
𝑖
𝜀𝑖 (𝒙 ′

𝑖 − 𝔼 𝒙 ′
𝑖 )



)

≤ 𝔼𝒙 ,𝒙 ′,𝜺 Φ
(


∑︁

𝑖
𝜀𝑖 (𝒙 𝑖 − 𝔼 𝒙 𝑖 )




 + 


∑︁
𝑖
𝜀𝑖 (𝒙 ′

𝑖 − 𝔼 𝒙 ′
𝑖 )



)

≤ 𝔼𝒙 ,𝒙 ′,𝜺

[
1
2
Φ

(
2



∑︁

𝑖
𝜀𝑖 (𝒙 𝑖 − 𝔼 𝒙 𝑖 )




) + 1
2
Φ

(
2



∑︁

𝑖
𝜀𝑖 (𝒙 ′

𝑖 − 𝔼 𝒙 ′
𝑖 )



)]

= 𝔼𝒙 ,𝜺 Φ
(
2



∑︁

𝑖
𝜀𝑖 (𝒙 𝑖 − 𝔼 𝒙 𝑖 )




) .
In sequence, we have used the triangle inequality, convexity of Φ, and identical
distribution. This is stated inequality. ■

Exercise 7.2 (Symmetrization: Lower bound). The upper bound in Theorem 7.1 has a
matching lower bound, namely

𝔼𝒙 ,𝜀 Φ

(
1
2




∑︁
𝑖
𝜀𝑖 (𝒙 𝑖 − 𝔼 𝒙 𝑖 )




) ≤ 𝔼𝒙 Φ
(


∑︁

𝑖
(𝒙 𝑖 − 𝔼 𝒙 𝑖 )




) .
This shows that, by symmetrizing, we change the𝑝thmoment

(
𝔼𝒙 ∥

∑
𝑖 (𝒙 𝑖 − 𝔼 𝒙 𝑖 )∥𝑝

)1/𝑝
by at most a factor of 4.
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Exercise 7.3 (Symmetrization: Upper bound without centering). By modifying the proof
of Theorem 7.1, show that we can obtain an upper bound involving uncentered
summands:

𝔼𝒙 Φ
(


∑︁

𝑖
(𝒙 𝑖 − 𝔼 𝒙 𝑖 )




) ≤ 𝔼𝒙 ,𝜀 Φ
(
2



∑︁

𝑖
𝜀𝑖𝒙 𝑖




) .
Is there a matching lower bound?

7.2 Khintchine’s inequality
At first sight, it is not clear how to exploit the random signs to bound the right-hand
side in (7.1). Indeed, bounding the expectation 𝔼𝒙 for fixed signs 𝜀𝑖 is as hard as
bounding the left-hand side in (7.1). The key is to condition on the values of (𝒙 𝑖 ) and
compute the expectation only with respect to the random signs (𝜀𝑖 ). This approach
allows us to exploit special bounds for the moments of Rademacher series.

In this section, we will prove Khintchine’s inequality, which bounds the polynomial
moments of a real-valued Rademacher series

∑
𝑖 𝜀𝑖𝑎𝑖 .

Theorem 7.4 (Khintchine). Consider the Rademacher series 𝑍 =
∑𝑛
𝑖=1 𝜀𝑖𝑎𝑖 where

(𝜀𝑖 ) are iid Rademacher variables and 𝒂 = (𝑎1, . . . , 𝑎𝑛) ∈ ℝ𝑛 . For 𝑝 = 1 and
𝑝 ≥ 2, we have This bound implies that 𝑍 is

subgaussian with variance proxy
proportional to ∥𝒂 ∥22 using
Exercise 3(b) on Problem Set 1.

(
𝔼 |𝑍 |2𝑝

)1/2𝑝 ≤
√︁
2𝑝 − 1 ∥𝒂 ∥2.

The proof relies on a useful numerical inequality, which we have seen before in the
exchangeable bound for entropy. Let us isolate the general form of this result.

Exercise 7.5 (Mean value inequality). Suppose that 𝜑 : ℝ → ℝ is continuously differen-
tiable and 𝜑 ′ is convex. For all 𝑎, 𝑏 ∈ ℝ, we have

(𝑎 − 𝑏) (𝜑 (𝑎) − 𝜑 (𝑏)) ≤ 1
2 (𝑎 − 𝑏)2(𝜑 ′ (𝑎) + 𝜑 ′ (𝑏)).

Establish a similar result under the alternative assumption that 𝜑 is convex, so that 𝜑 ′

is increasing.

Proof of Khintchine’s inequality. For 𝑝 = 1 we have an equality (check it!), so we may
assume 𝑝 ≥ 2. To simplify matters slightly, we will also assume that 𝑝 ∈ ℕ. The case
of non-integer 𝑝 is left as an exercise.

Consider the function 𝜑 (𝑡 ) = 𝑡 2𝑝−1, and note that 𝜑 ′ is convex on all of ℝ.
Let (𝜀′

𝑖
) be an independent copy of (𝜀𝑖 ), and define the exchangeable counterparts

𝑍 (𝑖 ) = 𝜀′
𝑖
𝑎𝑖 +

∑
𝑗≠𝑖 𝜀𝑗𝑎 𝑗 . Imitating the argument behind the discrete MLSI, we see

that The idea behind this proof is to mimic
the familiar computation of the 2𝑝th
moment of a standard normal
random variable. That argument uses
(repeated) integration by parts. The
approach here is a kind of discrete
analog of integration by parts.

𝔼𝑍 2𝑝 = 𝔼[𝑍 · 𝑍 2𝑝−1]

=
1
2

∑︁𝑛

𝑖=1
𝔼
[
(𝑍 − 𝑍 (𝑖 ) ) (𝜑 (𝑍 ) − 𝜑 (𝑍 (𝑖 ) ))

]
≤ 1

4

∑︁𝑛

𝑖=1
𝔼[(𝑍 − 𝑍 (𝑖 ) )2(𝜑 ′ (𝑍 ) + 𝜑 ′ (𝑍 (𝑖 ) ))]

=
1
2

∑︁𝑛

𝑖=1
𝔼[(𝑍 − 𝑍 (𝑖 ) )2𝜑 ′ (𝑍 )]

=
1
2
𝔼
[(∑︁𝑛

𝑖=1
𝔼𝜀′

𝑖
(𝑍 − 𝑍 (𝑖 ) )2

)
𝜑 ′ (𝑍 )

]
.
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The second line follows from a simple computation based on the fact that (𝑍 , 𝑍 (𝑖 ) )
is exchangeable. The inequality follows from Exercise 7.5. Afterward, we use
exchangeability again to simplify the expression.

To complete the argument, we make use of the structure of the Rademacher series.
Observe that

𝑍 − 𝑍 (𝑖 ) = (𝜀𝑖 − 𝜀′𝑖 )𝑎𝑖 and 𝔼𝜀′
𝑖
(𝑍 − 𝑍 (𝑖 ) )2 = 2𝑎2

𝑖 .

Since 𝜑 ′ (𝑍 ) = (2𝑝 − 1)𝑍 2(𝑝−1) , we have

𝔼𝑍 2𝑝 ≤ 1
2
𝔼
[(∑︁𝑛

𝑖=1
𝔼𝜀′

𝑖
(𝑍 − 𝑍 (𝑖 ) )2

)
𝜑 ′ (𝑍 )

]
= (2𝑝 − 1)∥𝒂 ∥22

(
𝔼𝑍 2(𝑝−1) )

≤ (2𝑝 − 1)∥𝒂 ∥22
(
𝔼𝑍 2𝑝 )1−1/𝑝 .

The last inequality is Lyapunov’s. It is straightforward to solve for 𝔼𝑍 2𝑝 , which gives
the stated result. ■

The proof of Theorem 7.4 is an example of the moment comparison method, in
which we bound a moment by a power of itself. We will use this method again in this
lecture and in Problem Set 2.

Exercise 7.6 (Khintchine: Remaining values of 𝑝). Extend the proof of Theorem 7.4 to
non-integer 𝑝 ≥ 1. Develop a bound for the case 𝑝 ∈ (1, 2) using a variant of the
mean value inequality (Exercise 7.5).

Exercise 7.7 (Khintchine: Best constants for 𝑝 ≥ 1). The sharp constants were obtained by
Haagerup [Haa81].

The best constant in Theorem 7.4 is

𝔼𝑍 2𝑝 ≤ (2𝑝 − 1)!! ∥𝒂 ∥2𝑝2 for all 𝑝 ≥ 1.

Extend the proof given above to obtain the best constant for integer values of 𝑝 ≥ 2.
We recognize that (2𝑝−1)!! = 𝔼[𝛾 2𝑝 ], the 2𝑝th moment of a standard normal random
variable 𝛾 . Asymptotically, (2𝑝 − 1)!! ∼ [(2𝑝 − 1)/e]𝑝 , so we have only lost a small
constant factor.

Problem 7.8 (Khintchine: Lower bound). For 𝑝 ≥ 1/2, show that there is a constant 𝑐𝑝 for
which The sharp result for 𝑝 = 1/2 is due to

Szarek; see Latała and
Oleszkiewicz [LO94].𝑐𝑝 ∥𝒂 ∥2 ≤

(
𝔼

���∑︁𝑛

𝑖=1
𝜀𝑖𝑎𝑖

���2𝑝 )1/2𝑝 .
For 𝑝 ≥ 1, the constant 𝑐𝑝 = 1. The optimal constant 𝑐1/2 = 1/

√
2. Hint: Prove the

result for 𝑝 = 1/2 by applying Hölder’s inequality to the case 𝑝 = 1.

Problem 7.9 (Khintchine–Kahane). There is an extension of Khintchine’s inequality, due
to Kahane, that holds in any normed linear space. Consider a family (𝒂 𝑖 ) of fixed
vectors and a Rademacher sequence (𝜀𝑖 ). For 𝑝 > 0, prove that(

𝔼




∑︁𝑛

𝑖=1
𝜀𝑖𝒂 𝑖




𝑝 )1/𝑝 ≤ const · √𝑝 · 𝔼



∑︁𝑛

𝑖=1
𝜀𝑖𝒂 𝑖




 .
Hint: Check that 𝜺 ↦→ ∥∑𝑖 𝜀𝑖𝒂 𝑖 ∥ is convex and Lipschitz, and show that the Lipschitz
constant is comparable with the expectation on the right-hand side. (Not easy!) Use
the convex MLSI to obtain a subgaussian upper tail bound and integrate.
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7.3 Polynomial moment bounds
We are now in a position to prove moment bounds by combining symmetrization with
Khintchine’s inequality.

7.3.1 A Hoeffding-type moment bound
We begin with the polynomial moment analog of Hoeffding’s normal concentration
inequality.

Theorem 7.10 (Moment inequality: Hoeffding form). Consider an independent sum
𝑍 =

∑𝑛
𝑖=1(𝑋𝑖 − 𝔼𝑋𝑖 ) of real random variables that satisfy 𝑎𝑖 ≤ 𝑋𝑖 ≤ 𝑏𝑖 for each 𝑖 .

For 𝑝 = 1 and 𝑝 ≥ 2, we have(
𝔼 |𝑍 |2𝑝

)1/2𝑝 ≤ 2
√︁
2𝑝 − 1

√
𝑣 ≲

√
𝑝𝑣, where 𝑣 =

∑︁𝑛

𝑖=1
(𝑏𝑖 − 𝑎𝑖 )2

Up to constants, 𝑣 is the variance proxy that appears in Hoeffding’s concentration
inequality. The use of symmetrization and Khintchine’s inequality in the proof yields
inferior constants. The argument is just intended as a demonstration of a more general
approach.

Proof. We symmetrize the sum (Theorem 7.1) and then apply Khintchine’s inequality
(Theorem 7.4).(

𝔼 |𝑍 |2𝑝
)1/2𝑝 ≤ 2

(
𝔼𝑿 ,𝜺

���∑︁
𝑖
𝜀𝑖 (𝑋𝑖 − 𝔼𝑋𝑖 )

���2𝑝 )1/2𝑝
≤ 2

√︁
2𝑝 − 1

(
𝔼𝑿

���∑︁
𝑖
(𝑋𝑖 − 𝔼𝑋𝑖 )2

���𝑝 )1/2𝑝
≤ 2

√︁
2𝑝 − 1

√︃∑︁
𝑖
(𝑏𝑖 − 𝑎𝑖 )2.

In the last line, we apply the obvious fact that (𝑋𝑖 − 𝔼𝑋𝑖 )2 ≤ (𝑏𝑖 − 𝑎𝑖 )2. ■

As with the Hoeffding variance and cgf bounds, this estimate does not use any
information about the 𝑋𝑖 beyond their extreme values. It tends to be accuate only
when the distributions of the 𝑋𝑖 concentrates its mass near the endpoints of the interval
[𝑎𝑖 , 𝑏𝑖 ]. Recall from Exercise 3 in Problem Set 1 that a bound on the𝑝th moment of the
form ≲

√
𝑝𝑣 is equivalent to subgaussian tails with variance proxy 𝑣 (up to a constant).

Thus, the above moment bound is equivalent with the bound from Hoeffding’s normal
concentration inequality.

7.3.2 A Chernoff-type moment bound
Next, we present some new moment bounds. These results will provide more refined
information than the inequalities based on the Laplace transform method. These
moment estimates are usually called Rosenthal inequalities, but the versions here are
more closely associated with Nagaev, Pinelis, and Utev.

First, we prove the polynomial moment analog of Chernoff’s bound for an indepen-
dent sum of positive random variables. In contrast with Chernoff’s inequality, we will
not assume that the summands are uniformly bounded.

Theorem 7.11 (Moment bound: Chernoff form). Consider a family (𝑋1, . . . , 𝑋𝑛) of
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independent positive random variables. Then for 𝑝 = 1 or 𝑝 ≥ 2, we have(
𝔼

���∑︁
𝑖
𝑋𝑖

���2𝑝 )1/2𝑝 ≤
[(∑︁

𝑖
𝔼𝑋𝑖

)1/2
+ 2

√︁
2𝑝 − 1

(
𝔼max𝑖 𝑋

2𝑝
𝑖

)1/4𝑝 ]2
≲

(∑︁
𝑖
𝔼𝑋𝑖

)
+ 𝑝

(
𝔼max𝑖 𝑋

2𝑝
𝑖

)1/4𝑝
.

A similar bound holds for 𝑝 ∈ (1, 2) with slightly different constants.

Theorem 7.11 implies that the sum has a subexponential tail, with decay on the
scale of the typical size of the largest summand. This quantity is never larger than a
uniform bound on all of the summands, and it can account for situations where the
summands have significantly different sizes.

Proof. We center, symmetrize, and apply Khintchine’s inequality to obtain a moment
comparison. Here are the details. Write 𝑍 =

∑𝑛
𝑖=1 𝑋𝑖 .(

𝔼𝑍 2𝑝 )1/2𝑝 ≤ (𝔼𝑍 ) +
[
𝔼

���∑︁
𝑖
(𝑋𝑖 − 𝔼𝑋𝑖 )

���2𝑝 ]1/2𝑝
≤ (𝔼𝑍 ) + 2

[
𝔼𝑿 ,𝜺

���∑︁
𝑖
𝜀𝑖𝑋𝑖

���2𝑝 ]1/2𝑝
≤ (𝔼𝑍 ) + 2

√︁
2𝑝 − 1

[
𝔼
(∑︁

𝑖
𝑋 2
𝑖

)𝑝 ]1/2𝑝
≤ (𝔼𝑍 ) + 2

√︁
2𝑝 − 1

[
𝔼 ((max𝑖 𝑋𝑖 ) · 𝑍 )𝑝

]1/2𝑝
≤ (𝔼𝑍 ) + 2

√︁
2𝑝 − 1

(
𝔼max𝑖 𝑋

2𝑝
𝑖

)1/4𝑝 (
𝔼𝑍 2𝑝 )1/4𝑝 .

The first bound follows from the triangle inequality for the L2𝑝 norm. The second
and third lines require symmetrization (Exercise 7.3) and Khintchine’s inequality
(Theorem 7.4). We bound the sum using Hölder’s inequality, exploiting the fact that
the summands are positive. Finally, we apply the Cauchy–Schwarz inequality.

Observe that we have arrived at a moment comparison of the form

𝐸 2 ≤ 𝑎 + 𝑏𝐸 where 𝐸 =
(
𝔼𝑍 2𝑝 )1/4𝑝 .

As an exercise, you may confirm that the solution to this quadratic inequality satisfies
𝐸 ≤

√
𝑎 + 𝑏 . Therefore,(

𝔼𝑍 2𝑝 )1/4𝑝 ≤ (𝔼𝑍 )1/2 +
(
𝔼max𝑖 𝑋

2𝑝
𝑖

)1/4𝑝
.

Square this expression to complete the proof. ■

Exercise 7.12 (Quadratic inequalities). Suppose that 𝐸 2 ≤ 𝑎 +𝑏𝐸 for positive 𝑎, 𝑏 . Deduce
that 𝐸 ≤

√
𝑎 + 𝑏 .

7.3.3 A Bernstein-type moment bound
Finally, we consider an independent sums of centered random variables, and we prove
a polynomial moment analog of Bernstein’s concentration inequality.
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Theorem 7.13 (Moment inequality: Bernstein form). Consider a family (𝑋1, . . . , 𝑋𝑛) of
independent centered , real random variables. For 𝑝 ≥ 2, we have(

𝔼

���∑︁
𝑖
𝑋𝑖

���2𝑝 )1/2𝑝 ≲ √︂
𝑝 Var

(∑︁
𝑖
𝑋𝑖

)
+ 𝑝

(
𝔼max

𝑖
𝑋

2𝑝
𝑖

)1/2𝑝
.

This bound implies that the independent sum has subgaussian tails on the scale of
the variance, and subexponential tails on the scale of the typical size of the largest
summand. This result is qualitatively similar to Bernstein’s inequality, but we no longer
need to assume that the summands are uniformly bounded.

Proof. For simplicity, we will assume that 𝑝 = 2 or 𝑝 ≥ 4 and obtain precise estimates
for the constants. The argument follows our standard pattern: symmetrize and invoke
Khintchine’s inequality. Indeed, since the summands are centered,(

𝔼

���∑︁
𝑖
𝑋𝑖

���2𝑝 )1/2𝑝 ≤ 2
(
𝔼𝑿 ,𝜺

���∑︁
𝑖
𝜀𝑖𝑋𝑖

���2𝑝 )1/2𝑝
≤ 2

√︁
2𝑝 − 1

[
𝔼
(∑︁

𝑖
𝑋 2
𝑖

)𝑝 ]1/2𝑝
≤ 2

√︁
2𝑝 − 1

[(∑︁
𝑖
𝔼𝑋 2

𝑖

)1/2
+ 2

√︁
𝑝 − 1

(
𝔼max𝑖 𝑋

2𝑝
𝑖

)1/2𝑝 ]
.

The last inequality is Theorem 7.11, applied to control the 𝑝th moment of a sum
∑
𝑖 𝑋

2
𝑖

of independent, positive random variables. ■

Polynomial moment inequalities for nonlinear functions also hold, but they are
significantly harder to prove. Symmetrization and Khintchine’s inequality apply in a
wide variety of circumstances. On Problem Set 2, we will see that they allow us to
prove polynomial moment inequalities for an independent sum of random matrices.
Later, we will use related methods to study the supremum of an empirical process.
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8. Matrix Concentration
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The theory of matrix concentration is halfway in between the study of concentration
inequalities and the study of suprema, which is the next main topic in this course.
These results show that a random matrix concentrates around its expected value, with
deviations measured in the spectral norm. As a consequence, we can obtain bounds for
the expected norm of the random matrix. The most direct formulation of the spectral
norm involves a supremum, which can also be studied with completely different tools.

We will start with an independent sum model for a random matrix. Next, we
introduce a matrix version of the Laplace transform method. We will then give a
partially proof of a fundamental result which states that matrix cumulant generating
functions are subadditive. As an example of the general methodology, we will establish
the matrix Benstein inequality, which has become a major tool for numerical analysis,
data science, and statistics in the last decade.

8.1 Introduction to matrix concentration
We will be interested in the maximum eigenvalue 𝜆max(𝑨) of an Hermitian matrix
𝑨 ∈ ℍ𝑑 . Let us recall some basic properties of the maximum eigenvalue map:

• 𝜆max(𝑨) is a real number.
• 𝜆max(𝑨) = sup∥𝒖 ∥2=1𝒖

∗𝑨𝒖 , according to the Rayleigh theorem.
• 𝑨 ↦→ 𝜆max(𝑨) is convex and 1-Lipschitz function with respect to ∥·∥F.

Consider a random Hermitian matrix 𝑿 ∈ ℍ𝑑 . In earlier lectures, we have
established some concentration inequalities that lead to bounds on the quantity

ℙ {|𝜆max(𝑿 ) − 𝔼𝜆max(𝑿 ) | ≥ 𝑡 } .

For example, since 𝜆max(·) is a convex and 1-Lipschitz function, we can invoke the
convex Poincaré inequality (Lecture 3) or the convex MLSI (Lecture 6) to study the
upper tail behavior of 𝜆max(𝑿 ). These results apply, for example, when the entries of
𝑿 are independent, bounded random variables.

Note, however, that our scalar concentration inequalities provide no information
about 𝔼𝜆max(𝑿 ), the point at which the random variable 𝜆max(𝑿 ) concentrates. In
this lecture, we will develop some tools that yield upper bounds for 𝔼𝜆max(𝑿 ).

Matrix concentration inequalities describe the concentration of a random Hermitian
matrix around its expectation, as a matrix, with deviations measured using the
maximum eigenvalue. That is, they inform us about the quantity

ℙ {𝜆max(𝑿 − 𝔼𝑿 ) ≥ 𝑡 } .

Note the contrast with the usual concentration quantity ℙ {𝜆max(𝑿 ) − 𝔼𝜆max(𝑿 ) ≥ 𝑡 }
that we have been studying. The latter tells us how far the randommaximum eigenvalue
𝜆max(𝑿 ) falls from its expectation. The former treats the random matrix as the random
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variable and asks how well this random variable concentrates around its expectation,
as measured by the maximum eigenvalue function.

Using integration by parts, tail bounds for 𝜆max(𝑿 − 𝔼𝑿 ) also lead to inequalities
for the expectation:

𝔼𝜆max(𝑿 − 𝔼𝑿 ) ≤ (bound).
Invoking Weyl’s inequality for the maximum eigenvalue, we can obtain estimates of
the form

𝔼𝜆max(𝑿 ) = 𝜆max(𝔼𝑿 ) ± (bound).
This approach leads to nontrivial results on the expectation of the maximum eigenvalue
that may be very hard to achieve by other means.

Bounds for 𝜆max(𝑿 − 𝔼𝑿 ) have many implications, including

• Control on the eigenvalues 𝑿 as compared with those of 𝔼𝑿 .
• Control of the eigenvectors of 𝑿 as compared with those of 𝔼𝑿 , at least for

isolated eigenvalues.
• Control on all linear functionals 𝑿 as compared with those of 𝔼𝑿 .

Altogether, matrix concentration inequalities provide a powerful tool for studying
properties of random matrices.

8.2 The independent sum model
In our study of matrix concentration, we need to introduce a model for a random
matrix that is flexible enough to handle many applications while remaining analytically
tractable. Taking inspiration from classical probability, we will consider a random
matrix that can be expressed as a sum of independent random matrices.

Consider a statistically independent family (𝑿 1, . . . ,𝑿 𝑛) ∈ ℍ𝑑 of random, Hermi-
tian matrices with common dimension 𝑑 . Construct the random matrix

𝒀 =
∑︁𝑛

𝑖=1
𝑿 𝑖 .

Our goal is to exploit properties of the summands 𝑿 𝑖 to obtain probabilistic bounds for

𝜆max(𝒀 − 𝔼𝒀 ) and 𝜆min(𝒀 − 𝔼𝒀 ).

We will focus on tail bounds, but related methods lead directly to expectation bounds.
Although it may not be obvious, the independent sum model is widely applicable.

As a first example, let us consider the plug-in estimator for the sample covariance
matrix of a random vector. Suppose that 𝒙1, . . . , 𝒙𝑛 ∈ ℝ𝑑 are iid copies of a centered
random vector 𝒙 ∈ ℝ𝑑 . The standard sample covariance estimator is the random
matrix

𝒀 =
1
𝑛

∑︁𝑛

𝑖=1
𝒙 𝑖𝒙

∗
𝑖 .

It is easy to see that 𝔼𝒀 = 𝔼[𝒙𝒙 ∗], so the sample covariance is an unbiased estimator
for the true covariance. The model posits that the samples 𝒙 𝑖 are independent, so we
can view the sample covariance as an independent sum of random Hermitian matrices.

There are many other examples that fit in this framework. For instance, the
Laplacian of a random graph can be written as the sum of the Laplacian matrices
associated with each edge of the graph; when the edges are independent, we can
express the Laplacian using the random sum model.

There are many other examples involving rectangular matrices. A random matrix
with independent entries can be rewritten as an independent sum of sparse random



Lecture 8: Matrix Concentration 62

matrices. Likewise, a random matrix with independent columns can be written as
a sum of independent column-sparse random matrices. We will see that results for
random rectangular matrices follow as a formal consequence of our results for random
Hermitian matrices.

8.3 The Laplace transform method for random matrices
To develop matrix concentration inequalities for independent sums, we will imitate the
scalar Laplace transform method that has already proven so useful. These ideas were
formulated in a 2002 quantum information paper [AW02] by Ahlswede and Winter.

8.3.1 Standard matrix functions
First, let us recall the definition of a standard matrix function. Every Hermitian matrix
𝑨 ∈ ℍ𝑑 has a unique spectral resolution:

𝑨 =
∑︁

𝜆∈spec(𝐴 )
𝜆𝑷𝜆,

where spec(𝑨) ⊂ ℂ contains the (distinct) eigenvalues of 𝑨, and 𝑷𝜆 is the orthogonal
projector onto the eigenspace associates with eigenvalue 𝜆.

Using the spectral resolution, we can lift a scalar function 𝑓 : ℝ → ℝ to a matrix
function 𝑓 : ℍ𝑑 → ℍ𝑑 . Indeed, we define

𝑓 (𝑨) B
∑︁

𝜆∈spec(𝐴 )
𝑓 (𝜆)𝑷𝜆 ∈ ℍ𝑑 .

In other words, we simply apply the scalar function to each eigenvalue of the Hermitian
matrix without changing the eigenspaces.

Equivalently, if we have an eigenvalue factorization 𝑨 = 𝑼𝚲𝑼 ∗, then we may
define 𝑓 (𝑨) =𝑼 𝑓 (𝚲)𝑼 ∗. In this definition, we apply the function 𝑓 to each diagonal
element of the diagonal matrix 𝚲.

Whenever we apply a familiar scalar function to an Hermitian matrix, we are
referring to the associated standard matrix function. Common examples include the
exponential function and integer powers. For a positive-definite matrix, we can form
the matrix logarithm or compute noninteger powers.

8.3.2 Generating functions for random matrices
For scalar random variables, we constructed generating functions that pack up infor-
mation about the moments of the random variables. We can make similar definitions
in the matrix setting.

Definition 8.1 (Matrix moment generating function and cumulant generating function). Let
𝑿 ∈ ℍ𝑑 be a random Hermitian matrix. The matrix moment generating function
(mgf) and matrix cumulant generating function (cgf) are respectively defined as

𝑴 𝑿 (𝜃 ) B 𝔼 exp(𝜃𝑿 );
𝚵𝑿 (𝜃 ) B log𝔼 exp(𝜃𝑿 ).

The parameter 𝜃 ∈ ℝ.

In this definition, the matrix exponential and logarithm are standard matrix
functions, as discussed in the previous subsection. As in the scalar setting, we can
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make a formal Taylor series expansion of the mgf

𝑴 𝑿 (𝜃 ) =
∑︁∞

𝑝=0

𝜃𝑝

𝑝!
𝔼𝑿 𝑝 .

Similarly, the matrix cgf has the expansion

𝚵𝑿 (𝜃 ) = 𝜃 (𝔼𝑿 ) + 𝜃 2

2
(𝔼𝑿 2 − (𝔼𝑿 )2) + · · · .

The second-order term in the cgf is a matrix analog of the variance.

8.3.3 Matrix Laplace transform method
We can obtain tail bounds for the maximum eigenvalue of a random Hermitian matrix
in terms of the matrix mgf. This simple result is called the matrix Laplace transform
method. The idea is due to Ahlswede & Winter [AW02], and the easy proof here is due
to Oliveira [Oli10].

Proposition 8.2 (Matrix Laplace transform method). Let𝒀 ∈ ℍ𝑑 be a random Hermitian
matrix. Then

ℙ {𝜆max(𝒀 ) > 𝑡 } ≤ inf𝜃>0 e−𝜃𝑡 · 𝔼 tr exp(𝜃𝒀 );
ℙ {𝜆min(𝒀 ) < 𝑡 } ≤ inf𝜃<0 e−𝜃𝑡 · 𝔼 tr exp(𝜃𝒀 ).

Proof. We consider the tail bound for the maximum eigenvalue. Fix 𝜃 > 0. By Markov’s
inequality,

ℙ {𝜆max(𝒀 ) > 𝑡 } = ℙ
{
e𝜃𝜆max (𝒀 ) ≥ e𝜃𝑡

}
≤ e−𝜃𝑡 𝔼 e𝜃𝜆max (𝒀 )

= e−𝜃𝑡 𝔼𝜆max(e𝜃𝒀 )
≤ e−𝜃𝑡 · 𝔼 tr e𝜃𝒀

≤ inf
𝜃>0

e−𝜃𝑡 · 𝔼 tr exp(𝜃𝒀 ).

The second equality is due to spectral mapping theorem for a function on Hermitian
matrices. The second-to-last inequality holds because the eigenvalues of e𝜃𝒀 are
positive, so the maximum eigenvalue is bounded above by the trace. Finally, we
optimize over 𝜃 > 0. ■

Exercise 8.3 (Minimum eigenvalue). Establish the tail bound for the minimum eigenvalue
that is stated in Proposition 8.2. Hint: 𝜆min(𝑨) = −𝜆max(−𝑨).
Exercise 8.4 (Expectation bounds). Let 𝒀 ∈ ℍ𝑑 be a random Hermitian matrix. Show
that

𝔼𝜆max(𝒀 ) ≤ inf
𝜃>0

𝜃 −1 log tr𝔼 e𝜃𝒀 ;

𝔼𝜆min(𝒀 ) ≤ inf
𝜃>0

𝜃 −1 log tr𝔼 e−𝜃𝒀 .
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Aside: The matrix Laplace transform method is a relatively recent technical
innovation. Nevertheless, there is an older line of research that pursues the
idea that we can establish moment inequalities for random matrices that parallel
similar results for random scalars. Françoise Lust-Piquard [LP86] obtained the first
matrix moment inequality, a remarkable result known as the the noncommutative
Khintchine inequality. (See Problem Set 2 for a modern proof.) Later, Gilles Pisier
and coauthors recognized that many inequalities for scalar martingales extend to
matrix martingales. These works provide the intellectual foundations for the field
of matrix concentration, and they precede the matrix Laplace transform method.

8.4 Subadditivity of matrix cgfs
To activate the matrix Laplace transform method, we need to obtain bounds for the
trace of the matrix mgf. As in the scalar setting, we will focus on the case of an
independent sum of random matrices.

8.4.1 The failure of the matrix mgf
Drawing inspiration from the scalar setting, we would like to develop an analog of
the fact that the scalar mgf of an independent sum is multiplicative. That is, for an
independent family (𝑋𝑖 ) of real random variables,

𝔼 e
∑
𝑖 𝑋𝑖 𝔼

∏
𝑖 e𝑋𝑖 =

∏
𝑖 𝔼 e𝑋𝑖 . (8.1)

Let us see what happens when we try to generalize this formula to Hermitian matrices.
The first relation in (8.1) depends on the fact that the exponential of a real sum is

the product of exponentials. In contrast, for Hermitian 𝑨,𝑩 ,

e𝑨+𝑩 = e𝑨e𝑩 if and only if 𝑨,𝑩 commute.

Commutativity is a severe restriction that we cannot abide. In our application, we are
interested in the trace of the exponential, and one may wonder whether the situation
is better when we take the trace. In general,

tr e𝑨+𝑩 ≠ tr[e𝑨e𝑩 ].

Nevertheless, the Golden–Thompson inequality does provide a substitute:

tr e𝑨+𝑩 ≤ tr[e𝑨e𝑩 ].

This bound is always valid. Unfortunately, the Golden–Thompson inequality does not
extend to three matrices:

tr e𝑨+𝑩+𝑪 ≰ |tr[e𝑨e𝑩e𝑪 ] |.

To manage this issue, Ahlswede & Winter [AW02] and Oliveira [Oli10] apply the
Golden–Thompson inequality iteratively. This is an workable approach, but it drains
some of the effectiveness from the Laplace transform method.

Problem 8.5 (Triple Golden–Thompson). Find an example to confirm that the Golden–
Thompson inequality is not valid for three matrices. Hint: Use the Pauli spin matrices.
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8.4.2 Subadditivity of matrix cgfs
What went wrong with the computations involving the matrix mgf? One simple
observation is that the product of Hermitian matrices is typically not Hermitian, so
the eigenvalues of the product can behave in complicated ways. It would be better to
works with sums of Hermitian matrices, which remain Hermitian.

To that end, let us focus on the cgf. In the scalar setting, for an independent family
(𝑋𝑖 ) of real random variables, we have

log𝔼 e
∑
𝑖 𝑋𝑖 =

∑
𝑖 log𝔼 e𝑋𝑖 .

This formula is a more promising candidate for generalization to the matrix setting.
Unfortunately, if we replace the random scalars by random Hermitian matrices, then
the cgf identity is no longer valid. Nevertheless, there is an excellent substitute, due to
your instructor [Tro15a].

Theorem 8.6 (Subadditivity of matrix cgfs). Consider a family (𝑿 1, . . . ,𝑿 𝑛) of inde-
pendent, random Hermitian matrices in ℍ𝑑 . Then

𝔼 tr exp
(∑︁𝑛

𝑖=1
𝑿 𝑖

)
≤ tr exp

(∑︁𝑛

𝑖=1
log𝔼 e𝑿 𝑖

)
.

Equivalently, for all 𝜃 ∈ ℝ,

tr exp
(
Ξ∑𝑛

𝑖=1 𝑿 𝑖
(𝜃 )

)
≤ tr exp

(∑︁𝑛

𝑖=1
Ξ𝑿 𝑖

(𝜃 )
)
.

To prove Theorem 8.6, we rely on a deep fact from matrix analysis [Lie73].

Fact 8.7 (Concavity of trace-exp-log). Let 𝑯 ∈ ℍ𝑑 be a fixed Hermitian matrix. The
function 𝑨 ↦→ tr exp (𝑯 + log𝑨) is concave on positive-definite matrices. ■

Fact 8.7 is an easy consequence of the convexity of the quantum relative entropy
function, another deep result from matrix analysis. See [Tro15a] for a complete proof
of Fact 8.7 along these lines. We will use Fact 8.7 by way of a simple corollary.

Corollary 8.8 (Tropp 2010). Let 𝑯 ∈ ℍ𝑑 be fixed, and let 𝑿 ∈ ℍ𝑑 be a random matrix.
Then

𝔼 tr exp(𝑯 + 𝑿 ) ≤ tr exp(𝑯 + log𝔼 e𝑿 ).

Proof. Combine Fact 8.7 and Jensen’s inequality. ■

With this corollary at hand, we can easily establish Theorem 8.6 by iteration.

Exercise 8.9 (Proof of Theorem 8.6). Use Corollary 8.8 to establish Theorem 8.6.

8.4.3 The master theorem for independent sums
Combining the matrix Laplace transform method with the subadditivity of cgfs, we
arrive at an abstract matrix concentration inequality [Tro15a].

Theorem 8.10 (Master theorem). Consider a family (𝑿 1, . . . ,𝑿 𝑛) of independent,
random Hermitian matrices in ℍ𝑑 . Then

ℙ
{
𝜆max

(∑︁𝑛

𝑖=1
𝑿 𝑖

)
≥ 𝑡

}
≤ inf

𝜃>0
e−𝜃𝑡 · tr exp

(∑︁𝑛

𝑖=1
Ξ𝑿 𝑖

(𝜃 )
)

ℙ
{
𝜆min

(∑︁𝑛

𝑖=1
𝑿 𝑖

)
≤ 𝑡

}
≤ inf

𝜃<0
e−𝜃𝑡 · tr exp

(∑︁𝑛

𝑖=1
Ξ𝑿 𝑖

(𝜃 )
)
.
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Proof. Invoke the matrix Laplace transform method (Proposition 8.2). Use the subad-
ditivity of matrix cgfs (Theorem 8.6) to bound the trace of the matrix mgf. ■

Exercise 8.11 (Expectation bounds). Develop an analog of Theorem 8.10 that directly yields
bounds for 𝔼𝜆max(𝒀 ) and 𝔼𝜆min(𝒀 ), where𝒀 is an independent sum of Hermitian
random matrices.

8.5 The matrix Bernstein inequality
As an example of the master theorem at work, we will prove the matrix Bernstein
inequality, which is the single most useful matrix concentration inequality.

Theorem 8.12 (Matrix Bernstein). Consider a family (𝑿 1, . . . ,𝑿 𝑛) of independent,
random Hermitian matrices in ℍ𝑑 . Assume that 𝔼𝑿 𝑖 = 0 and ∥𝑿 𝑖 ∥ ≤ 𝐵 for each
index 𝑖 . Define the variance proxy

𝑣 = 𝜆max

(∑︁𝑛

𝑖=1
𝔼𝑿 2

𝑖

)
.

Then

ℙ
{
𝜆max

(∑︁𝑛

𝑖=1
𝑿 𝑖

)
≥ 𝑡

}
≤ 𝑑 · exp

(
−𝑡 2/2

𝑣 + 𝐵𝑡 /3

)
.

If 𝑑 = 1, so that (𝑋𝑖 ) is a family of real random variables, Theorem 8.12 reduces
to the scalar Bernstein inequality—up to an including the constants. In this case,
the variance proxy is simply the variance of the independent sum. The tail bound
reflects normal concentration on the scale of the variance proxy 𝑣 and exponential
concentration on a scale determined by the upper bound 𝐵 on the summands.

For 𝑑 > 1, we are in the matrix setting. In this case, we need to generalize the
ordinary scalar variance. Observe that the variance proxy satisfies

𝑣 = 𝜆max

(
𝔼
(∑︁𝑛

𝑖=1
𝑿 𝑖

)2)
.

This is the “magnitude” of the expected square of the (centered) independent sum,
which is a natural generalization for variance in the matrix setting. The only other
difference from the scalar setting is the appearance of the dimensional factor 𝑑 , which
arises from a simple bound on the trace. This factor is necessary in general, but it has
a very small impact because the tail probability decays exponentially.

8.5.1 Proof of the matrix Bernstein inequality
The key step in the proof is a bound for the matrix cgf of a centered random matrix
subject to a uniform spectral norm bound.

Lemma 8.13 (Matrix Bernstein cgf). Recall that ∥ · ∥ is the spectral norm of
a matrix; ≼ is the psd partial order.

Consider a random Hermitian matrix 𝑿 ∈ ℍ𝑑 that
satisfies 𝔼𝑿 = 0 and ∥𝑿 ∥ ≤ 𝐵 . For 𝜃 < 3/𝐵 ,

log𝔼 e𝜃𝑿 ≼
𝜃 2/2

1 − 𝐵 |𝜃 |/3 ·
(
𝔼𝑿 2) .

Problem 8.14 (Matrix Bernstein cgf). Prove the matrix Bernstein cgf bound (Lemma 8.13).
The proof parallels the scalar argument. You will also need the fact that the matrix
logarithm preserves psd inequalities.
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Problem 8.15 (Proof of matrix Bernstein). Prove the matrix Bernstein inequality (Theo-
rem 8.12) using the master tail bound and Lemma 8.13. You will also need the fact
that the trace exponential is monotone with respect to the psd order.

Problem 8.16 (Matrix Bernstein: Expectation bound). Under the assumptions of Theo-
rem 8.12, show that

𝔼𝜆max

(∑︁𝑛

𝑖=1
𝑿 𝑖

)
≤
√︁
2𝑣 log𝑑 + 1

3
𝐵 log𝑑.

8.6 Rectangular matrix Bernstein
Finally, let us turn to the problem of producing bounds for the spectral norm of an
independent sum of rectangular random matrices. This may seem like a daunting
challenge, but it actually follows as a formal consequence of the results we have already
developed. As an illustration, we will establish the rectangular version of the matrix
Bernstein inequality.

Corollary 8.17 (Matrix Bernstein: Rectangular case). Consider a family (𝒁 1, . . . ,𝒁 𝑛) of
independent, random matrices in ℂ𝑑1×𝑑2 . Assume that 𝔼𝒁 𝑖 = 0 and ∥𝒁 𝑖 ∥ ≤ 𝐵 for
each index 𝑖 . Define the variance proxy

𝑣 =




∑︁𝑛

𝑖=1
𝔼
(
𝒁 𝑖𝒁

∗
𝑖

)


 ∨ 


∑︁𝑛

𝑖=1
𝔼
(
𝒁 ∗
𝑖 𝒁 𝑖

)


 .
Then

ℙ
{


∑︁𝑛

𝑖=1
𝒁 𝑖




 ≥ 𝑡
}
≤ (𝑑1 + 𝑑2) exp

(
−𝑡 2/2

𝑣 + 𝐵𝑡 /3

)
.

Furthermore,

𝔼




∑︁𝑛

𝑖=1
𝒁 𝑖




 ≤ √︁
2𝑣 log(𝑑1 + 𝑑2) +

1
3
𝐵 log(𝑑1 + 𝑑2).

Corollary 8.17 is entirely similar to Theorem 8.12, except that the variance proxy
now reflects the fact that a rectangular matrix has two distinct squares, the “column
square” and the “row square.” The dimensional factors are simply the total of the two
dimensions of the matrix. In the scalar setting, 𝑑1 +𝑑2 = 2, which is the same constant
that arises from applying the union bound to merge an upper and lower tail inequality.

8.6.1 The Hermitian dilation
Let us outline the device that is used to derive Corollary 8.17 from Theorem 8.12.

Definition 8.18 (Hermitian dilation). For 𝑪 ∈ ℂ𝑑1×𝑑2 , define the Hermitian dilation

H(𝑪 ) B
[
0 𝑪
𝑪 ∗ 0

]
∈ ℍ𝑑1+𝑑2 .

We frame an exercise that collects some of the basic facts about this construction.

Exercise 8.19 (Hermitian dilation). Verify that 𝑪 ↦→ H(𝑪 ) is a real-linear map. Check
that

H(𝑪 )2 =
[
𝑪𝑪 ∗ 0
0 𝑪 ∗𝑪

]
.

Show that 𝜆max(H(𝑪 )) = ∥𝑪 ∥.
Problem 8.20 (Rectangular matrix Bernstein). We can obtain Corollary 8.17 by applying
Theorem 8.12 to the Hermitian dilation of the sum

∑𝑛
𝑖=1 𝒁 𝑖 . Do it.
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9. Packing and Covering

Date: 2 February 2020 Scribe: Riley Murray

Agenda:
1. Preliminaries
2. Covering numbers
3. Packing numbers
4. Duality
5. Volumetric bounds
6. The empirical method

This lecture develops deterministic tools for use in the second half of the course.
Specifically, we develop concepts of covering numbers and packing numbers in metric
spaces. Section 9.1 begins by reviewing supremum problems encountered earlier in
the course as well as basic concepts of metric spaces. Following that we introduce
covering and packing problems in metric spaces (Sections 9.3–9.5). Finally, Sections
9.6 and 9.7 present two technical approaches for bounding the covering and packing
numbers of a set.

9.1 Supremum problems

Aside: Uncountable suprema
can lead to measurability issues.
We will return to this point later.

Supremum problems involve the analysis of a random variable 𝑌 of the form

𝑌 = sup𝑡 ∈T 𝑋𝑡 where (𝑋𝑡 : 𝑡 ∈ T) is a random process.

The index set T here is abstract; it could denote time, or something else entirely. For
example, the operator norm of a random matrix 𝑨 can be expressed as the supremum
of the random process (∥𝑨𝒖 ∥2 : ∥𝒖 ∥2 = 1) indexed by unit vectors.

We encountered two supremum problems on Problem Set 1. In Problem 1(d),
we considered a point set T ⊆ ℝ𝑛 and a vector 𝜺 = (𝜀1, . . . , 𝜀𝑛) of independent
Rademachers. We constructed the Rademacher process

𝑋𝒕 = ⟨𝜺 , 𝒕 ⟩ =
∑︁𝑛

𝑖=1
𝜀𝑖𝑡𝑖 for 𝒕 ∈ T.

We developed an upper bound for Var[sup𝒕 ∈T 𝑋𝒕 ] by an appeal to the Efron–Stein–
Steele inequality.

Problem 1(d) contains an example of the type of random processes that we
will encounter. There is structure described by a deterministic set T, a source 𝜺 of
randomness, and a map by which 𝜺 interacts with T. We will make a deeper study of
supremum problems with this tripartite structure.

In Exercise 4(a), we used convexity of the cumulant generating function to show
that 𝔼𝑍 ≤ 𝜃 −1𝜉𝑍 (𝜃 ) holds for any random variable 𝑍 and all 𝜃 > 0. As a particular
example, we considered a random vector (𝑋𝑖 : 𝑖 = 1, . . . , 𝑛) of centered (not
necessarily independent!) subgaussian random variables with variance proxies bounded
by 𝑣 . We derived the bound 𝔼max𝑖 𝑋𝑖 ≤

√︁
2𝑣 log𝑛.

Exercise 4(a) reflects the types of conclusions we might like to reach. We intend
to develop bounds on the expected size of the supremum, rather than bounds on how
sharply it concentrates around its expectation. This exercise hints that the size of index
set T can affect the expectation of a supremum.

In this lecture, we show how to quantify the complexity of index sets far more
general than T = {1, . . . , 𝑛} through the notions of packing and covering in metric
spaces. These tools will help us reason about a metric space associated with the
random process (𝑋𝑡 : 𝑡 ∈ T). Studying the geometry of these metric spaces will, in
turn, lead to upper and lower bounds for the suprema of random processes.
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9.2 Metric spaces, nets, and separation
Recall that a psuedometric space is a pair (T, dist), where T is an abstract set. The
distance function dist : T × T → ℝ satisfies the axioms

1. dist(𝑥, 𝑦 ) ≥ 0 for all 𝑥, 𝑦 in T.
2. 𝑥 = 𝑦 implies dist(𝑥, 𝑦 ) = 0. In a metric space, the converse

relation also holds: dist(𝑥, 𝑦 ) = 0
implies 𝑥 = 𝑦 .

3. dist(𝑥, 𝑦 ) ≤ dist(𝑥, 𝑧) + dist(𝑧, 𝑦 ) for all 𝑥, 𝑦 , 𝑧 in T.

For a subset A ⊆ T, we define the distance from a point to the subset as dist(𝑥,A) B
inf𝑦 ∈A dist(𝑥, 𝑦 ). The open and closed ball of radius 𝜀 centered at 𝑥 ∈ T are defined,
respectively, as

B𝜀 (𝑥) B {𝑦 ∈ T : dist(𝑦 , 𝑥) < 𝜀};
B𝜀 (𝑥) B {𝑦 ∈ T : dist(𝑦 , 𝑥) ≤ 𝜀}.

We are interested in subsets of the metric space with special properties. First, we
consider a subset with the property that every point in the metric space is close to an
element of the subset.

Definition 9.1 (Net). Fix a subset K ⊆ T and a parameter 𝜀 > 0. A subset N ⊆ K
is called an 𝜀-net for K if every point in K is within distance 𝜀 from N. That is,
dist(𝑦 ,N) ≤ 𝜀 for all 𝑦 in K.

Figure 9.1 (An 𝜀-net)

An equivalent definition of 𝜀-net is that the union of closed 𝜀-balls with centers
in N ⊆ K covers K. The figure at right shows a covering of a pentagon by 17 balls of
various radii centered at black dots. If we take 𝜀 to be the maximum of these radii,
then the black dots constitute an 𝜀-net for the pentagon.

Next, we consider a complementary notion of a well-separated set of points in the
metric space.

Definition 9.2 (Separation). A subset N ⊆ T is said to be 𝜀-separated if dist(𝑥, 𝑦 ) > 𝜀
for all distinct points 𝑥, 𝑦 in N.

Figure 9.2 (Separation)

The strict inequality in Definition 9.2 is important. For the equilateral triangle at
right, the vertices are (2 − 𝜀)-separated for all 𝜀 > 0, but they are not 2-separated.

In the following lemma we see how the concepts of epsilon nets and epsilon
separation are somewhat dual to each other.

Lemma 9.3 (𝜀-separation versus 𝜀-nets). If N is a maximal 𝜀-separated set in K, then N is
an 𝜀-net for K. Here, “maximal” means that adding any additional point to N would
result in it no longer being 𝜀-separated.

Proof. Consider an arbitrary point 𝑥 in K. If 𝑥 happens to belong to N, then there is
nothing to show since N ⊆ K tells us dist(𝑥, K) = 0. If instead 𝑥 belongs to K \ N, then
N′ = N ∪ {𝑥} is not 𝜀-separated by maximality of N, which implies the existence of
some 𝑦 ∈ N′ ⊆ K for which dist(𝑥, 𝑦 ) ≤ 𝜀. This shows that dist(𝑥, K) ≤ 𝜀 for all 𝑥 in
N, which completes the proof. ■

9.3 Covering problems
We are interested in understanding the complexity of a metric space. One approach to
this problem is to compute how many metric balls we need to cover the set. This idea
leads to the following important definition.
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Definition 9.4 (Covering number). The covering number of a set K ⊆ T at scale 𝜀 is
the minimum cardinality of 𝜀-net for K:

N(K, 𝜀) B min{|N| : N ⊆ K and N is an 𝜀-net for K.}.

If we wish to emphasize the role of the metric, we may also write N(K, dist; 𝜀).

Figure 9.3 (Another 𝜀-net)

It is usually hard to find a covering number exactly; consider again the pentagon
example (Figure 9.1). The new covering at right gets by with |N| = 15 for balls of the
indicated radius. However it is not clear if this covering is optimal: the total space
wasted by overlapping circles is greater than the area of an individual circle, and so it
may be possible to cover the pentagon at this scale with fewer points.

Exercise 9.5 (Covering as a function of radius). Verify that 𝜀 ↦→ N(K, 𝜀) is decreasing in
the covering radius 𝜀.

Monotonicity does not quite hold for the set argument K, but we can still obtain
bounds by way of the following proposition.

Proposition 9.6 If K ⊆ L ⊆ T, then N(K, 𝜀) ≤ N(L, 𝜀/2).

Proof. Let N(L) be a 𝛿 -net for L where |N(L) | = N(L, 𝛿 ). We have the inclusions

K ⊆ L ⊆
⋃

𝑥∈N(L)
B𝛿 (𝑥).

Thus, for each 𝑥 in N(L), there exists a point 𝑦 in the intersection of K and B𝛿 (𝑥).
For such a point 𝑦 , the ball B2𝛿 (𝑦 ) contains all of B𝛿 (𝑥). Indeed, this claim follows
from the triangle inequality. For any 𝑧 in B𝛿 , we can travel from 𝑦 to 𝑧 by first
passing through 𝑥 . Since both 𝑦 and 𝑧 belong to the 𝛿 -ball centered at 𝑥 , we find
dist(𝑦 , 𝑧) ≤ dist(𝑦 , 𝑥) + dist(𝑥, 𝑧) ≤ 2𝛿 .

Let N(K) denote a set populated by taking one such 𝑦 = 𝑦 (𝑥) for each point 𝑥 from
N(L). Then

K ⊆
⋃

𝑥∈N(L)
B𝛿 (𝑥) ⊆

⋃
𝑦 ∈N(K)

B2𝛿 (𝑦 )

and so N(K) is a 2𝛿 -net for K with cardinality |N(L) |. We obtain the desired result by
replacing 𝛿 by 𝜀/2 and observing that N(K, 𝜀) ≤ |N(K) | = |N(L) |. ■

The scale 𝜀/2 in Proposition 9.6 cannot be improved without making extra assump-
tions on the metric space (T, dist). The problem is that points in a 𝛿 -net for L may not
belong to K. As a concrete example of this phenomenon, let T = ℝ with the standard
metric, K = {−1, 1}, and L = {−1, 0, 1}. To cover L at scale 𝛿 = 1 we simply place
N(L) = {0}, while covering K requires two elements (N(K) = K) whenever the scale
parameter is less than two.

9.4 Packing problems
Next, we consider the concept of a packing, the maximum number of well-separated
points we can insert in a set. We will say that P ⊆ K is an 𝜀-packing for K if P is an
𝜀-separated subset of K.

Figure 9.4 displays a packing of our friend the pentagon. Note that the centers of
the 𝜀-balls are contained in the pentagon. These 𝜀-balls may overlap, so long as no
ball contains the center of another. On the other hand, the 𝜀/2-balls centered at the
points of an 𝜀-packing must be pairwise disjoint sets. The latter fact admits a partial
converse.
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Figure 9.4 (Packings). [left] Balls around the points in a packing may overlap, but none
contains the center of another. [right] Shrunken balls around the points of a packing
must be disjoint.

Exercise 9.7 (Separated sets and disjointness). Suppose that the subset P ⊆ T satisfies
B𝜀/2(𝑥) ∩ B𝜀/2(𝑦 ) = ∅ for all 𝑥, 𝑦 ∈ P. Assuming that (T, dist) is a normed linear
space, prove that P is 𝜀-separated.

To see why the exercise cannot be extended to all metric spaces, consider the
two-point space T = {𝑥, 𝑦 } under the discrete metric dist(𝑥, 𝑦 ) = 1, and set the radius
𝜀 = 3/2.

We may now consider another measure of the complexity of a metric space, given
by the maximum size of a packing.

Definition 9.8 (Packing number). The packing number of a set K ⊆ T at scale 𝜀 is the
maximum cardinality of an 𝜀-separated subset:

P(K, 𝜀) B max{|P| : P ⊆ K and P is 𝜀-separated}.

If we wish to emphasize the role of the metric, we may also write P(K, dist; 𝜀).

Packing numbers, like covering numbers, are hard to compute. Some of their basic
properties are easy enough to establish.

Exercise 9.9 (Packing as a function of radius). Verify that 𝜀 ↦→ P(K, 𝜀) is decreasing in the
packing radius 𝜀.

Exercise 9.10 (Packing number versus covering number). Prove that P(K, 𝜀) ≥ N(K, 𝜀) for
all 𝜀 > 0.

9.5 Duality between packing and covering
The following proposition establishes that packing and covering are dual problems in
a certain sense. This allows us to think in terms of whichever problem seems more
tractable in a given situation.

Proposition 9.11 (Packing and covering: Duality). For all K ⊆ T and 𝜀 > 0, we have

P(K, 2𝜀) ≤ N(K, 𝜀) ≤ P(K, 𝜀).

Proof. The upper bound was addressed at the end of Section 9.4. For the lower bound,
let P be a maximal 2𝜀-packing for K, and let N be a minimal 𝜀-covering for K. We
need to argue that |P| ≤ |N|.
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First, observe that
P ⊆ K ⊆

⋃
𝑦 ∈N

B𝜀 (𝑦 ).

Thus, each point in P is contained in at least one metric ball B𝜀 (𝑦 ) for 𝑦 ∈ N. Because P
is 2𝜀-separated, no pair of distinct points in P can belong to a common 𝜀-ball centered
at a point in N. This observation tells us that each 𝑦 ∈ N is associated to a single
point 𝑥 ∈ P by way of the relation 𝑥 ∈ B𝜀 (𝑦 ). In other words, we have constructed a
surjection from N to P.

We conclude that
P(K, 2𝜀) = |P| ≤ |N| = N(K, 𝜀).

This is the required result. ■

It is natural to wonder how sensitive Proposition 9.11 is to our definitions for
packing and covering. For example, we might instead have worked with an external
covering number Next(K, 𝜀) where the centers of the covering 𝜀-balls can be anywhere
in T rather than only K.
Exercise 9.12 (External covering). Let Next be as defined above. Prove that

Next(K, 𝜀) ≤ N(K, 𝜀) ≤ Next(K, 𝜀/2).

9.6 Volumetric bounds
In this section, we present the simplest example of a versatile method for bounding
packing and covering numbers. This approach simply compares the “volume” of the
set K with the total “volume” of a family of metric balls. We will develop this approach
in a normed linear space, but the same arguments are valid in many common metric
spaces.

Consider the metric space (T, dist) where T = ℝ𝑛 and the metric dist(𝒙 , 𝒚 ) =

∥𝒙 − 𝒚 ∥ is induced by an (arbitrary) norm. The closed unit ball in this normed space
will be written as

B B {𝒙 ∈ ℝ𝑛 : ∥𝒙 ∥ ≤ 1}.
We will need some standard notions from the geometry of normed linear spaces. The
dilation of a subset X ⊆ T by a factor 𝛼 ∈ ℝ is defined as

𝛼X B {𝛼𝒙 : 𝒙 ∈ X}.

The Minkowski sum of two sets X, Y ⊆ T is

X + Y B {𝒙 + 𝒚 : 𝒙 ∈ X, 𝒚 ∈ Y}.

In particular, we define the set translation X + 𝒚 B X + {𝒚 } for 𝒚 ∈ T. The function
Vol(X) computes the Lebesgue measure of a (measurable) subset X ⊆ ℝ𝑛 .

In a normed linear space, the volumetric argument computes the covering number
and packing number by comparing the ordinary volume of the set to the volume of the
scaled unit ball.

Proposition 9.13 (Volumetric bounds). For K ⊆ ℝ𝑛 and 𝜀 > 0, we have

Vol(K)
Vol

(
𝜀B

) ≤ N(K, 𝜀) ≤ P (K, 𝜀) ≤
Vol

(
K + (𝜀/2)B

)
Vol

(
(𝜀/2)B

) .
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Proof. The middle inequality between was addressed in Proposition (9.11). We need
to prove the lower bound on N(K, 𝜀) and the upper bound on P(K, 𝜀).

Consider first the lower bound, and begin by selecting a minimal 𝜀-net N for K with
cardinality |N| = N(K, 𝜀). By the definition of 𝜀-nets we have K ⊆ ⋃

𝒙 ∈N B𝜀 (𝒙 ). In
a normed linear space, the metric dist(𝒙 , 𝒚 ) = ∥𝒙 − 𝒚 ∥ is translation invariant and
homogeneous. Therefore, we can write the metric ball at a point with a given radius in
the form B𝜀 (𝒙 ) = 𝒙 + 𝜀B. Consequently,

K ⊆
⋃

𝒙 ∈N

(
𝒙 + 𝜀B

)
.

Take the volume of both sides of this inclusion. Using monotonicity and subadditivity
of the volume,

Vol(K) ≤
∑︁

𝒙 ∈N
Vol

(
𝒙 + 𝜀B

)
=
∑︁

𝒙 ∈N
Vol

(
𝜀B

)
= |N| · Vol

(
𝜀B

)
.

We have used the fact that the volume is translation invariant. This is the lower bound.
Now we address the upper bound. Let P denote a maximal 𝜀-packing of K with

cardinality |P| = P(K, 𝜀). As an easy consequence of points in P being 𝜀-separated, the
(𝜀/2)-balls centered at distinct points in P must be pairwise disjoint. Combining this
fact with additivity of the volume for a disjoint union and the translation-invariance of
volume, we arrive at the identity

|P| · Vol
(
(𝜀/2)B

)
= Vol

(⋃
𝒙 ∈P

(
𝒙 + (𝜀/2)B

) )
= Vol

(
P + (𝜀/2)B

)
.

The second relation is an identity for the Minkowski sum. Since P ⊆ K, monotonicity
of the volume implies that

|P| · Vol
(
(𝜀/2)B

)
≤ Vol

(
K + (𝜀/2)B

)
.

This is the desired upper bound. ■

As a particular example, we can consider the problem of covering the unit ball in a
normed space with scaled copies of itself.

Corollary 9.14 (Covering the unit ball). For any 𝑛 and 𝜀 > 0, the covering numbers of the
𝑛-dimensional unit ball B in the normed linear space (ℝ𝑛 , ∥·∥) admit the bounds(

1
𝜀

)𝑛
≤ N(B, 𝜀) ≤

(
1 + 2

𝜀

)𝑛
.

Proof. We apply Proposition 9.13 with K = B. The Lebesgue volume in ℝ𝑛 is homoge-
neous of degree 𝑛, so

Vol
(
𝜀B

)
= 𝜀𝑛 Vol

(
B
)
.

This fact immediately yields the lower bound.
Next, we turn to the upper bound. Since the unit ball B is convex,

B + (𝜀/2)B = (1 + 𝜀/2)B.
Thus, Vol

(
B+(𝜀/2)B) = (1+𝜀/2)𝑛 Vol

(
B
)
. The result follows after a bit of algebra. ■

The lower bound Corollary 9.14 is exponentially large for small values of 𝜀.
Fortunately, we can use exponential concentration inequalities to counteract the growth
of the covering numbers.

The astute reader will realize that we have not used the full strength of the
assumption that the metric space is a normed linear space. The same kinds of
arguments apply in metric measure spaces where the measure of a metric ball does not
depend on the location of the center of the ball. See Problem Set 3 (Application 1) for
an example.
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9.7 The empirical method
In this section, we will develop a probabilistic technique for bounding the covering
number of a convex hull in a normed space. For simplicity, we will focus on Euclidean
spaces, but the same argument is valid in a wider class of normed spaces. This
argument was proposed by Bernard Maurey, but he never published his ideas. They
first appeared in a paper of Carl on approximation theory.

Consider a finite-dimensional Euclidean space with the standard metric: T = ℝ𝑛

and dist(𝒙 , 𝒚 ) = ∥𝒙 − 𝒚 ∥2. The following proposition is the main result of this section.

Proposition 9.15 (Empirical method). Consider a finite subset A = {𝒂1, . . . ,𝒂𝑚} of the
ℓ2 unit ball in ℝ𝑛 . The covering numbers of the convex hull of the set A satisfy the
bound N(conv(A), 𝜀) ≤ 𝑚 ⌈4/𝜀2 ⌉ .

Observe that the dimension 𝑛 of the Euclidean space does not play a role in the
bound, and the number 𝑚 of points in the set A enters polynomially. On the other
hand, the 𝜀−2 dependence leads to poor results for small 𝜀. For very small 𝜀, the
volumetric method is better.

Proof. Fix an arbitrary point 𝒂 in conv(A). By definition of the convex hull, we can
write

𝒂 =
∑︁𝑚

𝑖=1
𝑝𝑖𝒂 𝑖 where 𝑝𝑖 ≥ 0 and

∑︁𝑚

𝑖=1
𝑝𝑖 = 1.

Using this probability vector 𝒑 , we can construct a random vector 𝒙 ∈ ℝ𝑛 with the
distribution

𝒙 = 𝒂 𝑖 with probability 𝑝𝑖 .

It is clear that 𝔼 𝒙 = 𝒂 . Draw an independent family (𝒙1, . . . , 𝒙 𝑟 ) of 𝑟 copies of the
random vector 𝒙 , and form the empirical average

𝒚 =
1
𝑟

∑︁𝑟

𝑖=1
𝒙 𝑖 .

By linearity of expectation, 𝔼 𝒚 = 𝒂 . We will obtain a bound on the number 𝑟 of
summands we need for a realization of 𝒚 to approximate the point 𝒂 with ℓ2 error 𝜀.

For a particular number 𝑟 = 𝑟 (𝜀), suppose that

𝔼 ∥𝒂 − 𝒚 ∥22 ≤ 𝜀2.

Then the probabilistic method implies the existence of an indexing scheme 𝜄 :
{1, . . . , 𝑟 } → {1, . . . ,𝑚} for which 𝒚★ = 𝑟 −1

∑𝑟
𝑗=1 𝒂 𝜄( 𝑗 ) satisfies

∥𝒂 − 𝒚★∥22 ≤ 𝜀2.

Observe that there are𝑚𝑟 such indexing schemes. Therefore, the vector 𝒚★ takes at
most 𝑚𝑟 different values, one of which is an 𝜀-approximation to the distinguished
point 𝒂 . But 𝒂 is an arbitrary element of the convex hull, so the 𝑚𝑟 choices of 𝒚★

compose an 𝜀-net for conv(A).
It remains to determine how we large we must take the parameter 𝑟 = 𝑟 (𝜀). Since

𝔼 𝒙 𝑖 = 𝒂 , we can begin by expressing

𝔼 ∥𝒂 − 𝒚 ∥22 = 𝑟 −2 𝔼 ∥∑𝑟
𝑖=1(𝒂 − 𝒙 𝑖 )∥22

Next, observe that (𝒂 − 𝒙 𝑖 : 𝑖 = 1, . . . , 𝑟 ) are independent, centered random vectors.
By orthogonality,

𝔼 ∥𝒂 − 𝒚 ∥22 = 𝑟 −2
∑𝑟
𝑖=1 𝔼 ∥𝒂 − 𝒙 𝑖 ∥22.
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Since the points 𝒂 and 𝒙 𝑖 belong to conv(A) and A is contained in the ℓ2 unit ball, we
can bound ∥𝒂 − 𝒙 𝑖 ∥22 ≤ 4. It follows that

𝔼 ∥𝒂 − 𝒚 ∥22 ≤ 4
𝑟
.

To achieve an error below 𝜀2, it suffices that 𝑟 is an integer greater than 4/𝜀2. ■

Figure 9.5 shows the 𝜀-nets that would result from applying the proof ’s construction
to the pentagon. From the illustration we see a qualitative cause for slow convergence
of this construction as 𝜀 → 0: for larger values of 𝑟 they place many points near the
pentagon’s center that would be better used near the edges.

Figure 9.5 (Empirical nets). Empirical nets for a pentagon (𝑚 = 5 and 𝑟 = 2, . . . , 7).

Exercise 9.16 (Improved empirical method). The 𝜀-net in the bottom right of Figure 9.5
cannot possibly be using 𝑚𝑟 = 57 = 78, 125 distinct points. Find a stronger upper
bound on the number of unique sample averages 𝑟 −1

∑𝑟
𝑗=1 𝒂 𝜄( 𝑗 ) where 𝜄 : {1, . . . , 𝑟 } →

{1, . . . ,𝑚}.
Example 9.17 (Covering the probability simplex). Consider the case where A = {e1, . . . , e𝑛}
consists of the standard basis vectors of ℝ𝑛 , so that Δ𝑛 := conv(A) is the probability
simplex. By Proposition 9.15, there exists an 𝜀-net for Δ𝑛 of size 𝑛 ⌈4/𝜀2 ⌉ . ■

Observe that the bound in the example can be written as

log N(conv A, 𝜀) ≤ ⌈4/𝜀2⌉ log𝑛.

This estimate bears a similarity to the inequality 𝔼max𝑖=1,...,𝑛 𝑋𝑖 ≤
√︁
2𝑣 log𝑛 for

the maximum of a family (𝑋𝑖 : 𝑖 = 1, . . . , 𝑛) of 𝑛 centered 𝑣 -subgaussian random
variables. Later, we will appreciate that this similarity is no coincidence.
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In this lecture, we begin our discussion of random processes in earnest. We focus on a
special class of random processes, called Gaussian processes (GPs). Gaussian processes
are especially important for our discussion since they have additional properties that
makes them easy to understand and work with.

10.1 Random processes and metric spaces
We start with some general definitions. In the next section, we will tighten our
discussion to the class of Gaussian processes.

10.1.1 Random processes
Let us refresh our memory of the definition of a random process is.

Definition 10.1 (Random process). Let T be an abstract set. A random process on T is a
family (𝑋𝑡 : 𝑡 ∈ T) of random variables. Generally, these random variables do not
compose an independent family.

Historically, the symbol T stood for time, and it alludes to a setting where each
random variable 𝑋𝑡 gives the value of a process at a given time instant, 𝑡 ∈ ℝ. We are
explicitly interested in more general models. For example, when T ⊆ ℝ𝑛 , the process
is often called a random field, and it might describe the spatial variation of a quantity
such a pressure, temperature, etc.

Unless stated explicitly otherwise, all random processes in this course take real
values. Some of the methods extend to more general random variables.

10.1.2 Increments
We need a way to capture the variation of a random process over the index set. The
following basic definitions provide a useful way to think about this problem.

• We say that a random processes is centered if 𝔼𝑋𝑡 = 0 for all 𝑡 ∈ T.
• The covariance function of a centered random process is

Σ(𝑠 , 𝑡 ) B 𝔼[𝑋𝑠𝑋𝑡 ] for all 𝑠 , 𝑡 ∈ T.

This function packs up the (pairwise) correlations among the elements of the
process.

• The increments of a random process are

𝑑 (𝑠 , 𝑡 ) B ∥𝑋𝑠 − 𝑋𝑡 ∥L2 =
(
𝔼 |𝑋𝑠 − 𝑋𝑡 |2

)1/2 for all 𝑠 , 𝑡 ∈ T

The increments describe how much the random process changes from point 𝑠 ∈ T
to point 𝑡 ∈ T. For a centered process, we can interpret 𝑑 (𝑠 , 𝑡 )2 as the variance
of the difference 𝑋𝑠 − 𝑋𝑡 .
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• The pair (T, 𝑑) is always a pseudo-metric space. Recall that in a pseudo-metric
space, it is possible to have 𝑑 (𝑠 , 𝑡 ) = 0 for 𝑠 ≠ 𝑡 .

Exercise 10.2 (Covariance and increments). For a centered random process, explain how
to compute the covariance function Σ from the increments and vice versa. Hint:
Polarization.

10.1.3 Suprema
In this section of the course, we will be studying the supremum of a real-valued random
process:

𝑍 = sup𝑡 ∈T 𝑋𝑡 .

Remarkably, the behavior of the supremum is intimately related to the geometry of the
pseudo-metric space (T, 𝑑). This insight is captured by the following principle, which
dates to work of Kolmogorov on the continuity of random processes.

If the elements of a random process vary in a “smooth” way with the index, then the
supremum of the process is controlled by the “complexity” of the index set.

Our task is to develop appropriate ways to quantify the complexity of a metric
space. We have already seen one relevant notion, namely the covering numbers
𝜀 ↦→ N(T, 𝑑 ; 𝜀). Even for Gaussian processes, which are the simplest case, we will
need more refined approaches to fully capture the behavior of the supremum.

10.1.4 Measurability
In order to properly define the supremum, we have to be careful about measurability
issues because the index set can be an uncountable set. Indeed, we cannot take the
supremum of an uncountable family of random variables without (possibly) breaking
measurability. We will dispatch with these technical issues in this paragraph and then
forget about them.

One way to overcome the concern about measurability is to work with the lattice
supremum. We may define the expectation of the supremum as

𝔼 sup𝑡 ∈T 𝑋𝑡 B sup {𝔼max𝑡 ∈T′ 𝑋𝑡 : finite T′ ⊆ T} .

Similar definitions can be given for the probability that the supremum takes particular
values, as well as other types of integrals.

Another way to address this issue is to restrict our attention to separable random
processes. A random process (𝑋𝑡 : 𝑡 ∈ T) is separable if there is a countable subset
T0 ⊆ T where

𝑋𝑡 ∈ lim𝑠→𝑡
𝑠 ∈T0

𝑋𝑠 for all 𝑡 ∈ T.

That is, we can realize the value of each element of the random process as a sequential
limit of elements of the countable process (𝑋𝑡 : 𝑡 ∈ T0). Most random processes that
you encounter are indeed separable. For a separable process, the supremum is indeed
measurable, and it agrees with the lattice supremum.

10.2 Gaussian processes
We now move our discussion to a more specific class of random processes, namely
Gaussian processes (GPs). GPs are important for applications in machine learning,
statistics, numerical analysis, and other fields.
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Definition 10.3 (Gaussian process). A real-valued random process (𝑋𝑡 : 𝑡 ∈ T) is called
a Gaussian process if the family (𝑋𝑡 : 𝑡 ∈ T′) is jointly Gaussian for every finite
subset T′ ⊆ T.

Equivalently, the random process is Gaussian if the random variable
∑
𝑡 ∈T′ 𝑎𝑡𝑋𝑡

follows a normal distribution for each finite subset T′ ⊆ T and all coefficients
𝑎𝑡 ∈ ℝ with 𝑡 ∈ T′.

Exercise 10.4 (GPs: Equivalence). Explain why the two definitions of a Gaussian process
are equivalent.

Exercise 10.5 (GPs: Description). Show that a GP is completely determined by its mean
function 𝑡 ↦→ 𝔼𝑋𝑡 and its covariance function (𝑠 , 𝑡 ) ↦→ Σ(𝑠 , 𝑡 ). Show how to compute
the covariance function from the increments and vice-versa. Hint: Polarization.

Warning 10.6 (Joint Gaussianity). It is possible to construct a family of random vari-
ables that are individually Gaussian but whose joint distribution is not Gaussian.
According to our definition, these families are not Gaussian processes. ■

10.2.1 Examples of GPs
As a first example, we can give a complete description of a GP comprising a finite
number of random variables.

Example 10.7 (Finite GP). Consider a centered GP (𝑋𝑡 : 𝑡 ∈ T), where T is a finite set
with cardinality |T| = 𝑁 . We can model this GP as an 𝑁 -dimensional random vector:

𝒙 := (𝑋1, . . . , 𝑋𝑁 ) = 𝚺1/2𝒈 , where 𝒈 ∼ normal(0, I𝑁 ). (10.1)

The psd matrix (𝑖 , 𝑗 ) ↦→ 𝚺(𝑖 , 𝑗 ) tabulates the covariance function of the GP. ■

Next, let us give another explicit construction that yields a wide class of Gaussian
processes. These processes are finite-dimensional, but they can contain an uncountable
number of random variables.

Example 10.8 (Canonical GP). Consider a set T ⊆ ℝ𝑛 , and draw a standard normal vector
𝒈 ∼ normal(0, I𝑛). Form the real random variables

𝑋𝒕 = ⟨𝒈 , 𝒕 ⟩ℓ2 for 𝒕 ∈ T.

The family (𝑋𝒕 : 𝒕 ∈ T) is a centered GP, called a canonical Gaussian process. Let
us emphasize that there is only one random vector 𝒈 that goes into building the
entire process. All the other random variables are derived from this unique source of
randomness.

Let us compute the increments of the canonical GP defined on the set T ⊆ ℝ𝑛 . By
a simple calculation,

𝑑 (𝑋𝒔 , 𝑋𝒕 ) = ∥𝑋𝒔 − 𝑋𝒕 ∥L2 = ∥𝒔 − 𝒕 ∥ℓ2 .

The last norm is simply the ℓ2 norm on the space ℝ𝑛 . In other words, the metric space
(T, 𝑑) associated with a canonical Gaussian process is isomorphic to the metric subspace
(T, ℓ2) of the Euclidean space (ℝ𝑛 , ℓ2). As such, canonical GPs are particularly easy to
visualize. ■

Exercise 10.9 (Finite GPs). Compute the covariance function of a canonical GP on a
finite-cardinality subset T ⊆ ℝ𝑛 .
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10.3 Slepian’s lemma and Kahane’s theorem
As compared with general random processes, Gaussian processes are easier to analyze
and have many additional properties. In this lecture, we will establish a comparison
principle that allows us to relate the suprema of two Gaussian processes. This result is
attributed to Slepian [Sle62].

Aside: Theorem 10.10 is usually
referred to as “Slepian’s lemma,”
even though it is a major result
in its own right.

Theorem 10.10 (Slepian). Let 𝒙 , 𝒚 ∈ ℝ𝑁 be finite centered GPs with covariance
matrices 𝚺𝒙 and 𝚺𝒚 . Assume that

(𝚺𝒙 )𝑖 𝑗 = 𝔼[𝑋𝑖𝑋 𝑗 ] ≤ 𝔼[𝑌𝑖𝑌𝑗 ] = (𝚺𝒚 )𝑖 𝑗 for all 𝑖 , 𝑗 ∈ {1, . . . , 𝑁 };
(𝚺𝒙 )𝑖 𝑖 = 𝔼[𝑋 2

𝑖 ] = 𝔼[𝑌 2
𝑖 ] = (𝚺𝒚 )𝑖 𝑖 , for all 𝑖 ∈ {1, . . . , 𝑁 }.

Then
ℙ {max𝑖 𝑌𝑖 > 𝑢} ≤ ℙ {max𝑖 𝑋𝑖 > 𝑢} for all 𝑢 ∈ ℝ.

In particular,
𝔼max𝑖 𝑌𝑖 ≤ 𝔼max𝑖 𝑋𝑖 .

To understand Theorem 10.10, notice that its hypotheses imply that the increments
of the two GPs satisfy the relations

𝑑𝑌 (𝑖 , 𝑗 ) = ∥𝑌𝑖 −𝑌𝑗 ∥𝐿2 ≤ ∥𝑋𝑖 − 𝑋 𝑗 ∥𝐿2 = 𝑑𝑋 (𝑖 , 𝑗 ) for all 𝑖 , 𝑗 . (10.2)

In words, we consider two GPs have the same coordinate-wise variances, while the
process 𝒙 has bigger increments than the process 𝒚 . That is, the random variables
in the process 𝒙 are farther apart than the corresponding random variables in the
process 𝒚 . In this case, Theorem 10.10 tells us that the maximum of the process 𝒙
stochastically dominates the maximum of the process 𝒚 .

Exercise 10.11 (Minimum). Under the assumptions of Theorem 10.10, show that

𝔼min𝑖 𝑌𝑖 ≥ 𝔼min𝑖 𝑋𝑖 .

This section contains an overview of the proof of Slepian’s lemma. Some applications
of Slepian’s lemma appear in the next lecture.

10.3.1 Kahane’s theorem
The main ingredient in the proof of Theorem 10.10 is an abstract theorem due to
Kahane [Kah86]. In this section, we introduce the statement of Kahane’s theorem and
derive Slepian’s lemma as a direct consequence. The proof of Kahane’s theorem is
given in Section 10.5.

Aside: Kahane’s theorem iso-
lates the abstract fact that under-
lies Slepian’s lemma and related
results. Slepian’s original proof
was based on similar principles,
but it is more direct.

Theorem 10.12 (Kahane). Assume that 𝒙 , 𝒚 ∈ ℝ𝑁 are finite centered GPs. Suppose
that there is a pair of index sets A,B ⊆ {1, . . . , 𝑁 }2 for which

𝔼[𝑋𝑖𝑋 𝑗 ] ≤ 𝔼[𝑌𝑖𝑌𝑗 ] for all (𝑖 , 𝑗 ) ∈ A;
𝔼[𝑋𝑖𝑋 𝑗 ] ≥ 𝔼[𝑌𝑖𝑌𝑗 ] for all (𝑖 , 𝑗 ) ∈ B;
𝔼[𝑋𝑖𝑋 𝑗 ] = 𝔼[𝑌𝑖𝑌𝑗 ] for all (𝑖 , 𝑗 ) ∉ A ∪ B.
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Let 𝑓 : ℝ𝑁 → ℝ be a function whose second (distributional) derivative satisfies

𝜕𝑖 𝑗 𝑓 ≥ 0 for all (𝑖 , 𝑗 ) ∈ A;
𝜕𝑖 𝑗 𝑓 ≤ 0 for all (𝑖 , 𝑗 ) ∈ B.

Then
𝔼 𝑓 (𝒙 ) ≤ 𝔼 𝑓 (𝒚 ).

In the next section, we will use this result to derive Slepian’s lemma. This argument
helps us appreciate that Kahane’s strange set of hypotheses is indeed useful. Turn to
Section 10.5 for the proof of Theorem 10.12, where the source of the hypotheses will
become clear.

Kahane’s theorem has other applications beyond the proof of Slepian’s lemma.
In particular, as you will see on Problem Set 3, Kahane’s result implies Gordon’s
minimax theorem [Gor88], which has significant implications for contemporary signal
processing [TOH14].

10.3.2 Proof of Slepian from Kahane
Let us establish Theorem 10.10 as a consequence of Theorem 10.12. Introduce the
sets A = {(𝑖 , 𝑗 ) : 𝑖 ≠ 𝑗 } and B = ∅. For this specific assignment, the hypotheses of
Slepian’s lemma align with the hypotheses of Kahane’s theorem.

Next, we must choose an appropriate function 𝑓 : ℝ𝑁 → ℝ. Fix a point 𝑢 ∈ ℝ,
and define

𝑓 (𝒘 ) B 1{max𝑖 𝑤𝑖 ≤ 𝑢} =
∏𝑁

𝑖=1
1{𝑤𝑖 ≤ 𝑢} for𝒘 ∈ ℝ𝑁 .

Let us compute the second distributional derivative 𝜕𝑖 𝑗 𝑓 for a pair (𝑖 , 𝑗 ) ∈ A. Write 𝛿𝑢
for the Dirac distribution at 𝑢 with mass one. Then

(𝜕𝑖 𝑓 ) (𝒘 ) = −𝛿𝑢 (𝑤𝑖 )
∏

𝑘≠𝑖
1{𝑤𝑘 ≤ 𝑢};

(𝜕𝑖 𝑗 𝑓 ) (𝒘 ) = 𝛿𝑢 (𝑤𝑖 ) 𝛿𝑢 (𝑤𝑗 )
∏

𝑘≠𝑖 ,𝑗
1{𝑤𝑘 ≤ 𝑢} ≥ 0.

See Figure 10.1 for an illustration.

Figure 10.1 (Derivative of an indicator). An indicator and its distributional derivative.

We have now verified the assumptions of Kahane’s theorem. Indeed, positivity of
the second derivative 𝜕𝑖 𝑗 𝑓 for indices (𝑖 , 𝑗 ) ∈ A is the only thing that we need to check
because B is empty. Kahane’s theorem delivers

ℙ {max𝑖 𝑋𝑖 ≤ 𝑢} = 𝔼 𝑓 (𝒙 )
≤ 𝔼 𝑓 (𝒚 ) = ℙ {max𝑖 𝑌𝑖 ≤ 𝑢} .
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Taking the complements, we finally get

ℙ {max𝑖 𝑋𝑖 > 𝑢} ≥ ℙ {max𝑖 𝑌𝑖 > 𝑢} .

This is the conclusion of Slepian’s lemma. ■

Warning 10.13 (Distributional derivatives). To make this argument rigorous, we need to
use the theory of distributions. We can also develop a more elementary, but messier,
proof by smoothing the indicator function so it is differentiable. ■

10.4 Gaussian interpolation
Before we can establish Kahane’s theorem, we need to present some important facts
about Gaussian integration by parts (IBP) and the interpolation of Gaussian random
vectors.

10.4.1 Integration by parts
Although totally elementary, Gaussian integration by parts formulas play a fundamental
role in Gaussian analysis.

Fact 10.14 (Gaussian IBP: Univariate case). Let 𝛾 ∼ normal(0, 1) and 𝑓 : ℝ → ℝ. Then

𝔼[𝛾 𝑓 (𝛾 )] = 𝔼[ 𝑓 ′ (𝛾 )].

Here, 𝑓 ′ denotes the (distributional) derivative. ■

Exercise 10.15 (Gaussian IBP). Prove Fact 10.14 by writing the expectation as an integral
and invoking integration by parts. The formula is valid whenever we can make sense
of both sides.

We will need a more general version of this result, which is an easy corollary.

Fact 10.16 (Multivariate Gaussian IBP). Let 𝒙 ∈ ℝ𝑁 be a finite centered GP with covariance
matrix 𝚺. For 𝑓 : ℝ𝑁 → ℝ,

𝔼[𝑋𝑖 𝑓 (𝒙 )] =
∑︁𝑁

𝑗=1
(𝚺)𝑖 𝑗 𝔼[(𝜕𝑗 𝑓 ) (𝒙 )].

Here, 𝜕𝑗 𝑓 is the (distributional) derivative with respect to the 𝑗 th coordinate. ■

Proof sketch. Using the canonical model (10.1) for finite GPs, we may write 𝒙 = 𝚺1/2𝒈
with 𝒈 ∼ normal(0, I𝑁 ). Then

𝔼[𝑋𝑖 𝑓 (𝒙 )] =
∑︁𝑁

𝑘=1
(𝚺1/2)𝑖𝑘 𝔼[𝑔𝑘 𝑓 (𝚺1/2𝒈 )]

=
∑︁𝑁

𝑘=1
(𝚺1/2)𝑖𝑘 𝔼[𝑔𝑘ℎ (𝒈 )],

where ℎ (𝒈 ) = 𝑓 (𝚺1/2𝒈 ). Apply the univariate Gaussian IBP to each component 𝑔𝑘 of
𝒈 , and do the algebra to arrive at the desired result. ■

10.4.2 Interpolation
The main idea in the proof of Kahane’s theorem is a technique called Gaussian
interpolation. We need to find a way of bridging the two GPs 𝒙 and 𝒚 that we are
trying to compare in Kahane’s theorem. The idea is to construct a continuous path from
𝒚 to 𝒙 along which we can control the behavior of functions of the random processes.
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Proposition 10.17 (Gaussian interpolation). Let 𝒙 , 𝒚 ∈ ℝ𝑁 be finite centered GPs with
covariance matrices 𝚺𝑥 and 𝚺𝑦 , and assume that 𝒙 , 𝒚 are statistically independent
from each other. Define

𝒛 (𝜏) B
√
𝜏 𝒙 +

√
1 − 𝜏 𝒚 for all 𝜏 ∈ [0, 1]. (10.3)

Then, for 𝑓 : ℝ𝑁 → ℝ, we have that

d
d𝜏

𝔼 𝑓 (𝒛 (𝜏)) = 1
2

∑︁𝑁

𝑖 ,𝑗=1

[
(𝚺𝑥 )𝑖 𝑗 − (𝚺𝑦 )𝑖 𝑗

]
𝔼[(𝜕𝑖 𝑗 𝑓 ) (𝒛 (𝜏))].

To appreciate why we construct the interpolating process 𝒛 (𝜏) in this manner,
observe that

Cov(𝒛 (𝜏)) = 𝜏 𝚺𝑥 + (1 − 𝜏) 𝚺𝑦 , (10.4)

for 𝜏 ∈ [0, 1]. In other words, we have constructed a family 𝒛 (𝜏) of Gaussian vectors
whose covariance matrices interpolate linearly between the covariances of 𝒚 and 𝒙 .

Proof. The argument follows from a short calculation. Invoking the chain rule and the
definition (10.3) of the interpolating process 𝒛 (𝜏),

d
d𝜏

𝔼 𝑓 (𝒛 (𝜏)) =
∑︁𝑁

𝑖=1
𝔼

[
(𝜕𝑖 𝑓 ) (𝒛 (𝜏))

d
d𝜏
𝑧𝑖 (𝜏)

]
=

1
2

∑︁𝑁

𝑖=1
𝔼

[
(𝜕𝑖 𝑓 ) (𝒛 (𝜏))

(
1
√
𝜏
𝑋𝑖 −

1
√
1 − 𝜏

𝑌𝑖

)]
.

(10.5)

Applying Gaussian IBP (Fact 10.16) to each term, we obtain

1
√
𝜏
𝔼[𝑋𝑖 (𝜕𝑖 𝑓 ) (𝒛 (𝜏))] =

∑︁𝑁

𝑗=1
(𝚺𝑥 )𝑖 𝑗 𝔼[(𝜕𝑖 𝑗 𝑓 ) (𝒛 (𝜏))];

1
√
1 − 𝜏

𝔼[𝑌𝑖 (𝜕𝑖 𝑓 ) (𝒛 (𝜏))] =
∑︁𝑁

𝑗=1
(𝚺𝑦 )𝑖 𝑗 𝔼[(𝜕𝑖 𝑗 𝑓 ) (𝒛 (𝜏))].

Combining the last display with (10.5), we get the desired result. ■

10.4.3 Example: The Fernique–Sudakov comparison
Gaussian interpolation is a widely used and powerful tool. As a first illustration, we
sketch how this method allows us to prove a comparison due to Fernique [Fer75]
and Sudakov. This result is a refinement of Slepian’s lemma that only involves the
increments of the Gaussian processes.

Theorem 10.18 (Fernique–Sudakov). Consider finite centered GPs that satisfy In this result, we do not assume
equal variances! We recover bounds
for the expected maximum—but not
tail probabilities.

∥𝑌𝑖 −𝑌𝑗 ∥L2 ≤ ∥𝑋𝑖 − 𝑋 𝑗 ∥L2 , for all 𝑖 , 𝑗 .

Then
𝔼max𝑖 𝑌𝑖 ≤ 𝔼max𝑖 𝑋𝑖 .

Proof sketch. The proof is based on the fact that the maximum of a family of numbers
(𝑤𝑖 : 𝑖 = 1, . . . , 𝑁 ) can be approximated by the soft-max:

max𝑖 𝑤𝑖 ≈
1
𝜃
log

∑︁𝑁

𝑖=1
exp(𝜃𝑤𝑖 ) for 𝜃 > 0.

Apply Gaussian interpolation (Proposition 10.17) to the soft-max and optimize over 𝜃
to obtain the stated result. ■
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10.5 Proof of Kahane’s theorem
Finally, we are prepared to establish Kahane’s theorem. Without loss of generality, we
may assume that the two finite centered GPs 𝒙 and 𝒚 are statistically independent.
We use Gaussian interpolation to construct a path between the two GPs. Define

𝒛 (𝜏) =
√
𝜏 𝒙 +

√
1 − 𝜏 𝒚 for 𝜏 ∈ [0, 1].

By Proposition 10.17,

d
d𝜏

𝔼[ 𝑓 (𝒛 (𝜏))] = 1
2

∑︁𝑁

𝑖 ,𝑗=1

[
(𝚺𝑥 )𝑖 𝑗 − (𝚺𝑦 )𝑖 𝑗

]
𝔼[(𝜕𝑖 𝑗 𝑓 ) (𝒛 (𝜏))].

The hypothesis of Kahane’s theorem 10.12 allow us to control each of the terms in the
sum:

(𝑖 , 𝑗 ) ∈ A : (𝚺𝑥 )𝑖 𝑗 ≤ (𝚺𝑦 )𝑖 𝑗 and 𝜕𝑖 𝑗 𝑓 ≥ 0;
(𝑖 , 𝑗 ) ∈ B : (𝚺𝑥 )𝑖 𝑗 ≥ (𝚺𝑦 )𝑖 𝑗 and 𝜕𝑖 𝑗 𝑓 ≤ 0;
(𝑖 , 𝑗 ) ∉ A ∪ B : (𝚺𝑥 )𝑖 𝑗 = (𝚺𝑦 )𝑖 𝑗 .

We immediately deduce that

d
d𝜏

𝔼[ 𝑓 (𝒛 (𝜏))] ≤ 0 for 𝜏 ∈ [0, 1].

As a consequence,

𝔼 𝑓 (𝒙 ) − 𝔼 𝑓 (𝒚 ) =
∫ 1

0
d𝜏

d
d𝜏

𝔼 𝑓 (𝒛 (𝜏)) ≤ 0.

This is the conclusion of Kahane’s theorem. ■
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11. Chevet and Sudakov

Date: 9 February 2021 Scribe: Ethan Epperly

Agenda:
1. Chevet’s Theorem
2. Norm of a Gaussian matrix
3. Sudakov’s minoration
4. Covering number bounds

In the last lecture, we discussed the Gaussian comparison results of Slepian and
Fernique–Sudakov. Today, we shall discuss two applications of these result. The first is
Chevet’s theorem, which gives bounds on the expected supremum of a bilinear form
defined by a Gaussian matrix. The second result is Sudakov minoration, which gives
lower bounds on the supremum of a Gaussian process. Upper bounds for these suprema
will be the subject of the next lecture.

11.1 Chevet’s theorem
We begin with a result that describes the supremum of a bilinear form in a Gaussian
matrix. This theorem was established by Simone Chevet in 1977 [Che77], with
subsequent refinements by Yehoram Gordon [Gor85].

11.1.1 The Gaussian width
Before we begin, it is valuable to introduce special notation for the expected supremum
of a canonical Gaussian process.

Definition 11.1 (Gaussian width). Let T ⊂ ℝ𝑛 be a compact set. The Gaussian width of
T is the quantity

𝑤 (T) B 𝔼 sup𝒙 ∈T ⟨𝒈 , 𝒙 ⟩ where 𝒈 ∼ normal(0, I𝑛).

The Gaussian width can be viewed as a measure of the “size” of the set T. It has
many beautiful properties, some of which are collected in the next exercise.

Exercise 11.2 (Gaussian width). Let T ⊂ ℝ𝑛 be a compact set. Prove that the Gaussian
width has the following properties.

1. Rigid motion invariance. 𝑤 (𝑸T+𝒂) = 𝑤 (T) for each orthogonal matrix𝑸 ∈ ℝ𝑛×𝑛

and for each point 𝒂 ∈ ℝ𝑛 .
2. Bounds. 0 ≤ 𝑤 (T) <

√
𝑛 · rad(T). In this context, the radius of a set is

defined as

rad(T) B sup{ ∥𝒖 ∥2 : 𝒖 ∈ T}.
3. Monotonicity. If S ⊆ T, then𝑤 (S) ≤ 𝑤 (T).
4. Homogeneity. 𝑤 (𝛼T) = |𝛼 |𝑤 (T) for 𝛼 ∈ ℝ.
5. Convexity. 𝑤 (T) = 𝑤 (conv(T)).
6. *Valuation. If S, T, S ∪ T are convex, then

𝑤 (S) +𝑤 (T) = 𝑤 (S ∩ T) +𝑤 (S ∪ T).

7. *Continuity. If S𝑛 → T in Hausdorff metric, then𝑤 (S𝑛) → 𝑤 (T).
8. ****Uniqueness. Up to scaling, the Gaussian width is the only rigid-motion-

invariant, 1-homogeneous, continuous valuation on ℝ𝑛 .



Lecture 11: Chevet and Sudakov 87

11.1.2 The supremum of a bilinear form
It is a remarkable fact that the supremum of a bilinear form in a Gaussian matrix is
controlled by two linear forms over Gaussian vectors.

Theorem 11.3 (Chevet). Assume that U ⊆ ℝ𝑚 and V ⊆ ℝ𝑛 are compact subsets of the
unit spheres in their respective spaces. Let 𝚪 ∈ ℝ𝑛×𝑚 and 𝒈 ∈ ℝ𝑚 and 𝒉 ∈ ℝ𝑛

have independent standard normal entries. Then

𝔼max𝒖∈U
𝒗 ∈V

⟨𝚪𝒖 , 𝒗 ⟩ ≤ 𝔼max𝒖∈U
𝒗 ∈V

[⟨𝒈 , 𝒖⟩ + ⟨𝒉 , 𝒗 ⟩] = 𝑤 (U) +𝑤 (V).

Furthermore, for all 𝑡 ∈ ℝ,

ℙ
{
max𝒖∈U

𝒗 ∈V
⟨𝚪𝒖 , 𝒗 ⟩ > 𝑡

}
≤ 2ℙ

{
max𝒖∈U

𝒗 ∈V
[⟨𝒈 , 𝒖⟩ + ⟨𝒉 , 𝒗 ⟩] > 𝑡

}
.

The beauty of Chevet’s theorem is that it allows us to “decouple” the sets U and V
that appear in the maximum. Another important feature is that the expectation bound
is sharp up to and including the constants. In the next section, we will show how
Chevet’s theorem leads to a bound on the norm of a Gaussian matrix. There are many
other elegant applications.

Proof. We shall apply Slepian’s lemma to some carefully chosen GPs. Let 𝛾 ∼
normal(0, 1), independent of everything else. Consider the Gaussian processes
(𝑋𝒖𝒗 : 𝒖 ∈ U, 𝒗 ∈ V) and (𝑌𝒖𝒗 : 𝒖 ∈ U, 𝒗 ∈ V) defined by the relations

𝑌𝒖𝒗 = ⟨𝚪𝒖 , 𝒗 ⟩ +𝛾 ;
𝑋𝒖𝒗 = ⟨𝒈 , 𝒖⟩ + ⟨𝒉 , 𝒗 ⟩.

Since everything is independent, we easily compute the covariances:

𝔼[𝑌𝒖𝒗𝑌𝒖 ′𝒗 ′] = 𝔼[⟨𝚪𝒖 , 𝒗 ⟩⟨𝚪𝒖 ′, 𝒗 ′⟩] + 1 = ⟨𝒖 , 𝒖 ′⟩⟨𝒗 , 𝒗 ′⟩ + 1;
𝔼[𝑋𝒖𝒗𝑋𝒖 ′𝒗 ′] = 𝔼[⟨𝒈 , 𝒖⟩⟨𝒈 , 𝒖 ′⟩ + ⟨𝒉 , 𝒗 ⟩⟨𝒉 , 𝒗 ′⟩] = ⟨𝒖 , 𝒖 ′⟩ + ⟨𝒗 , 𝒗 ′⟩.

Thus, we have the comparison

𝔼[𝑌𝒖𝒗𝑌𝒖 ′𝒗 ′] − 𝔼[𝑋𝒖𝒗𝑋𝒖 ′𝒗 ′] = (1 − ⟨𝒖 , 𝒖 ′⟩)(1 − ⟨𝒗 , 𝒗 ′⟩) ≥ 0,

with equality when 𝒖 = 𝒖 ′ or 𝒗 = 𝒗 ′. Indeed, ⟨𝒖 , 𝒖 ′⟩ ≤ 1 by the Cauchy–Schwarz
inequality because 𝒖 and 𝒖 ′ are unit vectors. Likewise, ⟨𝒗 , 𝒗 ′⟩ ≤ 1.

Thus, for any finite subsets U′ ⊆ U and V′ ⊆ V, invoking Slepian’s lemma yields

𝔼max𝒖∈U′
𝒗 ∈V′

⟨𝚪𝒖 , 𝒗 ⟩ = 𝔼max𝒖∈U′
𝒗 ∈V′

[⟨𝚪𝒖 , 𝒗 ⟩ +𝛾 ]

= 𝔼max𝒖∈U′
𝒗 ∈V′

𝑌𝒖𝒗

≤ 𝔼max𝒖∈U′
𝒗 ∈V′

𝑋𝒖𝒗 = 𝔼max𝒖∈U
𝒗 ∈V

[⟨𝒈 , 𝒖⟩ + ⟨𝒉 , 𝒗 ⟩] .

The result follows by the definition of the lattice supremum or by an approximation
argument. ■

Exercise 11.4 (Chevet: Probability bound). Prove the probability bound in Theorem 11.3.
Hint: Condition on the event {𝛾 ≥ 0}.

We conclude this section we some extensions of Chevet’s theorem; see Section 8.7 of
[Ver18] for further discussion. First, we note that Chevet’s theorem admits a matching
lower bound.
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Exercise 11.5 (Chevet: Lower bound). Under the assumptions of Theorem 11.3,

𝔼max𝒖∈U
𝒗 ∈V

⟨𝚪𝒖 , 𝒗 ⟩ ≥ max{𝑤 (U), 𝑤 (V)}.

Hint: Use Jensen’s inequality and the rotational invariance of the standard normal
distribution.

Next, we consider what happens for sets U and V that may not contained in the
unit sphere.

Exercise 11.6 (Chevet: General sets). For general compact sets U ⊆ ℝ𝑚 and V ⊆ ℝ𝑛 , show
that

𝔼max𝒖∈U
𝒗 ∈V

⟨𝚪𝒖 , 𝒗 ⟩ ≤ 𝑤 (U) rad(V) +𝑤 (V) rad(U),

where rad(U) := sup𝒖∈U ∥𝒖 ∥2. Develop a matching lower bound.

Chevet’s theorem extends to matrices with independent subgaussian entries by way
of a difficult comparison argument.

Theorem 11.7 (Subgaussian Chevet). Let U ⊆ ℝ𝑚 and V ⊆ ℝ𝑛 be compact. Let
𝚪 ∈ ℝ𝑛×𝑚 be a matrix whose entries are independent, centered 𝜎2-subgaussian
random variables. Then

𝔼max𝒖∈U
𝒗 ∈V

⟨𝚪𝒖 , 𝒗 ⟩ ≤ Const · 𝜎 · [𝑤 (U) rad(V) +𝑤 (V) rad(U)] .

The proof depends on Exercise 11.6 and Talagrand’s comparison inequality, which will
be discussed in Lecture 13.

11.2 Spectral norm of a Gaussian matrix
As a first application of Chevet’s theorem, we can compute sharp bounds for the
spectral norm of a Gaussian matrix. These bounds are very important in algorithmic
applications of Gaussian matrices, including randomized SVD algorithms [HMT11].

Corollary 11.8 (Norm of a standard Gaussian matrix). Suppose that 𝚪 ∈ ℝ𝑛×𝑚 has iid
standard normal entries. Then

𝔼 ∥𝚪∥ℓ2→ℓ2 ≤
√
𝑚 +

√
𝑛.

Here, ∥·∥ℓ2→ℓ2 is the ℓ2 operator norm, also known as the spectral norm.

Proof. Let 𝒈 ∈ ℝ𝑚 and 𝒉 ∈ ℝ𝑛 have iid standard normal entries. By definition of the
operator norm and by Chevet’s theorem,

𝔼 ∥𝚪∥ℓ2→ℓ2 = 𝔼max∥𝒖 ∥ℓ2=∥𝒗 ∥ℓ2=1 ⟨𝚪𝒖 , 𝒗 ⟩
≤ 𝔼max∥𝒖 ∥ℓ2=∥𝒗 ∥ℓ2=1 [⟨𝒈 , 𝒖⟩ + ⟨𝒉 , 𝒗 ⟩] = 𝔼

[
∥𝒈 ∥ℓ2 + ∥𝒉 ∥ℓ2

]
.

By Lyapunov’s inequality, 𝔼 ∥𝒈 ∥ℓ2 ≤ (𝔼 ∥𝒈 ∥2
ℓ2
)1/2 =

√
𝑚. Likewise, 𝔼 ∥𝒉 ∥ℓ2 ≤

√
𝑛.

These observations complete the proof. ■

Problem 11.9 (Optimality). Using the Marčenko–Pastur theorem, prove that Corollary 11.8
is sharp—up to and including the constants.
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Exercise 11.10 (Spectral norm via matrix concentration). One might wonder how the bound
we obtained using Chevet’s theorem, which is specialized for standard normal matrices,
compares with bounds developed with more general matrix concentration tools. Show
that matrix concentration inequalities (e.g., the noncommutative Khintchine inequality)
only yield the bound

𝔼 ∥𝚪∥ℓ2→ℓ2 ≤ const ·
√︁
(𝑚 + 𝑛) log(𝑚 + 𝑛).

Chevet’s bound improves on this result in two important ways: it removes the logarithm
and it replaces the square root of the sum by the sum of the square roots.

Exercise 11.11 (Inhomogeneous norm bound). Use the generalized Chevet theorem (Exer-
cise 11.6) to develop the following spectral norm bound for the product of a Gaussian
matrix with fixed matrices: Here, ∥ · ∥F is the Frobenius norm.

𝔼 ∥𝑩𝚪𝑪 ∥ℓ2→ℓ2 ≤ ∥𝑩 ∥ℓ2→ℓ2 ∥𝑪 ∥F + ∥𝑩 ∥F∥𝑪 ∥ℓ2→ℓ2

where 𝑩 ∈ ℝ𝑘×𝑛 and𝑪 ∈ ℝ𝑚×𝑝 are fixed matrices and 𝚪 ∈ ℝ𝑛×𝑚 is a matrix with iid
standard normal entries. Taking 𝑩 = I𝑛 and 𝑪 = I𝑚 , this result implies Corollary 11.8.

11.3 Sudakov’s minoration
In this section, we shall see a second application of Gaussian comparison inequalities:
a lower bound for the expected supremum of a Gaussian process. As discussed,
we anticipate that the size of the supremum will be related to the “complexity” or
“geometry” of the index set. As we shall see, the covering number provides a natural
quantity to characterize this complexity. In this section, we shall see how to obtain
lower bounds on the expectation of suprema using covering numbers; upper bounds
shall be the subject of next lecture.

11.3.1 Gaussian processes and geometry
Let us quickly review the geometry of Gaussian processes. Consider a centered GP
(𝑋𝑡 : 𝑡 ∈ T). The Gaussian process naturally equips the index set Twith a pseudometric

𝑑 (𝑠 , 𝑡 ) := ∥𝑋𝑠 − 𝑋𝑡 ∥L2 = (𝔼(𝑋𝑠 − 𝑋𝑡 )2)1/2.

The polarization identity states that
for a real inner product space
(X, ⟨·, ·⟩ ) with induced norm
∥𝒙 ∥ =

√︁
⟨𝒙 , 𝒙 ⟩ the inner product

between vectors 𝒙 , 𝒚 ∈ X is given by
⟨𝒙 , 𝒚 ⟩ = 1

4 ( ∥𝒙 + 𝒚 ∥2 − ∥𝒙 − 𝒚 ∥2 ) .
Thus, given a black box to compute
norms, one can compute inner
products as well.

By the polarization identities, the covariance function Σ(𝑠 , 𝑡 ) = 𝔼[𝑋𝑠𝑋𝑡 ] is a function
of the increments 𝑑 (𝑠 , 𝑡 ). A Gaussian process is determined by its expectation and
covariances, so the pseudometric space (T, 𝑑) contains all there is to know about a
centered Gaussian process.

We wish to study the supremum sup𝑡 ∈T 𝑋𝑡 of a centered Gaussian process. The
deviations of sup𝑡 ∈T 𝑋𝑡 from its mean value are well-characterized by Gaussian con-
centration. Specifically, we have

ℙ {|sup𝑡 ∈T 𝑋𝑡 − 𝔼 sup𝑡 ∈T 𝑋𝑡 | > 𝑢} ≤ 2 exp
(
− 𝑢2

2𝜎2

)
,

where 𝜎2 B sup𝑡 ∈T 𝔼𝑋 2
𝑡 . Consequently, our main goal is to understand the expected

value, 𝔼 sup𝑡 ∈T 𝑋𝑡 , around which sup𝑡 ∈T 𝑋𝑡 concentrates.

11.3.2 Minoration
Recall that the covering number
N(T, 𝑑 ; 𝜀 ) is the minimum number of
𝜀-balls in the (pseudo)metric 𝑑 that
suffice to cover T.

We shall provide a lower bound on 𝔼 sup𝑡 ∈T 𝑋𝑡 in terms of the metric entropy
log2 N(T, 𝑑; 𝜀) of the space (T, 𝑑) on the scale 𝜀. As usual, N(T, 𝑑 ; 𝜀) is the cov-
ering number of (T, 𝑑). The following bound is due to V. N. Sudakov.
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Theorem 11.12 (Sudakov’s minoration). Let (𝑋𝑡 : 𝑡 ∈ T) be a centered GP. For each
𝜀 > 0, Since log2 (𝑎 ) = log(𝑎 )/log(2) for

every 𝑎 > 0, we could just as well use
the base-2 logarithm.𝔼 sup𝑡 ∈T 𝑋𝑡 ≥ const · 𝜀

√︁
log N(T, 𝑑 ; 𝜀),

where 𝑑 is the canonical (pseudo)metric of the process.

Sudakov minoration can be used in two distinct ways. First, we can convert lower
bounds on covering numbers into lower bounds on the suprema of Gaussian processes.
Second, we can convert upper bounds on suprema of Gaussian processes into upper
bounds on covering numbers. We develop some examples after proving the theorem.

Figure 11.1 Illustration of a maximal
𝜀-separated subset N𝜀 ⊆ T.

Proof. The proof uses the Fernique–Sudakov comparison inequality. Without loss, we
may assume that N(T, 𝜀; 𝑑) < +∞. If not, then 𝔼 sup𝑡 ∈T 𝑋𝑡 = +∞. (Why?)

Let N𝜀 be a maximal 𝜀-separated set in T. Then N𝜀 is an 𝜀-net for T with cardinality
|N𝜀 | ≥ N(T, 𝑑 ; 𝜀). See Figure 11.1 for an illustration.

Let us compare (𝑋𝑡 : 𝑡 ∈ N𝜀) with another Gaussian process (𝑌𝑡 : 𝑡 ∈ N𝜀)
consisting of independent Gaussian variables. Specifically, let 𝑌𝑡 = 1√

2
𝜀𝑔𝑡 , where

(𝑔𝑡 : 𝑡 ∈ N𝜀) consists of iid standard normal random variables. We can compare the
increments of these processes:

𝔼(𝑋𝑠 − 𝑋𝑡 )2 = [𝑑 (𝑠 , 𝑡 )]2 ≥ 𝜀2;

𝔼(𝑌𝑠 −𝑌𝑡 )2 =
𝜀2

2
𝔼(𝑔𝑠 − 𝑔𝑡 )2 = 𝜀2

for 𝑠 , 𝑡 ∈ N𝜀 .

To handle the process (𝑋𝑡 ), we used the fact that N𝜀 is an 𝜀-net with respect to 𝑑 .
To handle the process (𝑌𝑡 ), we simply apply the fact that it consists of independent
standard normal variables.

We have shown that the increments of (𝑋𝑡 : 𝑡 ∈ N𝜀) dominate those of (𝑌𝑡 : 𝑡 ∈ N𝜀).
By the Sudakov–Fernique comparison theorem,

𝔼 sup𝑡 ∈T 𝑋𝑡 ≥ 𝔼 sup𝑡 ∈N𝜀 𝑋𝑡 ≥ 𝔼 sup𝑡 ∈N𝜀 𝑌𝑡 =
𝜀
√
2
𝔼max𝑡 ∈N𝜀 𝑔𝑡 .

To complete the argument, we employ a basic lower bound for the expected maximum
of iid standard normal variables:

𝔼max𝑡 ∈N𝜀 𝑔𝑡 ≥ const ·
√︁
log |N𝜀 | ≥ const ·

√︁
log N(T, 𝑑 ; 𝜀).

The last relation holds because the covering number is the minimum cardinality of an
𝜀-net. Combine the last two displays to complete the proof. ■

Problem 11.13 (Maximum of Gaussians). Let (𝑔𝑖 : 𝑖 = 1, . . . ,𝑚) be an iid family of
standard normal random variables. Confirm that

const ·
√︁
log𝑚 ≤ 𝔼 max

1≤𝑖≤𝑚
𝑔𝑖 ≤

√︁
2 log𝑚.

Prove the asymptotic formula

lim
𝑚→∞

𝔼max1≤𝑖≤𝑚 𝑔𝑖√︁
2 log𝑚

= 1.
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11.3.3 From lower bounds for covering numbers to lower bounds for suprema
As a first illustration of Sudakov’s minoration, we will show how to use volumetric
lower bounds for covering numbers to obtain lower bounds for Gaussian processes.

For a set T ⊆ ℝ𝑛 , construct the canonical Gaussian process 𝑋𝒕 = ⟨𝒈 , 𝒕 ⟩, where
𝒈 ∈ ℝ𝑛 is a standard normal vector. The canonical metric 𝑑 coincides with the ℓ2
distance: 𝑑 (𝒔 , 𝒕 ) = ∥𝒔 − 𝒕 ∥ℓ2 . The volumetric bound for covering numbers gives

N(T, ℓ2; 𝜀) ≥
Vol(T)
Vol(B2)

· 𝜀−𝑛 ,

where B2 is the ℓ2 unit ball in ℝ𝑛 . As a consequence,

log N(T, ℓ2; 𝜀) ≥ 𝑛 log(1/𝜀) + log
Vol(T)
Vol(B2)

.

Combining this estimate with Sudakov’s minoration leads to lower bounds on the
expected supremum of the canonical GP:

𝔼 sup𝒕 ∈T 𝑋𝒕 ≥ const · sup𝜀>0 𝜀
√︁
𝑛 log(1/𝜀) + log Vol(T) − log Vol(B2).

For any set T, this bound is qualitatively correct for very small values of 𝜀.

Example 11.14 (Norm of a standard Gaussian vector). We use the lower bound on metric
entropy from the previous example to obtain a lower bound for the norm of a standard
Gaussian vector. With the notation of this section, we consider the set T = B2. Then
Sudakov’s minoration yields

𝔼 ∥𝒈 ∥ℓ2 = 𝔼 sup𝒕 ∈B2 ⟨𝒈 , 𝒕 ⟩ ≥ const · sup𝜀>0 𝜀
√︁
𝑛 log(1/𝜀) ≥ const ·

√
𝑛.

This bound is qualitatively correct because const ·
√
𝑛 ≤ 𝔼 ∥𝒈 ∥ℓ2 ≤

√
𝑛. ■

11.3.4 From upper bounds for suprema to upper bounds for covering numbers
Now, let us show how upper bounds on the supremum of a Gaussian process can be
used to derive upper bounds for covering numbers.

We consider the convex hull of 𝑚 points in the unit ball of ℝ𝑛 . Define A =

{𝒂1, . . . ,𝒂𝑚} ⊆ B2, and form T = conv(A). Let 𝒈 ∈ ℝ𝑛 be a standard normal vector.
By the Gaussian maximal inequality (Problem 11.13),

𝔼 sup𝒕 ∈T ⟨𝒈 , 𝒕 ⟩ = 𝔼max𝒂∈A ⟨𝒈 , 𝒂⟩ ≤
√︁
2 log𝑚.

Indeed, a linear function on a compact convex set achieves its maximum on an extreme
point! Then, for all 𝜀 > 0, by Sudakov minoration,

const · 𝜀
√︁
log N(T, ℓ2; 𝜀) ≤

√︁
2 log𝑚

which implies
log N(T, ℓ2; 𝜀) ≤ 𝑚const/𝜀2 .

Up to the value of the constant, this matches the empirical bound for the covering
number of a convex hull due to Maurey.
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12. Dudley’s Inequality
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Agenda:
1. Dudley’s inequality
2. Chaining
3. Proof of Dudley
4. Extensions
5. Examples

In the last lecture, we obtained a lower bound on the supremum of a centered Gaussian
process by using Sudakov’s minoration. More precisely, let (𝑋𝑡 : 𝑡 ∈ T) be a centered
GP with canonical metric 𝑑 (𝑠 , 𝑡 ) B ∥𝑋𝑠 − 𝑋𝑡 ∥𝐿2 . Sudakov’s minoration shows that

𝔼 sup𝑡 ∈T 𝑋𝑡 ≥ const · sup𝜀>0 𝜀
√︁
log N(T, 𝑑; 𝜀). (12.1)

Sudakov’s bound replaces a probabilistic question by a geometric one. We can use the
metric entropy log N(T, 𝑑; 𝜀), which reflects the complexity of the metric space (T, 𝑑),
to produce a lower bound for the supremum of a centered GP. Hence, whenever the
metric entropy is large, the supremum must also be large.

In the previous lecture, we saw two distinct ways to use Sudakov’s minoration:

• A lower bound on the metric entropy gives a lower bound on the supremum.
• An upper bound on the supremum gives an upper bound on the metric entropy.

Today, we are going to show how to obtain an upper bound on the supremum of the
process in terms of metric entropy.

12.1 Dudley’s inequality
In this section, we introduce an upper bound on the supremum of a GP. This result is
known as Dudley’s inequality.

Theorem 12.1 (Dudley’s inequality). The only technical assumption is the
separability of the process; that is, T
contains a countable subset that
approximates the GP arbitrarily well.

Let (𝑋𝑡 : 𝑡 ∈ T) be a centered Gaussian process
with canonical metric 𝑑 . Then

𝔼 sup𝑡 ∈T 𝑋𝑡 ≤ Const
∫ ∞

0
d𝜀

√︁
log N(T, 𝑑 ; 𝜀). (12.2)

The upper limit of the integral can be set as diam(T, 𝑑) B max{𝑑 (𝑠 , 𝑡 ) : 𝑠 , 𝑡 ∈ T}.

Figure 12.1 illustrates the relation between Dudley’s inequality and Sudakov’s
minoration. As we can see in the figure, the bounds have graphical interpretations. Recall that the metric entropy

𝜀 ↦→ N(T, 𝑑 ; 𝜀 ) is a decreasing
function.• Sudakov. The supremum is bounded below by the area of the largest rectangle

under the curve.
• Dudley. The supremum is bounded above by the area under the curve.

Since the metric entropy is positive, it is clear that Sudakov’s minoration is smaller
than the Dudley’s inequality. Together, the two results show that the supremum of the
process lies somewhere in between these two extremes.

The quantity on the right-hand of the bound (12.2) is called an entropy integral. It
accumulates the total metric entropy of the space (T, 𝑑) across all scales, so Dudley’s
bound is a multiscale estimate. By using a Riemann–Darboux sum, we can approximate
the entropy integral using discrete scales. In other words, proving the discrete version
of Dudley’s bound is equivalent to proving the integral formulation.
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Figure 12.1 (Sudakov versus Dudley). Comparison of Sudakov’s minora-
tion (12.1) and Dudley’s bound (12.2).

Theorem 12.2 (Dudley’s inequality: Discrete version). Let (𝑋𝑡 : 𝑡 ∈ T) be a centered
Gaussian process with canonical metric 𝑑 . Then

𝔼 sup𝑡 ∈T 𝑋𝑡 ≤ Const
∑︁

𝑖 ∈ℤ
2−𝑖

√︁
log N(T, 𝑑 ; 2−𝑖 ).

In the next section, we give an intuitive presentation of the main idea behind the
proof of Theorem 12.2. The detailed proof appears in Section 12.3.

12.2 Chaining
The main idea behind the proof of Theorem 12.2 is a technique called chaining. This
method allows us to combine 𝜀-nets on different scales. Here is an overview.

For each 𝜀 > 0, let N𝜀 be an 𝜀-net for (T, 𝑑). For each index 𝑡 ∈ T and each scale 𝜀,
we may approximate 𝑡 by a closest point 𝜋𝜀 (𝑡 ) in N𝜀 . That is,

𝜋𝜀 (𝑡 ) ∈ argmin{𝑑 (𝑠 , 𝑡 ) : 𝑠 ∈ N𝜀}.

(We may assume that the 𝜀-nets are finite, so ties are broken deterministically.) Since
N𝜀 is an 𝜀-net with respect to the canonical metric, we have 𝑑 (𝑡 , 𝜋𝜀 (𝑡 )) ≤ 𝜀. As a
consequence,

∥𝑋𝑡 − 𝑋𝜋𝜀 (𝑡 ) ∥L2 = 𝑑 (𝑡 , 𝜋𝜀 (𝑡 )) ≤ 𝜀.

This controls the correlation between 𝑋𝑡 and its approximation 𝑋𝜋𝜀 (𝑡 ) at scale 𝜀.
We may now decompose the supremum over the index set by approximating each

point using the 𝜀-net at a given scale:

𝔼 sup𝑡 ∈T 𝑋𝑡 ≤ 𝔼 sup𝑡 ∈N𝜀 𝑋𝜋𝜀 (𝑡 ) + 𝔼 sup𝑡 ∈T (𝑋𝑡 − 𝑋𝜋𝜀 (𝑡 ) ).

The inequality holds because the supremum is subadditive. Since the projection
𝜋𝜀 (𝑡 ) only takes values in N𝜀 , we may restrict the first supremum to this net, whose
cardinality increases as the scale 𝜀 decreases.
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Figure 12.2 (Chaining). As the nets
become finer, we have a better
approximation of 𝑡 . However, the
number of possible links in the
chain is increasing.

The last display suggests an approach to controlling the supremum. We can use
a maximal inequality for finite-cardinality Gaussian processes (which is essentially
a union bound) to control the first term. The second term still ranges over the
whole index set T, but the random variables 𝑋𝑡 − 𝑋𝜋𝜀 (𝑡 ) have smaller variances
because 𝑑 (𝑡 , 𝜋𝜀 (𝑡 )) ≤ 𝜀. To handle the second term, we will iterate the argument by
introducing another net on a finer scale. The key is to balance the cardinality of the
net against the variance of the random variables appearing in the supremum.

Figure 12.2 gives a clearer illustration of what we plan to do. We increase the
number of points in the net, while approximating the index set more finely. As in
Figure 12.2, let us consider a fixed point 𝑡 ∈ T and develop a multiscale decomposition.

• First, we approximate 𝑡 by an initial net, labeled N0, containing only one point.
The closest point 𝜋0(𝑡 ) may not a good approximation of 𝑡 , but the cardinality
of the net is minimal.

• Next, we approximate 𝜋0(𝑡 ) by a point 𝜋1(𝑡 ) in the next net, labeled N1. The
net N1 has larger cardinality, so 𝜋1(𝑡 ) yields a better approximation of 𝑡 .

• Again, we approximate 𝜋1(𝑡 ) by a point 𝜋2(𝑡 ) in the next net, labeled N2. The
net N2 is still larger, and the approximation 𝜋2(𝑡 ) of 𝑡 is still better.

• We repeat this process indefinitely so that 𝜋𝑖 (𝑡 ) → 𝑡 as 𝑖 increases.
• As we do so, the length 𝑑 (𝜋𝑖 (𝑡 ), 𝜋𝑖−1(𝑡 )) of each link in the chain grows shorter,

which reflect the increasing similarity of the random variables 𝑋𝜋𝑖−1 (𝑡 ) and 𝑋𝜋𝑖 (𝑡 ) .
At the same time, the number of possible links from level 𝑖 − 1 to level 𝑖 is
growing. These two factors must counterbalance each other.

In the next section, we fill out this sketch to establish Dudley’s inequality.
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12.3 Proof of Dudley’s inequality
In this section, we first prove the discrete version of Dudley’s theorem (Theorem 12.2).
Afterward, by approximating the integral using Riemann–Darboux sum, we obtain the
integral version (Theorem 12.1).

Proof. By making an approximation argument, we may assume without the loss of
generality that |T| < ∞. This step requires the separability of the Gaussian process.

Step 1: Chaining
For each 𝑖 ∈ ℤ, we define the length scale 𝜀𝑖 B 2−𝑖 . At each scale, we fix an 𝜀𝑖 -net
T𝑖 with |T𝑖 | = N(T, 𝑑; 𝜀𝑖 ). Since the cardinality of the index set T is finite, there is a
coarsest scale 𝑘 ∈ ℤ and a finest scale 𝐾 ∈ ℤ with 𝑘 ≤ 𝐾 for which

T𝑘 = {𝑡0} and T𝐾 = T.

Define the nearest-point functions

𝜋𝑖 (𝑡 ) B argmin{𝑑 (𝑠 , 𝑡 ) : 𝑠 ∈ T𝑖 },

with ties broken in a deterministic fashion. We may assume that 𝜋𝐾 (𝑡 ) = 𝑡 for all
𝑡 ∈ T. By construction,

𝑑 (𝑡 , 𝜋𝑖 (𝑡 )) ≤ 𝜀𝑖 = 2−𝑖 for all 𝑡 ∈ T and all 𝑘 ≤ 𝑖 ≤ 𝐾 .

These functions allow us to construct a sequence of increasingly accurate approximations
to each point 𝑡 in the index set T.

To begin the chaining argument, we use the fact that the GP is centered to see that

𝔼 sup𝑡 ∈T 𝑋𝑡 = 𝔼 sup𝑡 ∈T (𝑋𝑡 − 𝑋𝑡0) where T𝑘 = {𝑡0}.

We can decompose each increment of this process into a telescoping sum:

𝑋𝑡 − 𝑋𝑡0 = 𝑋𝜋𝐾 (𝑡 ) − 𝑋𝜋𝑘 (𝑡 ) =
∑︁𝐾

𝑖=𝑘+1
(𝑋𝜋𝑖 (𝑡 ) − 𝑋𝜋𝑖−1 (𝑡 ) ).

Using subadditivity of the supremum, we obtain the simple bound

𝔼 sup𝑡 ∈T (𝑋𝑡 − 𝑋𝑡0) ≤
∑︁𝐾

𝑖=𝑘+1
𝔼 sup𝑡 ∈T (𝑋𝜋𝑖 (𝑡 ) − 𝑋𝜋𝑖−1 (𝑡 ) ). (12.3)

As it happens, the main source of error in the chaining argument is our decision to
pass the sum through the supremum. In the next lecture, we will obtain better bounds
by maintaining the supremum outside of the chaining decomposition.

Step 2: Bounding the increments
The next step in the argument is to obtain a bound for the expected supremum at each
length scale. The argument depends on the maximal inequality for standard normal
random variables.

Let us consider the contribution to the sum at a fixed scale 𝑖 :

𝔼 sup𝑡 ∈T (𝑋𝜋𝑖 (𝑡 ) − 𝑋𝜋𝑖−1 (𝑡 ) )

Since 𝜋𝑖 (𝑡 ) ∈ T𝑖 and 𝜋𝑖−1(𝑡 ) ∈ T𝑖−1, we realize that the number of terms in this
supremum is bounded by

|T𝑖 | |T𝑖−1 | ≤ |T𝑖 |2 = N(T, 𝑑 ; 𝜀𝑖 )2.
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Indeed, the nets are increasing in cardinality as 𝑖 increases. Furthermore, we can
control the variance of each term:

∥𝑋𝜋𝑖 (𝑡 ) − 𝑋𝜋𝑖−1 (𝑡 ) ∥L2 = 𝑑 (𝜋𝑖 (𝑡 ), 𝜋𝑖−1(𝑡 ))
≤ 𝑑 (𝜋𝑖 (𝑡 ), 𝑡 ) + 𝑑 (𝑡 , 𝜋𝑖−1(𝑡 )) ≤ 𝜀𝑖 + 𝜀𝑖−1 = 3𝜀𝑖 .

We have used the triangle inequality for the canonical metric 𝑑 and the definition of
the length scales 𝜀𝑖 . Therefore,

𝔼 sup𝑡 ∈T (𝑋𝜋𝑖 (𝑡 ) − 𝑋𝜋𝑖−1 (𝑡 ) ) ≤ 6𝜀𝑖−1
√︁
log N(T, 𝑑 ; 𝜀𝑖 ). (12.4)

This is simply the maximal inequality for |T𝑖 |2 Gaussian random variables, each with
variance bounded by (3𝜀𝑖−1)2.

Step 3: Summing the increments
Wemay now complete the argument by introducing our bound (12.4) for the increments
into the chaining inequality (12.3). Thus,

𝔼 sup𝑡 ∈T (𝑋𝑡 − 𝑋𝑡0) ≤
∑︁𝐾

𝑖=𝑘+1
6𝜀𝑖

√︁
log N(T, 𝑑 ; 𝜀𝑖 ).

Recall that 𝜀𝑖 = 2−𝑖 . Furthermore, if we extend the range of the sum to all 𝑖 ∈ ℤ, it
only increases. This is the statement of Theorem 12.2.

Finally, we explain how to derive the integral formulation in Theorem 12.1. Recall
that 𝜀 ↦→ N(T, 𝑑 ; 𝜀) is a decreasing function. Therefore, we have the chain of relations∫ ∞

0
d𝜀

√︁
log N(T, 𝑑 ; 𝜀) =

∑︁
𝑖 ∈ℤ

∫ 2−𝑖+1

2−𝑖
d𝜀

√︁
log N(T, 𝑑 ; 𝜀)

≤
∑︁

𝑖 ∈ℤ
2−𝑖

√︁
log N(T, 𝑑 ; 2−𝑖 )

= 2
∑︁

𝑖 ∈ℤ
2−(𝑖+1)

√︁
log N(T, 𝑑 ; 2−𝑖 )

= 2
∑︁

𝑖 ∈ℤ

∫ 2−𝑖

2−(𝑖+1)
d𝜀

√︁
log N(T, 𝑑; 𝜀)

= 2
∫ ∞

0
d𝜀

√︁
log N(T, 𝑑; 𝜀).

We deduce that the sum and integral presentations of Dudley’s inequality are equivalent
up to the precise constant. ■

Exercise 12.3 (Subgaussian maximal inequality). Let (𝑋𝑖 : 𝑖 = 1, . . . ,𝑚) be a family of
centered random variables that are all 𝑣 -subgaussian. Prove that

𝔼max1≤𝑖≤𝑚 𝑋𝑖 ≤ 𝑣
√︁
2 log𝑚.

Recall that a centered 𝑣 -subgaussian random variable 𝑋 has cgf 𝜉𝑋 (𝜃 ) ≤ 𝑣𝜃 2/2 for all
𝜃 ∈ ℝ.

12.4 Extensions
Dudley’s inequality admits a number of refinements. The most important observation is
that we did not use any special properties of standard normal variables in the argument.
Indeed, we only used the fact that increments of the process have subgaussian tails.
As a consequence, Dudley’s inequality applies to a far wider class of random processes.



Lecture 12: Dudley’s Inequality 98

Definition 12.4 (Subgaussian process). Let (T, dist) be a (pseudo)metric space. Con-
sider a centered random process (𝑋𝑡 : 𝑡 ∈ T) defined on the metric space. We say
that the process is subgaussian with respect to the metric, dist, if each increment
satisfies

log𝔼 e𝜃 (𝑋𝑠−𝑋𝑡 ) ≤ dist2(𝑠 , 𝑡 ) · 𝜃 2/2 for all 𝑠 , 𝑡 ∈ T and 𝜃 ∈ ℝ.

Theorem 12.5 (Dudley’s inequality: Subgaussian process). Let (𝑋𝑡 : 𝑡 ∈ T) be a centered
random process that is subgaussian with respect to the metric dist. Then

𝔼 sup𝑡 ∈T 𝑋𝑡 ≤ Const
∫ ∞

0
d𝜀

√︁
log N(T, dist; 𝜀).

We may take the upper limit of the integral as diam(T, dist).

Exercise 12.6 (Dudley: Subgaussian processes). Prove Theorem 12.5.

Dudley’s inequality can also be extended to obtain tail bounds for subgaussian
random processes. In general, these estimates are not comparable with the bounds that
follow from computing the expectation of the supremum and applying a concentration
inequality.

Exercise 12.7 (Dudley: Tail bound). Consider a centered, subgaussian random process
(𝑋𝑡 : 𝑡 ∈ T) on a metric space (T, dist). Prove that

ℙ

{
sup𝑡 ∈T 𝑋𝑡 ≥ 𝑢 + Const

∫ ∞

0
d𝜀

√︁
log N(T, dist; 𝜀)

}
≤ Const · e−const·𝑢2/diam(T)2 .

Exercise 12.8 (Dudley: Uncentered processes). We can also extend Dudley’s inequality to
subgaussian random processes that are not necessarily centered. In this case, the result
gives a bound for the quantity

𝔼 sup𝑠 ,𝑡 ∈T (𝑋𝑠 − 𝑋𝑡 ).

Frame appropriate hypotheses, and establish a version of Dudley’s inequality without
assuming that the random process (𝑋𝑡 : 𝑡 ∈ T) is centered.

Finally, the chaining method also works with somewhat weaker control on the
increments. For example, we can also obtain bounds for random processes whose
increments have subexponential tails.

Definition 12.9 (Subexponential process). Let (T, dist) be a metric space. Consider a
centered random process (𝑋𝑡 : 𝑡 ∈ T) defined on the metric space. We say that the
process is subexponential with respect to the metric dist if each increment satisfies

log𝔼 e𝜃 (𝑋𝑠−𝑋𝑡 ) ≤ dist(𝑠 , 𝑡 ) · 𝜃 2 for all 𝑠 , 𝑡 ∈ T and |𝜃 | < 𝜃0.

Problem 12.10 (Dudley: Subexponential processes). Suppose that (𝑋𝑡 : 𝑡 ∈ T) is a centered,
subexponential random process on a metric space (T, dist). Prove that

𝔼 sup𝑡 ∈T 𝑋𝑡 ≤ Const
∫ ∞

0
d𝜀 log N(T, dist; 𝜀).

Problem 12.11 (Dudley: Mixed tails). Another common scenario occurs for centered random
processes that have Bernstein-type tails. In this case, we assume that the increments
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are controlled by two different metrics.

log𝔼 e𝜃 (𝑋𝑠−𝑋𝑡 ) ≤ (dist1(𝑠 , 𝑡 ) + dist22(𝑠 , 𝑡 )) · 𝜃 2 for 𝑠 , 𝑡 ∈ T and |𝜃 | < 𝜃0.

Prove that

𝔼 sup𝑡 ∈T 𝑋𝑡 ≤ Const
∫ ∞

0
d𝜀

[
log N(T, dist1; 𝜀) +

√︁
log N(T, dist2; 𝜀)

]
.

12.5 Elementary examples
In this section, we develop a few simple examples of Dudley’s inequality, as applied
to canonical Gaussian processes. These results demonstrate how we can use upper
bounds for covering numbers to obtain upper bounds for Gaussian processes. They
also point toward some of the limitations of Dudley’s inequality, which we seek to
address in the next lecture.

For an index set T ⊆ ℝ𝑛 , we consider the centered canonical GP:

𝑋𝒕 = ⟨𝒈 , 𝒕 ⟩ where 𝒈 ∼ normal(0, I𝑛).

We will consider several choices for the index set T.

12.5.1 The Euclidean unit ball
We begin with the simplest choice of index set: T = B2, the Euclidean unit ball in ℝ𝑛 .
In this case,

𝔼 sup𝒕 ∈B2 𝑋𝒕 = 𝔼 ∥𝒈 ∥ℓ2 .
It is well-known that the norm of a standard normal vector satisfies the inequalities

√
𝑛 − 1 ≤ 𝔼 ∥𝒈 ∥ℓ2 ≤

√
𝑛.

In the last lecture, we used Sudakov’s minoration to match the lower bound up to a
constant. We now use Dudley’s inequality to reproduce the upper bound.

Using the volumetric argument, we know that

N(B2, ℓ2; 𝜀) ≤ (1 + 2/𝜀)𝑛 ≤ (3/𝜀)𝑛 for all 𝜀 > 0.

Of course, diam(B2, ℓ2) = 2. Therefore, Dudley’s inequality yields

𝔼 sup𝒕 ∈B2 𝑋𝒕 ≤ Const
∫ 2

0
d𝜀

√︁
log N(B2, ℓ2; 𝜀)

≤ Const
∫ 2

0
d𝜀

√︁
𝑛 log(3/𝜀) ≤ Const ·

√
𝑛.

Indeed, the singularity of the function 𝜀 ↦→
√︁
log(1/𝜀) at 𝜀 = 0 is integrable. Roughly,∫ 𝑎

0
d𝜀

√︁
log(1/𝜀) ≤ Const · 𝑎

√︁
log(1/𝑎).

This is the correct answer.
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12.5.2 Weighted orthonormal basis
Next, we consider a discrete index set:

T =

{
e𝑖√︁

log(1 + 𝑖 )
: 𝑖 = 1, . . . , 𝑛

}
⊂ ℝ𝑛 .

Using a more refined maximal inequality, one may verify that

𝔼max𝒕 ∈T 𝑋𝒕 ≈ Const.

Sudakov’s minoration gives a matching lower bound because we can trivially cover T
with one ℓ2 ball of radius 𝜀 =

√
2.

On the other hand, Dudley’s inequality gives the wrong answer for this simple
example. Indeed,

N(T, ℓ2; 𝜀) ≥ 1 + 𝑖 when 𝜀 ≤ 1√︁
log(1 + 𝑖 )

.

After some careful estimates, we may verify that the entropy integral satisfies∫ ∞

0
d𝜀

√︁
log N(T, ℓ2; 𝜀) ≥ const · log log𝑛.

This bound is not terrible, but it does not capture the correct behavior of the supremum.

12.5.3 Dudley versus Sudakov
With this last example in mind, one may wonder about the possible discrepancy
between the lower bound from Sudakov’s minoration and the upper bound from
Dudley’s inequality. The next statement gives an explicit estimate.

Proposition 12.12 (Two-sided Sudakov). Consider a canonical centered Gaussian process
indexed by a set T ⊆ ℝ𝑛 . Then

const · sup𝜀>0 𝜀
√︁
log N(T, ℓ2; 𝜀) ≤ 𝔼 sup𝒕 ∈T 𝑋𝒕

≤ Const · (log𝑛) · sup𝜀>0 𝜀
√︁
log N(T, ℓ2; 𝜀).

Problem 12.13 (Two-sided Sudakov). Establish Proposition 12.12. Hint: Use the volumetric
estimate to control the entropy integral for 𝜀 ≈ 0.

In other words, for a canonical GP, the gap between Sudakov’s minoration and
Dudley’s inequality cannot never be worse than the logarithm of the dimension of the
GP. In fact, neither Sudakov nor Dudley captures the actual behavior of the supremum
of a GP. In the next lecture, we will introduce a refinement of the chaining methodology
which yields a full geometric characterization of the supremum of a GP.
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In this lecture, we introduce the generic chaining functional, which gives a geometric
characterization of the supremum of a centered Gaussian process. We shall begin
with intuitions on the derivation of the functional, and then present and prove the
generic chaining theorem, which shows that the generic chaining functional gives an
upper bound on the supremum of a subgaussian process. We demonstrate that this
upper bound is qualitatively better than that of Dudley’s theorem. Next, we state
the majorizing measure theorem, which shows that the generic chaining functional
gives a lower bound for the supremum of a Gaussian process. Finally, we give some
implications of these theorems, including the Talagrand comparison and its application
toward the estimation of the spectral norm of a random matrix with iid entries.

For positive numbers 𝑎, 𝑏 , we shall use the notation 𝑎 ≲ 𝑏 to mean that there exists a
positive universal constant such that 𝑎 ≤ Const · 𝑏 . This constant does not depend on any
parameters of the problem, but its exact value is unimportant.

13.1 Dudley and Sudakov, revisited
In this section, we recall the bounds that we have established for the suprema of
Gaussian processes. The theorems of Sudakov and Dudley respectively give lower
bounds and upper bounds of centered Gaussian processes. We encapsulate both these
results in the next statement.

Proposition 13.1 (Sudakov + Dudley). Let (𝑋𝑡 : 𝑡 ∈ T) be a centered Gaussian process,
endowed with canonical metric 𝑑 (𝑠 , 𝑡 ) = ∥𝑋𝑠 − 𝑋𝑡 ∥L2 . Then we have the following
inequalities:

sup𝜀>0 𝜀
√︁
log N(T, 𝑑 ; 𝜀) ≲ 𝔼 sup𝑡 ∈T 𝑋𝑡 ≲

∫ ∞

0

√︁
log N(T, 𝑑 ; 𝜀) . (13.1)

As usual, N(T, 𝑑; 𝜀) is the covering number of (T, 𝑑) on the scale 𝜀.

Several remarks are in order. Dudley’s inequality, the upper bound in Proposi-
tion 13.1, extends to a centered subgaussian process. That is, for a metric space
(T, dist), we assume that

log𝔼 e𝜃 (𝑋𝑠−𝑋𝑡 ) ≤ dist2(𝑠 , 𝑡 ) · 𝜃 2/2 for all 𝑠 , 𝑡 ∈ T and all 𝜃 ∈ ℝ.

Of course, a GP is subgaussian with respect to its canonical metric. This extension
follows from the same argument we used to establish the upper bound for a GP using
the maximal inequality for subgaussian random variables. In contrast, Sudakov’s
minoration, the lower bound in Proposition 13.1, depends on special properties of GPs.

For the canonical GP on an index set T ⊂ ℝ𝑛 , it can be shown that the ratio between
the estimates of Sudakov and Dudley does not exceed Const · log𝑛. (See Exercise 2.b
in Problem Set 3.) Therefore, a natural question arises:
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Can we finding matching lower and upper bounds for the supremum of a centered Gaussian
process in terms of the geometry of the metric space (T, 𝑑)?

Fortunately, the answer is yes ! However, we need complexity measures that are
more refined than the humble covering number. The results in this lecture originated
in 1970s work of Fernique [Fer75]. In the 1990s, these results were revisited by
Talagrand [Tal+96], who developed the generic chaining machinery described in this
section. For more recent developments, see the 2016 papers by van Handel [Han18a;
Han18b].

Aside: For the simple case of Gaussian processes, characterizing the supremum
is already shockingly difficult. For other types of random processes, the situation
can be even worse. For instance, it is also natural to study Rademacher processes.
Let 𝜺 ∈ ℝ𝑛 have iid Rademacher entries, and consider the random process with
members

𝑋𝒕 =
∑︁𝑛

𝑖=1
𝜀𝑖𝑡𝑖 where 𝒕 ∈ T ⊆ ℝ𝑛 .

Even for this basic example, the characterization of the supremum was only
completed in 2013 by Bednorz and Latała [BL14].

13.2 Dudley: What went wrong?
Before we introduce the functional that characterizes the supremum of a GP, we first
examine Dudley’s inequality to see where we might have sacrificed the optimality of
the bound. Recall that the proof constructs a multiscale family (T𝑖 ) of 𝜀-nets, and we
use the (sub)gaussian maximal inequality to obtain

𝔼 sup𝑡 ∈T 𝑋𝑡 ≲
∑︁∞

𝑖=𝑘+1
𝜀𝑖
√︁
log |T𝑖 |. (13.2)

Here, 𝜀𝑖 = 2−𝑖 is the scale of the 𝑖 th 𝜀-net, and T𝑖 is an 𝜀𝑖 -net with cardinality
N(T, 𝑑; 𝜀𝑖 ). We choose 𝑘 such that |T𝑘 | = 1, so the scales coarser than the 𝑘 th scale
make no contributions in the sum.

To understand where the bound is loose, it is helpful to reformulate the inequality.
Instead of choosing a dyadic sequence of distance scales, instead we will select coverings
whose log-cardinalities increase dyadically.

Definition 13.2 (Admissible sequence). Note that
√︁
log |𝑇𝑖 | ≤ 2𝑖/2.A family (T𝑖 : 𝑖 ∈ ℤ+) of (nested) subsets of T

is called admissible if |T0 | = 1 and |T𝑖 | < 22
𝑖
for 𝑖 ∈ ℕ.

Therefore, if we set 𝜀𝑖 = sup𝑡 ∈T 𝑑 (𝑡 , T𝑖 ), then T𝑖 forms an 𝜀𝑖 -net for the metric
space (T, 𝑑). With this notation, we can rewrite the Dudley bound (13.2) using this set
of scales:

𝔼 sup𝑡 ∈T 𝑋𝑡 ≲
∑︁∞

𝑖=0
2𝑖/2 sup𝑡 ∈T 𝑑 (𝑡 , T𝑖 ) . (13.3)

The formula (13.3) highlights the shortcoming of Dudley’s inequality. The supremum
over points 𝑡 ∈ T appears inside the sum , so we are always choosing the point that has
the worst approximation by the net T𝑖 at scale 𝑖 . We might hope to obtain a similar
bound with the supremum outside the sum , so that we are choosing the point that
𝑡 ∈ T that has the worst overall approximation.

We can indeed develop a similar bound with the supremum outside the sum. As
it happens, this simple modification addresses the fundamental shortcoming in the
version (13.2) of Dudley’s inequality.
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13.3 Generic chaining functional
We are now prepared to present the definition of the generic chaining functional, which
is a measure of the complexity of a metric space that is more refined than the covering
numbers.

Definition 13.3 (Generic chaining functional). Let (T, dist) be a metric space, and let
(T𝑖 : 𝑖 ∈ ℕ ∪ {−1}) be an admissible sequence. Then the (subgaussian) generic
chaining functional is defined as

𝛾2(T, 𝑑) = inf
(T𝑖 ) admissible

sup𝑡 ∈T
∑︁∞

𝑖=0
2𝑖/2𝑑 (𝑡 , T𝑖 ) . (13.4)

Modulo constants, the generic chaining functional is always in between the covering
number bound in Sudakov’s minoration and the entropy integral in Dudley’s inequality.
These claims follows more or less directly from the discussion in the last section.

Exercise 13.4 (Generic chaining versus entropy). Prove that

sup𝜀>0 𝜀
√︁
log N(T, dist; 𝜀) ≲ 𝛾2(T, dist) ≲

∫ ∞

0
d𝜀

√︁
log N(T, dist; 𝜀).

In particular, Exercise 13.4 shows that the generic chaining functional results in a
smaller estimate for the complexity of a metric space than the entropy integral. On the
other hand, we have more tools for estimating covering numbers than for estimating𝛾2.
For instance, volumetric bounds, the empirical method, and Sudakov’s minoration all
give upper bounds for covering numbers. In contrast, it can be quite difficult to build
good admissible sequences that realize the infimum in (13.4). As a consequence, it
can be challenging to deploy the generic chaining functional in new settings. For some
recent advances on bounding the generic chaining functional, see the papers [Han18a;
Han18b].

13.4 Generic chaining theorem
We are now prepared to develop a bound on the supremum of a Gaussian process in
terms of the generic chaining functional.

Theorem 13.5 (Generic chaining). Let (𝑋𝑡 : 𝑡 ∈ T) be a centered Gaussian process
with canonical metric 𝑑 . Then

𝔼 sup
𝑡 ∈T

𝑋𝑡 ≲ 𝛾2(T, 𝑑). (13.5)

As implied by Exercise 13.4, Theorem 13.5 yields a bound for the supremum that is
at least as good as Dudley’s. Here is an explicit example where Dudley’s inequality is
suboptimal, while the generic chaining theorem gives a correct bound.

Example 13.6 (Weighted orthogonal systems). Consider a canonical GP indexed by the set

T = (e𝑖/
√︁
1 + log 𝑖 : 𝑖 = 1, 2, · · · , 𝑛) ⊂ ℝ𝑛 .

The expected supremum of this GP has constant order. Dudley’s inequality only gives a
upper bound of order log log𝑛, while the generic chaining theorem implies the correct
constant upper bound. ■

Let us establish the generic chaining theorem. The proof is quite similar in spirit to
the proof of Dudley’s theorem.
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Theorem 13.5. By approximation, we can assume that |T| < +∞. Consider an admissi-
ble sequence (T𝑖 : 𝑖 ∈ ℤ+) with T0 = {𝑡0}. Since T is a finite set, we can identify a
scale 𝐾 ∈ ℤ+ such that T𝐾 = T.

As before, define the projection 𝜋𝑖 (𝑡 ) B argmin{𝑑 (𝑠 , 𝑡 ) : 𝑠 ∈ T𝑖 } for each 𝑡 ∈ T.
We build the chain

𝑡0 = 𝜋0(𝑡 ) → 𝜋1(𝑡 ) → 𝜋1(𝑡 ) → · · · → 𝜋𝐾 (𝑡 ) = 𝑡 .

For each 𝑡 ∈ T, we have the chaining identity:

𝑋𝑡 − 𝑋𝑡0 =
∑︁𝐾

𝑖=1
(𝑋𝜋𝑖 (𝑡 ) − 𝑋𝜋𝑖−1 (𝑡 ) ). (13.6)

We need to bound the increments within the chain. With high probability,

|𝑋𝜋𝑖 (𝑡 ) − 𝑋𝜋𝑖−1 (𝑡 ) | ≤ 2𝑖/2𝑑 (𝑡 , T𝑖 ) for all 𝑡 ∈ T and 𝑖 ∈ ℕ.

More precisely, for a fixed point 𝑡 ∈ T and scale 𝑖 ∈ ℕ, we have the (sub)gaussian tail
bound

ℙ
{
|𝑋𝜋𝑖 (𝑡 ) − 𝑋𝜋𝑖−1 (𝑡 ) | > 𝑢2𝑖/2𝑑 (𝜋𝑖 (𝑡 ), 𝜋𝑖−1(𝑡 ))

}
≤ exp(−𝑢22𝑖/2) for all 𝑢 > 0.

This result follows from the subgaussian maximal inequality because the increment is
subgaussian with a variance proxy of 𝑑2(𝜋𝑖 (𝑡 ), 𝜋𝑖−1(𝑡 )).

Now, let us collect the probability across all of the possible pairs (𝜋𝑖 (𝑡 ), 𝜋𝑖−1(𝑡 )) ∈
T𝑖 ×𝑇𝑖−1 for 𝑖 ∈ ℕ. At scale 𝑖 , the number of pairs is at most

|T𝑖 | |T𝑖−1 | ≤ |T𝑖 |2 ≤ 22
𝑖+1
.

Applying the union bound, we arrive at

ℙ
{
∃𝑖 ,∃𝑡 : |𝑋𝜋𝑖 (𝑡 ) − 𝑋𝜋𝑖−1 (𝑡 ) | > 𝑢2𝑖/2𝑑 (𝜋𝑖 (𝑡 ), 𝜋𝑖−1(𝑡 ))

}
≤
∑︁∞

𝑖=0
22

𝑖+1
exp(−𝑢22𝑖/2) ≲ exp(−const · 𝑢2).

Indeed, for 𝑢 ≥ 2, the summand 22
𝑖+1

exp(−𝑢22𝑖/2) ≤ (e/2)−𝑢22𝑖 /2, and we can
adjust constants to make the bound hold for all 𝑢 > 0. In other terms,

|𝑋𝜋𝑖 (𝑡 ) − 𝑋𝜋𝑖−1 (𝑡 ) | ≤ 𝑢2𝑖/2𝑑 (𝜋𝑖 (𝑡 ), 𝜋𝑖−1(𝑡 )) for all 𝑖 , 𝑡 ,𝑢

with high probability.
Returning to the chaining identity (13.6), we invoke the triangle inequality for the

absolute value and the metric to arrive at

|𝑋𝑡 − 𝑋𝑡0 | ≤
∑︁𝐾

𝑖=1
|𝑋𝜋𝑖 (𝑡 ) − 𝑋𝜋𝑖−1 (𝑡 ) |

≤ 𝑢
∑︁𝐾

𝑖=1
2𝑖/2𝑑 (𝜋𝑖 (𝑡 ), 𝜋𝑖−1(𝑡 ))

≤ 𝑢
∑︁𝐾

𝑖=1
2𝑖/2(𝑑 (𝜋𝑖 (𝑡 ), 𝑡 ) + 𝑑 (𝑡 , 𝜋𝑖−1(𝑡 )))

≲ 𝑢𝛾2(T, 𝑑) .

We deduce that

ℙ
{
sup𝑡 ∈T |𝑋𝑡 − 𝑋𝑡0 | ≳ 𝑢𝛾2(T, 𝑑)

}
≲ exp(−const · 𝑢2).
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That is to say, sup𝑡 ∈T |𝑋𝑡 − 𝑋𝑡0 | is subgaussian with variance proxy on the order of
𝛾2(T, 𝑑). We conclude that

𝔼 sup𝑡 ∈T 𝑋𝑡 = 𝔼 sup𝑡 ∈T (𝑋𝑡 − 𝑋𝑡0) ≲ 𝛾2(T, 𝑑).

This is what we needed to show. ■

As with Dudley’s inequality, the upper bound from Theorem 13.5 is also valid for
subgaussian random processes.

Exercise 13.7 (Generic chaining: Subgaussian processes). Let (𝑋𝑡 : 𝑡 ∈ T) be a subgaussian
process on the metric space (T, dist). Prove that

𝔼 sup𝑡 ∈T 𝑋𝑡 ≲ 𝛾2(T, dist).

13.5 Majorizing measure theorem
As we have indicated, it can be difficult to calculate the mysterious quantity 𝛾2. So
why should we bother? The reason is that 𝛾2 gives a full geometric characterization
of the supremum of a Gaussian process. This result, called the majorizing measure
theorem, is essentially due to Fernique; the formulation in terms of the generic chaining
functional was developed by Talagrand.

Theorem 13.8 (Majorizing measure). Let (𝑋𝑡 : 𝑡 ∈ T) be a centered Gaussian process
with canonical metric 𝑑 . Then

𝛾2(T, 𝑑) ≲ 𝔼 sup
𝑡 ∈T

𝑋𝑡 ≲ 𝛾2(T, 𝑑). (13.7)

We will prove Theorem 13.8 in Lecture 14.
Even though it may be hard to calculate the geometric quantity 𝛾2, the majoriz-

ing measure theorem still has some interesting applications. The next result gives
one powerful consequence, which is known as Talagrand’s subgaussian comparison
principle.

Corollary 13.9 (Talagrand’s subgaussian comparison). Let (𝑌𝑡 : 𝑡 ∈ T) be a centered
Gaussian process on the index set T with canonical metric 𝑑 . Suppose that (𝑋𝑡 : 𝑡 ∈ T)
is a centered subgaussian process on the metric space (T, 𝑑). Then

𝔼 sup𝑡 ∈T 𝑋𝑡 ≲ 𝔼 sup𝑡 ∈T𝑌𝑡 .

Proof. We exploit the fact that the generic chaining functional provides an upper bound
for any subgaussian process, while it provides a lower bound for a Gaussian process.
Indeed,

𝔼 sup𝑡 ∈T 𝑋𝑡 ≲ 𝛾2(T, 𝑑) ≲ 𝔼 sup𝑡 ∈T𝑌𝑡 .

The first inequality is Exercise 13.7, and the second is Theorem 13.8. ■

Corollary 13.9 is a valuable tool because we can reduce the problem of bounding the
supremum of a general subgaussian process above to the easier problem of bounding
the supremum of a Gaussian process. We have many additional tools for studying GPs,
including the comparison theorems of Slepian, Chevet, and Sudakov–Fernique. The
next exercise describes a problem that can be addressed by this approach.
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Exercise 13.10 (Subgaussian Chevet). Suppose 𝑿 ∈ ℝ𝑚×𝑛 is a random matrix with iid
1-subgaussian entries. Using Theorem 13.8 and Chevet’s theorem, prove that

𝔼 ∥𝑿 ∥ℓ2→ℓ2 ≲
√
𝑚 +

√
𝑛.

As usual, ∥·∥ℓ2→ℓ2 is the ℓ2 operator norm. More generally, if 𝑺 and 𝑻 are fixed
conformal matrices, prove that

𝔼 ∥𝑺𝑿𝑻 ∥ℓ2→ℓ2 ≲ ∥𝑺 ∥ℓ2→ℓ2 ∥𝑻 ∥F + ∥𝑺 ∥F∥𝑻 ∥ℓ2→ℓ2 .

Here, ∥·∥F is the Frobenius norm.
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The majorizing measure theorem is the deepest result about the suprema of Gaussian
processes. It shows that the supremum of a Gaussian process admits an alternative
characterization in terms of the geometry of the metric space induced by the canonical
metric of the process. This lecture provides a proof of this result, developed by van
Handel in 2016 [Han18b].

We will frequently use the notations ≲ and ≳ in this lecture. These relations suppress a
universal constant that does not depend on anything else.

14.1 Gaussian width
For a set T ⊂ ℝ𝑑 , we may construct a canonical centered Gaussian process: (𝑋𝒕 : 𝒕 ∈ T).
The elements of this process are defined by

𝑋𝒕 = ⟨𝒈 , 𝒕 ⟩ where 𝒈 ∼ normal(0, I𝑑 ).

Each random variable is zero mean, and in general, they have a nontrivial covariance
structure determined by the set T. We emphasize that the random vector 𝒈 is the
unique source of randomness in the process.

We are interested in the expected supremum of the canonical Gaussian process
indexed by T. The expected supremum depends only on the index set T, and it is a
fundamental measure of the size of the set. Let us remind the reader of this important
definition, which already appeared in Lecture 11.

Definition 14.1 (Gaussian width). The Gaussian width of T is defined as

𝑤 (T) B 𝔼 sup𝒕 ∈T 𝑋𝒕 = 𝔼 sup𝒕 ∈T⟨𝒈 , 𝒕 ⟩.

The Gaussian width has a number of valuable properties, which we enumerate for
future reference.

1. Invariance. The functional𝑤 is translation and rotation invariant.
2. Lower bound. The translation invariance property implies that 𝑤 (T) ≥ 0 since

we can always translate the set T to contain the origin. A fortiori,

𝑤 (T) ≳ diam(T).

Recall that diam(T) B sup{∥𝒔 − 𝒕 ∥2 : 𝒔 , 𝒕 ∈ T}.
3. Monotonicity. The Gaussian width is an increasing set function. If S ⊂ T, then
𝑤 (S) ≤ 𝑤 (T).

Exercise 14.2 (Gaussian width: Properties). Verify the properties of the Gaussian width
listed above.
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14.2 Generic chanining functional
Next, we introduce the generic chaining functional. The construction today is slightly
different from the previous lecture. This change of notation helps us organize the proof
better. Instead of approximating T with nets, we approximate it with set partitions
(think of Voronoi cells). To that end, let us reformulate the definition of an admissible
sequence in terms of partitions.

Definition 14.3 (Admissible sequence). An admissible sequence for T is a sequence (A𝑛)
of nested partitions of T with |A𝑛 | < 22

𝑛
for 𝑛 ∈ ℤ+.

Example 14.4 (Admissible sequence). Let us give an illustration of an admissible sequence
(Figure 14.1). Suppose the index set T is an ellipsoid. Then A0 contains a single
element, namely T. The cardinality of A1 is less than 22

1
= 4, so it chops the set T into

three pieces. The partition A1 is the collection of these pieces. A similar construction
can be applied to A2 and beyond. ■

Figure 14.1 (An admissible se-
quence). The first three partitions
A0, A1, A2 in an admissible se-
quence for the ellipsoid. The sec-
ond panel illustrates the function
𝒙 ↦→ A1 (𝒙 ), which returns the
element of the partition A1 that
contains 𝒙 .A0 A1 A2

𝒙 A1(𝒙 )

Next, let us define a function that connects points in T and partitions in the
admissible sequence.

Definition 14.5 (Neighborhood function). For any 𝒙 ∈ T, the function A𝑛 (𝒙 ) returns
the unique set A ∈ A𝑛 that contains the point 𝒙 .

As an example, in the middle of Figure 14.1, we have shown a point 𝒙 and the
corresponding neighborhood A1(𝒙 ), the element of the partition marked with dotted
lines.

Using these constructions, we are ready to define the generic chaining functional.

Definition 14.6 (Generic chaining functional). The generic chaining functional is defined
as

𝛾2(T) B inf (A𝑛 ) admissible sup𝒙 ∈T
∑︁

𝑛≥0
2𝑛/2diam(A𝑛 (𝒙 )).

Exercise 14.7 (Generic chaining functional). Show that Definition 14.6 is equivalent to the
definition in the last lecture modulo a universal constant.

The majorizing measure theorem states that the Gaussian width𝑤 (T) is bounded
below by the generic chaining functional 𝛾2(T).

Theorem 14.8 (Majorizing measure). For a compact set T ⊂ ℝ𝑑 , it holds that

𝑤 (T) ≳ 𝛾2(T).
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The reverse inequality 𝑤 (T) ≲ 𝛾2(T) is the generic chaining bound, which we
proved in Lecture 13. The proof of the upper bound is straightforward; it is based
on a simple reorganization of the proof of Dudley’s inequality. In contrast, the lower
bound of 𝑤 (T) stated in Theorem 14.8 is a much deeper result. A version of this
result was first obtained by Fernique in the 1970s; in the 1990s, Talagrand obtained a
reformulation in terms of the generic chaining functional. The proof here was recently
proposed by van Handel [Han18b].

The proof contains three main steps. First, we introduce a growth functional that
controls the local complexity of the Gaussian process (Section 14.3). Second, we
establish a contraction lemma, which shows how to bound the entropy numbers of
a set using the growth functional (Section 14.4). Last, we show how to construct an
admissible sequence whose elements are bounded in terms of the growth functional
(Section 14.5). Putting these pieces together, we obtain the result.

14.3 Growth functional
The first step in the argument is to introduce a growth functional, which describes the
local complexity of the canonical GP indexed by the set T. This function reflects the
supremum of the process over Euclidean balls centered at points in the set.

To begin, we introduce the truncated Euclidean balls

B(𝒙 , 𝑠 ) B {𝒚 ∈ T : ∥𝒚 − 𝒙 ∥2 ≤ 𝑠 } ⊆ T. (14.1)

This truncated ball reflects the structure the set T at the point 𝒙 on the scale 𝑠 . The
Gaussian width 𝑤 (B(𝒙 , 𝑠 )) of the truncated ball measures the contribution to the
supremum of the GP due to points near 𝒙 on the scale 𝑠 . The function 𝑠 ↦→ 𝑤 (B(𝒔 , 𝑠 ))
is increasing, and it is bounded above by𝑤 (T). See Figure 14.2 for illustrations.

Figure 14.2 Illustration of B(𝒙 , 𝑠 )
and𝑤 (B(𝒙 , 𝑠 )).

0 𝑠

𝑤 (T)
𝑤 (B(𝒙 , 𝑠 ))

𝒙 B(𝒙 , 𝑠 )

T

What is important is the scale 𝑠 at which the width𝑤 (B(𝒙 , 𝑠 )) is increasing at a
specified rate 𝑟 . We can capture this effect by means of an interpolation function.

Aside: The terminology stems
from an interpretation of𝐾 as the
𝐾 -functional that appears in real
interpolation theory [Han18a, Re-
mark 6.2]. It can be viewed as a
smoothing of the Gaussian width
of local balls.

Definition 14.9 (Interpolation function). For each 𝒙 ∈ T and 𝑟 > 0, the interpolation
function is defined as

𝐾 (𝒙 , 𝑟 ) B inf𝑠>0 (𝑟 𝑠 −𝑤 (B(𝒙 , 𝑠 ))) . (14.2)

In the definition of the interpolation function, the argument of the infimum is a
lower semi-continuous function, so the minimizer always exists. The minimizer itself
is the quantity of primary interest.

Definition 14.10 (Growth functional). The growth functional 𝑠 (𝒙 , 𝑟 ) is defined as the
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(smallest) minimizer of the optimization problem (14.2). In other terms,

𝐾 (𝒙 , 𝑟 ) =: 𝑟 𝑠 (𝒙 , 𝑟 ) −𝑤 (B(𝒙 , 𝑠 (𝒙 , 𝑟 ))).

The formula (14.2) may be familiar to you as the Legendre transform of the concave
function 𝑠 ↦→ 𝑤 (B(𝒙 , 𝑠 )). When this function is differentiable,

d
d𝑠
𝑤 (B(𝒙 , 𝑠 ))

���
𝑠=𝑠 (𝒙 ,𝑟 )

= 𝑟 .

Therefore, 𝑠 (𝒙 , 𝑟 ) is the scale at which 𝑟 is the growth rate of the supremum of the
GP on a local ball centered at 𝒙 .

The interpolation function 𝐾 (𝒙 , 𝑟 ) has several properties that we will use in the
argument:

1. Limits. Asymptotically, lim𝑟→∞ 𝐾 (𝒙 , 𝑟 ) = 0.
2. Lower bound. It holds that 𝐾 (𝒙 , 𝑟 ) ≥ −𝑤 (T).
3. Increments. The interpolation function changes at a rate determined by the

growth functional:

𝐾 (𝒙 , 𝑟 ) − 𝐾 (𝒙 , 𝛼𝑟 ) ≥ (1 − 𝛼)𝑟 𝑠 (𝒙 , 𝑟 ) for any 𝛼 ≤ 1.

This property can be verified as follows:

𝐾 (𝒙 , 𝑟 ) − 𝐾 (𝒙 , 𝛼𝑟 ) = 𝑟 𝑠 (𝒙 , 𝑟 ) −𝑤 (B(𝒙 , 𝑠 (𝒙 , 𝑟 ))) − inf𝑠>0 (𝛼𝑟 𝑠 −𝑤 (B(𝒙 , 𝑠 )))
≥ (1 − 𝛼)𝑟 𝑠 (𝒙 , 𝑟 ).

We have used the definition of infimum and the fact that 𝑠 (𝒙 , 𝑟 ) is feasible for
the optimization problem.

4. Monotonicity. The function 𝑟 ↦→ 𝐾 (𝒙 , 𝑟 ) is increasing.

Using these facts, we may prove an interpolation lemma. This result allows us
to bound the Gaussian width𝑤 (T) below by a multiscale sum involving the growth
function.

Lemma 14.11 (Interpolation). For each 𝛼 ∈ (0, 1), it holds that

sup𝒙 ∈T
∑︁

𝑛≥0
2𝑛/2𝑠 (𝒙 , 𝛼2𝑛/2) ≲ 𝑤 (T)

𝛼
.

Proof. Fix an arbitrary point 𝒙 ∈ T. We calculate that

𝑤 (T) ≥ lim𝑟→∞ 𝐾 (𝒙 , 𝑟 ) − 𝐾 (𝒙 , 𝛼/2)
=
∑︁

𝑛≥0
(𝐾 (𝒙 , 𝛼2𝑛/2) − 𝐾 (𝒙 , 𝛼2(𝑛−1)/2))

≳
∑︁

𝑛≥0
𝛼2𝑛/2𝑠 (𝒙 , 𝛼2𝑛/2).

(14.3)

We have used the first three properties of the interpolation function in sequence. Last,
take the supremum over 𝒙 ∈ T. ■

To reiterate, we can obtain a lower bound for the Gaussian width𝑤 (T) in terms
of the growth functional. Observe that the left-hand side of the bound resembles the
form of the generic chaining functional. The question then is how to use the growth
functional to control the size of the pieces of an (optimal) admissible sequence.
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14.4 Contraction
In this section, we will prove a result which shows that the growth function provides a
bound on how accurately we can quantize a set. In the next section, we will use this
fact to convert an optimal admissible sequence into an admissible sequence that is
controlled by the growth functions.

First, we introduce a classic quantity from approximation theory.

Definition 14.12 (Entropy number). The entropy number of a set A ⊂ ℝ𝑑 is defined as

𝑒𝑛 (A) B inf |Â |<22𝑛 sup𝒙 ∈A dist(𝒙 , Â).

In this expression, the set Â ⊆ ℝ𝑛 , but it is not necessarily contained in A.

The entropy number 𝑒𝑛 (A) is the error in the best quantization of the set A using
22

𝑛
points. These points can be labeled using 2𝑛 bits. Let us emphasize that the entropy

number should be regarded as a distance , the scale on which we can approximate the
set A using 2𝑛 bits.

The next lemma that connects the entropy number with the growth functional.

Lemma 14.13 (Contraction). For 𝑛 ≥ 0 and A ⊆ T and 𝛼 ∈ (0, 1), it holds that

𝑒𝑛 (A) ≲ 𝛼diam(A) + sup𝒙 ∈A 𝑠 (𝒙 , 𝛼2𝑛/2).

Before proving this result, let us discuss the interpretation. The quantity diam(A)
is the worst possible error one could suffer when quantizing the set A. The first term
on the right-hand side is smaller than this worst-case error by a factor of 𝛼. To achieve
this reduction, we also have to pay for the maximum value of the growth functional
𝑠 (𝒙 , 𝛼2𝑛/2) over the set. This quantity reflects the length scale at which local balls are
growing at the rate 𝛼2𝑛/2. The parameter 𝛼 negotiates a tradeoff between these two
effects.

In the next section, we will use Lemma 14.13 to partition sets into smaller pieces
whose diameters are controlled by the growth functional. Since the growth functional
bounds the width from below, this procedure will help us prove the majorizing measure
theorem.

Before moving to that stage, let us establish the contraction lemma. We require
another minimum principle for GPs, which is drawn from [Tal14, Prop 2.4.9].

Proposition 14.14 (Super-Sudakov). Let {𝒙1, . . . , 𝒙𝑁 } ⊆ T be an 𝜀-separated set in T. For
all 𝜎 > 0, it holds that

𝑤
( ⋃

𝑖≤𝑁 B(𝒙 𝑖 , 𝜎)
)
−min𝑖≤𝑁 𝑤 (B(𝒙 𝑖 , 𝜎)) ≥ const · (𝜀 − 𝜎)

√︁
log𝑁 .

For comparison, the simplest form of Sudakov’s minoration only has the initial term
on each side. Super-Sudakov enhances this bound. We can reduce the left-hand side
by the Gaussian width of the smallest truncated ball B(𝒙 𝑖 , 𝜎), provided that we also
decrease the right-hand side by 𝜎

√︁
log𝑁 .

Exercise 14.15 (Super-Sudakov). Prove Proposition 14.14. Hint: Consider the random
variables 𝑌𝑖 = sup𝒕 ∈B(𝒙 𝑖 ,𝜎 ) 𝑋𝒕 − 𝑋𝒙 𝑖 .

With Proposition 14.14 at hand, we may establish the contraction lemma.

Proof of Lemma 14.13. Fix 𝑛 ≥ 0. By definition of the entropy number 𝑒𝑛 (A), we may
quantize the set A by means of an (𝑒𝑛 (A)/2)-separated set {𝒙1, ..., 𝒙𝑁 } ⊂ A with
𝑁 = 22

𝑛
. A simple proof of this fact can be found in [Han18b, Lemma 2.2].
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Define the quantities

𝜎 B sup𝒙 ∈A 𝑠 (𝒙 , 𝛼2𝑛/2) and 𝑟 B diam(A) + 𝜎.

For each 𝑖 ∈ {1, 2, ..., 𝑁 }, using the monotonicity of the Gaussian width, we find that

−𝑤 (B(𝒙 𝑖 , 𝜎)) ≤ −𝑤 (B(𝒙 𝑖 , 𝑠 (𝒙 𝑖 , 𝛼2𝑛/2)))
≤ 𝐾 (𝒙 𝑖 , 𝛼2𝑛/2)
≤ 𝑟𝛼2𝑛/2 −𝑤 (B(𝒙 𝑖 , 𝑟 ))
≤ 𝑟𝛼2𝑛/2 −𝑤 (⋃𝑖≤𝑁B(𝒙 𝑖 , 𝜎)).

In the second and third inequalities, we used the definition of the interpolation function
and the growth functional. The last inequality exploits the fact that

⋃
𝑖≤𝑁 B(𝒙 𝑖 , 𝜎) ⊂

B(𝒙 𝑖 , 𝑟 ) beause {𝒙1, ..., 𝒙𝑁 } ⊂ A and 𝑟 = diam(A) + 𝜎 .
Choose the index 𝑖 ∈ {1, 2, ..., 𝑁 } for which𝑤 (B(𝒙 𝑖 , 𝑟 )) is minimized. Rearrange

the last display, and invoke Proposition 14.14:

0 ≥ 𝑤 (⋃𝑖≤𝑁B(𝒙 𝑖 , 𝜎)) −min𝑖≤𝑁 𝑤 (B(𝒙 𝑖 , 𝑟 )) − 𝑟𝛼2𝑛/2

≥ const · ((𝑒𝑛 (A)/2) − 𝜎) ·
√︁
log 22𝑛 − 𝑟𝛼2𝑛/2.

Rearranging the above inequality and recalling the definitions of 𝜎 and 𝑟 ,

𝑒𝑛 (A) ≲ 𝛼diam(A) + sup𝒙 ∈A 𝑠 (𝒙 , 𝛼2𝑛/2).

This is the desired result. ■

14.5 Admissible sequence
The last step of proving the majorizing measure theorem is to perform some surgery
on an admissible sequence to obtain a new admissible sequence whose pieces have
diameters controlled by the local values of the growth functional. More precisely, we
will take an optimal sequence for which the minimum in 𝛾2(T) is achieved. Then we
will modify the sequence so that the diameter of each piece A𝑛 (𝒙 ) in each partition
is controlled by the growth functional 𝑠 (𝒙 , 𝑟 ). To complete the proof, we invoke the
comparison between the growth functional and the width𝑤 (T) from Lemma 14.11.

Proof of Theorem 14.8. For simplicity, we assume that the
infimum is achieved. If not, we can
use a routine approximation
argument.

Let (A𝑛) be an optimal admissible sequence such that the
infimum in𝛾2(T) is attained. Fix the scale 𝑛 ∈ ℤ+. We will subdivide each set A𝑖 ∈ A𝑛
into 𝑛 disjoint pieces such that

(𝑗 < 𝑛) : A𝑗
𝑖
= {𝒙 ∈ A𝑖 : 2−𝑖diam(T) < 𝑠 (𝒙 , 𝛼2𝑛/2) ≤ 2−𝑖+1diam(T)}

(𝑗 = 𝑛) : A𝑗
𝑖
= {𝒙 ∈ A𝑖 : 𝑠 (𝒙 , 𝛼2𝑛/2) ≤ 2−𝑛+1diam(T)}.

By construction, for each set A𝑖 , each index 𝑗 ≤ 𝑛 and each point 𝒙 ∈ A𝑗
𝑖
, it holds that

sup
𝒚 ∈A𝑗

𝑖

𝑠 (𝒚 , 𝛼2𝑛/2) ≤ 2𝑠 (𝒙 , 𝛼2𝑛/2) + 2−𝑛+1diam(T).

This formula means that, in each set A𝑗
𝑖
, the maximum value of the growth functional

is controlled by the local value of the growth functional, plus a tiny quantity that
depends on the diameter of T.
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Now, by the above property and the contraction result (Lemma 14.13), we can
further partition A𝑗

𝑖
into fewer than 22

𝑛
pieces A𝑗𝑘

𝑖
, each with the property that

diam(A𝑗𝑘
𝑖
) ≲ 𝛼diam(A𝑖 ) + 𝑠 (𝒙 , 𝛼2𝑛/2) + 2−𝑛diam(T).

The latter bound holds uniformly for all 𝒙 ∈ A𝑗𝑘
𝑖
.

Wemay now reassemble these pieces tomake a new admissible sequence. Concretely,
define

C0 = C1 = C2 = {T};
C𝑛+3 = {A𝑗𝑘

𝑖
∈ A𝑛 : 1 ≤ 𝑖 , 𝑘 < 22

𝑛

, 1 ≤ 𝑗 ≤ 𝑛}.

We can easily verify that |C𝑛 | < 22
𝑛
so (C𝑛) is also an admissible sequence.

This admissible sequence allows us to bound the generic chaining functional in
terms of itself. Indeed,

𝛾2(T) ≤ sup𝒙 ∈T
∑︁

𝑛≥0
2𝑛/2diam(C𝑛 (𝒙 ))

≲ sup𝒙 ∈T
∑︁

𝑛≥0
2𝑛/2 [𝛼diam(A𝑛 (𝒙 )) + 𝑠 (𝒙 , 𝛼2𝑛/2) + 2−𝑛diam(T)]

=: (i) + (ii) + (iii).

Let us examine each of the three terms on the right-hand side. First,

(i) B 𝛼 · sup𝒙 ∈T
∑︁

𝑛≥0
2𝑛/2diam(A𝑛 (𝒙 )) = 𝛼𝛾2(𝑇 )

because 𝛾2 is attained for the admissible sequence (A𝑛). Second, according to Lemma
14.11,

(ii) B sup𝒙 ∈T
∑︁

𝑛≥0
2𝑛/2𝑠 (𝒙 , 𝛼2𝑛/2) ≲ 𝑤 (T)

𝛼
.

Third, since the Gaussian width is larger than the diameter,

(iii) B sup𝒙 ∈T
∑︁

𝑛≥0
2𝑛/2 · 2−𝑛diam(T) ≲ diam(T) ≲ 𝑤 (T).

Combining these displays, we arrive at the bound

𝛾2(T) ≲ 𝛼𝛾2(T) + (1 + 𝛼−1)𝑤 (T).

Choose a sufficiently small positive number 𝛼 to complete the argument. ■
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15. Uniform Law of Large Numbers

Date: 23 February 2020 Scribe: Kevin Yu

Agenda:
1. Monte Carlo integration
2. The uniform LLN
3. Covering Lipschitz functions
4. Empirical Processes

In the previous section of the course, we investigated the suprema of random processes
in a somewhat abstract manner. We covered Gaussian comparison theorems, and
we established the Sudakov minoration for Gaussian processes and Dudley’s chaining
inequality for subgaussian processes, both of which are suboptimal. We introduced the
generic chaining method and obtained a geometric characterization of the supremum
of a Gaussian process using the generic chaining functional.

In the next section of the course, we turn our attention to empirical processes, an
important class of random processes that arise in statistics and statistical learning.
These processes capture the properties of random elements sampled from a population.
Dudley’s chaining inequality and covering number bounds will serve as key techniques
for controlling the behavior of empirical processes.

15.1 The uniform law of large numbers
Before we give the formal definition of an empirical process, we begin with an
illustrative application to Monte Carlo integration. As you know, we can approximate
(high-dimensional) integrals by evaluating the integrand at random points. We will
pursue the question about whether we can approximate a family of integrals in a
similar manner.

15.1.1 Monte Carlo Integration

Figure 15.1 A sample (𝑋1, . . . , 𝑋𝑛 )
from a measure 𝜇 allows us to ap-
proximate the integral of a function 𝑓
against the measure.

First, we review Monte Carlo integration. Suppose that Ω ⊆ ℝ𝑑 is a domain, that 𝜇 is
a probability measure supported on Ω, and that 𝑓 : Ω ↦→ ℝ is a measurable function
on the domain. Our goal is to approximate the integral∫

Ω
𝑓 d𝜇.

This problem may be challenging when the integrand 𝑓 is very irregular or when the
domain Ω is very high dimensional.

The idea behindMonte Carlo integration is to approximate the integral by evaluating
the integrand at a small collection of random points in the domain. Consider a sample
(𝑋1, . . . , 𝑋𝑛) of points drawn from the measure: 𝑋𝑖 ∼ 𝜇 iid. We approximate the
integral by an empirical average:∫

Ω
𝑓 d𝜇 ≈ 1

𝑛

∑︁𝑛

𝑖=1
𝑓 (𝑋𝑖 ). (15.1)

Figure 15.1 illustrates the procedure. Observe that we tend to draw more sample
points from regions where the measure 𝜇 places more mass. On the other hand, the
sample points are drawn without reference to the integrand 𝑓 .
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Why is the estimate in equation (15.1) reasonable? Assuming that 𝑓 ∈ L1(𝜇), we
can express the integral as an expectation:

𝔼 𝑓 (𝑋 ) =
∫
Ω
𝑓 d𝜇 where 𝑋 ∼ 𝜇.

As a result, the Monte Carlo estimator provides an unbiased estimate for the integral:

𝔼

[
1
𝑛

∑︁𝑛

𝑖=1
𝑓 (𝑋𝑖 )

]
=

∫
Ω
𝑓 d𝜇.

Thus, the Monte Carlo estimator is accurate on average.
Now many samples we need to draw from 𝜇 to obtain an approximation of a given

quality? Assuming now that 𝑓 ∈ L2(𝜇), we may compute the variance of the estimator:

Var
[
1
𝑛

∑︁𝑛

𝑖=1
𝑓 (𝑋𝑖 )

]
=

1
𝑛

[∫
Ω
𝑓 2 d𝜇 −

(∫
Ω
𝑓 d𝜇

)2]
.

We can see that the variance decreases in proportion to 𝑛−1 Var𝜇 ( 𝑓 ). In other words,
to achieve an approximation that satisfies���� 1𝑛 ∑︁𝑛

𝑖=1
𝑓 (𝑋𝑖 ) −

∫
Ω
𝑓 d𝜇

���� ≤ 𝜀
√︃
Var𝜇 ( 𝑓 ) with probability at least 2/3,

it suffices to draw a sample with size 𝑛 =𝑂 (𝜀−2). Furthermore, by the strong law of
large numbers (SLLN), the Monte Carlo estimator converges to the true integral almost
surely as 𝑛 → ∞.

15.1.2 Uniform Monte Carlo integration
A natural question that arises is whether we can use a fixed sample (𝑋1, . . . , 𝑋𝑛)
from the measure 𝜇 to approximate the 𝜇-integral of every integrable function 𝑓 .
Unfortunately, this is impossible, because we can select a function that vanishes on the
sample points while taking nontrivial values elsewhere.

Let us refine the question. Observe that the counterexample involves a function that
oscillates rapidly. We may ask whether we can use a fixed sample from the measure
𝜇 to approximate the integral of every 𝜇-integral function that is sufficiently regular .
In some settings, the answer is yes, provided that we use an appropriate form of
regularity.

Recall that a function 𝑓 : Ω → ℝ is
𝐿-Lipschitz if

| 𝑓 (𝑥 ) − 𝑓 (𝑦 ) | ≤ 𝐿 |𝑥 − 𝑦 |

for all 𝑥, 𝑦 ∈ Ω. The Lipschitz
constant of 𝑓 is defined as

∥ 𝑓 ∥Lip B inf{𝐿 : 𝑓 is 𝐿-Lipschitz}.

The main result of today’s lecture addresses the simplest case We will consider a
fixed sample of points from a probability measure supported on the unit interval in the
real line. We will prove that this sample simultaneously allows us to approximate the
integral of every 1-Lipschitz function on the interval.

Theorem 15.1 (Uniform LLN). Let 𝜇 be a probability measure on [0, 1], and let
(𝑋1, . . . , 𝑋𝑛) be an iid sample from 𝜇. Consider the class of functions

FB {𝑓 : [0, 1] → ℝ : ∥ 𝑓 ∥Lip ≤ 1}.

Then,

𝔼 sup𝑓 ∈F

���� 1𝑛 ∑︁𝑛

𝐼=1
𝑓 (𝑋𝑖 ) −

∫
Ω
𝑓 d𝜇

���� ≤ Const
√
𝑛

(15.2)
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In other words, for a fixed sample of size 𝑛, the Monte Carlo methods can integrate
every 1-Lipschitz function on the interval [0, 1] up to an error of𝑂 (1/

√
𝑛). This is

comparable with the error produced by the Monte Carlo method when applied to a
single function 𝑓 ∈ L2(𝜇). We have restricted our attention to a much smaller class F
of integrands, but we can achieve the same sample complexity. We do not lose much
by making the Monte Carlo method uniform.

Exercise 15.2 (ULLN: Extensions). By formal arguments, extend Theorem 15.1 to a slightly
wider setting. Consider the case of a probability measure 𝜇 supported on a compact
interval [𝑎, 𝑏] ⊂ ℝ. Consider the class of 𝐿-Lipschitz functions where 𝐿 is a fixed
constant.

15.2 Covering Lipschitz functions
In order to prove the uniform LLN, we will introduce a random process indexed by
the class Fof Lipschitz functions. Then we will cover the class Fwith respect to an
appropriate metric structure, which will allow us to use Dudley’s inequality to bound
the supremum. In anticipation, let us developed the required estimate for the covering
numbers of F.

Proposition 15.3 (Uniform covering of Lipschitz functions). Consider the metric space of
functions

F0 B {𝑓 : [0, 1] → [0, 1] : ∥ 𝑓 ∥Lip ≤ 1}
equipped with the uniform norm:

∥ 𝑓 ∥∞ B sup𝑥∈[0,1] | 𝑓 (𝑥) |.

For all 𝜀 > 0,

𝑁 (F0, ∥·∥∞; 𝜀) ≤ exp
(
Const
𝜀

)
.

Proof. Consider the metric space BB {𝑓 : [0, 1] → [0, 1]} equipped with ∥·∥∞, and
observe that F0 ⊂ B. It is more convenient to compute external covering numbers of
F0 as a subset of B. According to Exercise 9.13, the external covering numbers are
comparable with the ordinary covering numbers:

Next(F0, ∥·∥∞; 𝜀) ≤ N(F0, ∥·∥∞; 𝜀) ≤ Next(F0, ∥·∥∞; 𝜀/2).

The result will follow by adjusting constants.
The idea is to approximate functions in F0 by piecewise constant functions, adapted

to a grid. The proof concept is best understood graphically, as we see from Figure 15.2.
Since 𝑓 is 1-Lipschitz, there is such a piecewise constant function 𝑔 ∈ B, adapted

to the grid, such that ∥ 𝑓 − 𝑔 ∥∞ ≤ 𝜀. (Why?) Therefore, adapted piecewise constant
functions form an 𝜀-cover with respect to the metric ∥·∥∞.

To bound the (external) covering number of F0 above, it suffices to count these
piecewise constant functions. Here is a first effort: There are at most 1 + 1/𝜀 intervals
on the domain, and the function 𝑔 takes at most 1 + 1/𝜀 possible values. These
observations give an initial bound of (1 + 1/𝜀)1+1/𝜀 functions. We can improve this
estimate by more careful reasoning.

The piecewise constant function 𝑔 can take at most (1+1/𝜀) values at the left-hand
endpoint of the domain. Given the value of 𝑔 on one interval in the domain, there are
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Figure 15.2 (Graphical Proof of Proposition 15.3). Here, 𝑓 is a 1-Lipschitz
function. Divide both the domain and range of 𝑓 into a uniform grid
of size 𝜀. Approximate 𝑓 by a piecewise constant function, adapted
to the grid in the domain and taking values on the grid in the range.

only 3 possible values for 𝑔 on the subsequent interval because 𝑓 is 1-Lipschitz. This
observation yields refined bound of (1 + 1/𝜀) · 31/𝜀 . It is easy to verify that this bound
is less than econst/𝜀 , completing the proof. ■

Aside: The Arzelà–Ascoli theorem already tells us that F0 has finite covering
numbers with respect to the uniform norm. The quantitative estimate from
Proposition 15.3 is needed to invoke Dudley’s chaining inequality.

Problem 15.4 (Covering Lipschitz functions on ℝ𝑑 ). Consider the class of 1-Lipschitz func-
tions on the unit cube [0, 1]𝑑 in ℝ𝑑 , with value 𝑓 (0) = 0, and equipped with the
uniform norm ∥·∥∞. Find a bound for the covering numbers.

15.3 Uniform LLN: Proof
Let us continue with the proof of Theorem 15.1. Without loss, we can replace Fby
the class F0. Indeed, the integration error is shift invariant, so we can shift each
1-Lipschitz function 𝑓 ∈ F so that it takes values in [0, 1].

A random process
The first step is to construct a random process on the metric space (F0, ∥·∥∞). For
each 𝑓 ∈ F0, define

𝑍 𝑓 =
1
𝑛

∑︁𝑛

𝑖=1
[ 𝑓 (𝑋𝑖 ) − 𝔼 𝑓 (𝑋𝑖 )] (15.3)

The random variable 𝑍 𝑓 is the (random) error in approximating the integral of the
function 𝑓 by the Monte Carlo estimate induced by the (random) sample (𝑋𝑖 ). We
need to control these integration errors uniformly . That is, we must bound

𝔼 sup𝑓 ∈F |𝑍 𝑓 |.
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The key idea is to show that (𝑍 𝑓 : 𝑓 ∈ F0) is a centered, subgaussian random process
that varies slowly as we change the function 𝑓 . Therefore, Dudley’s chaining inequality
allows us to produce an upper bound for the supremum in terms of the covering
numbers of F0.

Subgaussian increments
The first step is to show that the random process is subgaussian with respect to the
uniform metric. For functions 𝑓 , 𝑔 ∈ F0, consider the increment:

𝑍 𝑓 − 𝑍𝑔 =
1
𝑛

∑︁𝑛

𝑖=1
[( 𝑓 − 𝑔 ) (𝑋𝑖 ) − 𝔼( 𝑓 − 𝑔 ) (𝑋𝑖 )] = 𝑍 𝑓 −𝑔 .

This is an iid sum of centered, bounded random variables. Indeed, regardless of the
sample values (𝑋𝑖 ),

| ( 𝑓 − 𝑔 ) (𝑋𝑖 ) − 𝔼( 𝑓 − 𝑔 ) (𝑋𝑖 ) | ≤ 2∥ 𝑓 − 𝑔 ∥∞.

Applying Hoeffding’s inequality, we see that 𝑍 𝑓 − 𝑍𝑔 is subgaussian with variance
proxy

𝑣 =
∑︁𝑛

𝑖=1

1
𝑛2 (2∥ 𝑓 − 𝑔 ∥∞)2 =

4
𝑛
∥ 𝑓 − 𝑔 ∥2∞.

Therefore, we may invoke Dudley’s inequality for the metric space (F0, ∥·∥).

Dudley’s inequality
To invoke the chaining bound, it is perhaps conceptually simpler to rescale the random
process. Define

𝑍 𝑓 B

√
𝑛

2
𝑍 𝑓 for 𝑓 ∈ F0.

The rescaled process is centered and 1-subgaussian with respect to the uniform norm
∥·∥∞. Dudley’s chaining inequality shows that

𝔼 sup𝑓 ∈F0
|𝑍 𝑓 | =

2
√
𝑛
𝔼 sup𝑓 ∈F0

|𝑍 𝑓 |

=
2
√
𝑛

∫ diam(F0,∥ · ∥∞ )

0
d𝜀

√︁
log N(F0, ∥·∥∞; 𝜀)

≤ 2
√
𝑛

∫ 1

0
d𝜀

√︁
log exp(Const/𝜀)

=
Const
√
𝑛

∫ 1

0
d𝜀 𝜀−1/2 =

Const
√
𝑛
.

We have used the fact that the diameter of the metric space (F0, ∥·∥∞) equals 1.
Afterward, we applied the covering number bound (Proposition 15.3). This calculation
completes the argument.

Aside: (Higher dimensions?). Versions of Theorem 15.1 can be established for Lipschitz
functions on the unit cube [0, 1]𝑑 inℝ𝑑 , but they exhibit a dimensional dependency.
Unfortunately, to prove these results, it is not enough to obtain a bound on the
covering numbers with respect to the uniform norm because the resulting entropy
integral does not converge. Instead, we need more delicate tools to control the
supremum of the random process.
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15.4 Empirical processes
In this section, we will introduce the concept of an empirical process, and we will
reinterpret the uniform LLN (Theorem 15.1) as a result about empirical processes.

15.4.1 Empirical measures

Figure 15.3 The population measure
𝜇 and the empirical measure 𝜇𝑛 in-
duced by a sample of 𝑛 points.

Let 𝜇 be a probability measure on a domain Ω, and let (𝑋1, . . . , 𝑋𝑛) be an iid sample
from the population measure 𝜇. Define the empirical measure

𝜇𝑛 B
1
𝑛

∑︁𝑛

𝑖=1
𝛿𝑋𝑖 on the domain Ω.

It is easy to see that 𝜇𝑛 is a positive measure with total mass one, so it is a probability
measure. The empirical measure is atomic, even when the population measure has a
density. Nevertheless, the empirical measure tends to place atoms in locations where
the population measure has a lot of mass.

Here is the key question about empirical measures:

To what extent can the empirical measure 𝜇𝑛 stand in for the population measure 𝜇?

Unlike measures you may have encountered before, the empirical measure 𝜇𝑛 is a
random measure because it depends on the random sample (𝑋𝑖 ). We will not go into
the details of how to define a measure-valued random variable in full generality. For
the empirical measures arising in this course, no particular difficulties arise.

15.4.2 Plug-in estimators
More explicitly, there are many statistical questions we can answer completely if we
know the population measure. For example, we can compute the exact expectation
and variance of the distribution 𝜇. Both the expectation and variance are moments of
the measure, namely functionals of the form

𝜇( 𝑓 ) =
∫
Ω
𝑓 d𝜇 for integrable 𝑓 : Ω → ℝ.

In statistical problems, we typically have access to data, which we can model as
a sample (𝑋𝑖 ) from the population measure. The goal is to use the observed data to
make inferences about population quantities, such as the expectation and variance. A
natural way to estimate a population moment 𝜇( 𝑓 ) is via the plug-in estimator

𝜇𝑛 ( 𝑓 ) =
1
𝑛

∑︁𝑛

𝑖=1
𝑓 (𝑋𝑖 ) for integrable 𝑓 : Ω → ℝ.

At the simplest level, we would like to understand how well this approach works. Can
we obtain bounds for the error

|𝜇𝑛 ( 𝑓 ) − 𝜇( 𝑓 ) |?

Keep in mind that the error is a random quantity that depends on the sample, so the
error has a distribution.

Observe that the Monte Carlo integration method (Section 15.1.1) can be described
as a question about the error in approximating a population moment by an empirical
moment. Our initial analysis of Monte Carlo gives some simple answers to the question.
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15.4.3 Uniform bounds
We can also ask more sophisticated questions about empirical measures. In particular,
we can try to understand how well they allow us to approximate an entire family of
moments.

To formulate this question, let us introduce a class F that consists of real-valued
functions 𝑓 : Ω → ℝ. The class Fusually does not contain all such functions, but
only a distinguished subset (e.g., 1-Lipschitz functions).

We can ask how well the empirical measure 𝜇𝑛 allows us to approximate the
population measure 𝜇 for the worst choice of function 𝑓 in the class F. This leads us
to write down the quantity

sup𝑓 ∈F |𝜇𝑛 ( 𝑓 ) − 𝜇( 𝑓 ) | = sup𝑓 ∈F

���� 1𝑛 ∑︁𝑛

𝑖=1
[ 𝑓 (𝑋𝑖 ) − 𝔼 𝑓 (𝑋𝑖 )]

���� .
As before, this is a random quantity that depends on the sample. As we have seen,
to understand the uniform approximation error, it is natural to apply tools from the
theory of random processes.

We can also recognize the uniform error bound as a statement about the distance
between the empirical measure 𝜇𝑛 and the population measure 𝜇 with respect to the
integral probability metric induced by the class F. That is,

distF(𝜇𝑛 , 𝜇) = sup𝑓 ∈F |𝜇𝑛 ( 𝑓 ) − 𝜇( 𝑓 ) |.

If F separates points, then the integral probability metric is a true metric.

Example 15.5 (Uniform LLN). As a simple example, we may return to the uniform law of
large numbers. In this case, the class Fconsists of all 1-Lipschitz functions on the unit
interval [0, 1]. Theorem 15.1 can be restated as

𝔼 sup𝑓 ∈F |𝜇𝑛 ( 𝑓 ) − 𝜇( 𝑓 ) | ≤
Const
√
𝑛
.

Thus, the ULLN is a uniform error bound for an empirical process.
The integral probability metric generated by 1-Lipschitz functions is nothing other

than the Kantorovich transportation distance, also known as the Wasserstein distance.
For this reason, the ULLN is sometimes called the Wasserstein law of large numbers. ■

15.4.4 Prospects
In the next lecture, we will continue our study of uniform bounds for empirical
processes. We will develop a symmetrization method that provides another way to
bring forward the subgaussian nature of an empirical process. This perspective will
show that the uniform norm is not always the best way to control the increments of an
empirical process, and we can obtain much tighter bounds using covering numbers
with respect to other metrics.
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In the last lecture, we established the uniform law of large numbers. This result states
that we can use a single sample of points from a probability measure on the unit
interval [0, 1] to approximate the integral of every 1-Lipschitz function. The proof
relies on Dudley’s chaining inequality and a covering number bound for Lipschitz
functions with respect to the uniform norm. We also saw that the uniform law of
large numbers can be understood as a statement about the supremum of an empirical
process indexed by the class of Lipschitz functions.

In this lecture, we will continue our study of empirical processes. We will introduce
a symmetrization method that allows us to bring forward the subgaussian nature of
an empirical process in a way that is easier to exploit. To simplify our work, we will
focus on the problem of estimating the probabilities of a family of events, rather than
more general integrals. This formulation will lead us to a combinatorial notion of the
complexity of a class of events, called the VC dimension, and we will learn how to
bound empirical processes in terms of the VC dimension.

16.1 Empirical measures and empirical processes
An empirical process is associated with a sample of points from a measure. We begin
with a formal definition of the probability measure induced by a random sample.

Definition 16.1 (Empirical measure). Consider an iid family (𝑋1, . . . , 𝑋𝑛) of samples
drawn from a probability measure 𝜇 on a measurable domain Ω. The empirical
probability measure associated with the sample (𝑋𝑖 ) is

𝜇𝑛 B
1
𝑛

∑︁𝑛

𝑖=1
𝛿𝑋𝑖 ,

where 𝛿𝑋𝑖 is the Dirac measure at the sample point 𝑋𝑖 , defined by 𝛿𝑋𝑖 (A) B 1A(𝑋𝑖 )
for every event A.

The empirical probability measure is a probability measure, but it is a random
measure because it depends on the random sample (𝑋𝑖 ). The distribution of the points

Figure 16.1 The distributions of the
empirical measure 𝜇𝑛 and the
population measure 𝜇.
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masses in the empirical measure 𝜇𝑛 reflects the way that the population measure 𝜇
distributes mass. So 𝜇𝑛 can roughly be thought of as a sort of histogram approximation
to 𝜇. See Figure 16.1 for an illustration.

In fact, the empirical measure is an unbiased estimator for the population measure
𝜇. Indeed, for any event A,

(𝔼(𝑋𝑖 ) 𝜇𝑛) (A) = 𝔼(𝑋𝑖 )

(
1
𝑛

∑︁𝑛

𝑖=1
𝛿𝑥𝑖

)
(A)

= 𝔼(𝑋𝑖 )
1
𝑛

∑︁𝑛

𝑖=1
1A(𝑋𝑖 )

=
1
𝑛

∑︁𝑛

𝑖=1
ℙ(A) = ℙ(A).

This calculation is formal because we have not defined what it means to compute
an expectation over the space of (signed) measures. Nevertheless, it is reasonable
to assume that the expectation is linear with respect to mixtures and the action of
measures on events.

16.1.1 Uniform empirical errors
Here is the central motivation for the next couple lectures:

When may we substitute 𝜇𝑛 for 𝜇? And when we do, how well does it perform?

One way to articulate this question mathematically is to compare the action of 𝜇𝑛 and
𝜇 on a fixed class of functions.

Warning 16.2 The term “uni-
form empirical error” is nonstan-
dard and is introduced for conve-
nience. ■

Definition 16.3 (Uniform empirical error). Let 𝜇 be a probability measure on a domain
Ω, and let 𝜇𝑛 be an empirical measure associated with 𝜇. For a class F of
real-valued functions on the domain, the uniform empirical error is the quantity

𝔼 sup𝑓 ∈F |𝜇𝑛 ( 𝑓 ) − 𝜇( 𝑓 ) | = 𝔼(𝑋𝑖 ) sup𝑓 ∈F
��𝔼𝑋∼𝜇𝑛 𝑓 (𝑋 ) − 𝔼𝑋 ′∼𝜇 𝑓 (𝑋 ′)

�� .
We can interpret the uniform empirical error as the distance between the empirical

measure 𝜇𝑛 and the population measure 𝜇 under the integral probability metric
induced by F. That is,

distF(𝜇𝑛 , 𝜇) B sup𝑓 ∈F |𝜇𝑛 ( 𝑓 ) − 𝜇( 𝑓 ) |.

This construction always yields a pseudometric on probability measures, and it is a
true metric whenever the class F separates points.

16.1.2 Empirical processes
The form of the the uniform empirical error suggests a connection to our study of
suprema of random processes. Indeed, expanding the probability measures gives us

𝔼 sup𝑓 ∈F |𝜇𝑛 ( 𝑓 ) − 𝜇( 𝑓 ) | = 𝔼(𝑋𝑖 ) sup𝑓 ∈F

���� 1𝑛 ∑︁𝑛

𝑖=1
𝑓 (𝑋𝑖 ) − 𝔼𝑋∼𝜇 𝑓 (𝑋 )

����
= 𝔼(𝑋𝑖 ) sup𝑓 ∈F

���� 1𝑛 ∑︁𝑛

𝑖=1

[
𝑓 (𝑋𝑖 ) − 𝔼 𝑓 (𝑋𝑖 )

] ���� (16.1)

=: 𝔼(𝑋𝑖 ) sup𝑓 ∈F |𝑍 𝑓 |.

That is, the uniform empirical error is the expected supremum of a centered random
process (𝑍 𝑓 : 𝑓 ∈ F) indexed by the class F.
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16.1.3 Chaining bounds
Let us review our initial approach to bounding the uniform empirical error using a
chaining method. This approach resulted in covering numbers with respect to uniform
norm on the index class. In the next section, we will develop a more powerful approach
based on symmetrization.

First, let us rescale the random process:

𝔼(𝑋𝑖 ) sup𝑓 ∈F |𝑍 𝑓 | =
1
√
𝑛
𝔼(𝑋𝑖 ) sup𝑓 ∈F

���� 1
√
𝑛

∑︁𝑛

𝑖=1

[
𝑓 (𝑋𝑖 ) − 𝔼 𝑓 (𝑋𝑖 )

] ���� .
For functions 𝑓 , 𝑔 ∈ F, the increments of the process take the form

1
√
𝑛

∑︁𝑛

𝑖=1

[
( 𝑓 − 𝑔 ) (𝑋𝑖 ) − 𝔼( 𝑓 − 𝑔 ) (𝑋𝑖 )

]
.

Observe that the summands are independent and centered. Therefore, Hoeffding’s
inequality shows that the increment is subgaussian with variance proxy

1
𝑛

∑︁𝑛

𝑖=1
∥( 𝑓 − 𝑔 ) − 𝔼( 𝑓 − 𝑔 )∥2∞ ≤ 2

𝑛

∑︁𝑛

𝑖=1
∥ 𝑓 − 𝑔 ∥2∞ = 2∥ 𝑓 − 𝑔 ∥2∞.

In other words, the rescaled process is subgaussian with respect to the uniform norm
∥·∥∞. We may apply Dudley’s chaining inequality to obtain an upper bound for the
supremum.

Proposition 16.4 (Empirical process: Uniform bound). With the foregoing notation,

𝔼 sup𝑓 ∈F |𝜇𝑛 ( 𝑓 ) − 𝜇( 𝑓 ) | ≤
Const
√
𝑛

∫ ∞

0
d𝜀

√︁
log N(F, ∥·∥∞; 𝜀).

In the last lecture, we applied this argument to establish the uniform LLN. In that
case, Fcontains the 1-Lipschitz functions on the unit interval [0, 1]. We were able to
complete the argument using a simple estimate for the covering numbers of the class
Fwith respect to the uniform norm. In this particular case, the argument results in a
sharp bound.

Nevertheless, in most instances, it is wasteful to bound the increments using the
uniform norm. Instead, we will use an alternative method, based on symmetrization,
that allows us to see that the random process is subgaussian with respect to weaker
metrics.

16.2 Symmetrization of empirical processes
To continue, we develop a symmetrization method for empirical processes. We will
show that this approach leads to more refined bounds for the uniform error.

16.2.1 The Giné–Zinn argument
We introduced the idea of symmetrization to obtain bounds on the moments of an
independent sum. A similar approach applies to empirical processes. This formulation
is due to Evarist Giné and Joel Zinn.

Proposition 16.5 (Empirical processes: Symmetrization). Let (𝑋𝑖 : 𝑖 = 1, . . . , 𝑛) be an
independent sequence of random variables. For each (separable) class Fof measurable
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real-valued functions,

𝔼 sup𝑓 ∈F

���� 1𝑛 ∑︁𝑛

𝑖=1

[
𝑓 (𝑋𝑖 ) − 𝔼 𝑓 (𝑋𝑖 )

] ���� ≤ 𝔼 sup𝑓 ∈F

���� 1𝑛 ∑︁𝑛

𝑖=1
𝜀𝑖
[
𝑓 (𝑋𝑖 ) − 𝑓 (𝑋 ′

𝑖 )
] ����

≤ 2𝔼 sup𝑓 ∈F

���� 1𝑛 ∑︁𝑛

𝑖=1
𝜀𝑖 𝑓 (𝑋𝑖 )

���� .
Here, (𝑋 ′

𝑖
: 𝑖 = 1, . . . , 𝑛) is an independent copy of the original sequence, and

(𝜀𝑖 : 𝑖 = 1, . . . , 𝑛) is a Rademacher sequence, independent from everything.

Proof. To begin, we write the expectations in terms of the independent sequence (𝑋 ′
𝑖
):

𝐸 B 𝔼(𝑋𝑖 ) sup𝑓 ∈F

���� 1𝑛 ∑︁𝑛

𝑖=1

[
𝑓 (𝑋𝑖 ) − 𝔼 𝑓 (𝑋𝑖 )

] ����
= 𝔼(𝑋𝑖 ) sup𝑓 ∈F

���� 1𝑛 ∑︁𝑛

𝑖=1

[
𝑓 (𝑋𝑖 ) − 𝔼 𝑓 (𝑋 ′

𝑖 )
] ����

≤ 𝔼(𝑋𝑖 ) ,(𝑋 ′
𝑖
) sup𝑓 ∈F

���� 1𝑛 ∑︁𝑛

𝑖=1

[
𝑓 (𝑋𝑖 ) − 𝑓 (𝑋 ′

𝑖 )
] ���� .

The inequality is Jensen’s. Observe that the distribution of the quantity

1
𝑛

∑︁𝑛

𝑖=1

[
𝑓 (𝑋𝑖 ) − 𝑓 (𝑋 ′

𝑖 )
]

is invariant under exchange of the pair (𝑋 𝑗 , 𝑋 ′
𝑗
) for each index 𝑗 . Therefore, it has the

same distribution as
1
𝑛

∑︁𝑛

𝑖=1
𝜀𝑖
[
𝑓 (𝑋𝑖 ) − 𝑓 (𝑋 ′

𝑖 )
]
.

In particular, under mild technical conditions,

𝐸 ≤ 𝔼(𝑋𝑖 ) ,(𝑋 ′
𝑖
) 𝔼(𝜀𝑖 ) sup𝑓 ∈F

���� 1𝑛 ∑︁𝑛

𝑖=1
𝜀𝑖
[
𝑓 (𝑋𝑖 ) − 𝑓 (𝑋 ′

𝑖 )
] ���� .

The last bound follows from the triangle inequality. ■

16.2.2 Chaining bound
The power of the symmetrization method derives from the fact that we now have two
independent sources of randomness in the process: (𝑋𝑖 ) and (𝜀𝑖 ). Therefore, we may
condition on the choice (𝑋𝑖 ) of the sample, and we may average over the Rademacher
variables (𝜀𝑖 ).

Fix the sample points (𝑋𝑖 ), and consider the symmetrized random process

𝑍 𝑓 B
1
√
𝑛

∑︁𝑛

𝑖=1
𝜀𝑖 𝑓 (𝑋𝑖 ) for 𝑓 ∈ F.

Conditional on (𝑋𝑖 ), this random process is a Rademacher series. Applying Hoeffding’s
inequality (conditionally!), we see that the increments 𝑍 𝑓 − 𝑍𝑔 are subgaussian with
variance proxy

1
𝑛

∑︁𝑛

𝑖=1
( 𝑓 (𝑋𝑖 ) − 𝑔 (𝑋𝑖 ))2 = 𝜇𝑛 ( 𝑓 − 𝑔 )2 = ∥ 𝑓 − 𝑔 ∥L2 (𝜇𝑛 ) .

Therefore, when we apply the chaining inequality to control the conditioned random
process, we obtain a bound in terms of the covering numbers of the class Fwith
respect to the random metric L2(𝜇𝑛).
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Proposition 16.6 (Empirical process: Symmetrized bound). With the prevailing notation,

𝔼 sup𝑓 ∈F |𝜇𝑛 ( 𝑓 ) − 𝜇( 𝑓 ) | ≤ 𝔼(𝑋𝑖 )
Const
√
𝑛

∫ ∞

0
d𝜀

√︁
log N(F, L2(𝜇𝑛); 𝜀).

Comparing the bounds from Propositions 16.4 and 16.6, we see that a miracle has
occurred. We have passed from the L∞(Ω) norm on the entire domain to the L2(𝜇𝑛)
norm on the sample points only. In many cases, this is a vast improvement—even
when we make a uniform bound over the worst possible choice (𝑋𝑖 ) of the sample. In
our analyses, the only information about the sample we will use is the number 𝑛 of
sample points.

16.3 Empirical estimates for probabilities
Proposition 16.6 is a very powerful, general result that can be used to obtain bounds
in a wide range of settings. To make the ideas as clear as possible, we will focus on
the case where the class F consists of indicator functions. In other words, we are
interested in making empirical estimates for the probability of a collection of events.

16.3.1 Indicator function classes
We will be working extensively with indicators, so it is worth a moment to recall the
definitions. The indicator of an event A ⊆ Ω is defined as

1A(𝜔) B
{
1, 𝜔 ∈ A;
0, 𝜔 ∉ A.

To avoid extra notation, it is convenient to treat the event A and its indicator 1A as the
same object.

Let C be a collection of events from Ω. We can just as well think about C as a class
of (indicator) functions. For each event C ∈ C, observe that

ℙ(C) = 𝜇(C) = 𝔼(𝑋𝑖 ) 𝜇𝑛 (C),

because the empirical measure 𝜇𝑛 is an unbiased estimator for the population measure
𝜇. Moreover,

𝜇𝑛 (C) =
1
𝑛

∑︁𝑛

𝑖=1
𝛿𝑋𝑖 (C) =

|{𝑖 : 𝑋𝑖 ∈ C}|
𝑛

.

These formulas suggest a simple protocol for estimating the probabilities of the events
in the class C. Generate and fix an iid sample (𝑋𝑖 : 𝑖 = 1, . . . , 𝑛) from the measure 𝜇.
To estimate the probability 𝜇(C), we simply report the proportion of the sample points
(𝑋𝑖 ) that belong to the event C.

We can use the empirical process tools that we have developed to study the efficacy
of this procedure. The uniform empirical error takes the form

𝔼 supC∈C |𝜇𝑛 (C) − 𝜇(C) | = 𝔼 supC∈C

���� |{𝑖 : 𝑋𝑖 ∈ C}|
𝑛

− ℙ(C)
���� .

This is the “expected worst-case additive error in estimating the probabilities of all
events in C from a shared sample (𝑋𝑖 ).”



Lecture 16: VC Dimension 127

16.3.2 Uniform covering of sample points
We can use Proposition 16.6 to obtain an upper bound on the uniform empirical error
in terms of the covering numbers of C by the L2(𝜇𝑛) norm. Today, to fix some ideas,
we will pass to the stronger norm L∞(𝜇𝑛). Recall that this norm is calculated as

∥ 𝑓 ∥L∞ (𝜇𝑛 ) B max𝑖 | 𝑓 (𝑋𝑖 ) |.

The next exercise gives a description of covering numbers with respect to this norm.

Exercise 16.7 (Sample points: Uniform covering). Show that

N(C, ∥·∥L2 (𝜇𝑛 ) ; 𝜀) ≤ N(C, ∥·∥L∞ (𝜇𝑛 ) ; 𝜀).

(Hint: This is true for any function class.) Argue that, for any two events C,D ∈ C, This is the trivial metric with respect
to an appropriate similarity relation.

∥1C − 1D∥L∞ (𝜇𝑛 ) =

{
0, if C ∩ {𝑋1, . . . , 𝑋𝑛} = D ∩ {𝑋1, . . . , 𝑋𝑛};
1, otherwise.

Finally, use this fact to prove

N(C, ∥·∥L∞ (𝜇𝑛 ) ; 𝜀) =
{
1, if 𝜀 ≥ 1;
|C∩ {𝑋1, . . . , 𝑋𝑛}| , if 0 < 𝜀 < 1,

where C∩ {𝑋1, . . . , 𝑋𝑛} B
{
C ∩ {𝑋1, . . . , 𝑋𝑛} : C ∈ C

}
.

The simplifications in the last problem come at the expense of weakening our
bounds. Because we are working with indicator functions, this simplification is not as
vulgar as in at the general case, but it is still not optimal. We will remedy this error in
Lecture 17.

16.3.3 Combinatorial bounds
The passage to the L∞(𝜇𝑛) norm allows us to obtain bounds for the empirical error
that have a combinatorial flavor.

Proposition 16.8 (Empirical processes: Combinatorial bound). Let C be a class of indicator
functions. Then

𝔼 supC∈C |𝜇𝑛 (C) − 𝜇(C|) ≤ 𝔼(𝑋𝑖 )
Const
√
𝑛

√︁
log |C∩ {𝑋1, . . . , 𝑋𝑛}|.

Proof. Applying Proposition 16.6 and the results of Exercise 16.7, we have

𝔼 supC∈C |𝜇𝑛 (C) − 𝜇(C) | ≤ 𝔼(𝑋𝑖 )
Const
√
𝑛

∫ ∞

0
d𝜀

√︁
log N(C, L2(𝜇𝑛); 𝜀)

≤ 𝔼(𝑋𝑖 )
Const
√
𝑛

∫ 1

0
d𝜀

√︁
log N(C, L∞(𝜇𝑛); 𝜀)

= 𝔼(𝑋𝑖 )
const
√
𝑛

√︁
log |C∩ {𝑋1, . . . , 𝑋𝑛}|.

This calculation completes the argument. ■

We have thus arrived at a purely combinatorial upper bound on the covering
numbers, captured by the number of distinct subsets of X := {𝑋1, . . . , 𝑋𝑛} arising as
an intersection of X with a member of C.
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Example 16.9 (Estimating distribution functions). Consider the domain Ω = ℝ, and let
𝜇 be any probability distribution on ℝ. We would like to compute an empirical
approximation of the distribution function

𝐹 (𝑎) B ℙ𝑋∼𝜇{𝑋 ≤ 𝑎} = 𝜇{𝑋 ≤ 𝑎} for 𝑎 ∈ ℝ.

Given a random sample (𝑋1, . . . , 𝑋𝑛), we can form the empirical approximation

𝐹𝑛 (𝑎) B
1
𝑛
|{𝑖 : 𝑋𝑖 ≤ 𝑎}|.

Let us use our results to quantify the error in the approximation as a function of the
number 𝑛 of samples.

Consider the class of left half-lines:

CB {(−∞, 𝑎] : 𝑎 ∈ ℝ}.

The distribution function 𝐹 packs up the probability 𝜇(−∞, 𝑎] for each event in this
class, and the empirical estimate 𝐹𝑛 packs up the empirical measures 𝜇𝑛 (−∞, 𝑎] of
the events. Therefore,

sup
𝑎∈ℝ

|𝐹𝑛 (𝑎) − 𝐹 (𝑎) | = sup
C∈C

|𝜇𝑛 (C) − 𝜇(C) |.

We will use Proposition 16.8 to obtain a bound on the expectation of the uniform error.
Without loss of generality, relabel the points in the sample 𝑋1, . . . , 𝑋𝑛 so they

are listed in increasing order. We must determine the number of distinct sets of
the form C ∩ {𝑋1, . . . , 𝑋𝑛} where C ∈ C. We claim that there are at most 𝑛 + 1
possibilities. Indeed, if a sample 𝑋𝑖 ∈ (−∞, 𝑎], then the previous sample 𝑋𝑖−1 ∈
(−∞, 𝑎]. Therefore,

C ∩ {𝑋1, . . . , 𝑋𝑛} = ∅ or C ∩ {𝑋1, . . . , 𝑋𝑛} = {𝑋1, . . . , 𝑋𝑖 } for some index 𝑖 .

As a consequence,

𝔼 sup
𝑎∈ℝ

|𝐹𝑛 (𝑎) − 𝐹 (𝑎) | = 𝔼 sup
C∈C

|𝜇𝑛 (C) − 𝜇(C) | ≤
Const
√
𝑛

√︁
log(𝑛 + 1).

In other words, for an arbitrary probability measure 𝜇, if we want an estimate of
the distribution function 𝐹 with a uniform error of 𝜀, then it suffices to take about
𝑛 = 𝑂 (𝜀−2 log(𝜀−2)) samples. This result is a suboptimal version of the Glivenko–
Cantelli theorem; we will obtain the optimal result next time. ■

16.4 Combinatorial dimension
Now, let us develop a far-reaching generalization of the combinatorial argument in
Example 16.9.

16.4.1 Shattering and VC dimension
To employ the combinatorial bound (Proposition 16.8), we need to count the number
of sets that arise when we intersect the class Cwith the finite sample {𝑋1, . . . , 𝑋𝑛}.
The extreme case evidently occurs when every subset of the sample can arise from the
intersection with an event C in the class.

We need a more refined method for counting the subsets that can occur. Instead,
we want to understand when the class C can isolate every subset of a subset of the
domain.
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Figure 16.2 A distribution function
𝐹 along with its empirical approx-
imation 𝐹𝑛 . Notice 𝐹𝑛 can miss
𝐹 entirely on a region.

Definition 16.10 (Shattering). A class C of subsets of the domain Ω shatters We include the case J = ∅.a set
I ⊆ Ω when, for all J ⊆ I, there exists a set C ∈ C such that J = C ∩ I. Equivalently,
C shatters I when C∩ I = P(I), the power set of I.

We will define the combinatorial dimension of a class C to be the maximum
cardinality of a shattered set.

Definition 16.11 (VC dimension). The Vapnik–Chervonenkis (VC) dimension of a class
C of sets is the maximum cardinality vc(C) of a set I that is shattered by C. Note
that vc(C) can be infinite.

This definition is somewhat hard to appreciate at first sight. Nevertheless, there
are several reasons that it is valuable. As we will see, there are many classes of sets
for which we can bound the VC dimension. Second, we can obtain simple bounds on
the sample complexity of statistical estimation problems in terms of the VC dimension.
This will be the theme of the next few lectures.

16.4.2 VC dimension: Examples
Let us give some examples of classes of sets where we can compute the VC dimension
using simple arguments. Keep in mind that it is easy to get turned around when
establishing VC dimension bounds. In order to show that vc(C) < 𝑛, we must
demonstrate that there is no set with cardinality 𝑛 that is shattered by C. Conversely,
to show that vc(C) ≥ 𝑛, we need only exhibit one set with cardinality 𝑛 that is
shattered by C.

Figure 16.3 Any left half-line that cov-
ers 𝑏 also covers 𝑎 .

Example 16.12 (Left half-lines). Let Ω = ℝ, and consider the class of left half-lines
C = {(−∞, 𝑐 ] : 𝑐 ∈ ℝ}. We claim that vc(C) = 1.

To verify this point, observe that every set of cardinality 1 is shattered. Now,
consider any set I = {𝑎, 𝑏} with cardinality 2. By relabeling, we may assume that
𝑎 < 𝑏 . Intersecting I with the class C of half-lines, we can obtain the subsets ∅, {𝑎},
and the set {𝑎, 𝑏} itself. We cannot recover the singleton {𝑏} because 𝑏 ∈ C implies
that 𝑎 ∈ C for every set C = (−∞, 𝑐 ]. ■

Exercise 16.13 (Half-planes). Suppose Ω = ℝ2 and C is the collection of all two-
dimensional half-spaces; that is,

C =
{
{𝒙 : ⟨𝒂 , 𝒙 ⟩ ≤ 𝑏} : 𝒂 ∈ ℝ2, 𝑏 ∈ ℝ

}
.

Show that vc(C) = 3.
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Exercise 16.14 (Half-spaces). Let Ω = ℝ𝑑 , and consider the class

C =
{
{𝒙 : ⟨𝒂 , 𝒙 ⟩ ≤ 𝑏} : 𝒂 ∈ ℝ𝑑 , 𝑏 ∈ ℝ

}
.

Show that vc(C) = 𝑑 + 1. Hint: Apply Radon’s Theorem.

Exercise 16.15 (Axis-aligned rectangles). Let Ω = ℝ2, and consider

C = {[𝑎, 𝑏] × [𝑐 , 𝑑] : 𝑎 < 𝑏, 𝑐 < 𝑑 ∈ ℝ}.

Show that vc(C) = 4.

Exercise 16.16 (General rectangles). Let Ω = ℝ2, and let C be the set of all rectangles in
ℝ2. Show that vc(C) = 7.

Exercise 16.17 (Convex polygons). Let Ω = ℝ2, and let C be the class containing all
convex polygons. Show that vc(C) = +∞.

16.4.3 VC dimension: Counting intersections
The VC dimension is relevant to our study of empirical processes indexed by sets. The
reason is that it serves as a bound on the cardinality |C∩ {𝑋1, . . . , 𝑋𝑛}| that appears
in Proposition 16.8. To establish this fact, we need a classic result from extremal set
theory.

Theorem 16.18 (Sauer–Shelah and others). Let C be a class of subsets of the domain
Ω, and choose 𝑛 ≥ vc(C). For any collection (𝑋1, . . . , 𝑋𝑛) ⊂ Ω,

|C∩ {𝑋1, . . . , 𝑋𝑛}| ≤
∑︁vc(C)

𝑖=0

(
𝑛

𝑖

)
≤

(
e𝑛

vc(C)

)vc(C)
.

We will establish Theorem 16.18 in the next lecture.

16.4.4 Empirical processes: VC dimension bound
Using the Sauer–Shelah theorem, we can express the bound from Proposition 16.8
directly in terms of the VC dimension.

Corollary 16.19 (Empirical process: Preliminary VC bound). Let C be a class of subsets of a
domain Ω, and choose a number 𝑛 ≥ vc(C). Let 𝜇 be the population measure, and let
𝜇𝑛 be the empirical measure associated with a sample of size 𝑛 from the population
measure. Then

𝔼 supC∈C |𝜇𝑛 (C) − 𝜇(C) | ≤ Const ·
√︁
vc(C) ·

√︂
log𝑛
𝑛

.

Proof. Combine Proposition 16.8 with Theorem 16.18 ■

As a consequence of this result, we can simultaneously estimate the probability of
every event in the class C up to an absolute error 𝜀 using a sample of size

𝑛 =𝑂 (𝜀−2vc(C) log(𝜀−2vc(C))).

This statement remains true for every probability measure 𝜇 on the domain Ω.
As a particular example, Corollary 16.19 contains the result in Example 16.9. Using

other VC dimension computations, we can obtain many similar results.
Nevertheless, Corollary 16.19 is suboptimal. We can trace the weakness to the

fact that we passed from the L2(𝜇𝑛) norm to the L∞(𝜇𝑛) norm in the proof of
Proposition 16.8. In the next lecture, we will repair this defect.
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In Lecture 16, we obtained bounds for the uniform error in estimating the probability
of a class of events from an empirical sample. These bounds were expressed in terms
of the VC dimension, a combinatorial notion of the complexity of the class of events.
Unfortunately, these results include a parasitic logarithm that arises from making a
coarse estimate in the proof. In this lecture, we will remove the parasitic factor. The
resulting bound shows that the number of samples we need to estimate the probabilities
of a class of events is proportional to the VC dimension.

17.1 Dudley’s covering number bound
Corollary 16.19 from the last lecture gives a uniform bound on the error in estimating the
probabilities of events from a class C using an empirical sample from the population
measure. The proof of this result involves symmetrization and Dudley’s chaining
inequality, which leads to a bound in terms of the covering numbers of the class Cwith
respect to the L2(𝜇𝑛) norm, determined by the empirical measure 𝜇𝑛 . We passed to
the stronger L∞(𝜇𝑛) norm, and we developed a combinatorial bound for the covering
numbers in terms of the VC dimension. The weakness in this argument is the passage
from L2(𝜇𝑛) to L∞(𝜇𝑛), which results in an adverse dependency on the number 𝑛 of
sample points.

The next result, due to Dudley, gives a bound on the L2(𝜇) covering numbers of C
in terms of the VC dimension. In contrast to the earlier result, this bound does not
have any dependency on the size of the support of the measure 𝜇.

Aside: A more difficult result,
due to Haussler, shows that the
sharp exponent in Theorem 17.1
is 2 vc(C) .

Theorem 17.1 (Dudley). Let C be a class of events on a measurable space Ω. For
𝜀 > 0,

sup𝜇 N(C, ∥·∥L2 (𝜇) ; 𝜀) ≤
(
Const
𝜀

)Const·vc(C)
.

The supremum occurs over all probability measures on Ω.

We will prove Theorem 17.1 after a few remarks. Let us emphasize that the covering
number bound is uniform over all probability measures; it uses no information about
the form of the measure. It is also fruitful to compare the new bound with our existing
covering number bounds.

First, recall the bound for the covering numbers with respect to L∞(𝜇𝑛), where 𝜇𝑛
is an empirical measure with at most 𝑛 atoms. Then

N(C, L2(𝜇𝑛); 𝜀) ≤ N(C, L∞(𝜇𝑛); 𝜀) ≤ 𝑛Const·vc(C) .

The bound on the L∞(𝜇𝑛) covering numbers depends explicitly on the number 𝑛 of
atoms, although the scale 𝜀 no longer plays a role. In contrast, Theorem 17.1 removes
this dimensional dependency.
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Second, we may make a formal comparison between Theorem 17.1 and our
volumetric covering bounds. For example, if B is the unit ball of a 𝑑-dimensional
normed space ∥·∥, then

N(B, ∥·∥; 𝜀) ≤
(
Const
𝜀

)𝑑
.

The logarithm of the number of 𝜀-balls we need to cover the unit ball is proportional
to log(1/𝜀) and to the dimension 𝑑 of the normed space. This is exactly the same
scaling that we see in Theorem 17.1, except that the linear dimension is replaced by
the combinatorial VC dimension.

17.1.1 The extraction lemma
The proof of Theorem 17.1 is based on a dimension reduction argument called
probabilistic extraction. The idea is that we can discriminate a well-separated family
of sets in (C, L2(𝜇)) by examining a very small number of points in the domain.

Lemma 17.2 (Extraction). Let {C1, . . . ,C𝑚} be a collection of sets in Ω which are 𝜀-
separated with respect to the norm L2(𝜇). That is,

∥1C𝑖 − 1C𝑗 ∥L2 (𝜇) > 𝜀 for all indices 𝑖 ≠ 𝑗 .

Then there exists a point set X = {𝑥1, . . . , 𝑥𝑟 } with

𝑟 ≤ Const · 𝜀−2 · log𝑚

that discriminates the sets:

C𝑖 ∩ X ≠ C𝑗 ∩ X for all indices 𝑖 ≠ 𝑗 .

Proof. The proof relies on the probabilistic method. Draw and fix a random set
X = {𝑋1, . . . , 𝑋𝑟 } where 𝑋𝑖 ∼ 𝜇 iid. When 𝑟 is sufficiently large, we will argue that X
discriminates all pairs (C𝑖 ,C𝑗 ) of the sets with positive probability. As a consequence,
there must exist some set X consisting of 𝑟 points that discriminates all the sets.

To that end, we first develop an upper bound on the probability that

ℙ {C ∩ X = C′ ∩ X} for 𝜀-separated sets C,C′.

Observe that a sample 𝑋𝑖 discriminates the two sets if and only if 𝑋𝑖 belongs to
exactly one of the sets: 𝑋𝑖 ∈ C△C′, where △ is the symmetric difference. Furthermore,
C∩X = C′ ∩X precisely when X contains no distinguishing point. By the independence
of the sample,

ℙ {C ∩ X = C′ ∩ X} =
∏𝑟

𝑖=1
ℙ {𝑋𝑖 ∉ C△C′} = (1 − ℙ {𝑋𝑖 ∈ C△C′})𝑟

= (1 − 𝜇(1C△C′))𝑟 =
(
1 − ∥1C − 1C′ ∥2L2 (𝜇)

)𝑟
≤ (1 − 𝜀2)𝑟 .

We have used the fact that 1C△C′ = (1C − 1C′)2, and the assumption that the two sets
are 𝜀-separated.

Thus, the probability that the point set X distinguishes each pair of sets (C𝑖 ,C𝑗 ) is

ℙ
{
∀𝑖 ≠ 𝑗 : C𝑖 ∩ X ≠ C𝑗 ∩ X

}
≥ 1 −

(
𝑚

2

) (
1 − 𝜀2

)𝑟 ≥ 1 −𝑚2 (1 − 𝜀2)𝑟 > 0.

The final inequality holds when we choose 𝑟 = Const·𝜀−2 log𝑚. The result follows. ■
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Aside: The extraction lemma is similar in spirit to the Johnson–Lindenstrauss
theorem on dimension reduction. Indeed, we have shown that an 𝜀-separated
family {1C𝑖 } of indicator functions can be replaced by the restricted indicators
{1C𝑖∩X} while preserving the fact that the sets are distinct, provided that X contains
𝑟 = Const · 𝜀−2 log𝑚 points. If we allow a larger number 𝑟 = Const · 𝜀−4 log𝑚 of
sample points, then we can even ensure that the reduced sets remain well-separated:

∥1C𝑖∩X − 1C𝑗∩X∥L2 (𝜇) ≥ 𝜀/2 for all indices 𝑖 ≠ 𝑗 .

This improvement is not important for our purposes, but it plays a role when we
generalize this theory from sets to functions.

17.1.2 Proof of Theorem 17.1
With the extraction lemma in hand, we easily complete the proof of Dudley’s covering
number bound.

Let {C1, . . . ,C𝑚} ⊆ C be an 𝜀-packing of (C, L2(𝜇)) with maximum cardinality,
so each pair of sets is 𝜀-separated with respect to the L2(𝜇) norm. By extraction
(Lemma 17.2), there is a set X consisting of 𝑟 = Const · 𝜀−2 · log𝑚 points with the
property that each set C𝑖 ∩ X is distinct from the rest. Thus, we may calculate that

𝑚 = |{C1 ∩ X, . . . ,C𝑚 ∩ X}| ≤ |C∩ X| ≤
(

e𝑟
vc(C)

)vc(C)
≤

(
log𝑚
vc(C) ·

Const
𝜀2

)vc(C)
≤

(
𝑚2𝛿/vc(C) · Const(𝛿 )

𝜀2

)vc(C)
.

The last inequality in the first line follows from the Sauer–Shelah theorem. In the last
inequality, we have introduced a parameter 𝛿 ∈ (0, 1). Solving for𝑚, we obtain

𝑚 ≤
(
Const(𝛿 )

𝜀

)2 vc(C)/(1−𝛿 )
.

Finally, recall the duality between covering numbers and packing numbers:

N(C, L2(𝜇); 2𝜀) ≤ P(C, L2(𝜇); 𝜀) = 𝑚.

Introduce the bound for𝑚 to complete the argument.

17.2 VC bounds for empirical processes
We are now prepared to establish a better bound on the uniform empirical error in
estimating the probabilities of a class of events.

Theorem 17.3 (Empirical processes: VC bound). Let 𝜇 be a probability measure on a
measurable space Ω, and let C be a class of events with finite VC dimension. For
𝑛 ≥ vc(C), the empirical measure 𝜇𝑛 of an iid sample of 𝑛 points from 𝜇 satisfies

𝔼 supC∈C |𝜇𝑛 (C) − 𝜇(C) | ≤ Const ·
√︂

vc(C)
𝑛

.

In particular, to achieve uniform empirical error 𝜀, it suffices to take 𝑛 = Const ·
𝜀−2vc(C) iid samples.
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As compared with Corollary 16.19, we have removed a parasitic logarithmic factor
in the error bound.

Proof. We combine the symmetrized chaining bound (Proposition 16.6) on the empirical
error with Dudley’s covering number bound (Theorem 17.1) to obtain

𝔼 supC∈C |𝜇𝑛 (C) − 𝜇(C) | ≤ 𝔼(𝑋𝑖 )
Const
√
𝑛

∫ ∞

0
d𝜀

√︁
log N(C, L2(𝜇𝑛); 𝜀)

≤ 𝔼(𝑋𝑖 )
Const
√
𝑛

∫ 1

0
d𝜀

√︁
log N(C, L2(𝜇𝑛); 𝜀)

≤ Const
√
𝑛

∫ 1

0
d𝜀

√︂
log

(Const
𝜀

)Const·vc(C)
= Const ·

√︂
vc(C)
𝑛

∫ 1

0
d𝜀

√︁
log(Const/𝜀).

The integral is convergent, and the argument is complete. ■

17.2.1 Examples
To understand the implications of Theorem 17.3, let us present a few examples.

Example 17.4 (Estimating distribution functions, reprise). Let Ω = ℝ equipped with a
probability measure𝜇 that has distribution function𝐹 . Draw an iid sample (𝑋1, . . . , 𝑋𝑛)
from 𝜇 with empirical measure 𝜇𝑛 . We can estimate the distribution function as

𝐹𝑛 (𝑎) =
|{𝑖 : 𝑋𝑖 ≤ 𝑎}|

𝑛
.

To analyze the quality of this approximation, we define the class of left half-lines:
C = {(−∞, 𝑎] : 𝑎 ∈ ℝ}. Then

sup𝑎∈ℝ |𝐹𝑛 (𝑎) − 𝐹 (𝑎) | = supC∈C |𝜇𝑛 (C) − 𝜇(C) |.

We have seen that the vc(C) = 1. Theorem 17.3 implies that

𝔼 sup𝑎∈ℝ |𝐹𝑛 (𝑎) − 𝐹 (𝑎) | ≤
Const
√
𝑛
.

In other words, we can obtain a uniform empirical estimate of the distribution function
𝐹 with error 𝜀 using 𝑛 = 𝑂 (𝜀−2) samples. This is a logarithmic improvement over
Example 16.9, and it gives the optimal scaling for a general measure. This result is
called the Glivenko–Cantelli theorem. ■

Example 17.5 (Half spaces). Let Ω = ℝ𝑑 be equipped with a probability measure 𝜇.
Consider the class of half spaces

C =
{
{𝒙 : ⟨𝒂 , 𝒙 ⟩ ≤ 𝑏} : 𝒂 ∈ ℝ𝑑 , 𝑏 ∈ ℝ

}
.

Exercise 16.14 reports that vc(C) = 𝑑 + 1. Theorem 17.3 states that we can achieve a
constant uniform error estimate for the measure of every halfspace in ℝ𝑑 with about
𝑛 ≈ 𝑑 samples. ■
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17.2.2 Uniform Glivenko–Cantelli classes
Here is a little more context. We say that a class C of sets is uniform Glivenko–Cantelli
if

sup𝜇 𝔼 supC∈C |𝜇𝑛 (C) − 𝜇(C) | → 0 as 𝑛 → ∞.

Here, 𝜇 ranges over probability measures on the domain, and 𝜇𝑛 is an empirical
measure associated with an iid sample of 𝑛 points from the measure 𝜇. In other words,
a class is uniform Glivenko–Cantelli if we can estimate the probability of every event to
a uniform tolerance with a fixed number of samples, and we can make this tolerance as
small as we like. Furthermore, we must be able to do so for any measure of probability.

The classic example of a uniform Glivenko–Cantelli class is the set of left half-lines
in ℝ, which arises when we try to estimate distribution functions. The original
Glivenko–Cantelli theorem asserts that this class is indeed a uniform Glivenko–Cantelli
class.

Theorem 17.3 goes further. It states that every class Cwith finite VC dimension is
uniform Glivenko–Cantelli. In fact, the converse is true as well.

Problem 17.6 (Finite VC dimension: Necessity). Prove that a class C of sets is uniform
Glivenko–Cantelli if and only if C has finite VC dimension.

17.3 Sauer–Shelah: Proof
It remains to establish the Sauer–Shelah theorem, which allows us to count sets using
VC dimension. This result has been independently discovered by many researchers, but
we have given the most common nomenclature. For reference, we restate the result.

Theorem 17.7 (Sauer–Shelah and others). Let C be a class of subsets of the domain Ω,
and choose 𝑛 ≥ vc(C). For any collection (𝑋1, . . . , 𝑋𝑛) ⊂ Ω,

|C∩ {𝑋1, . . . , 𝑋𝑛}| ≤
∑︁vc(C)

𝑖=0

(
𝑛

𝑖

)
≤

(
e𝑛

vc(C)

)vc(C)
.

The proof of Theorem 17.7 relies on a lemma that relates the cardinality of a set
family to the number of sets it shatters.

Lemma 17.8 (Pajor). Suppose that S is a finite set, and let Fbe a collection of subsets of
S. Then

|F| ≤ |{I ⊆ S : F shatters I}|
We will prove this lemma in a moment, but first let us use it to establish the main

result.

Proof of Theorem 17.7 from Lemma 17.8. Consider the finite set S = Ω∩ {𝑋1, . . . , 𝑋𝑛}
with cardinality 𝑛. Apply Pajor’s lemma to the class F= C∩ {𝑋1, . . . , 𝑋𝑛} to obtain

|C∩ {𝑋1, . . . , 𝑋𝑛}| ≤ |{I ⊆ S : C shatters I}|

≤ |{I ⊆ S : |I| ≤ vc(C)}| =
∑︁vc(C)

𝑖=0

(
𝑛

𝑖

)
.

The second inequality holds because the VC dimension is the maximum cardinality of
a shattered set, and we have included every subset of S with cardinality vc(C) or less.
Finally, we count these subsets in the usual manner. ■
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17.3.1 Proof of Pajor’s lemma
The proof of Lemma 17.8 uses induction on the cardinality 𝑛 = |S| of the base set. For
𝑛 = 1, then S = {𝑥} for some element 𝑥 . The only possibilities for the class F are
{∅} or {{𝑥}} or {∅, {𝑥}}. By convention, every set class shatters ∅, so it is clear that
Pajor’s lemma holds for every collection Fof subsets of S = {𝑥}.

Now assume the conclusion of the lemma holds for each base set containing exactly
𝑛 points. Consider a base set S containing 𝑛 + 1 points and a class Fof subsets of
S. The notation ¤∪ indicates a union of

disjoint sets.
Partition the base set S = T ¤∪ {𝑥0} where 𝑥0 ∈ S is a fixed (but arbitrary) element.

Partition the class F= F0 ¤∪F1, where

F0 = {F ∈ F : 𝑥0 ∈ F};
F1 = {F ∈ F : 𝑥0 ∉ F}.

Apply the induction hypothesis to F0 and F1. To be concise, we introduce notation for
the number of distinct subsets of S shattered by F:

sh(S | F) B |{I ⊆ S : F shatters I}| .
We now claim that

|F0 | = |F0 ∩ T| ≤ sh(S | F0 ∩ T) = sh(S | F0);
|F1 | = |F1 ∩ T| ≤ sh(S | F1 ∩ T) = sh(S | F1).

Moving left to right, these (in)equalities follow from the definition of F0 and F1 and
the induction hypothesis. Last, we use the fact that, for 𝑥0 ∉ I, the class F shatters I if
and only if F∪ {𝑥0} shatters I. We therefore have

|F| = |F0 | + |F1 | ≤ sh(S | F0) + sh(S | F1).
We need to show that the right-hand side is bounded above by sh(S | F).

Observe that

sh(S | F0) + sh(S | F1) = |{I shattered by F0 exclusively}|
+ |{I shattered by F1 exclusively}|
+ 2 · |{I shattered by F0 and F1}|.

Sets that are shattered by both classes are double-counted, so we need to make sure
that the F shatters another set in S that was not shattered by the subclasses. Now,
observe that

sh(S | F) = |{I shattered by F0 exclusively}|
+ |{I shattered by F1 exclusively}|
+ |{I shattered by F0 and F1}|
+ |{I shattered by neither F0 nor F1}|.

Therefore, we can finish the proof by showing that

|{I shattered by F0 and F1}| ≤ |{I shattered by neither F0 nor F1}|.
This is what we will do.

Suppose that a set I is shattered by both F0 and F1. Then the distinguished point
𝑥0 ∉ I, because neither subclass can shatter a set containing 𝑥0. Nevertheless, the
augmented set I ∪ {𝑥0} is shattered by the full class Fbecause

F0 ∩ (I ∪ {𝑥0}) = {V ∪ {𝑥0} : V ⊆ I};
F1 ∩ (I ∪ {𝑥0}) = P(I).



Lecture 17: VC Bounds for Empirical Processes 137

Together, these two classes of subsets compose the power set P(I ∪ {𝑥0}). Therefore,
we have exhibited an injection I ↦→ I ∪ {𝑥0} for which

{I shattered by F0 and F1} ↩→ {I shattered by neither F0 nor F1}.

The proof is complete.



18. Statistical Learning

Date: 4 March 2021 Scribe: Chi-Fang Chen

Agenda:
1. Set-up for statistical Learning
2. Risk + empirical risk
3. Classifiers and VC dimension
4. Approximation by Lipschitz

functions

This lecture contains an introduction to the theory of statistical learning, which is an
interesting application of empirical processes. We will see how the tools we have been
developing in the recent lectures help us understand how much data is sufficient to
solve certain idealized learning problems.

18.1 Supervised learning
We will study the problem using labeled data to make predictions about the labels of
future observations. This is called a supervised learning problem.

18.1.1 Setup
Consider a measurable domain Ω, equipped with an (unknown) probability measure
𝜇 that describes the distribution of the population. Let 𝑇 : Ω → ℝ be an unknown
target function that we would like to learn from observations.

Suppose that we collect an iid sample from the population measure 𝜇, along with
the observed values of the target function:

((𝑋𝑖 ,𝑇 (𝑋𝑖 )) : 𝑖 = 1, . . . , 𝑛) where 𝑋𝑖 ∼ 𝜇 iid.

This is called training data. Given a new sample 𝑋 ∼ 𝜇 from the population, our task
is to predict the value 𝑇 (𝑋 ) of the target function.

A solution to the supervised learning problem is a function 𝑓 : Ω → ℝ. Heuristically,
we would like to ensure that

𝑓 (𝑋 ) ≈ 𝑇 (𝑋 ) for 𝑋 ∼ 𝜇.

Note that this is a statistical question because we are assuming that future samples
are drawn at random from the population; we are not trying to to obtain worst-case
bounds. An instance of this problem is illustrated in Figure 18.1

Aside: (Ideal models). The supervised learning model we are considering is a very
simple one, and it is not necessarily realistic. In particular, we will assume that the
training labels 𝑇 (𝑋𝑖 ) are determined by a function 𝑇 , and there is no statistical
error in the observations. Beyond that, major challenges in contemporary machine
learning include transfer learning and data shift. Roughly, these issues arise when
we have to make predictions for sample points that are drawn from a different
distribution from the training samples.

Aside: (Unsupervised learning). The problems we are studying are supervised because
the training samples are labeled with the values of the target function. In
contrast, an unsupervised learning problem involves only the samples (𝑋𝑖 ) from
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Figure 18.1 (Approximation). Given labeled training data (𝑋𝑖 ,𝑇 (𝑋𝑖 )) for
𝑖 = 1, . . . , 𝑛, we want to find a hypothesis 𝑓 so that 𝑓 (𝑋 ) ≈ 𝑇 (𝑋 )
for a random point 𝑋 ∼ 𝜇.

the population, in which case our task is to approximate the distribution or find
cross-cutting features that explain the variability in the sample.

18.1.2 Risk and empirical risk
To formulate the supervised learning problem mathematically, we will use the language
of optimization. The first step is to quantify how well a given function 𝑓 : Ω → ℝ

approximates the target function 𝑇 : Ω → ℝ on average over samples from the
population.

Definition 18.1 (Risk). Given a hypothesis 𝑓 : Ω → ℝ and a target function𝑇 : Ω →
ℝ, the risk 𝑅 ( 𝑓 ) of the hypothesis is

𝑅 ( 𝑓 ) B 𝔼𝑋∼𝜇
[
( 𝑓 (𝑋 ) −𝑇 (𝑋 ))2

]
= 𝜇( 𝑓 −𝑇 )2. (18.1)

The risk is also called the L2 loss.

We cannot evaluate the risk directly because we do not have access to the population
measure 𝜇 or the target function 𝑇 . Instead, we would like to develop a proxy for the
risk that we can compute from the observed training data. This quantity is called the
empirical risk.

Definition 18.2 (Empirical risk). Given labeled data ((𝑋𝑖 ,𝑇 (𝑋𝑖 )) : 𝑖 = 1, . . . , 𝑛) and a
hypothesis function 𝑓 : Ω → ℝ, the empirical risk is

𝑅𝑛 ( 𝑓 ) :=
1
𝑛

∑︁𝑛

𝑖

[
( 𝑓 (𝑋𝑖 ) −𝑇 (𝑋𝑖 ))2

]2
= 𝜇𝑛 ( 𝑓 −𝑇 )2. (18.2)

As usual, 𝜇𝑛 B 1
𝑛
𝛿𝑋𝑖 is the empirical measure associated with the sample. The

empirical risk is also called the empirical L2 loss.

As in our study of empirical processes, the basic question is the extent to which the
empirical measure 𝜇𝑛 can stand in for the population measure 𝜇 when we try to find a
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hypothesis with low risk.

18.1.3 Hypothesis classes and risk minimization
We would like to quantify how many labeled samples (𝑋𝑖 ,𝑇 (𝑋𝑖 )) we need to identify
a hypothesis function 𝑓 with low (empirical) risk. The answer to this question depends
on the hypotheses that we are allowed to consider.

Instead of searching for an arbitrary hypothesis function 𝑓 : Ω → ℝ on the domain,
we will restrict our attention to a restricted class Fof hypothesis functions. From this
class, we seek a hypothesis that minimizes the risk:

𝑓 ★ = argmin𝑓 ∈F𝑅 ( 𝑓 )
= argmin𝑓 ∈F𝔼𝑋∼𝜇

[
( 𝑓 (𝑋 ) −𝑇 (𝑋 ))2

]
.

(18.3)

This optimization problem is called risk minimization. If the target function𝑇 does not
belong to the hypothesis class, then the minimum risk may be strictly positive. This is
called the misspecification error that arises from the mismatch between the target and
the models we are considering.

In practice, we cannot solve the risk minimization problem (18.3) because we
cannot compute the risk from the observed training data. Instead, we will consider the
associated empirical problem:

𝑓 ★𝑛 = argmin𝑓 ∈F𝑅𝑛 ( 𝑓 )

= argmin𝑓 ∈F
1
𝑛

∑︁𝑛

𝑖=1

[
( 𝑓 (𝑋𝑖 ) −𝑇 (𝑋𝑖 ))2

]
.

(18.4)

This optimization problem is called empirical risk minimization (ERM). The idea
that (18.4) serves as a proxy for (18.3) is called the empirical risk minimization
principle.

Of course, we are not interested in the empirical risk associated with a hypothesis
but rather the true risk. Minimizing the empirical risk always yields a hypothesis with
higher risk than the true optimizer 𝑓 ★.

Definition 18.3 (Excess risk). The excess risk associated with empirical risk minimiza-
tion is the quantity

𝐸𝑛 B 𝑅 ( 𝑓 ★𝑛 ) − 𝑅 ( 𝑓 ★) ≥ 0,

where 𝑓 ★𝑛 is a solution to (18.4) and 𝑓 ★ is a solution to (18.3).

The excess risk is the additional risk that we incur by learning a hypothesis from a
finite number 𝑛 of samples. The excess risk accrues above the misspecification error
associated with the hypothesis class F, which cannot be avoided.

Although we cannot evaluate the excess risk from observed data, we can still
establish bounds on the excess risk that tell us how many samples 𝑛 suffice to achieve
a given level of excess risk. This problem is the focus of today’s lecture.

18.1.4 Excess risk and empirical processes
We can control the excess risk by studying the supremum of an empirical process. This
fact allows us to use the tools we have developed in the previous lectures.

Proposition 18.4 (Excess risk). Instate the prevailing notation. The excess risk of a
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function 𝑓 ★𝑛 computed using the ERM principle satisfies

𝑅 ( 𝑓 ★𝑛 ) − 𝑅 ( 𝑓 ★) ≤ 2 sup𝑓 ∈F |𝑅𝑛 ( 𝑓 ) − 𝑅 ( 𝑓 ) |
= 2 sup𝑓 ∈F |𝜇𝑛 ( 𝑓 −𝑇 )2 − 𝜇( 𝑓 −𝑇 )2 |.

Proof. Introduce the quantityΔ B sup𝑓 ∈F |𝑅𝑛 ( 𝑓 ) − 𝑅 ( 𝑓 ) |. By adding and subtracting
𝑅𝑛 ( 𝑓 ★𝑛 ), we may calculate that

𝑅 ( 𝑓 ★𝑛 ) ≤ 𝑅𝑛 ( 𝑓 ★𝑛 ) + Δ ≤ 𝑅𝑛 ( 𝑓 ★) + Δ ≤ 𝑅 ( 𝑓 ★) + 2Δ.

The second bound relies on the fact that 𝑓 ★𝑛 minimizes the empirical risk 𝑅𝑛 . To reach
the last bound, we added and subtracted 𝑅 ( 𝑓 ★). ■

18.1.5 Discussion
Observe that the total risk associated with a learned hypothesis 𝑓 ★𝑛 can be decomposed
into two terms:

𝑅 ( 𝑓 ★𝑛 ) = 𝑅 ( 𝑓 ★) + 𝐸𝑛 ( 𝑓 ★𝑛 ).
The first term 𝑅 ( 𝑓 ★) is the misspecification error associated with the hypothesis class
F, while the second term 𝐸𝑛 ( 𝑓 ★𝑛 ) is the excess risk that we incur by learning from a
finite amount of data.

This decomposition exposes a tradeoff. Although we can reduce the misspecification
error by choosing a large hypothesis class F, the excess risk typically increases when
the hypothesis class is large. Indeed, for large hypothesis classes, we may need to
collect a lot more data before the ERM problem (18.4) is a good proxy for the risk
minimization problem (18.3). We can easily overfit the observed data if we are allowed
to use a rich class of hypothesis, so we wind up modeling variability in the sample (𝑋𝑖 )
rather than the target function 𝑇 itself. This problem manifests in poor generalization ,
where the computed hypothesis 𝑓 ★𝑛 (𝑋 ) is an ineffective model for the target 𝑇 (𝑋 )
when 𝑋 is a sample drawn from the population measure 𝜇.

There may be further computational reasons for preferring particular hypothesis
classes F. In practice, we have to solve the ERM problem (18.4) numerically, and this
optimization may be more tractable for some function classes than others. In this
course, we focus only on the probabilistic aspects.

18.2 Classification
In this section, we discuss the problem of learning a binary classifier from labeled data.

18.2.1 Classification problems
As usual, suppose that Ω is a measurable domain equipped with a probability measure
𝜇. Consider a Boolean function 𝑇 : Ω → {0, 1} on the domain. We can interpret the
target function 𝑇 as an assignment of each point in the domain into two exclusive
categories (e.g., cat/dog).

A classifier is a Boolean function 𝑓 : Ω → {0, 1} that predicts the category of a
point. The risk of a classifier equals the probability of misclassification:

𝑅 ( 𝑓 ) = ℙ𝑋∼𝜇{𝑓 (𝑋 ) ≠ 𝑇 (𝑋 )}.

We specify the collection Fof classifiers that we are willing to consider. Rich collections
of classifiers may carve out complicated decision boundaries that delineate the two
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Figure 18.2 (Classification problem). Let 𝑇 : Ω → {0, 1} be a Boolean
function. The task is to predict the value 𝑇 (𝑋 ) at a new sample
𝑋 ∼ 𝜇. A classifier 𝑓 : Ω → {0, 1} is a rule for assigning a point to a
category; the decision boundary (black squiggle) is the line between
the two categories. It is common to use linear classifiers where the
decision boundary is a straight line (yellow).

categories. On the other hand, we need more data to fit complicated decision
boundaries, and we are more prone to overfitting and poor generalization.

Given a collection {(𝑋𝑖 ,𝑇 (𝑋𝑖 )) : 𝑖 = 1, . . . , 𝑛} of labeled samples, we would like
to learn a classifier. We can accomplish this goal by empirical risk minimization (18.4)
over the family Fof admissible classifiers. See Figure 18.2 for an illustration of the
classification problem.

Example 18.5 (Linear classifier). Consider the domain Ω = ℝ𝑑 . A linear classifier is the
indicator function of a half-space in ℝ𝑑 . The family Fof linear classifiers takes the
form

F=
{
1{𝒙 ∈ ℝ𝑑 : ⟨𝒂 , 𝒙 ⟩ ≤ 𝑏} : 𝒂 ∈ ℝ𝑑 , 𝑏 ∈ ℝ

}
.

The decision boundaries are hyperplanes in ℝ𝑑 . See Figure 18.2 for an example. ■

18.2.2 Excess risk bound
We will show that the excess risk of a classifier is controlled by the VC dimension of
the family Fof admissible classifiers.

Theorem 18.6 (Excess risk of a classifier: VC dimension bound). Instate the prevailing
notation. The excess risk of the classifier 𝑓 ★𝑛 computed using ERM (18.4) over a
family Fof Boolean hypothesis satisfies

𝔼[𝑅 ( 𝑓 ★𝑛 ) − 𝑅 ( 𝑓 ★)] ≤ Const

√︂
vc(F)
𝑛

.
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The expectation averages over random samples (𝑋𝑖 : 𝑖 = 1, . . . , 𝑛). In particular,
𝑛 ≈ 𝜀−2vc(F) samples typically suffice to achieve excess risk 𝜀.

This result is uniform over all population measures 𝜇 and all target classifications
𝑇 . It tells us that the amount of data we need to fit a classifier from a given family F

is controlled by the combinatorial dimension of F, which reflects the complexity of the
decision boundaries that it can generate. This result, however, provides no information
about the misspecification error associated with the class F.

18.2.3 Example: Linear classifiers
Let us see how Theorem 18.6 applies to the case of a linear classifier on Ω = ℝ𝑑 . Recall
that

F=
{
1{𝒙 ∈ ℝ𝑑 : ⟨𝒂 , 𝒙 ⟩ ≤ 𝑏} : 𝒂 ∈ ℝ𝑑 , 𝑏 ∈ ℝ

}
.

We claim that vc(F) = 𝑑 + 1. Therefore, it suffices to draw 𝑛 =𝑂 (𝜀−2𝑑) samples to
obtain a linear classifier with excess risk at most 𝜀.

To establish the claim, we first exhibit a set X of 𝑑 + 1 points in ℝ𝑑 that we can
shatter using the class F. These points compose the vertices of a simplex:

X = {0, e1, · · · , e𝑑 } ⊂ ℝ𝑑 .

Second, we need to argue that it is impossible to shatter a set of 𝑑 + 2 points using the
family of half-spaces. This statement follows immediately from Radon’s theorem.

Fact 18.7 (Radon’s theorem). For any set X of 𝑑 + 2 points in ℝ𝑑 , there exist disjoint
subsets R and B whose convex hulls have a nontrivial intersection:

conv(R) ∩ conv(B) ≠ ∅.

In particular, we cannot isolate R from B using a half-space. ■

18.2.4 Covering numbers and squared loss
In view of Proposition 18.4, it is no surprise that the proof of Theorem 18.6 uses tools
from empirical process theory. We require a lemma that allows us to control the
covering numbers of the squared errors associated with a family F of classifiers in
terms of the covering numbers of the family F.

Lemma 18.8 Let Fbe a family of Boolean functions. For a Boolean target function 𝑇 ,
consider the family of (Boolean) squared error functions:

L = {( 𝑓 −𝑇 )2 : 𝑓 ∈ F}.

Then

N(L, L2(𝜇𝑛); 𝜀) ≤ N(F, L2(𝜇𝑛); 𝜀).

Proof. Consider a minimal 𝜀-net {𝑓1, . . . , 𝑓𝑚} for the metric space (F, L2(𝜇𝑛)). That
is,

min𝑖 ∥ 𝑓 − 𝑓𝑖 ∥L2 (𝜇𝑛 ) ≤ 𝜀 for all 𝑓 ∈ F.

Since the functions are Boolean, ( 𝑓 − 𝑇 )2 = | 𝑓 −𝑇 | for each 𝑓 ∈ F. The triangle
inequality yields the (pointwise) bound��( 𝑓 −𝑇 )2 − ( 𝑓𝑖 −𝑇 )2

�� = ��| 𝑓 −𝑇 | − | 𝑓𝑖 −𝑇 |
�� ≤ | 𝑓 − 𝑓𝑖 |.
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Thus, the shifted functions {𝑓𝑖 −𝑇 : 𝑖 = 1, . . . ,𝑚} provide an 𝜀-net for L. That is,

min𝑖 ∥( 𝑓 −𝑇 )2 − ( 𝑓𝑖 −𝑇 )2∥L2 (𝜇𝑛 ) ≤ min𝑖 ∥ 𝑓 − 𝑓𝑖 ∥L2 (𝜇𝑛 ) .

We have used the fact that the L2(𝜇𝑛) norm is monotone. ■

18.2.5 Proof of Theorem 18.6
We are now prepared to establish the excess risk bound for a classifier computed via
the ERM principle. Using Proposition 18.4, we may calculate that

𝔼[𝑅 ( 𝑓 ★𝑛 ) − 𝑅 ( 𝑓 ★)] ≤ 2𝔼 sup𝑓 ∈F |𝑅𝑛 ( 𝑓 ) − 𝑅 ( 𝑓 ) |
= 2𝔼 sup𝑓 ∈F |𝜇𝑛 ( 𝑓 −𝑇 )2 − 𝜇( 𝑓 −𝑇 )2 |]
= 2𝔼 sup𝑔 ∈L |𝜇𝑛 (𝑔 ) − 𝜇(𝑔 ) |].

We have defined the class L as in the statement of Lemma 18.8. To continue, we
invoke the bound for an empirical process (Proposition 16.6):

𝔼[𝑅 ( 𝑓 ★𝑛 ) − 𝑅 ( 𝑓 ★)] ≤ Const
√
𝑛

𝔼(𝑋𝑖 )

∫ 1

0
d𝜀

√︁
log(N(L, L2(𝜇𝑛); 𝜀))

≤ Const
√
𝑛

𝔼(𝑋𝑖 )

∫ 1

0
d𝜀

√︁
log(N(F, L2(𝜇𝑛); 𝜀))

≤ Const
√
𝑛

√︁
vc(F).

The second inequality is Lemma 18.8. The last estimate follows from Dudley’s covering
number bound (Theorem 17.1).

18.3 A simple approximation problem
Another basic question in statistical learning is to approximate the target function. In
this section, we will study a simple instance that we can treat with available results.

Consider the unit interval Ω = [0, 1] in the real line, equipped with a probability
measure 𝜇. Suppose that 𝑇 : [0, 1] → [0, 1] is a target function that we wish to
approximate. Our goal is to use a labeled sample ((𝑋𝑖 ,𝑇 (𝑋𝑖 )) : 𝑖 = 1, . . . , 𝑛) of
training data to find a hypothesis function 𝑓 : [0, 1] → [0, 1] that approximates the
target function 𝑇 well on average with respect to the measure 𝜇. Here, the risk is
simply the squared loss:

𝑅 ( 𝑓 ) = 𝔼𝑋∼𝜇
[
( 𝑓 (𝑋 ) −𝑇 (𝑋 ))2

]
.

See Figure 18.1.
We restrict our attention to a small class of hypothesis functions:

F= {𝑓 : [0, 1] → [0, 1] : 𝑓 is 𝐿-Lipschitz}.

We can apply the empirical risk minimization principle to select a hypothesis 𝑓 ★𝑛 from
the class F. We will prove that a finite sample suffices to make the excess risk as small
as we like. The misspecification error depends on how well we can approximate the
target 𝑇 by means of an 𝐿-Lipschitz function. We have the following result.
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Theorem 18.9 (Excess risk for Lipschitz approximation). Instate the prevailing notation.
The excess risk of the approximation 𝑓 ★𝑛 computed using ERM (18.4) over the
family Fof 1-Lipschitz functions on [0, 1] satisfies

𝔼[𝑅 ( 𝑓 ★𝑛 ) − 𝑅 ( 𝑓 ★)] ≤ Const

√︂
𝐿

𝑛
.

In particular, 𝑛 =𝑂 (𝜀−2𝐿) samples suffice to achieve an excess risk at most 𝜀.

Notice the tradeoff here. As we dial up the Lipschitz constant 𝐿, the hypothesis
class enlarges, and the misspecification error decreases. But we also need more samples
to control the excess risk and produce a hypothesis that is competitive with the best
𝐿-Lipschitz model.

Proof. According to Proposition 18.4, we can control the excess risk using an empirical
process:

𝔼[𝑅 ( 𝑓 ★𝑛 ) − 𝑅 ( 𝑓 ★)] ≤ 2𝔼 sup𝑓 ∈F |𝑅𝑛 ( 𝑓 ) − 𝑅 ( 𝑓 ) |
= 2𝔼 sup𝑓 ∈F |𝜇𝑛 ( 𝑓 −𝑇 )2 − 𝜇( 𝑓 −𝑇 )2 |

≤ 4
√
𝑛
𝔼 sup𝑓 ∈F

���� 1
√
𝑛

∑︁𝑛

𝑖=1
𝜀𝑖 ( 𝑓 (𝑋𝑖 ) −𝑇 (𝑋𝑖 ))2

���� .
The last inequality follows from symmetrization (Proposition 16.5).

For functions 𝑓 , 𝑔 ∈ F, we have the pointwise bound��( 𝑓 −𝑇 )2 − (𝑔 −𝑇 )2
�� = ( 𝑓 + 𝑔 − 2𝑇 ) ( 𝑓 − 𝑔 ) ≤ 2| 𝑓 − 𝑔 | ≤ 2∥ 𝑓 − 𝑔 ∥∞.

We have used the fact that 𝑓 , 𝑔 ,𝑇 take values in [0, 1]. Using Hoeffding’s inequality,
we see that the increments of the (conditioned) Rademacher process are subgaussian
with variance proxy 4∥ 𝑓 − 𝑔 ∥2∞.

To continue, we invoke Dudley’s chaining inequality (Theorem 12.1) to bound the
supremum of the (conditioned) Rademacher process:

𝔼[𝑅 ( 𝑓 ★𝑛 ) − 𝑅 ( 𝑓 ★)] ≤ Const
√
𝑛

∫ 1

0
d𝜀

√︁
log N(F, ∥·∥∞; 𝜀)

≤ Const
√
𝑛

∫ 1

0
d𝜀

√︁
Const · 𝐿/𝜀 = Const

√︂
𝐿

𝑛
.

We have used the covering number bound for 𝐿-Lipschitz functions on [0, 1] with
respect to ∥·∥∞; this result follows from the argument in Proposition 15.3. ■
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2. Example: singular values
3. Small ball method
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This section of the course has focused on empirical processes, a valuable formalism that
allows us to study a variety of problems in statistical learning. We have used empirical
processes to prove the following results:

• Uniform law of large numbers. This result shows that one can uniformly integrate
an entire class of Lipschitz functions in a bounded interval using a fixed set of
sampled points. See Lecture 15.

• Uniform Glivenko–Cantelli. A fixed set of sampled points can be used to approximate
the probabilities for a large class of events. The number of the sampled points
depends on the VC dimension of the class of events. See Lecture 17.

• Empirical risk minimization. Using observed data, one can learn a classifier by
minimizing the error on the observed data without access the true population.
See Lecture 18.

In this lecture, we will consider empirical processes indexed by a function class
that contains only positive functions. We will develop a technique, called the small
ball method, for bounding the infimum of a positive empirical process away from zero.
As a particular example, we will apply the small ball method to study the minimum
singular value in a random matrix under very mild conditions.

19.1 Setup
Let us recall the definition of empirical processes. Consider a measurable domain Ω
equipped with a probability measure 𝜇. Draw 𝑛 independent samples 𝑋1, . . . , 𝑋𝑛 from
the probability measure 𝜇, and construct the empirical measure

𝜇𝑛 B
1
𝑛

∑︁𝑛

𝑖=1
𝛿𝑋𝑖 .

For a function 𝑓 : Ω → ℝ, recall that

𝜇( 𝑓 ) B
∫
𝑋 ∈Ω

𝑓 (𝑋 ) d𝜇,

the expectation value of 𝑓 with respect to the probability measure 𝜇. For an event
C ⊆ Ω, we also define the notation

𝜇(C) B
∫
𝑋 ∈Ω

1{𝑋 ∈ C} d𝜇,

the probability of the event C under the probability measure 𝜇.
Now, consider a class F that contains functions from Ω to ℝ. Previous lectures

have focused on the uniform empirical error

𝔼 sup𝑓 ∈F |𝜇𝑛 ( 𝑓 ) − 𝜇( 𝑓 ) |,
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which reflects the deviation of the empirical measure 𝜇𝑛 from the true measure 𝜇.
One may also consider the extreme values of the empirical moments:

𝔼 inf 𝑓 ∈F𝜇𝑛 ( 𝑓 ) and 𝔼 sup𝑓 ∈F𝜇𝑛 ( 𝑓 ).

These quantities reflect the minimum and maximum expectation of a function 𝑓 from
the class Funder the empirical measure. It is most common to seek lower bounds for
the infimum and upper bounds for the supremum.

In this lecture, we will be interested in a particular problem that arises in a range
of applications. Consider a class F that only contains positive functions 𝑓 : Ω → ℝ+.
Then the empirical moments 𝜇𝑛 ( 𝑓 ) are certainly positive as well. We will be interested
in methods for proving that the infimum of a positive empirical process is bounded
away from zero .

19.2 Example: Singular values of random matrices
To motivate the study of positive empirical processes, we first give an example that
explains how this kind of problem arises. Let us see how to express the extreme
singular values of a random matrix with independent rows using this formalism.

Consider a probability measure 𝜇 on the 𝑑-dimensional Euclidean space ℝ𝑑 .
Suppose we have sampled 𝑛 independent random vectors 𝒙1, . . . , 𝒙𝑛 according to the
probability measure 𝜇. We may form the random matrix

𝑿 =


𝒙 ᵀ
1
...
𝒙 ᵀ
𝑛

 ∈ ℝ𝑛×𝑑 .

The extremum singular values for the matrix 𝑿 are given by the expressions

𝜎2
min(𝑿 ) B inf ∥𝒖 ∥2=1 ∥𝑿𝒖 ∥22;

𝜎2
max(𝑿 ) B sup∥𝒖 ∥2=1 ∥𝑿𝒖 ∥

2
2.

These quantities express how much the random matrix can contract or expand a unit
vector.

It is not immediately clear how one could relate the extremum singular values to
empirical processes. In order to do so, observe that

∥𝑿𝒖 ∥22 =
∑︁𝑛

𝑖=1
⟨𝒙 𝑖 , 𝒖⟩2. (19.1)

We may define some positive functions, parameterized by unit vectors:

𝑓𝒖 (𝒙 ) = ⟨𝒙 , 𝒖⟩2 where ∥𝒖 ∥2 = 1.

Using (19.1), we immediately realize that

∥𝑿𝒖 ∥22 =
∑︁𝑛

𝑖=1
𝑓𝒖 (𝒙 𝑖 ).

Introduce the function class

F= {𝑓𝒖 : ∥𝒖 ∥2 = 1}.
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Then Recall that the empirical measure 𝜇𝑛
is normalized by 1/𝑛.

𝜎2
min(𝑿 ) = inf 𝑓 ∈F

∑︁𝑛

𝑖=1
𝑓 (𝒙 𝑖 ) = 𝑛 · inf 𝑓 ∈F𝜇𝑛 ( 𝑓 );

𝜎2
max(𝑿 ) = sup𝑓 ∈F

∑︁𝑛

𝑖=1
𝑓 (𝒙 𝑖 ) = 𝑛 · sup𝑓 ∈F𝜇𝑛 ( 𝑓 ).

In other words, we can control the extreme singular values of a random matrix with
iid rows using bounds for positive empirical process.

In many applications, lower bounds for the minimum singular value play a more
significant role than upper bounds for the maximum singular value. Indeed, the
minimum singular value tells us how well the random matrix 𝑿 preserves separation
between vectors because

∥𝑿 (𝒖 − 𝒗 )∥2 ≥ 𝜎min(𝑿 ) · ∥𝒖 − 𝒗 ∥2.

In particular, null(𝑿 ) = {0} if and only if 𝜎min(𝑿 ) > 0. So the minimum singular
value signals whether the matrix 𝑿 is an injection. Of course, 𝑿 ∈ ℝ𝑛×𝑑 can be an
injection only if 𝑛 ≥ 𝑑 , so we will focus on this parameter regime.

In Section 19.6, we will sketch some applications in dimension reduction and signal
processing.

19.3 Extrema via centering
Before we present the small ball method, let us describe some obvious approaches to
bounding the extreme values of an empirical process so that we can see why they do
not work.

Consider a general empirical process (𝜇𝑛 ( 𝑓 ) : 𝑓 ∈ F), not necessarily positive.
We can attempt to bound the supremum or the infimum by decomposing the process
into its mean and its deviations:

𝔼 sup𝑓 ∈F
∑︁𝑛

𝑖=1
𝑓 (𝑋𝑖 ) ≤ sup𝑓 ∈F

∑︁𝑛

𝑖=1
𝔼 𝑓 (𝑋𝑖 )

+ 𝔼 sup𝑓 ∈F
∑︁𝑛

𝑖=1
[ 𝑓 (𝑋𝑖 ) − 𝔼 𝑓 (𝑋𝑖 )].

Likewise,

𝔼 inf 𝑓 ∈F
∑︁𝑛

𝑖=1
𝑓 (𝑋𝑖 ) ≥ inf 𝑓 ∈F

∑︁𝑛

𝑖=1
𝔼 𝑓 (𝑋𝑖 )

− 𝔼 sup𝑓 ∈F
∑︁𝑛

𝑖=1
[𝔼 𝑓 (𝑋𝑖 ) − 𝑓 (𝑋𝑖 )].

It is often straightforward to compute 𝔼 𝑓 (𝑋𝑖 ). We can apply tools from the previous
lectures to try to control the deviation term.

Unfortunately, our methods for controlling the uniform error in an empirical process
only work well for very nice classes of functions. Indeed, we have focused exclusively
on the case where Fcontains bounded functions. These arguments can be extended to
address subgaussian functions, but it is already a difficult matter to obtain bounds for
classes of subexponential functions, let alone functions without exponential moments.

19.4 The small ball method
In this section, we develop the simplest version of the small ball method for bounding
the infimum of a positive empirical process away from zero.
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19.4.1 Motivation
From now on, assume that F is a class of positive functions. We consider the positive
empirical process ∑︁𝑛

𝑖=1
𝑓 (𝑋𝑖 ) for 𝑓 ∈ F.

We would like to study the extreme values of this process, making as few assumptions
as possible about the function class. For instance, we might consider functions that
have only four finite moments: 𝜇( 𝑓 4) < +∞.

First, consider the expected supremum:

𝔼 sup𝑓 ∈F
∑︁𝑛

𝑖=1
𝑓 (𝑋𝑖 ).

Since the functions 𝑓 are positive, the terms in the sum accumulate. To obtain a good
upper bound on the supremum, we must ensure that none of the summands is large.
For this reason, it may not be possible to obtain good upper bounds for functions with
few moments.

In contrast, consider the expected infimum:

𝔼 inf 𝑓 ∈F
∑︁𝑛

𝑖=1
𝑓 (𝑋𝑖 ).

The effects that make it hard to control the supremum now work to our benefit. If a
single term in the sum is large, then the whole sum is also large. Therefore, it should
be possible to bound the infimum away from zero under mild assumptions. The small
ball method is a particular way of exploiting this intuition.

19.4.2 Main idea
A first version of the small ball method was proposed by Mendelson [Men14a] to
address a problem in convex geometry. The approach has been refined and applied to
problems in statistical learning [Men14b], random matrix theory [KM15], and signal
processing [Tro15b].

For a positive empirical process, our goal is to establish that

𝔼 inf 𝑓 ∈F
∑︁𝑛

𝑖=1
𝑓 (𝑋𝑖 ) ≫ 0.

The main idea of this method is to count how many terms in the sum exceed a certain
threshold 𝜏:

|{𝑖 : 𝑓 (𝑋𝑖 ) ≥ 𝜏}| =
∑︁𝑛

𝑖=1
1{𝑓 (𝑋𝑖 ) ≥ 𝜏}.

In many cases, it is enough to show that there are a few large terms on average. Since
indicator functions are bounded, we can easily apply methods we have developed for
empirical processes to control this sum.

19.4.3 Step 1: Reduction to counting
Fix a level 𝜏 > 0. By Markov’s inequality,∑︁𝑛

𝑖=1
𝑓 (𝑋𝑖 ) ≥ 𝜏 · |{𝑖 : 𝑓 (𝑋𝑖 ) ≥ 𝜏}|.

This bound holds for any positive function 𝑓 and any realization (𝑋𝑖 ) of the random
sample. Thus, we can bound the expected infimum below by

𝔼 inf 𝑓 ∈F
∑︁𝑛

𝑖=1
𝑓 (𝑋𝑖 ) ≥ 𝜏 · 𝔼 inf 𝑓 ∈F

∑︁𝑛

𝑖=1
1{𝑓 (𝑋𝑖 ) ≥ 𝜏}.

This simple step is the key technical insight. Indeed, the indicators are bounded,
regardless of the properties of the function 𝑓 .
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19.4.4 Step 2: Centering
Next, we invoke the standard method to control the sum of indicators by decomposing
it into an expectation and a deviation term:

𝔼 inf 𝑓 ∈F
∑︁𝑛

𝑖=1
1{𝑓 (𝑋𝑖 ) ≥ 𝜏}

≥ inf 𝑓 ∈F
∑︁𝑛

𝑖=1
𝔼1{𝑓 (𝑋𝑖 ) ≥ 𝜏}

+ 𝔼 inf 𝑓 ∈F
∑︁𝑛

𝑖=1

(
1{𝑓 (𝑋𝑖 ) ≥ 𝜏} − 𝔼1{𝑓 (𝑋𝑖 ) ≥ 𝜏}

)
≥ inf 𝑓 ∈F𝑛 · ℙ𝑋∼𝜇{𝑓 (𝑋 ) ≥ 𝜏}

− 𝔼 sup𝑓 ∈F
���∑︁𝑛

𝑖=1

(
𝔼1{𝑓 (𝑋𝑖 ) ≥ 𝜏} − 1{𝑓 (𝑋𝑖 ) ≥ 𝜏}

) ��� .
The first inequality is the triangle inequality. In the last step, we have simply used the
fact that 𝑋𝑖 ∼ 𝜇 iid.

Now, the first term
inf 𝑓 ∈Fℙ𝑋∼𝜇{𝑓 (𝑋 ) ≥ 𝜏}

controls the probability that any function 𝑓 ∈ F is likely to take a small value on
a typical sample. This term tends to be large when 𝑓 (𝑋 ) is not too “spiky.” The
probability of interest is the complement of the small ball probabilityℙ {0 ≤ 𝑓 (𝑋 ) < 𝜏},
hence the nomenclature.

The second term equals

𝔼 sup𝑓 ∈F
���∑︁𝑛

𝑖=1

(
1{𝑓 (𝑋𝑖 ) ≥ 𝜏} − 𝔼1{𝑓 (𝑋𝑖 ) ≥ 𝜏}

) ���
is the deviation of a sum of bounded functions of iid random variables, which we can
handle using our toolkit for empirical processes.

19.4.5 Step 3: Deviation term
There are several methods for controlling the deviation term. For continuity with
recent lectures, let us develop a general bound using VC theory. Alternative approaches
include the direct application of the chaining inequality, perhaps combined with tools
like the Rademacher comparison theorem.

Consider the class C𝜏 that contains that super-level sets of the functions 𝑓 at the
level 𝜏:

C𝜏 B
{
{𝑦 ∈ Ω : 𝑓 (𝑦 ) ≥ 𝜏} : 𝑓 ∈ F

}
. (19.2)

According to Theorem 17.3,

𝔼 sup𝑓 ∈F
���∑︁𝑛

𝑖=1

(
1{𝑓 (𝑋𝑖 ) ≥ 𝜏} − 𝔼1{𝑓 (𝑋𝑖 ) ≥ 𝜏}

) ��� ≤ Const
√︁
𝑛 · vc(C𝜏 ).

The VC dimension of the class C𝜏 can be computed for many types of functions.

19.4.6 The small ball bound
We may combine the results from the last three sections to reach the following theorem.

Theorem 19.1 (Small ball method: VC bound). Let (𝑋𝑖 ) be an iid sample from a
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probability measure 𝜇, and consider a class Fof positive functions. For each 𝜏 > 0,

𝔼 inf 𝑓 ∈F
∑︁𝑛

𝑖=1
𝑓 (𝑋𝑖 ) ≥ 𝜏

[
𝑛 · inf 𝑓 ∈Fℙ {𝑓 (𝑋 ) ≥ 𝜏} −

√
𝑛 · Const

√︁
vc(C𝜏 )

]
,

where C𝜏 is the class (19.2) of super-level sets.

You can see that there is a discrepancy in the scaling of the small ball term (which is
linear in the sample size 𝑛) and the scaling of the deviation term (which is proportional
to

√
𝑛). Therefore, we can obtain a nontrivial bound provided that the small ball term

is strictly positive for some 𝜏 and the VC dimension of the class C𝜏 is finite.

19.5 Example: Minimum singular value of a heavy-tailed matrix
As a particular example, let us show how Theorem 19.1 leads to a lower bound on the
minimum singular value of a random matrix whose rows are independent but may
have heavy tails.

Let 𝜇 be a probability measure on ℝ𝑑 , not necessarily centered at the origin. For
simplicity, we assume that the measure is isotropic: 𝔼𝜇 [𝒙𝒙 ᵀ] = I. We also assume that
the measure has uniformly bounded fourth moments:

𝔼𝒙∼𝜇⟨𝒙 , 𝒖⟩4 ≤ ℎ
(
𝔼𝒙∼𝜇⟨𝒙 , 𝒖⟩2

)2
= ℎ∥𝒖 ∥42 for all 𝒖 ∈ ℝ𝑑 .

This hypothesis permits the case where the rows have tails that decay fairly slowly, but
the decay must be uniform in every direction.

Draw independent samples 𝒙1, . . . , 𝒙𝑛 from the probability measure 𝜇, where
𝑛 ≥ 𝑑 . Form the (tall) random matrix

𝑿 =


𝒙 ᵀ
1
...
𝒙 ᵀ
𝑛

 ∈ ℝ𝑛×𝑑 .

For a vector 𝒖 ∈ ℝ𝑑 , define the positive functions 𝑓𝒖 (𝒙 ) = ⟨𝒙 , 𝒖⟩2 on ℝ𝑑 . Then we
can express

𝜎2
min(𝑿 ) = inf ∥𝒖 ∥2=1

∑︁𝑛

𝑖=1
𝑓𝒖 (𝒙 𝑖 ).

It is also helpful to define the class F= {𝑓𝒖 : ∥𝒖 ∥2 = 1}.
According to Theorem 19.1, for all 𝜏 > 0,

𝔼𝜎2
min(𝑿 ) ≥ 𝜏

[
𝑛 · inf 𝑓𝒖 ∈Fℙ𝒙∼𝜇{𝑓𝒖 (𝒙 ) ≥ 𝜏} −

√
𝑛 · Const

√︁
vc(C𝜏 )

]
. (19.3)

The class C𝜏 is defined from Fvia (19.2). Let us develop bounds for the two terms in
the bracket.

19.5.1 The small ball probability
The first term in (19.3) is a small ball probability. We can obtain a lower bound using
the second-moment method. For a fixed vector with ∥𝒖 ∥2 = 1,

ℙ {𝑓𝒖 (𝒙 ) ≥ 𝜏} = ℙ
{
⟨𝒙 , 𝒖⟩2 ≥ 𝜏 𝔼⟨𝒙 , 𝒖⟩2

}
≥ (1 − 𝜏)2

(
𝔼⟨𝒙 ,𝒖⟩2

)2
𝔼⟨𝒙 ,𝒖⟩4 ≥ (1 − 𝜏)2 · ℎ−1.
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The first relation holds by the definition of 𝑓𝒖 and the assumption that the measure
𝜇 is isotropic. The second inequality is Paley–Zygmund, and the last relation follows
from the assumption that 𝜇 has uniform fourth moments. Taking the infimum over
unit vectors,

inf 𝑓𝒖 ∈Fℙ {𝑓𝒖 (𝒙 ) ≥ 𝜏} ≥ (1 − 𝜏)2 · ℎ−1. (19.4)

This lower bound is always constant under the assumptions we have posed.

19.5.2 The VC dimension
Recall that C𝜏 is a class of super-level sets of the functions 𝑓𝒖 . The elements of the
class take the form

C𝒖 = {𝒚 ∈ ℝ𝑑 : 𝑓𝒖 (𝑦 ) ≥ 𝜏} = {⟨𝒚 , 𝒖⟩ ≥
√
𝜏} ∪ {⟨𝒚 , 𝒖⟩ ≤ −

√
𝜏}.

In other words, each set C𝒖 is a union of two half-spaces in ℝ𝑑 . Recall that the class of
all halfspaces in ℝ𝑑 has a VC dimension of 𝑑 + 1. The next problem implies that

vc(C𝜏 ) ≤ Const · (𝑑 + 1). (19.5)

Therefore, regardless of the level 𝜏 , the class C𝜏 of super-level sets has controlled VC
dimension.

Problem 19.2 (VC dimension of a union). For any class Hof sets, prove that

vc(H∪ H) ≤ Const · vc(H).

The class H∪ H contains all unions of two sets, each drawn from H. Hint: To obtain
this result, it is easiest to employ the shattering function:

𝜋H(𝑚) B sup |X |=𝑚 |{H ∩ X : H ∈ H}|.

This function counts the number of distinct sets we can obtain by intersecting elements
from the class Hwith a fixed set X ⊆ Ω of cardinality 𝑚. Verify that 𝜋H∪H(𝑚) ≤
𝜋H(𝑚)2, and use the definition of VC dimension.

19.5.3 Lower bound on the minimum singular value
Combine (19.3), (19.4), and (19.5) to obtain

𝔼𝜎2
min(𝑿 ) ≥ 𝜏

[
𝑛 · (1 − 𝜏)2 · ℎ−1 −

√
𝑛 · Const

√
𝑑
]
.

Choose 𝜏 = 1/2 and rearrange to arrive at the bound.

𝔼𝜎2
min(𝑿 ) ≥ const ·

√
𝑛 ·

(
ℎ−1√𝑛 − Const

√
𝑑
)
. (19.6)

Therefore, we obtain a nontrivial bound on the expectation 𝔼𝜎2
min(𝑿 ) of the squared

minimum singular value when the number 𝑛 of rows satisfies 𝑛 ≥ Const
√
𝑑 .

For comparison, recall that Gordon’s minimax theorem implies a precise bound for
a standard normal matrix 𝚪 ∈ ℝ𝑛×𝑑 :

𝔼𝜎min(𝚪) ≥
√
𝑛 ·

(√
𝑛 −

√
𝑑
)
.

The new result (19.6) has some unspecified constants, but it gives a qualitatively similar
bound under more general hypotheses. We only assume that the random matrix 𝑿 has
independent, isotropic rows that have uniform fourth moments. A key advantage of
the small ball method is that it applies under rather weak moment assumptions.
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19.6 Extensions and applications
The small ball method admits many extensions, and it has a wide range of applications.
For examples, see the papers [Men14a; Men14b; KM15; Tro15b].

19.6.1 Restricted minimum singular values
For mathematical data science, one of the most valuable improvements is that the small
ball method allows us to control restricted minimum singular values. That is, for a set
T ⊆ 𝕊𝑑−1 ⊂ ℝ𝑑 of unit vectors, we can obtain a lower bound for

𝜎2
min(𝑿 ; T) B inf𝒖∈T ∥𝑿𝒖 ∥22.

Roughly speaking, the lower bounds for the restricted singular value can be expressed
in terms of the Gaussian width𝑤 (T) of the index set:

𝑤 (T) B 𝔼 sup𝒖∈T⟨𝒈 , 𝒖⟩ where 𝒈 ∼ normal(0, I𝑑 ).

Under modest assumptions on 𝑿 and T, we can obtain results like

𝑛 ≥ Const ·𝑤 (T)2 implies that 𝜎min(𝑿 ; T) ≫ 0. (19.7)

See [Tro15b, Prop. 5.1] for a detailed statement.

19.6.2 Dimension reduction
The small ball method can be applied to study randomized dimension reduction. For
example, we can prove a partial version of the Johnson–Lindenstrauss result for a
matrix 𝑿 ∈ ℝ𝑛×𝑑 with independent, isotropic rows that satisfy some uniform moment
bounds.

Consider a discrete set A = {𝒂 𝑖 : 𝑖 = 1, . . . , 𝑁 } of points in a Euclidean space ℝ𝑑 .
The random matrix 𝑿 ∈ ℝ𝑛×𝑑 can be used to embed the set A into ℝ𝑛 :

{𝑿𝒂 𝑖 : 𝑖 = 1, . . . , 𝑁 } ⊂ ℝ𝑛 .

To serve this function, we want to make sure that each well-separated pair of points
in A remains separated after the embedding. We will argue that this outcome occurs
when the embedding dimension 𝑛 ≥ Const · log𝑁 .

To analyze when this happens, construct the set of normalized secants:

T =

{
𝒂 𝑖 − 𝒂 𝑗

∥𝒂 𝑖 − 𝒂 𝑗 ∥2
: 𝑖 ≠ 𝑗

}
.

Suppose that
𝜎2
min(𝑿 ; T) = inf𝒖∈T ∥𝑿𝒖 ∥22 = 𝑐 ≫ 0.

Then, the embedded point set satisfies the bounds

∥𝑿𝒂 𝑖 − 𝑿𝒂 𝑗 ∥22 ≥ 𝑐 ∥𝒂 𝑖 − 𝒂 𝑗 ∥22.

Using the heuristic result (19.7), we see that the number 𝑐 ≫ 0 when the embedding
dimension 𝑛 satisfies

𝑛 ≥ Const ·𝑤 (T)2 ≥ Const · log𝑁 .

Indeed, the Gaussian width of a set of
(𝑁
2

)
points in the unit sphere does not exceed

Const ·
√︁
log𝑁 . In fact, the width can be even smaller when the points are clustered

in certain ways. Furthermore, the same argument yields embedding results for infinite
sets, provided that the set of normalized secants has controlled Gaussian width.
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19.6.3 Signal processing
Another application of the small ball method arises in signal processing [Tro15b]. Let
𝒛 ♮ ∈ ℝ𝑑 be an unknown signal. Let 𝑿 ∈ ℝ𝑛×𝑑 be a measurement matrix that is known
to us and does not depend on the signal. Suppose that we acquire a noisy linear
observation 𝒚 of the signal:

𝒚 = 𝑿 𝒛 ♮ + 𝒆 ∈ ℝ𝑛

The error 𝒆 ∈ ℝ𝑛 is unknown, but we suppose that its magnitude ∥𝒆 ∥2 is available to
us. This formula models a measurement process or a communication channel.

In many settings, we have knowledge about the structure of the signal 𝒛 ♮. For
example, the signal may be a sparse vector or a low-rank matrix. We can exploit this
prior information to design a (convex) optimization method for recovering the signal
𝒛 ♮:

minimize𝒛 ∈ℝ𝑑 complexity(𝒛 ) subject to ∥𝑿 𝒛 − 𝒚 ∥2 ≤ ∥𝒆 ∥2.
The objective function depends on the type of signal; for instance, we could use the ℓ1
norm to search for a sparse signal 𝒛 ♮. The signal estimate 𝒛̂ ∈ ℝ𝑑 that results from the
optimization problem satisfies a (deterministic) error bound of the form

∥𝒛̂ − 𝒛 ♮∥ ≤ 2∥𝒆 ∥2
𝜎min(𝑿 ; T) .

In this expression, the set T ⊆ 𝕊𝑑−1 ⊂ ℝ𝑑 depends on the descent cone of the objective
function at the ground truth 𝒛 ♮. See [Tro15b, Prop. 2.6] for a complete statement.

As a consequence of this machinery, if we can show that the restricted minimum
singular value 𝜎min(𝑿 ; T) ≫ 0, then we can guarantee the reconstructed vector 𝒛̂
is a good approximation to the true signal 𝒛 ♮. When the measurement matrix 𝑿 is
random, then we may be able to use the small ball method to obtain bounds for the
restricted singular value. This methodology allows us to treat some idealized signal
processing problems, such as compressed sensing problems or phase retrieval from
random measurements.
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Problem Set 1

This assignment covers Chebyshev’s inequality, linear and nonlinear variance bounds,
Poincaré inequalities, the Laplace transform method, linear and nonlinear cgf bounds,
and (modified) log-Sobolev inequalities.

Exercises
1 (Variance mix). Let 𝑍 be a square-integrable, real random variable: 𝔼𝑍 2 < +∞.

(a) Show that Var[𝑍 ] = inf𝑎∈ℝ 𝔼(𝑍 − 𝑎)2.
(b) Let 𝑍 ′ be an independent copy of 𝑍 . Establish the identities

Var[𝑍 ] = 1
2 𝔼(𝑍 − 𝑍 ′)2 = 𝔼(𝑍 − 𝑍 ′)2+ = 𝔼(𝑍 − 𝑍 ′)2− .

The functions (𝑎)+ := max{𝑎, 0} and (𝑎)− := max{−𝑎, 0} bind before the
square and expectation.

(c) Assume that 𝑍 takes values in [𝑎, 𝑏]. Show that Var[𝑍 ] ≤ 1
4 |𝑏 − 𝑎 |2. Hint:

Use (a).

2 (Martinet). Let (𝑋1, . . . , 𝑋𝑛) be a family of random variables, not necessarily
independent. Consider a square-integrable random variable of the form 𝑍 :=
𝑓 (𝑋1, . . . , 𝑋𝑛). Define 𝑌0 = 𝔼𝑍 and

𝑌𝑖 := 𝔼[𝑍 | 𝑋1, . . . , 𝑋𝑖 ] for 𝑖 = 1, . . . , 𝑛.

Construct the difference sequence Δ𝑖 := 𝑌𝑖 −𝑌𝑖−1 for 𝑖 = 1, . . . , 𝑛.

(a) Show that (𝑌𝑖 : 𝑖 = 0, . . . , 𝑛) is a martingale sequence (called a Doob
martingale). That is, 𝔼[𝑌𝑖+1 | 𝑋1, . . . , 𝑋𝑖 ] = 𝑌𝑖 almost surely.

(b) Confirm that the martingale differences are orthogonal: 𝔼[Δ𝑖Δ𝑗 ] = 0 for
𝑖 ≠ 𝑗 .

3 (Subgaussian omnibus). Consider a real random variable 𝑍 that is centered:
𝔼𝑍 = 0. Define the cumulant generating function 𝜉𝑍 (𝜃 ) := log𝔼 e𝜃𝑍 for 𝜃 ∈ ℝ.
The cgf may take the value +∞.

(a) Compute (or look up) the cgf of a real, centered normal random variable.
(b) A centered, real random variable 𝑍 is called subgaussian if it satisfies (i)

below. Show that the other two statements are equivalent to (i) up to
scaling 𝑣 by a constant factor.

(i) 𝜉𝑍 (𝜃 ) ≤ 𝑣𝜃 2/2 for all 𝜃 ∈ ℝ, where 𝑣 ≥ 0 is called the variance proxy.
(ii) ℙ {|𝑍 | ≥ 𝑡 } ≤ 𝐶 e−𝑐𝑡

2/𝑣 for all 𝑡 ≥ 0 and constants 𝑐 ,𝐶 > 0.
(iii) (𝔼 |𝑍 |𝑝 )1/𝑝 ≤ 𝐶 ′√𝑝𝑣 for all 𝑝 ≥ 1 and a constant 𝐶 ′ > 0.

Hint: Prove that (i)⇒ (ii)⇒ (iii)⇒ (i). In sequence, you’ll use the Laplace
transform method, integration by parts, and a Taylor series expansion.
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(c) (*) We say that a centered, real random variable 𝑍 is subexponential if
𝜉 |𝑍 | (𝜃 ) ≤ 𝑅𝜃 2 for all |𝜃 | < 𝜃0, where 𝑅 ≥ 0 and 𝜃0 > 0. Formulate and
prove an equivalence result analogous to (a).

4 (Mad maximal). This exercise develops some important bounds on maxima.

(a) Consider centered, subgaussian random variables (𝑋1, . . . , 𝑋𝑛), with vari-
ance proxies bounded above by 𝑣 , not necessarily independent. Prove
that

𝔼max𝑖 𝑋𝑖 ≤
√︁
2𝑣 log𝑛.

Hint: Use Jensen to check that 𝔼𝑍 ≤ 𝜃 −1𝜉𝑍 (𝜃 ) for 𝜃 > 0. Bound the
maximum by a sum.

(b) (*) Considered centered, subexponential random variables (𝑋1, . . . , 𝑋𝑛),
not necessarily independent. What is the analog of the result in (a)?

Problems
1 (Rad). A Rademacher random variable 𝜀 takes values ±1 with equal probability:
𝜀 ∼ uniform{±1}. A (real-valued) Rademacher series is a random variable of
the form∑︁𝑛

𝑖=1
𝜀𝑖𝑎𝑖 where 𝜀𝑖 are iid Rademacher and 𝒂 = (𝑎1, . . . , 𝑎𝑛) ∈ ℝ𝑛 .

A Rademacher process is a family of Rademacher series, all involving the same
Rademacher variables:(∑︁𝑛

𝑖=1
𝜀𝑖𝑎𝑖 : 𝒂 ∈ T

)
, where 𝜀𝑖 are iid Rademacher and T ⊂ ℝ𝑛 .

(a) Assume ∥𝒂 ∥ℓ1 = 1. When are the minimum and maximum variance of∑𝑛
𝑖=1 𝜀𝑖𝑎𝑖 attained?

(b) Apply Chebyshev’s inequality and Hoeffding’s inequality to the Rademacher
series

∑𝑛
𝑖=1 𝜀𝑖𝑎𝑖 .

(c) For 𝑝 ≥ 1, Khintchine’s inequalities state that

𝑐𝜇2 ≤ 𝜇𝑝 ≤ 𝐶
√
𝑝𝜇2 where 𝜇𝑝 :=

(
𝔼

���∑︁𝑛

𝑖=1
𝜀𝑖𝑎𝑖

���𝑝 )1/𝑝 .
Derive the upper bound in Khintchine’s inequality from Hoeffding’s inequal-
ity and Exercise (3)(a). (*) Prove the lower inequality. Hint: Use Hölder to
bound 𝜇2 in terms of 𝜇1.

(d) Use Efron–Stein–Steele (ESS) to bound the variance of the supremum of a
Rademacher process:

Var
[
sup𝒂∈T

∑︁𝑛

𝑖=1
𝜀𝑖𝑎𝑖

]
≤ 2 sup𝒂∈T

∑︁𝑛

𝑖=1
𝑎2
𝑖 =: 2 radius2ℓ2 (T).

Hint: Use the formulation of ESS with the plus function.

2 (Positive concentration). Positive random variables enjoy special concentration
properties which ensure that they are bounded away from zero. Assume that
𝑍 ≥ 0 and that 𝑍 is square integrable.

(a) (*) Prove the Paley–Zygmund inequality (aka second moment method bound):

ℙ {𝑍 ≥ (1 − 𝑡 ) (𝔼𝑍 )} ≥ 𝑡 2(𝔼𝑍 )2
𝔼𝑍 2 for 𝑡 ∈ (0, 1].
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Hint: Write

𝔼[𝑍 ] = 𝔼[𝑍1{𝑍 < (1 − 𝑡 ) (𝔼𝑍 )}] + 𝔼[𝑍1{𝑍 ≥ (1 − 𝑡 ) (𝔼𝑍 )}].

Use Cauchy–Schwarz.
(b) Show that the cgf 𝜉𝑍−𝔼𝑍 (−𝜃 ) ≤ 𝜃 2(𝔼𝑍 2)/2 for 𝜃 ≥ 0. Establish the

subgaussian lower tail bound

ℙ {𝑍 ≤ (1 − 𝑡 ) (𝔼𝑍 )} ≤ exp
(
−𝑡 2(𝔼𝑍 )2
2 𝔼𝑍 2

)
for 𝑡 ∈ (0, 1].

Hint: Develop a bound for e−𝑎 when 𝑎 ≥ 0.
(c) Consider an independent family (𝑋𝑖 : 𝑖 = 1, . . . , 𝑛) of positive ran-

dom variables, and define 𝑍 =
∑𝑛
𝑖=1 𝑋𝑖 . Derive an upper bound for

ℙ {𝑍 ≤ (1 − 𝑡 ) (𝔼𝑍 )}.
(d) (*) Assume that 𝑍 ≥ 0 and 𝑍 is absolutely continuous, with density that

is bounded above by one. Give two examples of random variables that
have this property. Prove that 𝜉𝑍 (−𝜃 ) ≤ − log 𝜃 for 𝜃 > 0, and use this
inequality to derive an upper bound on ℙ {𝑍 ≤ 𝑡 }. What is the analogue
of (c)?

3 (Convex Poincaré). This problem develops a somewhat general Poincaré inequality.

(a) Consider a bounded, real random variable: 𝑎 ≤ 𝑋 ≤ 𝑏 . For all convex
𝑓 : [𝑎, 𝑏] → ℝ, prove that

Var[ 𝑓 (𝑋 )] ≤ (𝑏 − 𝑎)2 𝔼[ 𝑓 ′ (𝑋 )2].

Hint: Use the exchangeable pairs representation for the variance and the
identity

𝑓 (𝑥) − 𝑓 (𝑦 ) = (𝑥 − 𝑦 )
∫ 1

0
𝑓 ′ ((1 − 𝑠 )𝑥 + 𝑠𝑦 ) d𝑠 ,

valid for all 𝑥, 𝑦 ∈ [𝑎, 𝑏].
(b) A separately convex function 𝑓 : ℝ𝑛 → ℝ is convex when restricted to each

coordinate. Confirm that a convex function is separately convex. Tensorize
the convex Poincaré inequality to obtain a variance bound for a separately
convex function of independent, bounded random variables.

(c) (*) Let 𝑿 ∈ ℝ𝑚×𝑛 be a random matrix with independent entries that take
values in [−1, 1]. Give a dimension-free bound for Var[∥𝑿 ∥]. Hint: The
spectral norm ∥·∥ is convex and 1-Lipschitz. (**) What is the scale of
𝔼 ∥𝑿 ∥?

Applications
1 (Robust mean estimation). By the LLN, sample averages converge to the population
mean. Nevertheless, for a small sample, the sample average is unreliable. One
remedy is to use a more robust method, such as the median-of-means estimator.
Consider a real random variable 𝑋 that is square-integrable.

(a) Let 𝑋𝑘 be the average of 𝑘 independent copies of 𝑋 . Use Chebyshev’s
inequality to obtain a concentration inequality for 𝑋𝑘 .
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(b) Let 𝑌𝑛 be the median of 𝑛 independent copies of 𝑋𝑘 . For a level 𝑡 > 0, use
Chernoff’s inequality to obtain a subexponential bound forℙ {|𝑌𝑛 − 𝔼𝑋 | ≥ 𝑡 }.
Hint: Consider the probability that more than 𝑛/2 independent realizations
of 𝑋𝑘 lie outside the interval 𝔼𝑋 ± 𝑡 .

(c) (*) Suppose that we sample𝑚 independent copies of 𝑋 . For a given level
𝑡 > 0, what is the best setting of the parameters 𝑘 and 𝑛 to minimize the
bound on the failure probability?

2 (Jack the Knife). The ESS inequality was developed to study the jackknife, a
statistical methodology based on subsampling. For 𝑘 ∈ ℕ, let 𝑓𝑘 : ℝ𝑘 → ℝ

be a family of estimators for a parameter 𝜃 of a distribution. Assume each 𝑓𝑘
is symmetric (invariant under permutation of arguments). Consider iid real
random variables (𝑋1, . . . , 𝑋𝑛). The full-data estimate 𝑍 := 𝑓𝑛 (𝑋1, . . . , 𝑋𝑛).
Define jackknife replicates

𝑍 (𝑖 ) := 𝑓𝑛−1(𝑋1, . . . , 𝑋𝑖−1, 𝑋𝑖+1, . . . , 𝑋𝑛) for 𝑖 = 1, . . . , 𝑛.

Construct the average 𝑍𝑛 := 𝑛−1 ∑𝑛
𝑖=1 𝑍

(𝑖 ) of the jackknife replicates.

(a) A (simplified) jackknife estimate for the variance of the estimator 𝑓𝑛−1 is

V̂ar :=
∑︁𝑛

𝑖=1

(
𝑍 (𝑖 ) − 𝑍𝑛

)2
=

1
2𝑛

∑︁𝑛

𝑖 ,𝑗=1

(
𝑍 (𝑖 ) − 𝑍 ( 𝑗 ) )2.

Show that Var[ 𝑓𝑛−1] ≤ 𝔼[V̂ar]. That is, the jackknife overestimates variance
on average.

(b) (*) Shockingly, the jackknife can (sometimes) evaluate the bias of a param-
eter estimate. Consider

B̂ias := (𝑛 − 1)
(
𝑍𝑛 − 𝑍

)
.

Suppose that the estimators 𝑓𝑘 are also quadratic (can be written as a
degree-two polynomial). The sample variance is one such functional. Show
that 𝔼[B̂ias] = 𝔼𝑍 − 𝜃 . The jackknife is an unbiased estimator of the bias!
(*) Can you give more examples of exchangeable, quadratic statistics?

3 (Bin packing). Bounded differences can be used to study a classic combinatorial
optimization problem called stochastic bin packing. Consider a real random
variable 0 ≤ 𝑊 ≤ 1 that describes the length of a randomly chosen suitcase.
Each overhead bin on an aircraft can hold suitcases with total length one. Let
𝑍𝑛 be the minimum number of bins sufficient to hold 𝑛 suitcases whose lengths
are iid copies of𝑊 .

(a) Show that 𝔼[𝑍𝑛] ≥ 𝑛 𝔼𝑊 .
(b) Show the Var[𝑍𝑛] ≤ 𝑛/4. Explain the significance.

4 (Second-order Gaussian chaos). Fix a symmetric matrix 𝑨 ∈ ℝ𝑛×𝑛 with zero
diagonal. Let 𝒛 = (𝑧1, . . . , 𝑧𝑛) ∼ normal(0, I𝑛) be a standard normal random
vector. The quadratic form 𝑋 = 𝒛 ∗𝑨𝒛 is called a second-order Gaussian chaos. It
is a simple model for interactions among entities. (Why?)

(a) Compute 𝔼𝑋 and Var[𝑋 ].
(b) Bound Var[𝑋 ] using the Gaussian Poincaré inequality. Compare with the

exact variance.
(c) Explain why 𝑋 ∼ ∑𝑛

𝑖=1 𝜆𝑖 (𝑧2𝑖 − 1), where (𝜆1, . . . , 𝜆𝑛) are the eigenvalues
of 𝑨.
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(d) Confirm that 𝜉𝑧2
𝑖
−1(𝜃 ) ≤ 𝜃 2/(1 − (2𝜃 )+) for all 𝜃 < 1/2. Compare with

the Bernstein cgf.
(e) Develop the upper tail bound

ℙ {𝑋 > 𝑡 } ≤ exp
(

−𝑡 2/4
∥𝑨∥2F + 𝑡 ∥𝑨∥

)
,

where ∥𝑨∥F is the Frobenius norm and ∥𝑨∥ is the spectral norm.



Problem Set 2

This assignment covers linear and nonlinear cgf bounds, entropy, (modified) log-
Sobolev inequalities, Herbst’s argument, symmetrization, moment inequalities, matrix
concentration, and applications.

Problems
1 (Nonlinear Bernstein inequality). Suppose that 𝒙 = (𝑋1, . . . , 𝑋𝑛) is a random vector
that satisfies a modified log-Sobolev inequality (MLSI):

ent(e𝑓 (𝒙 ) ) ≤ 𝐶 𝔼[∥∇𝑓 (𝒙 )∥22 e𝑓 (𝒙 ) ] for nice 𝑓 : ℝ𝑛 → ℝ.

We have used a uniform bound on the norm of the gradient to derive normal
concentration. In this problem, we will see how to obtain bounds that reflect the
typical size of the gradient.

(a) (*MLSI implies Poincaré). Show that the MLSI implies the Poincaré inequality
with constant 𝐶 :

Var[ 𝑓 (𝒙 )] ≤ 𝐶 𝔼[∥∇𝑓 (𝒙 )∥22].
Hint: Apply the MLSI to the function log(1 + 𝜂 𝑓 ), and take the limit as
𝜂 → 0.

(b) (*Young’s inequality). Suppose that 𝑌 is a positive random variable with
𝔼𝑌 = 1, and let𝑊 be another random variable. Prove Young’s inequality
for entropy:

𝔼[𝑊𝑌 ] ≤ log𝔼 e𝑊 + 𝔼[𝑌 log𝑌 ].
In other words, entropy is the Fenchel dual of the exponential mean (or
cgf). (*) What is the equality condition? Hint: Consider random variables
𝑌 and 𝑍 = e𝑊 /𝔼 e𝑊 , and use the fact that relative entropy is positive.

(c) (Nonlinear Bernstein). In this part, we will develop a nonlinear analog of the
Bernstein inequality.

(i) Using (c), deduce that Var[ 𝑓 ] ≤ 𝐶𝜓−1𝜉 ∥∇ 𝑓 ∥22 (𝜓 ) for all 𝜓 > 0. In
other words, the exponential mean of the energy is a plausible variance
proxy.

(ii) Apply Young’s inequality to decouple the expression 𝔼[∥∇𝑓 ∥22 e𝑓 ]. Hint:
Normalize by 𝜓 𝔼 e𝑓 .

(iii) Use the MLSI and the last result to obtain a bound for the entropy:

ent(e𝜃 𝑓 )
𝜃 2 𝔼 e𝜃 𝑓

≤
𝐶𝜓−1𝜉 ∥∇ 𝑓 ∥22 (𝜓 )

1 −𝐶𝜃 2/𝜓 when 𝜓 > 𝐶𝜃 2.
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(iv) Apply the Herbst argument to obtain a Bernstein-type bound for the
cgf of 𝑓 − 𝔼 𝑓 :

𝜉 𝑓 −𝔼 𝑓 (𝜃 ) ≤
𝐶 (𝜃 2/𝜓 )𝜉 ∥∇ 𝑓 ∥22 (𝜓 )

1 −𝐶𝜃 2/𝜓 ≤
𝐶 (𝜃 2/𝜓 )𝜉 ∥∇ 𝑓 ∥22 (𝜓 )

1 −
√︁
𝐶𝜃 2/𝜓

.

(v) Deduce a Bernstein-type concentration inequality for 𝑓 . You may leave
𝜓 as a free parameter.

(d) (Self-bounded functions). We say that a centered random variable 𝑓 is
self-bounded when ∥∇𝑓 ∥22 ≤ 𝑎 𝑓 + 𝑏 for 𝑎 ≥ 0 and 𝑏 ∈ ℝ.

1. Using (c)(iv), produce a bound for 𝜉 𝑓 (𝜃 ). Hint: Choose 𝜓 = 𝜃/𝑎 .
2. Deduce an upper tail bound for 𝑓 .

(e) (Psd quadratic forms). For simplicity, assume that 𝒙 is an isotropic column
vector: 𝔼[𝒙𝒙 ∗] = I. Let 𝑨 ∈ ℍ𝑛 be a psd matrix, and consider the centered
random variable 𝑓 (𝒙 ) = 𝒙 ∗𝑨𝒙 − tr(𝑨).

(i) Give examples of isotropic random vectors that satisfy a (convex) MLSI.
(ii) Show that 𝑓 is self-bounded, and use (d) to obtain an upper tail bound.

Compare with the Gaussian chaos bound on PS1.
(iii) Observe that the result from (iii) holds under a convex MLSI.

(f) (*Indefinite quadratic forms). As an example, consider the random variable
𝑞 (𝒙 ) = 𝒙 ∗𝑩𝒙 where 𝑩 ∈ ℍ𝑛 is symmetric but not necessarily psd. Reduce
concentration for the indefinite quadratic form 𝑞 to concentration for the
psd quadratic form 𝑞 . Deduce a complete concentration inequality for 𝑞 .

2 (Matrix Moment Inequalities). In this problem, you will develop a complete proof of
the matrix moment inequalities. These are polynomial moment analogs of the
matrix Bernstein inequality.

(a) (Gaussian symmetrization). First, we show that we can symmetrize an in-
dependent sum using Gaussians instead of Rademachers. Consider an
independent family (𝒙1, . . . , 𝒙𝑛) of integrable random variables taking
values in a (finite-dimensional) normed linear space X. Consider an inde-
pendent family (𝜀1, . . . , 𝜀𝑛) of iid Rademachers and an independent family
(𝑔1, . . . , 𝑔𝑛) of iid standard normal variables.

(i) Establish the Gaussian symmetrization principle:

𝔼




∑︁𝑛

𝑖=1
(𝒙 𝑖 − 𝔼 𝒙 𝑖 )





X
≤
√
2𝜋 𝔼




∑︁𝑛

𝑖=1
𝑔𝑖 (𝒙 𝑖 − 𝔼 𝒙 𝑖 )





X
.

Hint: We have 𝑔𝑖 ∼ 𝜀𝑖 |𝑔𝑖 |. Extend to a positive convex function of the
norm.

(ii) (*) By imitating the proof of the symmetrization principle, show that

1
2
𝔼




∑︁𝑛

𝑖=1
𝜀𝑖 (𝒙 𝑖 − 𝔼 𝒙 𝑖 )





X
≤ 𝔼




∑︁𝑛

𝑖=1
(𝒙 𝑖 − 𝔼 𝒙 𝑖 )





X

We have already obtained the matching upper bound. (*) Extend to
the case of a positive convex function of the norm.

(iii) (*Contraction principle). Consider (𝑎1, . . . , 𝑎𝑛) ∈ ℝ𝑛 with |𝑎𝑖 | ≤ 1 for
each 𝑖 . Show that

𝔼𝜺




∑︁𝑛

𝑖=1
𝑎𝑖 𝜀𝑖𝒙 𝑖





X
≤ 𝔼𝜺




∑︁𝑛

𝑖=1
𝜀𝑖𝒙 𝑖





X
.
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Hint: A convex function on a compact set achieves its maximum at an
extreme point.

(iv) (*) Use the contraction principle to derive a lower bound in the Gaussian
symmetrization principle. Is it dimension-free?

(b) (Standard Normal Moments). Next, we perform an important calculation that
forms the pattern for the next argument. Let 𝑔 ∼ normal(0, 1).

(i) Prove the Gaussian integration by parts identity. For every differentiable
function 𝑓 : ℝ → ℝ where the expectations are defined,

𝔼[𝑔 𝑓 (𝑔 )] = 𝔼[ 𝑓 ′ (𝑔 )].

(ii) For 𝑝 ∈ ℕ, use Gaussian integration by parts to verify that 𝔼 𝑔 2𝑝 =

(2𝑝 − 1)!!.
(iii) (*) Establish the inequality [(2𝑝 − 1)!!]1/(2𝑝 ) ≤

√︁
(2𝑝 + 1)/e.

(c) (Matrix Khintchine). Let𝑨1, . . . ,𝑨𝑛 ∈ ℍ𝑑 be fixedmatrices, and let (𝑔1, . . . , 𝑔𝑛)
be iid standard normal variables. Define the randommatrix 𝑿 :=

∑𝑛
𝑖=1 𝑔𝑖𝑨𝑖 .

We will establish the matrix Khintchine inequality. For each integer
𝑝 ≥ ⌈log𝑑⌉,(

𝔼 ∥𝑿 ∥2𝑝
)1/(2𝑝 ) ≤ √︁

2𝑝 + 1∥𝔼𝑿 2∥1/2 =
√︁
2𝑝 + 1




∑︁𝑛

𝑖=1
𝑨2
𝑖




1/2 .
What is important is that the leading constant has order

√
𝑝 , so you do not

need to get hung up on obtaining the precise value
√
2𝑝 + 1.

(i) Verify that ∥𝑨∥ ≤ (tr𝑨𝑝 )1/𝑝 ≤ 𝑑1/𝑝 ∥𝑨∥ for all 𝑨 ∈ ℍ𝑑 and 𝑝 ∈ ℕ.
(ii) Apply Gaussian integration by parts to obtain the identity

𝔼 tr𝑿 2𝑝 =
∑︁𝑛

𝑖=1
𝔼 tr[𝑔𝑖𝑨𝑖𝑿 2𝑝−1]

=
∑︁𝑛

𝑖=1

∑︁2𝑝−2
𝑞=0

𝔼 tr[𝑨𝑖𝑿 𝑞𝑨𝑖𝑿
2𝑝−2−𝑞 ].

Hint: For a matrix-valued function 𝑓 : 𝑡 ↦→ 𝑨 (𝑡 )𝑞+1 and positive integer
𝑞 , the derivative is 𝑓 ′ (𝑡 ) = ∑𝑞

𝑟=0 𝑨 (𝑡 )𝑟𝑨′ (𝑡 )𝑨 (𝑡 )𝑞−𝑟 .
(iii) (*) For 𝑨,𝑩 ∈ ℍ𝑑 and integers 0 ≤ 𝑞 ≤ 2𝑟 , establish the inequality

tr[𝑨𝑩𝑞𝑨𝑩2𝑟−𝑞 ] ≤ tr[𝑨2𝑩2𝑟 ].

Hint: Use eigenvalue decompositions and the generalized AM–GM
inequality.

(iv) Complete the proof of the matrix Khintchine inequality. In spirit,
the argument that we gave in class to obtain the scalar Khintchine
inequality is modeled on the same ideas.

(v) (*) For psd 𝑨, show that intdim(𝑨) := tr𝑨/∥𝑨∥ ≤ rank(𝑨). Explain
the term “intrinsic dimension.”

(vi) (*) Prove matrix Khintchine holds with intdim(∑𝑛
𝑖=1 𝑨

2
𝑖 ) in place of 𝑑 ,

where 𝑝 = ⌈log𝑑⌉.
(d) (*Matrix Rosenthal I). Let 𝑿 1, . . . ,𝑿 𝑛 ∈ ℍ𝑑 be statistically independent,

random psd matrices. For each integer 𝑝 with 𝑝 ≥ ⌈log𝑑⌉ ≥ 1, show that(
𝔼




∑︁𝑛

𝑖=1
𝑿 𝑖




2𝑝 )1/2𝑝
≤

[


∑︁𝑛

𝑖=1
𝔼𝑿 𝑖




1/2 + Const · √𝑝 ·
(
𝔼max𝑖 ∥𝑿 𝑖 ∥2𝑝

)1/4𝑝 ]2
.
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Hint: The argument is the same as in class, but it requires a modest amount
of matrix analysis.

(e) (Matrix Rosenthal II). Let 𝑿 1, . . . ,𝑿 𝑛 ∈ ℍ𝑑 be statistically independent, zero-
mean random matrices. For each integer 𝑝 with 𝑝 ≥ ⌈log𝑑⌉ ≥ 1, show
that(

𝔼




∑︁𝑛

𝑖=1
𝑿 𝑖




4𝑝 )1/4𝑝 ≤ Const · √𝑝 ·



∑︁𝑛

𝑖=1
𝔼𝑿 2

𝑖




1/2
+ Const · 𝑝 ·

(
𝔼max𝑖 ∥𝑿 𝑖 ∥4𝑝

)1/4𝑝
.

Applications

1 (Johnson–Lindenstrauss). In this application, we will look at a famous theorem of
Bill Johnson & Yoram Lindenstrauss on dimension reduction.

Theorem 19.3 (Johnson–Lindenstrauss). Let 𝒂1, . . . ,𝒂𝑁 ∈ ℝ𝑑 be an arbitrary set
of fixed points, and choose a parameter 𝜀 > 0. For each𝑚 ≥ const·𝜀−2 log𝑁 ,
there exists a (linear) dimension reduction map 𝚽 : ℝ𝑑 → ℝ𝑚 with the
property that

(1 − 𝜀)∥𝒂 𝑖 − 𝒂 𝑗 ∥22 ≤ ∥𝚽𝒂 𝑖 −𝚽𝒂 𝑗 ∥22 ≤ (1 + 𝜀)∥𝒂 𝑖 − 𝒂 𝑗 ∥22 (19.8)

for all 𝑖 , 𝑗 = 1, . . . , 𝑁 .

This result states that all pairwise distances are preserved even though the
embedding dimension 𝑚 is logarithmic in the size 𝑁 of the point set! The
JL Theorem has many (theoretical) applications in modern computer science,
because it (theoretically) allows us to replace a high-dimensional problem by a
lower-dimensional problem that may be easier to solve.

(a) Consider a matrix 𝚽 ∈ ℝ𝑚×𝑑 with iid normal(0,𝑚−1) entries. Prove the
Johnson–Lindenstrauss theorem for this choice of the dimension reduction
map.

(b) Explain why a similar result is valid for any randommatrix with iid centered,
bounded entries.

(c) (*) Let’s see how well (that is, badly) this result works in practice. Download
the Matlab file myisolet.mat from the course website. It contains a
617 × 1559 matrix whose columns are data points. Perform the following
experiment 100 times. For embedding dimensions𝑚 ∈ {2𝑖 : 0 ≤ 𝑖 ≤ 8},
construct a random embedding matrix 𝚽 ∈ ℝ𝑚×617. Apply the random
embedding𝚽 to the data, and compute the empirical distortion 𝜀 (𝑚). That
is, calculate the smallest number 𝜀 where the 2

(1559
2

)
distinct inequalities

in (19.8) hold simultaneously. For two choices of𝑚, plot a histogram of the
empirical distortion 𝜀 (𝑚) over the 100 trials. Plot the empirical average
distortion 𝜀 (𝑚) as a function of 𝑚. What do you conclude from these
experiments?

2 (Spectral Clustering). The stochastic block model (SBM) is a simple (i.e., ridiculous)
random model for community structure. Consider 2𝑛 individuals, partitioned
into two communities 𝐼 and 𝐼 𝑐 of equal cardinality. Fix probabilities𝑝, 𝑞 ∈ [0, 1]
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with 𝑝 > 𝑞 . We construct a random graph on these 2𝑛 vertices, where the
presence of an edge means that two individuals are acquainted. For each
set {𝑢,𝑣 } of distinct vertices, we introduce an edge independently at random
(a) with probability 𝑝 when 𝑢,𝑣 belong to the same community or (b) with
probability 𝑞 when 𝑢,𝑣 belong to opposite communities. Let 𝑨 be the random
adjacency matrix.

One basic question is whether we can identify the communities from a single
observation of the graph. A simple but useful approach is spectral clustering.
That is, we compute the unit-ℓ2-norm eigenvector 𝒖2(𝑨) associated with the
second largest eigenvalue of 𝑨. Define the random set 𝐼 := {𝑖 : (𝒖2)𝑖 > 0}. We
will develop conditions under which 𝐼 aligns with one of the two communities 𝐼
or 𝐼 𝑐 .

(a) Write the random adjacency matrix 𝑨 as a sum of independent random
matrices. Apply the matrix Bernstein inequality or (easier) the matrix
Rosenthal inequality to see that(

𝔼 ∥𝑨 − 𝔼𝑨∥2
)1/2 ≤ const ·

[√︁
𝜚 log𝑛 + log𝑛

]
,

where 𝜚 := 0.5(𝑝 +𝑞)𝑛 is the expectation of the average degree of a vertex
in the graph.

(b) Compute 𝔼𝑨 and its eigenvalues. What is the unit-norm eigenvector
associated with the largest eigenvalue? What is the unit-norm eigenvector
associated with the second largest eigenvalue?

(c) Write a paragraph to explain why the spectral clustering procedure is a
natural mechanism for community detection.

(d) (**Davis–Kahan). Let 𝑺 ,𝑻 be symmetric matrices of the same size. Suppose
that the 𝑖 th eigenvalue of 𝑺 is separated from the rest of spectrum:

gap𝑖 (𝑺 ) := min
𝑗≠𝑖

|𝜆𝑖 (𝑺 ) − 𝜆𝑗 (𝑺 ) | =: 𝜀.

Then the acute angle 𝜃𝑖 between the unit-norm eigenvectors 𝒖 𝑖 (𝑺 ) and
𝒖 𝑖 (𝑻 ) associated with the 𝑖 th eigenvalues satisfies the inequality

sin 𝜃𝑖 ≤ 2𝜀−1∥𝑺 −𝑻 ∥.

In particular, min± ∥𝒖 𝑖 (𝑺 ) ± 𝒖 𝑖 (𝑻 )∥2 ≤ 23/2𝜀−1∥𝑺 −𝑻 ∥.
(e) Compute gap2(𝔼𝑨), and define 𝜇𝑛 := gap2.
(f) Suppose that the average expected degree 𝜚 ≫ log𝑛. Show that

𝔼min
±

∥𝒖2(𝔼𝑨) ± 𝒖2(𝑨)∥22 ≤ const · log𝑛
𝜇2𝑛

.

(g) Conclude that the estimated community 𝐼 almost coincides with a true
community 𝐼 or 𝐼 𝑐 :

𝔼max
{
#(𝐼 ∩ 𝐼 ),#(𝐼 ∩ 𝐼 𝑐 )

}
≥ 𝑛 − const · log𝑛

𝜇2

Why can’t we tell which community 𝐼 will line up with?
(h) Write a paragraph to explain what assumptions on 𝑝, 𝑞, 𝑛 are needed to

identify communities in the SBM via spectral clustering. Explain what your
conclusions mean intuitively.



Problem Set 3

This assignment covers Gaussian processes, random processes, comparison theorems,
and phase transition phenomena.

Exercises

1 (Milk Duds). For 𝑛 ∈ ℕ, consider the sets

T𝑛 :=
{
(1 + log 𝑖 )−1/2e𝑖 : 𝑖 = 1, . . . , 𝑛

}
⊂ ℝ𝑛 .

Let (𝑋𝑡 : 𝑡 ∈ T𝑛) be the centered canonical Gaussian process on T𝑛 .

(a) By direct argument, show that 𝔼 sup𝑡 ∈T𝑛 𝑋𝑡 ≤ Const.

(b) Compute the covering numbers N(T𝑛 , ℓ2; 𝜀) for small-ish 𝜀.

(c) Instantiate Sudakov’s minoration to confirm that sup𝑡 ∈T𝑛 𝑋𝑡 ≥ const.

(d) Instantiate Dudley’s integral inequality to see that sup𝑡 ∈T𝑛 𝑋𝑡 ≤ const ·
log log𝑛.

(e) Show that the generic chaining bound 𝛾2(T𝑛 , ℓ2) ≤ Const.

(f) Write a paragraph to explain the import of these facts.

2 (Chain Gang). In this problem, we investigate the relationships among our lower
and upper bounds for random processes.

(a) Let (T, dist) be a metric space. Show that the Dudley sum and integral are
equivalent:∫ ∞

0

√︁
log N(T, dist; 𝜀) d𝜀 ≤ Const ·

∑︁
𝑘 ∈ℤ

2−𝑘
√︁
log N(T, dist; 2−𝑘 )

≤ Const ·
∫ ∞

0

√︁
log N(T, dist; 𝜀) d𝜀.

(b) (Hard Labor). Let T ⊂ ℝ𝑛 . Prove that

sup
𝜀>0

𝜀
√︁
log N(T, ℓ2; 𝜀) ≤ Const ·

∫ ∞

0

√︁
log N(T, ℓ2; 𝜀) d𝜀

≤ Const · (log𝑛) · sup
𝜀>0

𝜀
√︁
log N(T, ℓ2; 𝜀).

For a canonical Gaussian process, the gap between Sudakov’s lower bound
and Dudley’s lower bound is at worst logarithmic in the dimension. Hint:
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Use the volumetric estimate to control the growth of the covering numbers
as 𝜀 → 0. (*) Is the second inequality sharp?

(c) Let (T, dist) be a metric space. Prove that

𝛾2(T, dist) ≤ Const ·
∫ ∞

0

√︁
N(T, dist; 𝜀) d𝜀.

Conclude that Talagrand’s bound is never worse than Dudley’s, modulo
constants.

Problems

1. (Férnique–Sudakov–Vitale Comparison). We used a version of the following result
to establish Sudakov’s minoration:

Theorem 19.4 (Vitale). Let (𝑋𝑡 : 𝑡 ∈ T) and (𝑌𝑡 : 𝑡 ∈ T) be Gaussian processes
with the following properties:

𝔼𝑋𝑡 = 𝔼𝑌𝑡 for all 𝑡 ∈ T;
𝔼(𝑋𝑠 − 𝑋𝑡 )2 ≤ 𝔼(𝑌𝑠 −𝑌𝑡 )2 for all 𝑠 , 𝑡 ∈ T.

Then
𝔼 sup
𝑡 ∈T

𝑋𝑡 ≤ 𝔼 sup
𝑡 ∈T

𝑌𝑡 .

(a) For 𝛽 > 0, define the soft-max function

𝑓𝛽 (𝒂) := 𝛽−1 log
∑︁𝑛

𝑖=1
e𝛽𝑎𝑖 for 𝒂 ∈ ℝ𝑛 .

Check that
max
1≤𝑖≤𝑛

𝑎𝑖 ≤ 𝑓𝛽 (𝒂) ≤ max
1≤𝑖≤𝑛

𝑎𝑖 + 𝛽−1 log𝑛.

(b) Compute the first and second partial derivatives of the soft-max function.

(c) Establish Vitale’s comparison. Hint: Use the Gaussian interpolation result.
The proof is easier if you assume that the processes are centered, but a
similar argument works in general.

(d) Let T ⊂ ℝ𝑛 . Let 𝜑𝑖 : ℝ → ℝ be 1-Lipschitz functions. For a standard
normal vector 𝒈 ∈ ℝ𝑛 , use Vitale’s comparison to verify that

𝔼 sup
𝒕 ∈T

∑︁𝑛

𝑖=1
𝑔𝑖 𝜑𝑖 (𝑡𝑖 ) ≤ 𝔼 sup

𝒕 ∈T

∑︁𝑛

𝑖=1
𝑔𝑖𝑡𝑖 .

This comparison principle is useful when studying empirical processes.

(e) (*) Talagrand established that the same result holds if we replace the
Gaussian random variables by iid Rademacher variables (𝜀𝑖 ):

𝔼 sup
𝒕 ∈T

∑︁𝑛

𝑖=1
𝜀𝑖 𝜑𝑖 (𝑡𝑖 ) ≤ 𝔼 sup

𝒕 ∈T

∑︁𝑛

𝑖=1
𝜀𝑖𝑡𝑖 .

Prove it. Hint: The argument involves a somewhat tedious case analysis,
but you only need to treat a single summand.
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(f) (*) Let 𝑨 ∈ ℝ𝑛×𝑛 be a matrix. Let 𝑫 = diag(𝛿1, . . . , 𝛿𝑛), where 𝛿𝑖 ∼
bern(𝛿 ) iid. Use centering, symmetrization, and the Rademacher compar-
ison from (e) to show that

𝔼 ∥𝑫𝑨∥2→1 ≤ 𝛿 ∥𝑨∥2→1 +
√︁
2𝛿 (1 − 𝛿 )∥𝑨∥F.

Recall that ∥𝑨∥2→1 B sup∥𝒖 ∥2=1 ∥𝑨𝒖 ∥1. In other words, a random row
submatrix inherits “its share” of the 2 → 1 operator norm.

Applications

1. (Duck and Cover). The Hamming cube is the set H𝑛 := {0, 1}𝑛 of bit strings of
length 𝑛, equipped with the metric

distH(𝒙 , 𝒚 ) := #{𝑖 : 𝑥𝑖 ≠ 𝑦𝑖 } for 𝒙 , 𝒚 ∈ H𝑛 .

A Hamming ball is a set of the form B𝑟 (𝒙 ) := {𝒚 ∈ H𝑛 : distH(𝒙 , 𝒚 ) ≤ 𝑟 }, where
the point 𝒙 ∈ H𝑛 and the radius 𝑟 > 0.

(a) Verify that distH is a metric.

(b) For 𝑟 ∈ ℕ and 𝒙 ∈ H𝑛 , establish bounds for the cardinality of a Hamming
ball: (𝑛

𝑟

)𝑟
≤ #B𝑟 (𝒙 ) ≤

(e𝑛
𝑟

)𝑟
.

Hint: Recall that e𝑟 ≥ ∑𝑘
𝑖=0 𝑟

𝑖/𝑖 ! for 𝑟 ≥ 0.

(c) Use a volumetric argument to prove that

2𝑛
( 𝑟
e𝑛

)𝑟
≤ N(H𝑛 , distH; 𝑟 ) ≤ P(H𝑛 , distH; 𝑟 /2) ≤ 2𝑛

( 𝑟
2𝑛

)𝑟 /2
.

Fix natural numbers 𝑟 , 𝑘 , 𝑛 with 𝑘 ≤ 𝑛. An error correcting code consists of an
encoding map 𝐸 : H𝑘 → H𝑛 that assigns an 𝑛-bit codeword to a 𝑘 -bit message,
along with a decoding map 𝐷 : H𝑛 → H𝑘 that maps an 𝑛-bit string back to a
𝑘 -bit message. The code is resilient to arbitrary errors in 𝑟 bits of a codeword if
and only if

𝐷 (𝒚 ) = 𝒙 for each 𝒙 ∈ H𝑘 and each 𝒚 ∈ B𝑟 (𝐸 (𝒙 )).

We say that such a code has parameters (𝑟 , 𝑘 , 𝑛).

(d) Assume that log2 P(H𝑛 , distH; 𝑟 ) ≥ 𝑘 . Prove that there exists an error
correcting code with the parameters (𝑟 , 𝑘 , 𝑛).

(e) Assume that 𝑛 ≥ 𝑘 + 2𝑟 log2(e𝑛/(2𝑟 )). Show that there exists a code with
parameters (𝑟 , 𝑘 , 𝑛).

(f) State and prove converses to the last two results.

(g) Express these results in terms of the rate 𝑅 := 𝑘/𝑛 and the fraction of
errors 𝛿 := 𝑟 /𝑛.
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2. (Phase Transitions). In this problem, we will establish another important Gaussian
comparison inequality due to Yehoram Gordon, as well as a modern variant
obtained by graduate students at Caltech. As an application, we will investigate
a remarkable phase transition phenomenon that holds in geometric probability.

Theorem 19.5 (Gordon). Let {𝑋𝑢𝑣 : 𝑢 ∈ U, 𝑣 ∈ V} and {𝑌𝑢𝑣 : 𝑢 ∈ U, 𝑣 ∈ V}
be centered Gaussian processes on a compact metric space (U × V, dist).
Assume that

𝔼(𝑋𝑢𝑣 − 𝑋𝑢𝑣 ′)2 ≤ 𝔼(𝑌𝑢𝑣 −𝑌𝑢𝑣 ′)2 for all 𝑢 ∈ U and 𝑣,𝑣 ′ ∈ V;
𝔼(𝑋𝑢𝑣 − 𝑋𝑢 ′𝑣 ′)2 ≥ 𝔼(𝑌𝑢𝑣 −𝑌𝑢 ′𝑣 ′)2 for all 𝑢 ≠ 𝑢 ′ in U and all 𝑣,𝑣 ′ ∈ V;

𝔼𝑋 2
𝑢𝑣 = 𝔼𝑌 2

𝑢𝑣 for all 𝑢 ∈ U and 𝑣 ∈ V.

For all 𝜏 ∈ ℝ,

ℙ

{
min
𝑢∈U

max
𝑣∈V

𝑋𝑢𝑣 ≥ 𝜏
}
≤ ℙ

{
min
𝑢∈U

max
𝑣∈V

𝑌𝑢𝑣 ≥ 𝜏
}
.

In particular,
𝔼min
𝑢∈U

max
𝑣∈V

𝑋𝑢𝑣 ≤ 𝔼min
𝑢∈U

max
𝑣∈V

𝑌𝑢𝑣 .

(a) Use Kahane’s theorem to prove Gordon’s theorem.

(b) Let U ⊂ ℝ𝑚 and V ⊂ ℝ𝑛 . Let 𝚪 ∈ ℝ𝑛×𝑚 be a standard normal matrix. Let
𝒈 ∈ ℝ𝑚 and 𝒉 ∈ ℝ𝑛 be independent standard normal. Mimic the proof of
Chevet’s theorem to get

ℙ

{
min
𝒖∈𝑈

max
𝒗 ∈𝑉

⟨𝚪𝒖 , 𝒗 ⟩ < 𝜏
}

≤ 2ℙ
{
min
𝒖∈𝑈

max
𝒗 ∈𝑉

[∥𝒗 ∥2⟨𝒈 , 𝒖⟩ + ∥𝒖 ∥2⟨𝒉 , 𝒗 ⟩] ≤ 𝜏
}
.

Furthermore,

𝔼min
𝒖∈U

max
𝒗 ∈V

⟨𝚪𝒖 , 𝒗 ⟩ ≥ 𝔼min
𝒖∈U

max
𝒗 ∈V

[∥𝒗 ∥2⟨𝒈 , 𝒖⟩ + ∥𝒖 ∥2⟨𝒉 , 𝒗 ⟩] .

(c) Show that the 𝑚th largest singular value of the standard normal matrix
𝚪 ∈ ℝ𝑛×𝑚 satisfies

𝔼𝜎𝑚 (𝚪) ≥
√
𝑛 − 1 −

√
𝑚.

This inequality is numerically sharp. (**) Argue that we can replace
√
𝑛 − 1

by
√
𝑛.

(d) (*) Assume that U and V are both convex. Establish the reversed inequality

ℙ

{
min
𝒖∈U

max
𝒗 ∈V

⟨𝚪𝒖 , 𝒗 ⟩ > 𝜏
}

≤ 2ℙ
{
min
𝒖∈U

max
𝒗 ∈V

[∥𝒗 ∥2⟨𝒈 , 𝒖⟩ + ∥𝒖 ∥2⟨𝒉 , 𝒗 ⟩] ≥ 𝜏
}
.

Hint: Consider the negation of the random processes, invoke Sion’s theorem,
repeat the proof of (b), and then use the inf–sup inequality to wrestle the
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result into the stated form. In this form, the result is due to Thrampoulidis,
Oymak, & Hassibi.

The Gaussian minimax theorem has remarkable applications in mathe-
matical signal processing. We will focus on a relatively simple geometric
example.

(e) Let T ⊂ ℝ𝑛 be a compact, convex subset of the Euclidean unit ball. Let
L𝑑 ⊂ ℝ𝑛 be a uniformly random subspace with codimension 𝑑 . Consider
the probability that the random subspace misses the set:

𝑝 (𝑑) := ℙ {T ∩ L𝑑 = ∅} .

Explain how to express this event as the minimax of a bilinear form in
a standard normal matrix. Hint: We can realize L𝑑 as the null space of a
standard normal matrix 𝚪 ∈ ℝ𝑛×𝑑 (a.s.).

(f) We define the excess width functional as

E𝑑 (T) := 𝔼min
𝒕 ∈T

(√
𝑑 ∥𝒕 ∥2 − ⟨𝒈 , 𝒕 ⟩

)
.

As usual, 𝒈 ∈ ℝ𝑛 is a standard normal vector. Show that the excess width
is a monotone increasing function of 𝑑 .

(g) Develop and prove a suitable form of the following statement:

𝑝 (𝑑) ≈
{
0, E𝑑 (T) − const < 0;
1, E𝑑 (T) + const > 0.

In other words, there is a phase transition in the probability that a 𝑑-
codimensional subspace misses the set T. Hint: The excess width is the
expectation of a Lipschitz function of a Gaussian vector, so it must concen-
trate.

(h) (*) The probability simplex Δ𝑛 := {𝒕 ∈ ℝ𝑛 : 𝑡𝑖 ≥ 0 and
∑
𝑖 𝑡𝑖 = 1}. De-

sign and execute a computer experiment to witness the existence of the
phase transition phenomenon for the probability simplex. For a range of
dimensions 𝑛, plot the empirical miss probability as a function of 𝑑/𝑛.

(i) (**) Calculate the asymptotic excess width of the probability simplex as
𝑑, 𝑛 → ∞ and 𝑑/𝑛 → const. Superimpose this curve on your plots.
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