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Preface

Randomized algorithms date to the earliest days of numerical computation when
Monte Carlo methods were developed to estimate complicated integrals. If you open a
textbook on matrix computations, however, you will see that randomization historically
played a marginal role in numerical linear algebra. In the last two decades, this
situation has changed dramatically, and randomized algorithms have taken their place
as a central part of numerical linear algebra. The goal of this course is to introduce
you to some of the most effective techniques in this emerging area.

Some history
Beginning in the early 1980s, researchers began to appreciate that randomized algo-
rithms can lead to simple, powerful, and provable algorithms for core linear problems.
One of the first examples appears in Dixon’s paper [Dix83], which demonstrates that
we can estimate the largest eigenvalue of a symmetric matrix by initializing the power
method with a random vector. This result is valid even when the matrix has no spectral
gap; in contrast, the classical analysis of the power method fails completely in this
setting. Later, Kucziński & Woźniakowski [KW92] showed that randomized Lanczos
methods can achieve a similar feat.

In the late 1980s, Girard [Gir89] proposed an efficient randomized algorithm
for estimating the trace of a matrix that can only be accessed via matrix–vector
multiplication. Hutchinson [Hut90] proposed a variant of Girard’s method that has
been influential. Golub & Meurant [GM10] showed how to use these techniques to
estimate matrix trace functions, a problem with a wide range of applications.

In the late 1990s, several theoretical computer scientists proposed randomized
algorithms for low-rank matrix approximation [FKV04; Pap+00]. Algorithms re-
searchers quickly realized that other linear algebra computations might benefit from
randomization. The papers [DKM06a; DKM06b; DKM06c] contain a systematic treat-
ment of approximate matrix multiplication and low-rank matrix approximation. The
paper [Sar06] studies randomized methods for least-squares problems. These early
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efforts have been intellectually influential.
Around the same time, numerical analysts began to design more effective ran-

domized algorithms for low-rank matrix approximation [MRT06] and least-squares
computations [RT08]. This work led to the development of robust randomized algo-
rithms for SVD and CUR decomposition [HMT11]. It has also led to efficient techniques
for solving overdetermined least-squares problems [AMT10].

Over the last decade, randomized algorithms for matrix computation have found
wide use in scientific computing, machine learning, and other settings. This field is
currently quite active and there remain many opportunities for further advances.

This course
ACM 204 is a graduate course on randomized algorithms for matrix computations. It
was taught for the first time in Winter 2020.

The course begins with Monte Carlo algorithms for trace estimation. This is a
relatively simple setting that allows us to explore how randomness can be used for
matrix computations. We continue with a discussion of the randomized power method
and the Lanczos method for estimating the largest eigenvalue of a symmetric matrix.
For these algorithms, the randomized starting point regularizes the trajectory of the
iterations. The Lanczos iteration and randomized trace estimation fuse together in the
stochastic Lanczos quadrature method for estimating the trace of a matrix function.

Then we turn to Monte Carlo sampling methods for matrix approximation. This
approach is justified by the matrix Bernstein inequality, a powerful tool for matrix
approximation. As a simple example, we develop sampling methods for approximate
matrix multiplication.

In the next part of the course, we study random linear embeddings. These are
random matrices that can reduce the dimension of a dataset while approximately
preserving its geometry. First, we treat Gaussian embeddings in detail, and then we
discuss structured embeddings that can be implemented using fewer computational
resources. Afterward, we describe several ways to use random embeddings to solve
over-determined least-squares problems.

We continue with a detailed treatment of the randomized SVD algorithm, the
most widely used technique from this area. We give a complete a priori analysis with
detailed error bounds. Then we show how to modify this algorithm for the streaming
setting, where the matrix is presented as a sequence of linear updates. Last, we show
how to develop an effective algorithm for selecting influential columns and rows from
a matrix to obtain skeleton or CUR factorizations.

The next section of the course studies kernel matrices that arise in high-dimensional
data analysis. We discuss positive-definite kernels and outline the computational
issues associated with solving linear algebra problems involving kernels. We introduce
random feature approximations and Nyström approximations based on randomized
sampling. This area is still not fully developed.

The last part of the course gives a complete presentation of the sparse Cholesky
algorithm of Kyng & Sachdeva [KS16], including a full proof of correctness.

These notes
The Winter 2020 edition of ACM 204 is the first instantiation of a course on randomized
matrix computations. At a high level, the course is organized along the same lines as
the survey [MT20]. In contrast to the survey, the course contains full proofs of the
major results. Some parts of the class are modeled on the short course [Tro19]; the
material on sparse Cholesky has been omitted from these notes because it has been
carefully documented in the existing notes.
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The course notes were transcribed from the lectures by the students as part of their
coursework, so they reflect the actual content of the course. The notes have been
closely edited by Dr. Richard Kueng, with additional light editing by the instructor.

There is no warranty about the correctness of these notes. Furthermore, material is
not necessarily accompanied by appropriate citations to the literature.

Prerequisites
Prerequisites for this course are linear analysis (ACM 107), mathematical probability
(ACM 117), and, ideally, some familiarity with numerical linear algebra (ACM 106).
Nevertheless, this class is going to be largely self-contained. Experience with high-
dimensional probability (ACM 217) is useful, but that class has not been taught for a
while. Moreover, students are expected to do some programming in the exercises.

Additional references
This presentation of the course material is drawn primarily from papers by the
instructor:

• [HMT11] Halko et al., “Finding structure with randomness: Probabilistic algo-
rithms for constructing approximate matrix decompositions,” 2008–2011.

• [Tro12] Tropp, “User-friendly tail bounds for sums of random matrices,” 2010–
2012.

• [Tro15] Tropp, An introduction to matrix concentration inequalities, 2012–2015.
• [Tro19] Tropp, Matrix concentration and computational linear algebra, 2019.
• [MT20] Martinsson & Tropp, “Randomized numerical linear algebra: Foundations

and algorithms,” 2019–2020.

Most of the ideas in this course have a long history. The papers cited above and the
individual lectures (sometimes) provide more detailed background information.

Scribes
These notes were prepared with the assistance of students and postdocs who partici-
pated in the course: Dmitry Burov, Po-Chih Chen, Yifan Chen, Nikola Kovachki, Riley
Murray, Richard Kueng, Zongyi Li, Chung-Yi Lin, Fariborz Salehi, Jiace Sun, Oguzhan
Teke, Jing Yu, Shumao Zhang, and Ziyun Zhang. Richard Kueng prepared the complete
set of notes from the individual lectures. Many thanks are due to them for their care
and diligence. All remaining errors are the fault of the instructor.

Joel A. Tropp
Steele Family Professor of Applied & Computational Mathematics
California Institute of Technology

jtropp@cms.caltech.edu
http://users.cms.caltech.edu/~jtropp

Pasadena, California
March 2020

jtropp@cms.caltech.edu
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Notation

I have selected notation that is common in the linear algebra and probability literature.
I have tried to been consistent in using the symbols that are presented below. There
are some minor variations in different lectures, including the letter that indicates the
dimension of a matrix and the indexing of sums.

Linear algebra
We work in a real or complex linear space. The letters d and n (and occasionally
others) are used to denote the dimension of this space, which is always finite. For
example, we write Rd or Cn . We may write F to refer to either field, or we may omit
the field entirely if it is not important.

We use the delta notation for standard basis vectors: δi has a one in the i th
coordinate and zeros elsewhere. The vector 1 has ones in each entry. The dimension
of these vectors is determined by context.

The symbol ∗ denotes the (conjugate) transpose of a vector or a matrix. We equip
Fd with the standard inner product 〈x , y 〉 B x ∗y . The inner product generates the
Euclidean norm ‖x ‖2 B 〈x , x〉.

We write Hd (F) for the real-linear space of d × d self-adjoint matrices with entries
in the field F . Recall that a matrix is self-adjoint when A = A∗. The symbols 0 and
I denote zero matrix and the identity matrix; their dimensions are determined by
context or by an explicit subscript.

We equip the space Hd with the trace inner product 〈X , Y 〉 B tr(XY ), which
generates the Frobenius norm ‖X ‖2F B 〈X , X 〉. The map tr[·] returns the trace of
a square matrix; we instate the convention that nonlinear functions bind before the
trace.

The spectral theorem states that every self-adjoint matrix A ∈ Hn admits a spectral
resolution spectral resolution:

A =
∑m

i=1
λi P i where

∑m

i=1
P i = In and P i P j = δi j P i .
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Here, λ1, . . . , λm are the distinct (real) eigenvalues of A. The range of the orthogonal
projector P i is the invariant subspace associated with λi . We have written δi j for the
Kronecker delta.

The maps λmin(·) and λmax(·) return the minimum and maximum eigenvalues of
a self-adjoint matrix. The `2 operator norm ‖·‖ of a self-adjoint matrix satisfies the
relation

‖A‖ B max
{
|λmax(A)|, |λmin(A)|

}
for A ∈ Hn .

A self-adjoint matrix is positive semidefinite (psd) positive semidefinite (psd)if its eigenvalues are nonnegative; a
self-adjoint matrix is positive definite (pd) positive definite (pd)if its eigenvalues are positive. The symbol 4
refers to the psd order: A 4 H if and only if H − A is psd.

We can define a standard matrix function standard matrix functionfor a self-adjoint matrix using the spectral
resolution. For an interval I ⊆ R and for a function f : I → R,

A =
∑m

i=1
λi P i implies f (A) =

∑m

i=1
f (λi )P i .

Implicitly, we assume that the eigenvalues of the matrix A lie within the domain I of
the function f . When we apply a real function to a self-adjoint matrix, we are always
referring to the associated standard matrix function. In particular, we often encounter
powers, exponentials, and logarithms.

We write Mn(F) for the linear space of n × n matrices over the field F . We also
define the linear space Mm×n(F) of m × n matrices over the field F . We can extend
the trace inner-product and Frobenius norm to this setting:

〈B , C 〉 := tr(B∗C ) and ‖B ‖2F := 〈B , B〉 for A,B ∈ Mm×n .

The symbol ‖·‖ always refers to the `2 operator norm.
A square matrix Q ∈ Mn that satisfies Q ∗Q = In is called orthogonal / unitary

orthogonal / unitaryin the real / complex case. A tall, rectangular matrix B ∈ Mm×n with n ≤ m that
satisfies B∗B = In is called orthonormal orthonormal; this terminology is common in the numerical
literature. More generally, a rectangular matrix B ∈ Mm×n is called a partial isometry

partial isometryif B∗B is an orthogonal projector.
We write span for the linear hull of a family of vectors. The operators range(·)

and null(·) extract the range and null space of a matrix. The operator † extracts the
pseudoinverse.

Probability
The map P {·} returns the probability of an event. The operator E[·] returns the
expectation of a random variable taking values in a linear space. We only include the
brackets when it is necessary for clarity, and we impose the convention that nonlinear
functions bind before the expectation.

The symbol∼means “has the distribution.” We abbreviate (statistically) independent
and identically distributed (iid) independent and identically

distributed (iid)
. Named distributions, such as normal and uniform,

are written with small capitals.
We say that a random vector x ∈ Fn is centered centeredwhen E[x ] = 0. A random vector

is isotropic isotropicwhen E[xx ∗] = In . A random vector that is both centered and isotropic is
standardized standardized.

An important property of the standard normal distribution, which we use heavily, is
the fact that it is rotationally invariant. If x ∼ normal(0, I), then Q x is also standard
normal for every fixed matrix Q that is orthogonal (in the real case) or unitary (in the
complex case).
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Order notation
We use the familiar order notation from computer science. The symbol Θ(·) refers to
asymptotic equality. The symbol O (·) refers to an asymptotic upper bound.



Numerics

To understand numerical methods, you must implement and test numerical methods.
To do so, you need a testbed of matrices to evaluate the performance of the methods
in different circumstances.

Numerics 0.1 (Bedrock). We are going to make some synthetic matrices that will serve as
running examples. Write code that generates each of the following matrix classes for
appropriate parameters. Each matrix is parameterized by the field (F = R or F = C),
the dimension n and, sometimes, a rank parameter R .

1 (Laplacian). A standard second-order discretization of the differential operator
Lu = −u ′′ for u ∈ C 2[0, 1] with boundary conditions u(0) = u(1) = 0 on a grid
with h = 1/(n + 1) yields a symmetric tridiagonal matrix L ∈ Hn with diagonal
entries equal to 2/h2 and super- and sub-diagonal entries equal to −1/h2. Write
code to construct L for any given value of n. (*) What are the eigenvalues of L?

2 (Inverse Laplacian). Write code that solves Lu = f by computing a Cholesky
decomposition of L and performing triangular elimination. (You may use the
Matlab chol and backslash commands, or equivalents.) (*) What are the
eigenvalues of L−1?

3 (RBF kernel). Draw n random points (x1, . . . , x n) uniformly from the unit cube
[0, 1]d . For bandwidth h > 0, form the radial basis function kernel matrix

ki j = exp(−‖x i − x j ‖
2/2h) for i , j = 1, . . . ,n.

Note that the cost of explicitly forming K grows like O (dn2), so it gets expensive
fast. You can also do the same thing for a real dataset, which is more interesting.

4 (Low-rank + noise). For an inverse SNR ξ, the matrix takes the form

A = diag(1, . . . , 1︸  ︷︷  ︸
R

, 0, . . . , 0) + ξ/(4n)GG ∗ ∈ Hn .
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ThematrixG ∈ Mn has iid standard normal entries. Three examples: LowRankLowNoise
(ξ = 0.005), LowRankMedNoise (ξ = 0.05), LowRankHiNoise (ξ = 0.5).

5 (Polynomial decay). For a decay parameter p > 0, the matrix takes the form

A = diag(1, . . . , 1︸  ︷︷  ︸
R

, 2−p , 3−p . . . , (n − R + 1)−p ) ∈ Hn .

Examples: PolyDecaySlow (p = 0.5), PolyDecayMed (p = 1), PolyDecayFast
(p = 2).

6 (Exponential decay). For a decay parameter q > 0, the matrix takes the form

A = diag(1, . . . , 1︸  ︷︷  ︸
R

, 10−q , 10−2q , . . . , 10−(n−R)q ) ∈ Hn .

Examples: ExpDecaySlow (q = 0.01), ExpDecayMed (q = 0.1), ExpDecayFast
(q = 0.5).

7 (Matrix Libraries). You can also find many example matrices, arising from a vari-
ety of applications at SparseSuite (https://sparse.tamu.edu), SNAP (https:
//snap.stanford.edu), the UCI ML Repository (https://archive.ics.uci.
edu/ml/index.php), and StatLib (http://lib.stat.cmu.edu/datasets/).
Have a look.

https://sparse.tamu.edu
https://snap.stanford.edu
https://snap.stanford.edu
https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
http://lib.stat.cmu.edu/datasets/


1. Trace Estimation by Sampling

Date: 7 January 2020 Scribe: Richard Kueng

Agenda:
1 Trace estimation
2 Monte Carlo estimates
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4 A priori bounds
5 Universality
6 A posteriori validation

We will begin the course with a discussion of one of the simplest problems in numerical
linear algebra: computing the trace of a positive-semidefinite matrix. Although this
problem may seem trivial, there are important situations where it is challenging to
compute the trace explicitly. We will develop a randomized method for estimating the
trace that is useful in these circumstances. This technique serves as a building block
for more interesting calculations, including error estimation and estimating the trace
of a spectral function.

1.1 Trace estimation
Let A ∈ Hn be a psd matrix. psd = positive semidefiniteThe goal of today’s lecture is to develop randomized
algorithms that can efficiently approximate the trace of the matrix:

tr(A) :=
∑n

i=1
ai i .

This problem deserves some justification. Why can’t we just read off the diagonal
entries? Sometimes, we should. But it is not always possible.

Suppose that we have access to the matrix A via matrix–vector multiplication:
u 7→ Au . It is clear that we can compute the trace exactly by invoking the primitive n
times to extract the diagonal of the matrix:

diag(A) = (δ∗1(Aδ1), δ∗2(Aδ2), . . . , δ∗n(Aδn)).

But, if we are willing to accept an approximation for the trace, we might hope to
prevent this profligacy. Our aim is to apply the primitive as few times as possible.

In summary, here are our goals:
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Computational Problem (Trace estimation). Given a psd matrix A ∈ Hn , produce an
estimate for tr(A).

Computational Primitive (Matrix–vector multiplication). Assume that we can compute
u 7→ Au efficiently for an arbitrary vector u .

1.1.1 Why matrix–vector multiplication?
At first, the matrix–vector multiplication primitive may seem mysterious. Nevertheless,
it arises in many circumstances in computational mathematics. Here is one example.

Example 1.1 (Trace of the inverse). Suppose that we wish to compute tr(A−1) for a pd
matrix A. pd = positive definiteIf we can solve the linear system Au = f efficiently, then we can implicitly
apply the primitive f 7→ A−1f .

For instance, suppose that A is the solution map for a (discretized) differential
operator with boundary data f . We can often solve the differential equation Au = f
just as easily as we can compute a diagonal entry of the inverse map A−1. This problem
arises in electronic structure calculations. �

1.1.2 Applications
Trace estimation originally arose from problems in computational statistics. The
algorithms we discuss today were invented in this context.

Application 1.2 (Smoothing splines). Girard [Gir89] considered the problem of performing
cross-validation for smoothing splines. We can fit a smoothing spline to data by solving
a structured linear system. To identify the best smoothing parameter, we need to
determine how the number of degrees of freedom in the spline model varies with the
smoothing parameter. The number of degrees of freedom coincides with the trace
of a somewhat complicated matrix involving the data and the smoothing parameter.
But we can efficiently apply this matrix to an arbitrary vector, just by fitting a spline.
Girard designed a randomized trace estimation algorithm to exploit this fact. �

There are many modern applications of trace estimation. Examples include
electronic structure calculations [Bai+98], seismic inversion [LAH11], PDE-constrained
optimization [HCH12], and Gaussian process regression [Don+17]. This catalog is
adapted from the paper [Fit+18].

In this course, we will see that randomized trace estimation provides an effective
means for estimating the error in a linear algebra computation.

1.2 Monte Carlo trace estimation
In its simplest form, the Monte Carlo method is the application of random sampling
to estimate integrals. This approach is attributed to Ulam and von Neumann, who
invented it during their work on the Manhattan Project in the 1940s. Girard [Gir89]
observed that it is possible to develop a Monte Carlo method for trace estimation.

Idea: Design an unbiased random estimate for the trace of a matrix.

It turns out that it is quite easy to implement this vision.

1.2.1 Random vectors
We commence with some important definitions.
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Definition 1.3 (Centered, isotropic, standardized). A centered centeredrandom vector ω ∈ Fn satis-
fies Eω = 0. A random vector ω is isotropic isotropicwhen E[ωω∗] = In . If a random vector is
both centered and isotropic, we say that it is standardized standardized.

One basic example of a standardized random vector is the standard normal random
vector ∼ means “has distribution”ω ∼ normal(0, In), also known as a standard Gaussian. Another example is a
Rademacher Rademacherrandom vector ω ∼ uniform{±1}n .

1.2.2 The randomized trace estimator
Let A ∈ Hn(F) be a psd matrix. Draw an isotropic random vector ω ∈ Fn , which we
call a test vector test vector. Form the scalar random variable

X = ω∗(Aω) for isotropic ω. (1.1)

We quickly calculate the expectation of X using linearity and the cyclic property of the
trace:

E[X ] =E tr(ω∗Aω) = E tr(Aωω∗) = tr
(
A E[ωω∗]

)
= tr(AIn) = tr(A).

That is, the random variable X is an unbiased estimator for the trace of A.
A single sample of X does not usually provide a satisfactory trace estimate because

its variance may be large. iid = independent and identically
distributed

To resolve this shortcoming, we can average iid copies of
the simple estimator.

For a natural number s , the Monte Carlo trace estimator Monte Carlo trace estimatorwith s samples is

X̄s =
1
s

∑s

i=1
Xi for iid Xi ∼ X . (1.2)

Using independence, it is straightforward to check that the trace estimator obeys

E[X̄s ] = tr(A) and Var[X̄s ] =
1
s
Var[X ].

In words, the expectation is correct, and the variance decreases in proportion to the
number s of samples.

The arithmetic cost of the Monte Carlo trace estimator (1.2) amounts to simulating
s random test vectors, invoking the matrix–vector multiplication primitive s times, and
computing s inner products at a cost of O (sn). Storage requirements are O (s + n).

The Monte Carlo trace estimator (1.1)–(1.2) should be viewed as the most funda-
mental method in all of randomized linear algebra.

Exercise 1.4 (Frobenius-norm estimates). Let B ∈ Fm×n be a rectangular matrix, equipped
with the computational primitive B 7→ Bu . Explain how to use the randomized trace
estimator to construct an unbiased estimator for ‖B ‖2F , the squared Frobenius norm of
B . What is the variance of the estimator?

1.2.3 Controlling the variance
What is the variance Var[X ] of an individual sample X ? It depends on the distribution
of the test vector.

Idea: Choose the distribution of the test vector to control the variance.

Let us work out some specific examples.
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Example 1.5 (Gaussians). Suppose that the test vector ω ∼ normal(0, In). To compute
the variance of X , let A = UΛU ∗ be an eigenvalue decomposition of the matrix A.
Rotational invariance of the standard normal distribution implies

X = ω∗Aω ∼ ω∗Λω =
∑n

i=1
λiω

2
i ,

where Λ = diag(λ1, . . . , λn) and ω = (ω1, . . . ,ωn). Using independence of the
coordinates of ω, we find that

Var[X ] = Var
[∑n

i=1
λiω

2
i

]
=

∑n

i=1
λ2i Var[ω

2
i ]

= 2
∑n

i=1
λ2i = 2‖A‖2F .

(1.3)

We used the fact that a squared standard normal variable has variance two.
To appreciate what this means, make the further estimate

Var[X ] = 2‖A‖2F ≤ 2‖A‖ tr(A). (1.4)

This relation holds because A is psd, so its eigenvalues are nonnegative. The inequal-
ity (1.4) demonstrates that Var[X ] is bounded in terms of tr(A). As a consequence, we
may hope to estimate the trace on a relative scale. More on this later. �

Example 1.6 (Rademachers). Suppose that the test vector ω ∼ uniform{±1}n . An
elementary computation reveals that

Var[X ] = 2
∑

i,j
|ai j |

2 < 2‖A‖2F .

This is strictly smaller than the variance for a Gaussian test vector. The trace estimator
based on a Rademacher test vector is called the Hutchinson trace estimator [Hut90].
It has an optimality property (Problem 1.20), and it is particularly useful for strongly
diagonally dominant matrices. �

Example 1.7 (Uniform on the complex sphere). Assume that the test vector is drawn
uniformly from the complex sphere with radius

√
n:

ω ∼ uniform(
√

n Sn−1(C)).

Computing the variance is considerably more involved. One can show that

Var[X ] =
n

n + 1

[
‖A‖2F −

1
n
(tr A)2

]
. (1.5)

We have reduced the variance by a factor of two as compared with Example 1.5 or
Example 1.6, although we do need to use complex arithmetic.

It turns out that (1.5) is the minimum variance achievable by any Monte Carlo trace
estimator of the form (1.1). See Problem 1.23. �

Exercise 1.8 (Hutchinson [Hut90]). Complete the calculation from Example 1.6.

Exercise 1.9 (Optimal measurement systems). A finite family M = {u1, . . . ,u m} ⊂

Sn−1(C) of complex unit vectors is an optimal measurement system optimal measurement systemif

1
m

∑m

i=1
(u ∗i M u i )u i u ∗i =

1
(n + 1)n

[M + tr(M ) In] for all M ∈ Hn(C).

Suppose that we draw a random vector u ∼ uniform(M), and construct the test
vector ω =

√
n u .
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Verify that ω is isotropic. For psd A ∈ Hn(C), check that the variance of the trace
estimate X = ω∗Aω satisfies

Var[X ] =
n

n + 1

[
‖A‖2F −

1
n
(tr A)2

]
. (1.6)

In other words, an optimal measurement system achieves the same bound as a uniformly
random vector on the complex sphere.

Exercise 1.10 (Fitzsimons et al. [Fit+18]). Two unitary matrices U ,V ∈ Mn are called
mutually unbiased bases mutually unbiased baseswhen the columns satisfy |〈u i , v j 〉| = n−1/2 for all i , j =
1, . . . ,n. A family {U 1, . . . ,U k } ⊂ Mn of unitary matrices is mutually unbiased when
each pair is mutually unbiased.

Show that a family of n + 1 mutually unbiased bases in Cn composes an optimal
measurement system (Exercise 1.9).

This exercise can be interpreted as a partial derandomization of the trace estimator.
It takes only O (logn) random bits to determine a test vector from this optimal
measurement system. In contrast, it takesO (n) random bits to determine a Rademacher
random vector.

Exercise 1.11 (Traceless matrices). Suppose that M ∈ Hn has trace zero. Consider the
Gaussian trace estimator X = ω∗Mω where ω ∼ normal(0, In). What is the
expectation of X ? What is the variance of X ? How do they compare? Do you anticipate
that this estimator can give a relative-error approximation of the trace?

1.3 A priori bounds
When we design a randomized algorithm for solving a linear algebra problem, we
also want to develop some theoretical analysis that justifies deploying it. To obtain
these results, we turn to the field of probability theory and, especially, the subfield of
high-dimensional probability. In this section, we roll out some classic methods from
probability to deduce a priori guarantees on the probability that randomized trace
estimators succeed.

1.3.1 The intrinsic dimension and the stable rank
The behavior of randomized linear algebra algorithms often depends on the spectral
profile of the input matrix; that is, the rate of decay of the eigenvalues in the psd case
or the singular values in the general case. We can capture some information about
spectral decay using continuous proxies for the rank.

Definition 1.12 (Intrinsic dimension, stable rank). Let A ∈ Hn be a psd matrix. The intrinsic
dimension intrinsic dimensionis the quantity

intdim(A) :=
tr(A)
‖A‖

.

The intrinsic dimension of the zero matrix equals zero.
Let B ∈ Fm×n be a rectangular matrix. The stable rank stable rankis the quantity

srank(B) := intdim(B∗B) =
‖B ‖2F
‖B ‖2

.

The stable rank of the zero matrix equals zero.
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For a nonzero matrix A, the intrinsic dimension satisfies the inequality 1 ≤
intdim(A) ≤ rank(A). The right-hand inequality holds with equality when A is an
orthogonal projector. This bound supports the intuition that the intrinsic dimension
reflects the number of dimensions in which A is energetic.

For a rectangular matrix, the stable rank has a similar interpretion as the intrinsic
dimension. When B is nonzero, its stable rank obeys 1 ≤ srank(B) ≤ rank(B).

1.3.2 Nonasymptotic bounds
Now, the simplest probability bound for the Monte Carlo estimator (1.2) stems from
Chebyshev’s inequality:

P
{
|X̄s − tr(A)| ≥ t · tr(A)

}
≤

Var[X ]
s (tr A)2 t 2

. (1.7)

A key advantage of this result is that it does not depend on the distribution of a sample
X , except through its variance.

Example 1.13 (Gaussians). Let us instantiate the probability inequality (1.7) for the special
case of a Gaussian test vector (Example 1.5). Inserting the bound (1.4), we arrive at

P
{
|X̄s − tr(A)| ≥ t · tr(A)

}
≤

2
s intdim(A) t 2

. (1.8)

As the intrinsic dimension increases, so the does the probability that we can estimate
the trace to within a fixed relative error. This is not surprising: When the intrinsic
dimension is large, the trace estimator is averaging over a greater number of energetic
dimensions. �

Although Chebyshev’s inequality is appealing, it also delivers a rather weak bound.
We can develop stronger exponential concentration inequalities using the Laplace
transform method. Here is one such result.

Theorem 1.14 (Gaussian trace estimator [GTP18]). Let A ∈ Hn(R) be a real psd matrix.
The trace estimator (1.2) based on a standard normal test vectorω ∼ normal(0, In)

obeys the following bounds. For s ≤ n,

P
{

X̄s ≥ t · tr(A)
}
≤ exp

(
− 1

2s intdim(A)(
√

t − 1)2
)

for t > 1;

P
{

X̄s ≤ t · tr(A)
}
≤ exp

(
− 1

4s intdim(A)(1 − t )2
)

for t < 1.

In other words, the probability of suffering an unusually large or small estimate
of the trace is exponentially small in the number s of samples. It also declines
exponentially with intdim(A). Compare with the bound (1.8), where these quantities
only enter linearly.

Proof sketch. Carefully estimate the moment generating function (mgf) of X using
rotational invariance of the Gaussian distribution and the explicit form of the chi-square
distribution with one degree of freedom. �

Exercise 1.15 (Complex Gaussian trace estimator). Extend Theorem 1.14 to a complex psd
matrix A ∈ Hn(C). Each of the exponents features an additional factor of two, so the
complex result is better than the real result. Hint: Using rotational invariance, we can
reduce the analysis to the real case.

Problem 1.16 (Gratton and Titley-Peloquin [GTP18]). Prove Theorem 1.14.



7 Lecture 1: Trace Estimation by Sampling

1.3.3 Asymptotic bounds and universality
Although linear algebra algorithms are finite procedures, we can still gain some insight
into their performance using asymptotic theory. In the case of the trace estimator, we
learn that its large-sample behavior only depends on the variance of an individual
sample, but not on any fine properties of the distribution. This is an instance of a
phenomenon called universality universality.

Provided that the test vector ω has one moment (which it must!), the strong law of
large numbers (SLLN) implies that

X̄s → tr(A) almost surely as s →∞.

In words, if we take a sufficiently large number of samples, the trace estimator will
tend to the correct answer. Statisticians call this asymptotic consistency asymptotic consistency.

Provided that the test vector ω has two moments (which we can and should
engineer!), the central limit theorem (CLT) implies that

√
s (X̄s − tr(A)) → normal(0,Var[X ]) in distribution as s →∞.

In words, the fluctuations of the trace estimator around its mean roughly follow a
Gaussian distribution with variance Var[X ]/s . If the sample size is large enough, we
can use the Gaussian limit to obtain heuristic information about the behavior of the
trace estimator. Statisticians call this asymptotic normality asymptotic normality.

Warning 1.17 (The curse of Monte Carlo). To achieve a relative error of ε > 0 in the
trace estimate X̄s , the number s of samples must obey s ≥ ε−2 Var[X ]. This scaling
is unavoidable because of the central limit theorem. Since ε−2 grows rather quickly
as ε → 0, we cannot hope to achieve a very small relative error using a Monte
Carlo trace estimator.

The same phenomenon plagues most Monte Carlo sampling estimators. For
this reason, numerical analysts have historically been averse to using Monte Carlo
methods, except as a final resort. Nevertheless, there are some applications where
we are willing to accept low accuracy in exchange for an inexpensive computation.
One must contemplate whether this tradeoff is acceptable.

For Monte Carlo methods to be practical, they often need to be coupled with
variance reduction techniques. This can be achieved for trace estimation by means
of low-rank matrix approximation [GSO17]. �

1.4 A posteriori validation and the role of statistics
Although a priori analysis gives us confidence that the Monte Carlo trace estimator will
produce a relative-error approximation of the trace, the theory has limited relevance
for practical computation.

First of all, we cannot activate the error bounds for particular matrices because
we do not have access to the information required. For instance, we rarely know the
intrinsic dimension of the input matrix because it depends explicitly on the trace!

Second, the trace estimator is stochastic. It has a sampling distribution and a
probability of failure. We know that it will behave well on average, but we still need to
validate its performance each time we use it.

Another way to think about these issues is that we are collecting (random) data
about the trace of a matrix, and we wish to infer the actual value of trace and quantify
the uncertainty in our estimate. We can achieve these goals using methods from
statistics, which is the science of drawing inferences from data.
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The role of statistics in
randomized NLA

Statistical theory is an ideal match for randomized NLA. Indeed, statistical methods
frame hypotheses about the random model that generates the data. Since we design
the randomized NLA algorithm, we can be confident that it produces data that satisfies
the assumptions required to invoke statistical methodologies.

Miles Lopes [Lop19] has proposed a sweeping program to design statistical method-
ology for validating randomized NLA algorithms. The approach in this section is
inspired by his vision. At this stage, there remain many opportunities for further
research.

1.4.1 The sample variance estimator
First of all, we can use the data that we have collected to estimate the variance of the
trace estimator. To do so, we simply compute the sample variance sample varianceof the individual
samples:

Vs :=
1

s − 1

∑s

i=1
(Xi − X̄s )

2.

The sample variance is an unbiased estimator for the variance of a single sample:

EVs = Var[X̄ ].

Thus, we can approximate the variance of the trace estimator as Var[X̄s ] ≈ Vs/s . This
simple computation already gives us a much clearer sense about the scale of the errors
in our trace computation.

Exercise 1.18 (Schatten 4-norm estimation). Let B ∈ Fm×n be a rectangular matrix,
equipped with the primitive u 7→ Bu . Explain how to use the sample variance
of the trace estimator to approximate the Schatten 4-norm of B .

1.4.2 Confidence intervals for the trace
To form a clearer picture about the uncertainty in our trace estimate, we can build a
(symmetric, Student’s t ) confidence interval confidence intervalfor the trace. For a level α ∈ (0, 0.5),

a ± e denotes the interval
[a − e , a + e ]

tr(A) ∈ X̄s ± tα,s−1
√

Vs with probability about 1 − 2α.

We have written tα,s−1 for the α quantile of a Student’s t -distribution with s −1 degrees
of freedom. The probability here is over the random choices in the algorithm. To
ensure that the confidence interval has the correct coverage, one rule of thumb is to
take the number of samples s ≥ 30 when the level α ≥ 0.025.

When the number s of samples is very large, it is common to use a normal confidence
interval instead. In this case, we replace tα,s−1 by the α quantile of a standard normal
variable. With the statistical facilities in modern programming languages, the normal
approximation is not really necessary.

The construction of the confidence interval is inspired by the asymptotic normality
of the Monte Carlo trace estimate. Nevertheless, the confidence interval is only
approximate, and it can be misleading or inaccurate.

1.4.3 Bootstrap confidence intervals
To build better confidence intervals, we recommend using data-driven methods. This
section summarizes a procedure, called the bootstrap the bootstrap, which resamples the trace data
to obtain a proxy for the sampling distribution of the trace estimator. This distribution
can be used to perform more reliable inference about the actual value of the trace.

Here is the procedure. Let α ∈ (0, 0.5) be the level of coverage, and let B be the
number of bootstrap replicates.



9 Lecture 1: Trace Estimation by Sampling

1 Draw a random sample X= (X1, . . . ,Xs ) of iid trace samples.
2 Form the Monte Carlo trace estimate X̄s .
3 For each bootstrap replicate b = 1, . . . ,B:

1 Draw a sample X ◦1 , . . . ,X ◦s uniformly from Xwith replacement.
2 Compute the replicate Monte Carlo trace estimate X̄ ◦s .
3 Form the replicate error estimate eb = X̄ ◦s − X̄s .

4 Compute the quantiles qα and q1−α of the errors (e1, . . . , eB ).
5 Report the bootstrap confidence interval:

tr(A) ∈ [X̄s + qα, X̄s + q1−α] with probability about 1 − 2α.

The rough idea behind the bootstrap method is that each replicate X̄ ◦s of the trace
estimator can be viewed as a new draw from the distribution of the trace estimator.
The errors eb = X̄ ◦s − X̄s serve as approximations for the fluctuations of the distribution
around its mean. See [ET93] for background and theory about the bootstrap.

Each trace sample may be expensive, but the bootstrap replicates are very cheap. A
simple rule of thumb is to take the number of trace samples s ≥ 30 when the level
α ≥ 0.025. With modern computational facilities, there is no need to limit the number
of bootstrap replicates. For a simple problem like trace estimation, we may choose B
in the range B = 103 up to B = 106. Using more replicates leads to better estimates
of the sampling distribution of the trace estimator, limited only by the fidelity of the
original sample.

Algorithm 1.1 contains a summary of the Monte Carlo trace estimation procedure,
equipped with a bootstrap confidence interval. We anticipate that this procedure gives
reliable results for relatively small samples.

Remark 1.19 (Bootstrap and NLA). The bootstrap was invented by Brad Efron Efron was a mathematics
undergraduate at Caltech in the
late 1950s!

in the late
1970s [Efr79a; Efr79b]. It is one of the earliest methods of computational statistics.
Miles Lopes [Lop19] recognized the opportunity to use the bootstrap to validate
randomized NLA calculations.

Problems
Problem 1.20 (Hutchinson [Hut90]). Let A be psd. Among all isotropic distributions for
ω where the coordinates are independent, the Rademacher distribution minimizes
Var[X ] when X has the form (1.1).

Problem 1.21 (The real sphere). Let ω ∼ uniform(
√

n Sn−1(R)). Compute the variance
Var[X ] of the trace estimator X = ω∗Aω. Hint: Have a look at the paper [Fol01].

Problem 1.22 (The complex sphere). Complete the calculation from Example 1.7. One
approach is to verify that∫

Sn−1(C)

(u ∗M u )uu ∗ du =
1

(n + 1)n
[M + tr(M ) I] for all M ∈ Hn(C).

where du is the Haar distribution on the complex unit sphere. Can you compute the
centered fourth moment E[(X − EX )4] of the trace estimator for a uniformly random
vector on the complex sphere? Hint: Look up Haar integration; this method allows for
quick computation of many challenging integrals.

Problem 1.23 (Richard Kueng). Define the set of states set of statesin n complex dimensions:

Sn := {A ∈ Hn(C) : tr(A) = 1 and A is psd}.
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Algorithm 1.1 TraceEstimator by Monte Carlo sampling, with a bootstrap confidence
interval

Input: Psd input matrix A ∈ Hn , number s of samples, level α of confidence, number
B of bootstrap replicates

Output: Level α confidence interval [X̄s + qα, X̄s + q1−α] for tr(A)

1 function TraceEstimator(A; s ; α; B)
2 for i = 1, . . . , s do . Initial trace estimate
3 Draw isotropic random test vector ωi ∈ F

n

4 Form sample Xi = ω
∗
i (Aωi )

5 Aggregate sample X= (X1, . . . ,Xs )

6 Initial trace estimate X̄s = s−1
∑s

i=1 Xi

7 for b = 1, . . . ,B do . Bootstrap confidence interval
8 Draw X ◦1 , . . . ,X ◦s uniformly from Xwith replacement
9 Compute replicate trace estimate X̄ ◦s = s−1

∑s
i=1 X ◦i

10 Compute replicate error eb = X̄ ◦s − X̄s

11 Find quantiles qα and q1−α of errors (e1, . . . , eB )

12 Return interval [X̄s + qα, X̄s + q1−α]

Prove that, among all isotropic distributions for ω ∈ Cn ,

min
ω

max
A∈Sn

Var[ω∗Aω] =
n

n + 1

[
‖A‖2F −

1
n
(tr A)2

]
.

Hint: Look up frame potential.

Problem 1.24 (Exponential bounds). Suppose that the random test vector ω has a sub-
gaussian distribution. Use the Hanson–Wright inequality [Ver18, Thm. 6.2.1] to develop
an exponential concentration inequality for the trace estimator (1.2). Compare and
contrast the result with Theorem 1.14.

Problem 1.25 (Mutually unbiased bases). For each odd prime p , construct a family of p+1
mutually unbiased bases in Mp . The following relations from number theory may be
helpful. For each primitive pth root of unity ζ = ei2πr/p , we have the sum formulas

1
∑p−1

j=0 ζ
jk = pδk0 for each integer k , where δ · · is the Kronecker delta.

2 |
∑p−1

j=0 ζ
k j 2+`j |2 = p for each integer ` and nonzero integer k .

More hints: Look up Alltop sequence and Weyl–Heisenberg group.

Numerics 1.26 (Amazing Trace). In this problem, we will explore the behavior of random
trace estimators, as applied to the inverse Laplacian matrix.

1 Implement the randomized trace estimator X̄s . We will consider test vectors
that are (i) drawn uniformly from {δ1, . . . , δn}, (ii) real standard normal, (iii)
Rademacher, and (iv) uniform on the complex unit sphere.

2 Fix n = 1000. Compute the trace of the inverse Laplacian matrix, either
analytically or numerically.

3 For each type of test vector, plot the sampling distribution of the trace estimator
X̄s as a function of the number s of samples; compare with the exact trace. Plot
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the sampling distribution of the sample variance as a function of s . How do the
four types of test vectors compare?

4 Implement the bootstrap procedure for obtaining a data-driven confidence
interval. For a fixed number s of samples, say s = 30, compute level-α symmetric
confidence intervals for α = 0.025 for each of 1000 realizations of the trace
estimator. In how many realizations does the confidence interval cover the exact
trace? How much do the confidence intervals vary in their center and their
length?
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2. Maximum eigenvalue

Date: 9 January 2020 Scribe: Richard Kueng

Agenda:
1 Maximum eigenvalue
2 Sampling estimator?
3 Power method
4 Classical analysis
5 Randomized power

method
6 Gap-free analysis
7 Randomized Krylov

In Lecture 1, we considered sampling methods for estimating the trace, where each
sample is independent and involves one matrix–vector product. Today, we will develop
randomized algorithms for estimating the maximum eigenvalue of a psd matrix. To
accomplish this goal, we introduce iterative algorithms that proceed from a random
starting vector. In other words, we will apply the matrix sequentially. The iteration is
necessary to obtain accurate estimates of the maximum eigenvalue, and the randomness
helps us derive refined bounds for the performance of algorithms.

2.1 Estimating the maximum eigenvalue
Let A ∈ Hn(R) be a real psd matrix. We will explore the complex case in the exercises;
it is similar in spirit—but even more interesting. Write λ1 ≥ · · · ≥ λn ≥ 0 for the
eigenvalues of A, arranged in weakly decreasing order. Our goal is to estimate λ1
efficiently.

As always in NLA, our ability to access A affects the kinds of algorithms we can
design. Parallel with Lecture 1, we interact with A via matrix–multiplication: we can
compute u 7→ Au for any vector u ∈ Rn . The goal is to limit the number of times we
invoke the primitive.

When A is a general psd matrix, presented as an array, the cost of the matrix–
multiplication is O (n2). When A is sparse, the cost of the primitive may be much lower.
There are other circumstances (e.g., where A is the solution operator of a differential
equation) where we can apply A quickly because of its structure. Another important
property of matrix–multiplication is that it is non-invasive: algorithms built on this
primitive do not modify the matrix A.

In summary, here is the problem setup:
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Computational Problem (Maximum eigenvalue). Let A ∈ Hn(R) be a real psd matrix.
Compute λmax(A).

Computational Primitive (Matrix–vector multiplication). We can form u 7→ Au for any
vector u ∈ Rn .

Remark 2.1 (Maximum eigenvalues by linear sampling?). One might initially hope to esti-
mate λ1 from linear data of the form (Au1, . . . , Au s ), where the vectors u i do not
depend on the matrix A. Unfortunately, it is necessary to take s & const · n samples
to accomplish this goal. More precisely, for the worst-case matrix, the number s of
samples must be linear in the dimension n to estimate the maximum eigenvalue up
to a constant factor with high probability [Woo14, Chap. 6]. This fact rules out the
prospect of an efficient linear sampling estimator for the maximum eigenvalue.

2.2 The power method (PM)
The power method (PM) power method (PM)attempts to compute λ1 by means of a dynamical system, i.e.,
an iterative procedure.

Idea: Use iteration to refine the eigenvalue estimate.

2.2.1 Procedure
Choose an initial vector y 0 = ω ∈ R

n , and iteratively construct

y k =
Ay k−1

‖Ay k−1‖
for each k = 1, 2, 3, . . ..

This is equivalent to defining

y k =
Akω

‖Akω‖
for each k = 1, 2, 3, . . . .

Indeed, we can just postpone the normalization to the k th iteration.
The sequence {y k } of approximate (maximum) eigenvectors induces a sequence of

maximum eigenvalue estimates maximum eigenvalue estimates:

ξk = y ∗k Ay k ∈ [0, λ1] .

The upper and lower bounds on ξk both follow from the Rayleigh variational principle.
Define the relative error relative errorin the eigenvalue approximation:

err(ξk ) :=
λ1 − ξk

λ1
∈ [0, 1] . (2.1)

Our goal is to assess the number k of iterations required to drive the relative error
below a threshold.

Exercise 2.2 (Minimum eigenvalues). Explain how one might use the PM to estimate the
minimum eigenvalue of a symmetric matrix.

Exercise 2.3 (Maximum singular values). Explain how one might use the PM to estimate
the maximum singular value of a rectangular matrix.
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2.2.2 Intuition
Each iterate y k involves the k th power of the matrix A. To appreciate why the PM
might work, introduce the spectral resolution to see that

A =
∑

j
λ j P j implies Ak =

∑
j
λk

j P j .

In other words, powering dramatically amplifies the large eigenvalues, relative to the
small eigenvalues. Thus, we anticipate that y k = Akω/‖Akω‖ will align more and
more with the invariant subspaces associated with the largest eigenvalues.

Nevertheless, even when the relative error is very small, the eigenvector estimate
y k may not be close to the invariant subspace range(P 1) associated with the largest
eigenvalue λ1. But we can say something:

Exercise 2.4 (Approximate eigenvectors). Suppose that err(ξk ) ≤ ε. Prove that the
approximate eigenvector y k has a large component aligned with the eigenvectors of A
with large eigenvalues. More precisely,

‖P >λy k ‖
2 ≥ 1 −

ελ1
λ1 − λ

for 0 ≤ λ < λ1.

We have written P >λ for the spectral projector onto the invariant subspace associated
with the eigenvalues of A that strictly exceed λ.

2.2.3 Simplifying assumptions
To make the exposition more transparent, we will frame two inessential hypotheses.

1 Diagonal matrix: Change coordinates so that A = diag(λ1, . . . , λn).
2 Normalization: Rescale the matrix so that λ1 = 1.

The first assumption is just a matter of working in the orthonormal basis where A is
diagonal. The PM algorithm, however, does not know this distinguished basis, and
we cannot use knowledge of the basis to construct the starting vector ω. The second
assumption does not affect the analysis because the relative error (2.1) is scale-invariant.

2.2.4 Representation of the relative error
To study the behavior of the PM, we begin with an explicit representation of the relative
error (2.1). Since the maximum eigenvalue λ1 = 1,

err(ξk ) = 1 − y ∗k Ay k = 1 −
ω∗A2k+1ω

ω∗A2kω

=
ω∗A2kω

ω∗A2kω
−
ω∗A2k+1ω

ω∗A2kω
=
ω∗Ak (I − A) Akω

ω∗A2kω
.

Next, use the representation A = diag(λ1, . . . , λn) to write out the expression in
coordinates:

err(ξk ) =

∑n
i=1 ω

2
i λ

2k
i (1 − λi )∑n

i=1 ω
2
i λ

2k
i

=

∑
i>1 ω

2
i λ

2k
i (1 − λi )

ω2
1 +

∑
i>1 ω

2
i λ

2k
i

. (2.2)

This expression shows how the eigenvalues and the components of the starting vector
ω = (ω1, . . . ,ωn)

Ë ∈ Rn interact.
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2.2.5 Classical analysis of PM
The standard analysis of the power method shows that the vector y q converges to a
maximum eigenvector of the matrix A. The rate of convergence depends on the ratio
between second and first eigenvalue.

Theorem 2.5 (Convergence of PM). Let A ∈ Hn(R) be a real psd matrix whose
eigenvalues obey λ1 > λ2 > λ3 Assume that the first coordinate of the starting
vector ω ∈ Rn satisfies ω1 , 0. Then the relative errors (2.1) in the eigenvalue
estimates ξk produced by the PM have the limit

err(ξk+1)

err(ξk )
→

(
λ2
λ1

)2
as k →∞.

In particular, y k converges to the span of the (unique) top eigenvector.

Proof. Use the decomposition (2.2) to rewrite the error ratio as

err(ξk+1)

err(ξk )
=

∑
i>1 ω

2
i λ

2(k+1)
i (1 − λi )

ω2
1 +

∑
i>1 ω

2
i λ

2(k+1)
i

·
ω2

1 +
∑

i>1 ω
2
i λ

2k
i∑n

i=2 ω
2
i λ

2k
i (1 − λi )

=

∑
i>1 ω

2
i λ

2(k+1)
i (1 − λi )∑

i>1 ω
2
i λ

2k
i (1 − λi )

·
ω2

1 +
∑

i>1 ω
2
i λ

2k
i

ω2
1 +

∑
i>1 ω

2
i λ

2(k+1)
i

The assumption 1 ≥ λ1 > λ2 > λ3 ≥ · · · ≥ λn ensures that the limit of the first
fraction is λ22. The limit of the second fraction is 1 because ω1 , 0 and λi < 1 for
each i > 1.

The last claim follows from Exercise 2.4. Indeed, λ2/λ1 < 1, so the relative errors
err(ξk ) → 0. �

2.3 The randomized power method (RPM)
So, what starting vector should we use in the PM?

Idea: Draw the starting vector for the power method at random.

Numerical analysis manuscripts often recommend that we initialize the PM with
a random vector ω ∈ Rn . This proposal is usually justified by the reasoning that a
random starting vector is likely to have a nontrivial component in the direction of the
dominant eigenvector of the matrix A. That is, for any fixed basis, ω1 , 0 with high
probability.

In fact, there are deeper reasons for choosing the starting vector at random, first
recognized by Dixon [Dix83] and elaborated by Kuczyński & Woźniakowski [KW92]:

1 It leads to clean nonasymptotic error estimates.
2 We can obtain nontrivial error bounds, even when λ1 ≈ λ2 so that λ2/λ1 ≈ 1.

In this section, we will present a version of PM with a random starting vector.
We will develop two theoretical results. The first one is a nonasymptotic analog of
the classical analysis (Theorem 2.5). The second illustrates how we can obtain error
bounds that do not depend on any assumptions about the spectrum of the matrix.



17 Lecture 2: Maximum eigenvalue

Algorithm 2.1 ApproxMaxEvec via randomized power method.

Input: Psd input matrix A ∈ Hn and maximum number k of iterations
Output: Approximate minimum eigenpair (ξ, y ) ∈ R ×Rn of the matrix A

1 function ApproxMaxEvec(A; k )
2 y = randn(n, 1)/

√
n . Random initial vector

3 for i = 1, . . . , k do
4 y = Ay
5 y = y/‖y ‖ . Approximate maximum eigenvector of A

6 ξ = y ∗(Ay ) . Approximate maximum eigenvalue of A

2.3.1 Procedure
The randomized power method (RPM) randomized power method (RPM)is just a specialization of the PM (Section 2.2.1)
where the starting vector is drawn from a standard normal distribution: ω ∼
normal(0, In).

This choice of starting vector bears some discussion. For any fixed basis, since
the standard normal distribution is rotationally invariant, the coordinates ωi are
independent, real standard normal variables. Thus, it is unrestrictive to work in a basis
where A is diagonal.

There is a more subtle motivation for using a rotationally invariant distribution
to compute eigenvectors. Since the maximum eigenvalue is a orthogonally invariant
function of the matrix, we can show that the RPM achieves the minimum error by
starting with a rotationally invariant vector. Since the RPM is scale invariant, we
may as well work with the standard normal distribution, which is our favorite. See
Section 2.6 for a rigorous statement and proof of this claim.

Algorithm 2.1 presents pseudocode for the RPM with a fixed total number of
iterations. Each iteration requires a single matrix–vector multiplication with the input
matrix, as well as O (n) additional arithmetic. The overall storage cost is O (n).

2.3.2 RPM, with a spectral gap
Our first theoretical result gives a nonasymptotic bound on the error in the RPM after
a fixed number of iterations. Parallel with Theorem 2.5, the statement involves the first
two eigenvalues of the matrix. This result is adapted from [KW92].

Theorem 2.6 (RPM: Analysis with a spectral gap). Let A ∈ Hn(R) be a real psd matrix
whose eigenvalues obey λ1 > λ2. For each k = 1, 2, 3, . . . , the relative error (2.1)
in the eigenvalue estimates ξk produced by the RPM satisfies

E err(ξk ) ≤

√
(n − 1)π

2

(
λ2
λ1

)k

. (2.3)

It is also common to state the result in terms of the relative spectral gap relative spectral gapof the
matrix:

γ :=
λ1 − λ2
λ1

. (2.4)

Then (2.3) is equivalent with the bound

E err(ξk ) ≤

√
(n − 1)π

2
(1 − γ)k ≤

√
(n − 1)π

2
e−γk . (2.5)
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This formulation is sometimes easier to interpret.
To understand the meaning of Theorem 2.6, note that

k ≥
1
γ

[
log(

√
πn/2) + log(1/ε)

]
implies err(ξk ) ≤ ε.

This formula suggests that the RPM algorithm has a burn-in period burn-in periodof about (logn)/γ it-
erations during which it makes minimal progress. Afterward, it converges exponentially
fast, reducing the error by a factor of (1 − γ) ≈ e−γ at each iteration.

We also observe that the number kε of iterations that suffices to achieve relative
error ε is logarithmic: kε ∼ log(1/ε). For contrast, recall that the Monte Carlo sampling
method for estimating the trace requires ε−2 samples to bring the relative error below
ε. The improved convergence behavior is a hallmark of (some) iterative methods; we
cannot achieve it by plain random sampling.

Unfortunately, Theorem 2.6 gives a convergence rate that depends on the spectral
gap γ. When the spectral gap is bounded away from zero, the RPM exhibits rapid
convergence. On the other hand, when the spectral gap γ ≈ 0, the bounds here are
almost vacuous. We will address this shortcoming in Section 2.3.3.

Remark 2.7 (Burn-in). One may wonder whether the appearance of the burn-in period
is an essential feature of this result. According to [SAR17], it is. For a worst-
case (random) psd matrix, to estimate λ1 up to a constant factor, we need at least
k & (logn)/(log(λ1/λ2)) matrix–vector multiplies with A.

Proof of Theorem 2.6
The proof of Theorem 2.6 relies on a standard integral formula, coupled with some
familiar Gaussian tail bounds. This analysis is due to your instructor.

Fact 2.8 (Exponential Integral). Let g ∼ normal(0, 1) be a real standard normal random
variable. For any c > 0,

E

[
1

g 2 + c

]
=

1
√

c
ec/2

∫ ∞

√
c
e−t 2/2 dt ≤ min

{√
π

2c
,
1
c

}
.

See [Olv+10, Sec. 8.6.4] and [Ver18, Prop. 2.1.2]. �

Proof of Theorem 2.6. Let us revisit (2.2). Since we have chosen ω from a standard
normal distribution, its coordinates are independent standard normal variables. The
coordinate ω1 is isolated in the denominator, and it does not appear anywhere else.
We invoke Fact 2.8 to integrate it out.

Using independence, we can first take the expectation Eω1 with respect to the first
coordinate:

E err(ξk ) = EEω1

[∑
i>1 ω

2
i λ

2k
i (1 − λi )

ω2
1 +

∑
i>1 ω

2
i λ

2k
i

]
≤

√
π

2
E

[∑
i>1 ω

2
i λ

2k
i (1 − λi )(∑

i>1 ω
2
i λ

2k
i

)1/2 ]
.

The inequality is the first branch of Fact 2.8. Since the same term appears in the
numerator and denominator, we can invoke the Cauchy–Schwarz inequality to obtain

E err(ξk ) ≤

√
π

2
E

[(∑
i>1

ω2
i λ

2k
i (1 − λi )

2
)1/2]

≤

√
π

2

[∑
i>1
(Eω2

i )λ
2k
i (1 − λi )

2
]1/2

≤

√
π

2

[
(n − 1)max

i>1
λ2k

i (1 − λi )
2
]1/2
≤

√
(n − 1)π

2
(1 − γ)k .
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The second inequality is Lyapunov’s (for the expectation), and the third is Hölder’s
(for the sum). In the last step, we have used the definition (2.4) of the relative spectral
gap. �

Complements
The perspicuous reader will have noticed that Theorem 2.6 predicts a convergence
factor of (λ2/λ1), while the classical analysis in Theorem 2.5 gives a factor (λ2/λ1)2.
This might seem like a deficiency of our analysis. In fact, our result is essentially sharp.

Problem 2.9 (Kucziński and Woźniakowski). Instate the hypotheses of Theorem 2.6. As-
suming that λ1 > λ2 > λ3, prove that

lim
k→∞

E err(ξk )

(λ2/λ1)k
= 1 −

λ2
λ1
.

Explain why the formula in the last display does not contradict Theorem 2.5.

The direct analysis here makes it easy to derive many interesting variants of
Theorem 2.6.

Exercise 2.10 (Tropp). In (2.3), prove that we can replace the dimension n − 1 by the
stable rank, srank(A), if we take one additional step of the power method. Can you
modify the result further to replace the stable rank by spectral decay quantities that
are (perhaps) even smaller?

Exercise 2.11 (Kucziński and Woźniakowski; Tropp). Suppose that λ1 = λ2 = · · · = λm ,
where m > 1. Explain how to modify the analysis in this section to achieve superior
convergence rates for the RPM. The most interesting cases are m = 2 and m = 3.

Exercise 2.12 (Tropp). Let A ∈ Hn(C) be a complex psd matrix. Suppose that we start
the PM with a complex standard normal vector ω to obtain a maximum eigenvalue
estimate ξk . Deduce a bound on the relative error (2.1) in terms of the relative spectral
gap.

Problem 2.13 (Kucziński and Woźniakowski; Tropp). Develop a bound on the failure prob-
ability P {err(ξk ) > ε} in terms of the spectral gap. Hint: Rearrange the terms in
the event to remove the ratio, and estimate the moment generating function of the
resulting random variable.

2.3.3 RPM, without a spectral gap
We have alluded to the fact that RPM still works, regardless of whether the matrix A
actually displays a spectral gap. This result may come as a shock because the spectral
gap takes a central place in the classical analysis of the power method. Here, we start
to see the utility of developing probabilistic variants of familiar numerical methods.

Theorem 2.14 (RPM: Analysis without a spectral gap). Let A ∈ Hn(R) be a real psd
matrix. For each k = 1, 2, 3, . . . , the relative error (2.1) in the eigenvalue estimates
ξk produced by the RPM satisfies

E err(ξk ) ≤
1
k

[
1 + log

√
(n − 1)π

2
+ logk

]
. (2.6)

To appreciate the meaning of Theorem 2.14, observe that

k ≥
1
ε

[
1 + log

√
πn/2 + logk

]
implies E err(ξk ) ≤ ε.
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In words, this result suggests that there is a burn-in period of about logn steps during
which the algorithm makes negligible progress. Afterward, the error declines at least
as fast as (logk )/k . Incidentally, the term logk is spurious, and it can be removed by
different and more involved arguments.

Theorem 2.14 indicates that the number kε of iterations we should perform to attain
relative error ε declines roughly like 1/ε. This is far worse than the log(1/ε) we saw in
Theorem 2.6, but it is far better than the 1/ε2 cost of Monte Carlo sampling methods.

Remark 2.15 (These theorems predict different things!). It may initially seem confusing that
we have two results that describe two different behaviors of the PM. Both of them are
valid, so we can use whichever one makes a stronger prediction for a given use case.

Proof of Theorem 2.14
The argument follows the same lines as Theorem 2.6, but we need to be more careful.
The key idea, due to [KW92], is to treat eigenvalues close to one differently from the
smaller eigenvalues. The streamlined development here is due to your instructor.

Proof of Theorem 2.14. As in the proof of Theorem 2.6,

E err(ξk ) = EEω1

[∑
i>1 ω

2
i λ

2k
i (1 − λi )

ω2
1 + X

]
, where X :=

∑
i>1

ω2
i λ

2k
i .

Note that ω1 is independent from the numerator of the fraction and from X . Use both
branches of Fact 2.8 to arrive at the estimate

E err(ξk ) ≤ E

[(∑
i>1

ω2
i λ

2k
i (1 − λi )

)
· min

{√
π

2X
,
1
X

}]
. (2.7)

To continue, we split the sum, depending on whether λi is small or large.
Introduce a parameter β > 0 that remains at our disposal. Segregating terms with

λi ≤ 1 − β from those with λi > 1 − β, we find that∑
i>1

ω2
i λ

2k
i (1 − λi ) ≤

∑
λi ≤1−β

ω2
i λ

2k
i + β

∑
λi>1−β

ω2
i λ

2k
i

≤
∑

λi ≤1−β
ω2

i λ
2k
i + βX .

Substitute this relation into (2.7) to conclude that

E err(ξk ) ≤ E

[(∑
λi ≤1−β

ω2
i λ

2k
i + βX

)
· min

{√
π

2X
,
1
X

}]
≤ E

[(∑
λi ≤1−β

ω2
i λ

2k
i

) √
π

2X
+
βX

X

]
≤

√
π

2
E

[(∑
λi ≤1−β

ω2
i λ

2k
i

)1/2]
+ β

≤
π

2

(∑
λi ≤1−β

λ2k
i

)1/2
+ β.

To pass from the second line to the third line, we used the fact that X is at least as large
as the parenthesis. Then we invoked Lyapunov’s inequality to draw the expectation
inside the square root.

To complete the argument, we make a simple bound on the remaining sum:

E err(ξk ) ≤

√
(n − 1)π

2
(1 − β)k + β ≤

√
(n − 1)π

2
e−βk + β.

Minimize the right-hand side with respect to β to arrive at the advertised result. �
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Complements
As with Theorem 2.6, we can obtain many variants of Theorem 2.14 by simple
modifications of the argument.

Exercise 2.16 (Tropp). In (2.6), show that we can replace the dimension n − 1 by the
stable rank, srank(A), if we take one additional step of the power method. Can you
modify the result further to obtain bounds that depend on smaller spectral decay
quantities?

Exercise 2.17 (Kucziński and Woźniakowski; Tropp). Suppose that λ1 has multiplicity m,
where m > 1. Explain how to modify the analysis in this section to achieve superior
convergence rates for the RPM. The most interesting cases are m = 2 and m = 3.

Exercise 2.18 (Tropp). Let A ∈ Hn(C) be a complex psd matrix. Suppose that we start PM
with a complex standard normal vector ω to obtain a maximum eigenvalue estimate
ξk . Deduce a bound on the relative error (2.1) that does not depend on the spectral
gap γ.

Problem 2.19 (Kucziński and Woźniakowski). Can you replace the term logk by a constant
in the bound (2.6)?

Problem 2.20 (Kucziński and Woźniakowski; Tropp). Develop a bound for the failure prob-
ability P {err(ξk ) > ε} that does not depend on the spectral gap.

2.4 The randomized Krylov method (RKM)
Numerical analysts really do not like the power method. Here are some typical
quotations:

“Unfortunately, although power iteration is famous, it is by no means
an effective tool for general use. Except for special matrices, it is very
slow.”—Trefethen and Bau [TB97, p. 191].

“The power method is no longer a serious technique for computing
eigenvectors.”—Parlett [Par98, p. 61].

I think that these objections are, perhaps, too strong. Nevertheless, you should be aware
that the power method has major deficiencies that are remedied by more sophisticated
algorithms.

Idea: Use all of the vectors computed by the power method to obtain a better
approximation of the maximum eigenvalue.

Krylov methods use all the vectors constructed by the PM to obtain an eigenvalue
estimate, and they exhibit far better performance. This section gives a short summary
of the kinds of results one can obtain for maximum eigenvalue computations using
Krylov subspaces. Next time, we will discuss one of the basic implementations of a
Krylov method, due to Lanczos.

2.4.1 Procedure
Let us outline the randomized Krylov method (RKM) randomized Krylov method (RKM). Run the PM on a real psd matrix
A ∈ Hn(R) with the random starting vector ω ∼ normal(0, I n). Implicitly, form the
subspace generated by all the vectors that arise in the iteration:

Kk+1 := Kk+1(A,ω) := span
{
ω, Aω, . . . , Akω

}
. (2.8)
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The span is called a Krylov subspace Krylov subspace. It is closely connected with matrix polynomials.
Indeed,

u ∈ Kk+1 if and only if u =
∑k

i=0
ci Aiω = ϕ(A)ω.

In this expression, the ci are real scalars, and ϕ is the degree-k polynomial ϕ(λ) =∑k
i=0 ci λ

i . Recall that ϕ(A) is the spectral function of A induced by the polynomial ϕ.
Now, to estimate the maximum eigenvalue of A, we maximize the Rayleigh quotient

over the Krylov subspace:

ξk = max
u ∈Kk+1

u ∗Au

‖u ‖2
= max

deg ϕ≤k

ω∗Aϕ2(A)ω

ω∗ϕ2(A)ω
.

The maximization occurs over all polynomials ϕ with degree at most k . In contrast,
the power method makes a similar eigenvalue estimate using the fixed monomial
ϕ(λ) = λk . Since the Krylov method optimizes over all degree-k polynomials, we
anticipate that it may perform better.

Remark 2.21 (Implementation). The description here falls very far short of a practical
implementation of the Krylov method. In the next lecture, we will talk more about
how to perform the required calculations.

Exercise 2.22 (Invariance). Show that the Krylov subspace is invariant under affine
functions of the input matrix: A 7→ αA + βI for real scalars α, β. Does the Krylov
method care whether the input matrix A is psd?

Exercise 2.23 (Minimum eigenvalues). Explain how to modify the Krylov method to
estimate the minimum eigenvalue of a psd matrix.

Exercise 2.24 (Maximum singular values). Explain how to modify the Krylov method to
estimate the maximum singular value of a rectangular matrix.

2.4.2 RKM, with a spectral gap
We present without proof a result of Kuczyński andWoźniakowski [KW92] that describes
the convergence behavior of RKM in the presence of a gap between the first and second
eigenvalues.

Theorem 2.25 (RKM: Analysis with a spectral gap). Let A ∈ Hn(R) be a real psd matrix
with m distinct eigenvalues that obey λ1 > λ2. For each k = 1, 2, 3, . . . ,m, the
relative error (2.1) in the eigenvalue estimates ξk produced by the RKM satisfies

E err(ξk ) ≤ 2.589
√

n

(
1 − 2

√
1 −

λ2
λ1

)k

≤ 2.589
√

n e−2k
√
γ. (2.9)

The relative spectral gap γ is defined in (2.4).

A valuable consequence of Theorem 2.25 is the iteration complexity bound

k ≥
1
√
γ

[
log(2.589

√
n) + log(1/ε)

]
implies err(ξk ) ≤ ε.

It is also productive to compare Theorem 2.25 with Theorem 2.6. The key difference is
that the RKM only pays for the square root of the spectral gap γ, while the RPM pays
for γ. When γ ≈ 0, this fact points to a very substantial difference in performance. On
the other hand, like the RPM, the RKM still suffers from the same burn-in period of
about log(n)/γ iterations.
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Problem 2.26 (Kucyński and Woźniakowski; Tropp). Prove Theorem 2.25. There is a simple
argument that is not so different from the proof of Theorem 2.6, but we need to choose
a special polynomial in the last step to attain the strongest guarantees. The right
choice is a shifted and scaled Chebyshev polynomial of the first kind.

2.4.3 RKM, without a spectral gap
Next, we state without proof another result of Kuczyński and Woźniakowski [KW92]
that describes the error achieved by the RKM, even when there is no gap between the
first and second eigenvalues.

Theorem 2.27 (RKM: Analysis without a spectral gap). Let A ∈ Hn(R) be a real psd
matrix. For each k = 3, 4, 5, . . . , the relative error (2.1) in the eigenvalue estimates
ξk produced by the RPM satisfies

E err(ξk ) ≤ 2.575
[
logn

k

]2
. (2.10)

Theorem 2.27 implies the iteration complexity bound

k ≥
1.605 log(n)
√
ε

implies err(ξk ) ≤ ε.

Comparing Theorem 2.27 with Theorem 2.14, we see that RKM only pays for the square
root of the error tolerance ε, while RPM pays for ε itself. This is a big deal when ε ≈ 0.
The result also predicts that RKM has a burn-in period of about logn iterations.

Problem 2.28 (Kucyński and Woźniakowski; Tropp). Prove Theorem 2.27. There is a fairly
simple argument that parallels the proof of Theorem 2.14. In this case, when we select
a polynomial, the optimal choice is a shifted and scaled Chebyshev polynomial of the
second kind.

2.5 Context: First-Order Convex Optimization
It is interesting to compare RPM and RKM with standard first-order optimization
algorithms to see how the error declines with the iteration k . Our eigenvalue
computation methods perform one matrix–vector multiplication per iteration, while
a first-order optimization algorithm performs one gradient evaluation per iteration.
See Bubeck [Bub15, p. 13] for a summary.

• For a nonsmooth, Lipschitz convex problem, subgradient descent methods achieve
a dimension-free convergence rate of k−1/2. This is the same rate attained by
Monte Carlo sampling estimators (for the trace).

• For a smooth convex problem, gradient descent methods achieve a convergence
rate of k−1. This is the same rate attained by the RPM when there is no spectral
gap.

• For a smooth convex problem, accelerated gradient descent methods achieve a
convergence rate of k−2. This is the rate attained by the RKM when there is no
spectral gap.

• For a smooth and strongly convex problem, gradient descent achieves an ex-
ponential convergence rate e−ck , where c reflects the condition number of the
optimization problem. This is the rate attained by the RPM in the presence of a
spectral gap.
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• For a smooth and strongly convex problem, accelerated gradient descent achieves
an exponential convergence rate e−

√
c k , where c reflects the condition number.

This is the rate attained by RKM in the presence of a spectral gap.

These parallels are not a coincidence; see [Har18]. One might be tempted to treat
maximum eigenvector computations as an optimization problem and apply standard
optimization algorithms. Nevertheless, it is very hard to beat RKM for maximum
eigenvalue computations when we are working with the matrix–vector multiplication
primitive.

2.6 Rotationally invariant distributions
When running RPM or RKM, it is mathematically appealing to choose the starting
vector ω from the standard normal distribution. Nevertheless, we may ask whether
this is actually the best choice. In this section, we establish a general result that justifies
this decision. These ideas are implicit in the paper [KW92].

2.6.1 Averaging an orthogonally invariant function
We call a bivariate function f : Hn(R) ×R

n → R orthogonally invariant if it obeys

f (A;v ) = f (O AO ∗;Ov ) for each orthogonal matrix O ∈ Mn(R).

Fix a matrix Λ ∈ Hn and consider the orthogonal orbit

A := A(Λ) = {OΛO ∗ : O ∈ Mn(R) is orthogonal} .

For the worst matrix in the orthogonal orbit, the average value of an orthogonally
invariant function is minimized when the vector v is chosen from a rotationally
invariant distribution.

Proposition 2.29 (Spherical symmetry). Consider an orthogonally invariant bivariate
function and a random vector ω ∈ Rn . Let Ω ∈ Rn×n be a uniformly random
orthogonal matrix, drawn independently from ω. Then,

max
A∈A

EΩ,ω f (A;Ωω) ≤ max
A∈A

Eω f (A;ω).

Proof. By the orthogonal invariance of f ,

max
A∈A

EΩ,ω f (A;Ωω) = max
A∈A

EΩ,ω f (Ω∗AΩ;ω)

≤ EΩmax
A∈A

Eω f (Ω∗AΩ;ω) = max
A∈A

Eω f (A;ω).

The inequality is Jensen’s. The last identity follows from the definition of A. �

2.6.2 The maximum eigenvalue
As a specific application, we study the problem of estimating the maximum eigenvalue
of the worst matrix with eigenvalue spectrum Λ using RPM or RKM. Fix a natural
number k , and define the orthogonally invariant function

f (A;v ) = err
(
ξk (A,v )

)
.

where ξk (A,v ) is the eigenvalue estimate produced by k iterations of the power method
or the Krylov method for the matrix A ∈ Hn with the starting vector v ∈ Rn . The
orthogonal invariance property follows from (2.1).
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Let v ∈ Rn be a random vector with any distribution whatsoever. Proposition 2.29
states that

max
A∈A

E err
(
ξk (Ωv )

)
≤ max

A∈A
E err

(
ξk (A,v )

)
.

That is, for the worst-case input matrix, drawing a starting vector ω = Ωv with a
rotationally invariant distribution is no worse on average than drawing the starting
vector v . Since ξk (A,v ) does not depend on the scale of the vector v , the distribution
of the norm ‖ω‖ of the random vector does not play a role in the behavior of the
algorithms. Thus, we may as well take ω to be the standard normal vector.

The argument here is general enough to handle a wide range of other functions.
For instance, we could take

f (A;v ) = 1{err(ξk (A,v )) ≥ ε}.

Then Proposition 2.29 shows that a spherically symmetric distribution also minimizes
the probability of a large error. Likewise, we can apply the same methodology to study
other kinds of NLA problems that involve rotationally invariant quantities.

Problems
Numerics 2.30 (Power to the People). In this problem, we will explore the behavior of
the randomized power method as applied to several examples.

1 Implement the randomized power method to obtain a sequence of estimates
{ξk } for the maximum eigenvalue of a psd matrix. Allow either a real or complex
normal starting vector. Hint: You may need to take the real part of the Rayleigh
quotient in the complex case.

2 Write code to plot the sample paths k 7→ ξk for 100 realizations of the power
method for different starting vectors. Compare the real and complex case. (Use
translucent lines!)

3 For n = 1000, make plots of the sample paths for the Laplacian, the inverse
Laplacian, and LowRankHiNoise with R = 1 and F = R. Do you witness burn-in
phenomena? Which type of convergence behavior is visible (1/k or e−k )? How
does the convergence rate depend on the choice of a real or complex starting
vector?

4 Repeat these experiments using a randomized Krylov subspace method. You may
use eig, or equivalent, to compute the maximum eigenvalue of the compression
of the input matrix to the Krylov subspace. Discuss.
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3. The Lanczos Method

Date: 14 January 2020 Scribe: Dmitry Burov

Agenda:
1 Krylov subspaces
2 Arnoldi iteration
3 Lanczos iteration
4 Spectral functions
5 Gaussian quadrature
6 Lanczos quadrature
7 Stochastic Lanczos
quadrature

In the previous lecture, we introduced the power method (PM) for computing the
largest eigenvalue of a matrix. We briefly mentioned Krylov subspace methods, which
improve over the PM by using all of the information collected during the iteration.
This lecture continues our treatment of Krylov subspace methods by presenting two
iterative algorithms, the Arnoldi and Lanczos iterations, both of which construct a
distinguished basis for a Krylov subspace. Furthermore, we will develop a beautiful
result that connects the Lanczos iteration with the problem of computing the quadratic
form induced by a spectral function; that is, a quantity of the form x ∗f (A)x . Finally, at
the end of the lecture, we will combine these ideas to develop a stochastic estimator
for the trace of a spectral function tr f (A).

3.1 Krylov subspaces
Our initial focus is on computing the maximum eigenvalue of a self-adjoint matrix,
under the constraint that we can only access the matrix via matrix–vector multiplication.
We are going to work in the real setting today to avoid keeping track of complex
conjugates.

Computational Problem (Maximum eigenvalue). For a self-adjoint matrix A ∈ Hn(R),
compute λmax(A).

Computational Primitive (Matrix–vector multiplication). We can compute u 7→ Au for
any u ∈ Rn .

Krylov subspaces give a very powerful mechanism for exploiting the matrix–vector
product to extract information about a matrix. Recall that the Krylov subspace of depth
k is defined as

Kk := Kk (A; x ) := span
{

x , Ax , . . . , Ak−1x
}
.
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The starting vector x ∈ Rn is typically chosen by the user of the Krylov subspace. Note
that the dimension of Kk does not exceed k .

As we have mentioned, the Krylov subspace Kk arises from k − 1 steps of power
iteration, provided that we accumulate the information from the PM instead of retaining
only the highest-order monomial, i.e., Ak−1.

As outlined in the previous lecture, to approximate the maximum eigenvalue
λmax(A), we can maximize the Rayleigh quotient over vectors u in the Krylov subspace:

ξk−1 = max
u ∈Kk

u ∗Au

u ∗u
= max

deg ϕ≤k−1

x ∗ϕ2(A)Ax

x ∗ϕ2(A)x
. (3.1)

Indeed, every vector u ∈ Kk has the form u =
∑k−1

i=0 ci Ai x = ϕ(A)x , where ϕ(t ) =∑k−1
i=0 cit

i is a polynomial with degree k − 1 or less. We also used the fact that A is
self-adjoint (A = A∗) and commutes with any matrix polynomial (Aϕ(A) = ϕ(A)A).
Theorems 2.25 and 2.27 state that the Krylov method significantly outperforms the
power method when the starting vector is chosen at random from a standard normal
distribution.

Today, we will be addressing the computational question: How do we actually solve
the maximization problem (3.1)? What is the computational cost, as compared with
the PM? We will develop the Krylov scheme Krylov scheme; a procedure that conceptually involves
three steps:

1 Compute an orthonormal basis Q k for the Krylov subspace Kk .
2 Compress the input matrix to the Krylov subspace: H k = Q ∗k AQ k .
3 Compute the maximum eigenvalue of the compression: λmax(H k ).

We are going to focus on methods for efficiently performing the first two steps in
concert.

Exercise 3.1 (Invariance). Assume that A ∈ Hn is self-adjoint, and let x ∈ Fn be a starting
vector. Fix a natural number k . Verify the invariance properties of the Krylov subspace
Kk (A; x ).

1 Scale invariance: Kk (A; zx ) = Kk (A; x ) for each nonzero z ∈ F .
2 Affine invariance: Kk (αA + βI; x ) = Kk (A; x ) for all β ∈ R and all nonzero
α ∈ R.

3 Rotation covariance: Kk (U AU ∗;U x ) = U Kk (A; x ) for each orthogonal/unitary
U .

3.2 Arnoldi iteration
We approach the first step in the Krylov scheme for computing the maximum eigenvalue
by means of the Arnoldi iteration Arnoldi iteration, which computes a special basis for a Krylov subspace
Kk (A; x ). Later, we will see that something remarkable happens when the matrix A is
self-adjoint.

The idea behind Arnoldi iteration is to apply the modified Gram–Schmidt (MGS)
process to a cleverly chosen sequence of vectors:

Idea: Sequentially construct an orthonormal basis for the Krylov space:

span{q1, . . . ,q k } = span{x , Ax , . . . , Ak−1x } for each k = 1, 2, 3, . . . .
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At each step, we obtain the next vector q k+1 by applying MGS to Aq k .

For concreteness, let us see how this process plays out.

• k = 1. The first vector q1 must be parallel to the starting vector x . Thus, we take

q1 = x/‖x ‖.

Clearly, q1 ∈ span {x }.
• k = 2. Now, we orthogonalize Aq1 against the first vector in our orthonormal

basis:

q̂2 = Aq1 − 〈Aq1, q1〉q1;
q2 = q̂2/‖q̂2‖.

Since Aq1 ∈ span{Ax }, we have q̂2 ∈ span{x , Ax }. Moreover, q̂2 is orthogonal
to q1. We simply need normalization to obtain q2.

• k = 3. Next, we orthogonalize Aq2 against the first two vectors:

q̂3 = Aq2 − 〈Aq2, q2〉q2 − 〈Aq2, q1〉q1;
q3 = q̂3/‖q̂3‖.

• And so on. For each k , use MGS to orthogonalize Aq k against q1, . . . ,q k .

To appreciate what is happening here, rewrite this procedure in matrix form. Let
Q k be the n × k orthonormal matrix that collects the first k vectors in the basis. Then

[
A
] [

q1 . . . q k

]
=

[
q1 . . . q k q k+1

] 
∗ ∗ · · · ∗

∗ ∗ · · · ∗

∗ · · · ∗

. . .
...
∗


.

A Q k = Q k+1 Ĥ k

(3.2)

Indeed, the coefficient matrix Ĥ k collects the (scaled) inner-products that arise during
the MGS procedure. At each iteration, the (k + 1) ×k coefficient matrix Ĥ k extends by
one column and one row. Since we orthogonalize Aq k against q1, . . . ,q k , the nonzero
coefficients appear on or above the first subdiagonal. A matrix with this form is called
upper Hessenberg upper Hessenberg.

Exercise 3.2 Verify that Aq k ∈ Kk+1. Show that Aq k < Kk , unless Kk = Kk+1. Conclude
that span{q1, . . . ,q k } = Kk (A; x ) for each index k .

3.3 Lanczos iteration
The Arnoldi iteration applies to any square matrix, but something incredible happens
when the matrix A is self-adjoint. This specialization leads to a simpler algorithm,
called the Lanczos iteration Lanczos iteration, that has much lower computational cost than the Arnoldi
iteration.

Since Q k is orthonormal for each k , we can left-multiply the equation (3.2) by Q ∗k
to arrive at the formula

Q ∗k AQ k = H k ,
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where H k is the top k × k square of Ĥ k ; i.e. the coefficient matrix without its bottom
row. In particular, H k is also upper Hessenberg. Given that A = A∗, we discover that
H k is also self-adjoint:

H k = Q ∗k AQ k =
(
Q ∗k AQ k

)∗
= H ∗k .

But then H k and H ∗k are both upper Hessenberg. Therefore, the matrix H k is actually
tridiagonal tridiagonal. We change notation to emphasize this fact:

Q ∗k AQ k = T k =


α1 β1

β1
. . .

. . . βk−1
βk−1 αk


.

A matrix with this special structure (symmetric and tridiagonal) is called a Jacobi
matrix Jacobi matrix.

This structure allows for a significant reduction in computation complexity. The
Arnoldi iteration orthogonalizes Aq k against each of q1, . . . ,q k . Since the coefficient
matrix is tridiagonal, we see that (in exact arithmetic) the only nonzero inner products
are the ones between Aq k and q k and q k−1. As a consequence, we can omit the
remaining orthogonalization steps from the MGS procedure.

This simplification results in the Lanczos iteration; see Algorithm 3.1 for the details.
The total cost of each iteration is O (n) arithmetic operations. The algorithm computes
the tridiagonal matrix T automatically, by explicitly determining the coefficients αi

and βi . The total storage cost is just O (n) if we only need the tridiagonal matrix.
The storage cost rises to O (k n) if we store the orthonormal basis computed after k
iterations; we need this basis if we want to estimate eigenvectors as well as eigenvalues.

The matrix T = Q ∗AQ is the compression of the input matrix to the Krylov
subspace—the second step of our eigenvalue computation procedure. To fulfill our task
of estimating the largest eigenvalue λmax(A), we simply need to find the maximum
eigenvalue λmax(T ) of the tridiagonal matrix. This can be achieved with only O (n)
operations via the bisection method. For example, see [TB97, Lec. 30] or [GVL13,
Sec. 8.4]. We omit the details, as this topic exceeds the scope of the lecture.

Exercise 3.3 (Minimum eigenvalue). Explain how to use the Lanczos iteration to estimate
the minimum eigenvalue of a self-adjoint matrix.

Exercise 3.4 (Complex field). What, if anything, changes if we want to apply the Lanczos
iteration to a complex self-adjoint matrix A ∈ Hn(C)?

Warning 3.5 The Lanczos iteration has complicated behavior in floating-point arith-
metic. Nevertheless, it is reliable if we simply wish to estimate the maximum (or
minimum) eigenvalue of a self-adjoint matrix. �

3.4 Evaluating a spectral function
We now make a slight digression to introduce the concept of a spectral function. The
rest of the lecture will explain how the Lanczos method can be used to estimate
quadratic forms of a spectral function.
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Algorithm 3.1 LanczosTridiagonalization.
Warning: This algorithm exhibits complicated behaviors in floating-point arithmetic.

Input: Input matrix A ∈ Hn , unit vector x ∈ F , number k of steps
Output: Orthogonal matrix Q ∈ Mk and tridiagonal matrix T ∈ Hk such that

Q ∗AQ = T

1 function LanczosTridiagonalization(A; x ; k )
2 i = 0, β0 = 1,q1 = 0, r 0 = x
3 while i < k and βi , 0 do
4 q i+1 = r i/βi

5 i = i + 1
6 αi = q∗i (Aq i )

7 r i = (A − αi I)q i − βi−1q i−1
8 βi = ‖r i ‖

3.4.1 Spectral functions
We begin with an alternative presentation of the spectral theorem for self-adjoint
matrices.

Definition 3.6 (Spectral resolution). Let A ∈ Hn be a self-adjoint matrix. The spectral
resolution spectral resolutionof A is the decomposition

A =
∑m

i=1
λi P i where

∑m

i=1
P i = I and P i P j = P i δi j .

Here, λi are the distinct real eigenvalues of A, and the matrix P i is the orthogonal
projector onto the invariant subspace associated with the eigenvalue λi . In this context,
δi j is the Kronecker delta.

Using the spectral resolution, we can define what it means to apply a (scalar)
function to a self-adjoint matrix.

Definition 3.7 (Spectral function). Let f : I → R be a real-valued function on an interval
I of the real line. Let A ∈ Hn be a self-adjoint matrix whose eigenvalues lie in the
interval I . Then we define the spectral function spectral function

f (A) =
∑m

i=1
f (λi )P i where A =

∑m

i=1
λi P i

is a spectral resolution of A.

Spectral functions arise in many different contexts. In fact, we have already seen
one example: a matrix polynomial. There are many others.

Example 3.8 (Spectral functions). Here are some important instances of spectral func-
tions.

• For f (λ) = λ−1, the spectral function is f (A) = A−1.
• For f (λ) = log λ, the spectral function is f (A) = log A.

Whenever we apply a scalar-valued function to a matrix, we are always referring to the
associated spectral function. �

Computing a spectral function typically requires O (n3) operations because it
involves a full eigenvalue decomposition. Nevertheless, we may wonder if it is possible
to obtain partial information with less work.
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3.4.2 Evaluating the quadratic form
One basic question is how we can evaluate individual entries of a spectral function
f (A) of a self-adjoint matrix A. In particular, we may wish to determine the quadratic
form x ∗f (A)x . Among other things, this computation allows us to obtain individual
diagonal entries of the spectral function. We will attempt to perform this computation
using matrix–vector multiplications.

Computational Problem (Quadratic form in a spectral function). Let f : I → R be a
function. For a self-adjoint matrix A ∈ Hn(R) and a vector x ∈ Rn , compute the
quadratic form x ∗f (A)x .

Computational Primitive (Matrix–vector multiplication). We can compute u 7→ Au for
each u ∈ Rn .

The following incredible approach emerged from early work by Gene Golub and
John Welsch [GW69]. Connections and ramifications are explored in the book of Golub
and Meurant [GM10]. See [GVL13, Sec. 10.2] for a simple introduction.

First, observe that the quadratic form x ∗f (A)x can be rewritten as an integral
against a discrete measure:

x ∗f (A)x =
∑m

j=1
f (λ j ) x

∗P j x =

∫
R

f (λ) dν(λ), (3.3)

where ν is a weighted spectral measure

ν =
∑m

j=1
τj δλ j and τj = x ∗P j x ≥ 0.

In this context, δa is the Dirac measure at a .
This may not seem like progress—in fact, it seems that we are obfuscating something

simple. The potential of this approach becomes clearer when we remember that it is
possible to approximate integrals using quadratures; that is, by a weighted sum of
function values.

Idea: Approximate the integral in (3.3) by Gaussian quadrature.

It is an astonishing fact that we can obtain the required quadrature rule efficiently
using an application of the Lanczos procedure. This is what we will discuss next.

Exercise 3.9 (Off-diagonal entries). Explain how to compute the bilinear form x ∗f (A)y
using two evaluations of the quadratic form in f (A). Hint: Polarization!

3.5 Gaussian quadrature
A Gaussian quadrature (GQ) rule Gaussian quadrature (GQ) ruleis a collection of weights wi and nodes θi that allow
one to approximate the integral of a function with respect to a measure:

Remark 3.10 The weights and
nodes depend on the measure µ,
of course.

∫
R

f (λ) dµ(λ) ≈
∑k

i=1
wi f (θi ).

The GQ rule has the property that the approximation has zero error when the function
f is a polynomial of degree at most 2k − 1. The error in the GQ rule is controlled by
the maximum value of the (2k )th derivative of the function f on an interval containing
the support of the measure.
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The simplest form of GQ was invented by Gauss, who developed this procedure
to estimate integrals against the Lebesgue measure on [−1,+1]. This method is now
called Gauss–Legendre quadrature to distinguish it from the continuum of GQ rules.

The construction of a GQ rule hinges on the existence and properties of orthog-
onal polynomials, and this is usually how Gauss–Legendre quadrature is derived in
elementary numerical analysis texts. A complete treatment is beyond the scope of our
lecture, so we will present three facts that justify the method, leaving the proofs as
not-too-difficult exercises.

Fact 3.11 (Existence of orthogonal polynomials). For each positive measure µ, there exists
a graded system {ϕ0, ϕ1, . . .} of orthogonal polynomials, which may be finite or infinite.
That is, deg ϕi = i for each index i , and∫

R

ϕi (λ)ϕj (λ) dµ(λ) =

{
1, i = j,
0, i , j.

Moreover, the orthogonal polynomials satisfy a 3-term recurrence:

γkϕk (λ) = (λ − ζk )ϕk−1(λ) − γk−1ϕk−2(λ),

with initial conditions ϕ−1(λ) = 0 and ϕ0(λ) = 1. The coefficients γk are nonzero. �

Fact 3.12 (Roots of orthogonal polynomials). The zeros of the polynomial ϕk are real and
distinct. Moreover, they coincide with the eigenvalues of the symmetric tridiagonal
matrix

T k =


ζ1 γ1

γ1
. . .

. . . γk−1
γk−1 ζk


�

Fact 3.13 (Construction of GQ rule). Given an eigenvalue decompositionT k = UΘU ∗, the
k -point GQ rule for the measure µ has nodes θi and weights wi = |u1i |

2. �

In the next section, we will explain how these facts are connected with the Lanczos
iteration.

Problem 3.14 (Existence of orthogonal polynomials). Prove Fact 3.11 by applying the Gram–
Schmidt procedure to the monomials. To obtain the three-term recurrence, note
that 〈p , λq〉µ = 〈λp , q〉µ where p ,q are polynomials, λ is multiplication by the
independent variable, and 〈·, ·〉µ is the L2(µ) inner product.

Problem 3.15 (Roots of orthogonal polynomials). Prove Fact 3.12 by computing the charac-
teristic polynomial of the tridiagonal matrix T k recursively. Connect it with the 3-term
recurrence for the orthogonal polynomials.

Problem 3.16 (Construction of the GQ rule). Let θi be the roots of the orthogonal polyno-
mial ϕk . By solving a linear system, determine weights wi for which the k -point Gauss
rule exactly integrates all polynomials of degree k − 1 against the measure µ. Prove
that the resulting quadrature rule integrates all polynomials of degree 2k − 1 against
the measure µ.

Problem 3.17 (Efficient construction of weights). Prove the rest of Fact 3.13, namely that
we can obtain the weights wi from the eigenvector decomposition of the tridiagonal
matrix T k . Hint: This step requires the Christoffel–Darboux formulas for orthogonal
polynomials; it is the most difficult part of this development.
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3.6 Lanczos quadrature
To connect these facts with the Lanczos iteration, we need to show that the Lanczos
iteration is implicitly computing orthogonal polynomials with respect to a measure. We
also need to demonstrate that the tridiagonal matrix produced by Lanczos describes
the 3-term recurrence of these polynomials. From there, the facts we have reported
above show that the Lanczos iteration can be used to construct quadrature rules for
the integral (3.3).

First, observe that each orthonormal vector q i computed by the Lanczos iteration
takes the form q i = ϕi (A)x for some polynomial ϕi with degree i . These polynomials
are called Lanczos polynomials Lanczos polynomials.

Next, we show that the 3-term recurrence that underlies the Lanczos iteration is
the same as the 3-term recurrence for the Lanczos polynomials. The key step in the
Lanczos iteration takes the form

βk q k+1 = (A − αk I)q k − βk−1q k−1.

This relation implies that

βkϕk+1(λ) = (λ − αk )ϕk (λ) − βk−1ϕk−1(λ) for all λ ∈ R.

To check the implication, form the eigendecomposition A = V DV ∗. Multiply the
3-term recurrence for the matrix polynomials byV ∗ on the left and byV on the right.
Then use the fact that a polynomial of degree k < m that equals zero at m points must
equal zero everywhere. Here, m is the number of distinct eigenvalues of A, which is
also the maximum number of distinct Lanczos polynomials.

Finally, it is easy to check that these polynomials are orthogonal with respect to the
spectral measure:∫

ϕi (λ)ϕj (λ) dν(λ) =
∑m

k=1
(x ∗P k x ) ϕi (λk )ϕj (λk )

= x ∗
[∑m

k=1
ϕi (λk )ϕj (λk )P k

]
x

= x ∗
[(∑m

k=1
ϕi (λk )P k

) (∑m

`=1
ϕj (λ`)P `

)]
x

= x ∗
[
ϕi (A)ϕj (A)

]
x = q∗i q j = 0.

The first identity follows from the definition of the spectral measure. The third relation
depends on the properties of the spectral resolution. The last equality is true whenever
i , j , and we have used the assumption that A is self-adjoint.

As a consequence of these calculations and the facts stated in the last section, we
can approximate the quadratic form x ∗f (A)x using the following procedure:

1 Apply k steps of Lanczos iteration to A, starting at the vector x , to obtain a
tridiagonal matrix T k .

2 Compute the eigenvalue decomposition T k = UΘU ∗.
3 Approximate the quadratic form using the k -point Gauss–Lanczos quadrature
rule:

x ∗f (A)x ≈
∑k

i=1
|u1i |

2f (θi )

This approach is known as Lanczos quadrature Lanczos quadrature. It is possible to compute explicit error
bounds that allow us to halt the procedure when the order k of the quadrature rule
is high enough. For specific functions, we can also use methods from approximation
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theory to obtain a priori bounds on how large k should be. The arithmetic cost for
computing the eigenvalue decomposition of a Jacobi matrix is O (k 2) and it is easy to
compute the arithmetic cost of the other steps.

3.7 Stochastic Lanczos quadrature
What is the connection to randomized linear algebra? By combining Lanczos quadrature
with the randomized trace estimator, we can obtain estimates for the trace of a spectral
function using only matrix–vector multiplies.

Computational Problem (Trace of a spectral function). For a real function f and a
self-adjoint matrix A, estimate tr f (A).

Computational Primitive (Matrix–vector multiplication). We can obtain u 7→ Au for
any vector u .

Example 3.18 (Trace of a spectral function). The problem of computing the trace of a
spectral function comes up in a wide range of applications.

1 In electronic structure calculations, we may need to estimate tr A−1, the trace of
the spectral function f (·) = (·)−1.

2 In Gaussian process regression, we need to compute the log-determinant log det A,
which is the trace of the spectral function f (·) = log(·).

See references [BFG96; GM10; UCS17; Don+17; Fit+18] for more examples. �

With what we know, we arrive at a very natural approach to estimating the trace of
a spectral function.

Idea: Combine a stochastic trace estimator with the Lanczos quadrature.

Here is a brief outline of how this procedure might work.

• Draw an isotropic random vector ω ∈ Rn .
• Form X = ω∗f (A)ω ≈ LanczosQuadrature(f , A,ω).
• Average k independent copies of X to obtain the trace estimate X̄k ≈ tr f (A).

This approach is called stochastic Lanczos quadrature stochastic Lanczos quadrature. Although the ideas can be traced
to Golub’s work [BFG96] in the 1990s, the method has reemerged in the last few
years [UCS17; Don+17; Fit+18] as a powerful approach for solving large problems that
arise in machine learning, e.g., Gaussian process regression.

Numerics 3.19 (SLQ). Implement stochastic Lanczos quadrature to estimate the log-
determinant of the RBF kernel matrix. Perform suitable experiments to explore how
the bias and variance of the estimates as a function of the number s of samples.
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4. Matrix Approximation by Sampling
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A core problem in numerical linear algebra is to approximate a matrix by another
matrix that enjoys more structure or is easier to construct. In this lecture, we introduce
a simple and versatile approach to matrix approximation: matrix approximation
by randomized sampling, or matrix Monte Carlo. We illustrate this method with
a toy algorithm for approximating a redundant matrix product. It has many other
applications in computational mathematics.

4.1 Empirical approximation of matrices
The empirical approximation method was developed by Maurey in the late 1970s to
bound the covering numbers of a convex hull. The idea was first published in a paper
of Carl [Car85] on approximation theory; see also [Pis80]. We begin with the main
idea behind empirical approximation in the context of matrices, and then we explain
how to analyze it.

4.1.1 The empirical approximation method
Let B ∈ Fm×n be a fixed matrix that we wish to approximate; it is sometimes called
the input matrix / target matrix input matrix / target matrix. Imagine that we have an additive decomposition of
the form

B =
∑d

k=1
Bk ,

where each Bk ∈ F
m×n is “simple.” For example, the summands might be sparse or low

rank. We also suppose that we have a set of sampling probabilities (p1, . . . , pd ) ∈ ∆d ,
where ∆d is the probability simplex. It often requires some creativity to determine the
right set of sampling probabilities for a specific approximation problem.

Define a random matrix X ∈ Fm×n such that

P
{

X = p−1k Bk

}
= pk for each k = 1, . . . ,d .
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Observe that X inherits structure of Bk . For example, if each Bk is sparse, so is the
random matrix X . Clearly, X is an unbiased estimator of B ; that is, E X = B . A single
realization of X is typically a poor approximation of B . But we can average many
copies of X to reduce the variance of our estimate.

Doing so, we arrive at the matrix Monte Carlo estimator matrix Monte Carlo estimator:

X̄ s :=
1
s

∑s

i=1
X i where X i ∼ X are iid.

Applying linearity of expectation, we can check that E X̄ s = B . Moreover, X̄ s also
inherits structure from the Bk , provided that the number s of samples is small.

4.1.2 Approximation in the spectral norm
We are interested in how big s has to be to ensure that X̄ s approximates B with respect
to the spectral norm. More precisely, we want

‖X̄ s − B ‖ ≤ ε. (4.1)

The spectral norm error bound (4.1) has several desirable consequences:

• Control of linear functionals:

|〈F , X̄ s 〉 − 〈F , B̂〉| ≤ ε‖F ‖∗ for F ∈ Fm×n .

Here, ‖·‖∗ denotes the nuclear norm (i.e., the sum of singular values).
• Control of singular values:

|σj (X̄ s ) − σj (B)| ≤ ε for each index j .

• Control of singular vectors: When σj (B) is isolated from the spectrum of B , the
j th left/right singular vector of X̄ s is close to the j th left/right singular vector of
B .

A detailed statement about the singular vectors is complicated; see [Bha97, Chap. VIII]
for discussion and results.

Warning 4.1 (Frobenius-norm approximation). It is easier to prove theorems about the
Frobenius-norm error than the spectral-norm error. Unfortunately, Frobenius-norm
error bounds are can be vacuous because the size of the error is often similar to the
norm of the matrix we are trying to approximate. Except in rare cases, we will use
the spectral norm to measure errors. �

4.2 Matrix Monte Carlo Theorem
The matrix Bernstein inequality allows us to control spectral-norm errors of matrix
Monte Carlo approximations. This powerful tool is the subject of Lecture 5. For now,
we content ourselves with stating and exploring a corollary that allows us to analyze
Matrix Monte Carlo estimators.

Theorem 4.2 (Matrix Monte Carlo). Let B ∈ Fm×n be a matrix we wish to approximate.
Assume that X ∈ Fm×n is a random matrix such that

E X = B and ‖X ‖ ≤ L almost surely.
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Figure 4.1 Log-probability that the
error in the empirical approxima-
tion of a matrix exceeds a thresh-
old ε.
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Define the per-sample second moment

v (X ) = max {‖E [X X ∗]‖, ‖E [X ∗X ]‖} .

Form X̄ s =
1
s

∑s
i=1 X i , where X i ∼ X iid. Then

E ‖X̄ s − B ‖ ≤

√
2v (X ) log(m + n)

s
+

2L log(m + n)

3s
.

For each t > 0,

P
{
‖X̄ s − B ‖ > t

}
≤ (m + n) · exp

(
−

st 2

v (X ) + 2Lt /3

)
.

In particular, we have the following sample complexity bound.

s ≥
2v (X ) log(m + n)

ε2
∨

2L log(m + n)

3ε
implies E ‖X̄ s − B ‖ ≤ 2ε. (4.2)

Recall that ∨ is infix notation for the maximum of two numbers.
The probability bound heralds a mixed tail behavior in the deviation parameter t .

The statement is vacuous until t approaches the expectation value. This is followed by
a regime of quadratic decay in the log probability (subgaussian decay) that transforms
into a linear decay (subexponential tails) near the threshold t = v (X )/L. We refer to
Figure 4.1 for an illustration.

Warning 4.3 (Sample complexity). The sample complexity bound (4.2) scales with
ε−2! Therefore, it is expensive to achieve high accuracy with Matrix Monte Carlo
sampling. This is a fundamental drawback of any Monte Carlo sampling method.
It is an unavoidable consequence of the central limit theorem. But see Problem 4.11
for ways to improve the situation. �
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4.3 Application: Approximate matrix multiplication
As an illustration of the matrix Monte Carlo method, we will develop a toy algorithm
for approximating a highly redundant matrix product.

Computational Problem (Matrix Product). Compute B = C R where C ∈ Fm×d and
R ∈ Fn×d where the inner dimension d � m ∧ n. For simplicity, we assume for
the rest of this chapter that ‖C ‖ = ‖R ‖ = 1.

We will pursue the following approach:

Idea: Approximate the product B = C R ∗ by matrix Monte Carlo sampling.

4.3.1 Monte Carlo for matrix products
To develop a sampling estimate for the matrix product B = C R ∗, we need to break it
down into a sum of simple terms that we can compute easily. To that end, write out
the columns of the factors:

C =
[
c 1 · · · c d

]
and R =

[
r 1 · · · r d

]
.

Then we can express the product as

B =
∑d

k=1
c k r ∗k =:

∑d

k=1
Bk . (4.3)

That is, each summand Bk is the rank-one matrix formed by the outer product of the
k th column of C and the k th column of R .

To form the Monte Carlo estimator, we need a set of sampling probabilities
(p1, . . . , pd ); we will discuss some specific choices in the next two sections. Form the
random matrix X ∈ Fm×n that satisfies

P
{

X = p−1k c k r ∗k
}
= pk for each k = 1, . . . ,d .

The associated matrix Monte Carlo estimator is the empirical average of s independent
samples:

X̄ s =
1
s

∑s

i=1
X i where X i ∼ X iid.

This procedure produces an unbiased estimator of the matrix product: E X̄ s = B .
The arithmetic cost of forming the approximation X̄ s is only O (smn). When the

number s of samples satisfies s � d , the Monte Carlo procedure may be faster than
the naïve matrix product, which costs O (dmn) operations. On the other hand, to
achieve the speed-up, we must agree to suffer a substantial approximation error.

The actual number of samples s required to achieve a desired toleranace ε depends
on the choice of sampling probabilities. We shall analyze two popular strategies:
uniform sampling and importance sampling.

4.3.2 Uniform sampling
First, we consider the simplest possible approach, where we sample each term in
the representation with equal probability. That is, pk = 1/d for each k = 1, . . . ,d .
Computing the uniform sampling distribution is free, and it does not require us to look
at the matrix factors C ,R .
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The coherence statistic
To analyze uniform sampling, we need to introduce a measure of the uniformity of the
columns of a matrix with respect to the standard basis.

Definition 4.4 (Coherence statistic). Let C ∈ Fm×d be a matrix with the normalization
‖C ‖ = 1. The coherence statistic coherence statisticis defined as

µ(C ) := d · maxk ‖c k ‖
2.

Exercise 4.5 (Coherence statistic). Verify that µ(C ) ∈ [m,d]. The lower bound is attained
when all the columns of C have equal norm; the upper bound is attained when one
column is a standard basis vector.

Analysis
In order to activate the Matrix Monte Carlo theorem, we need to compute the per-
sample second moment v (X ) and provide a uniform upper bound ‖X ‖ ≤ L for the
sample matrix X constructed with the uniform sampling probabilities pk = 1/d .

Observe that the spectral norm of X satisfies

‖X ‖ ≤ maxk ‖p
−1
k c k r ∗k ‖ ≤ d · (maxk ‖c k ‖) (maxk ‖r k ‖) ≤ µ(C ) ∨ µ(R ).

The bound L = µ(C ) ∨ µ(R ) may seem rather crude, but it matches the scaling of the
per-sample second moment.

Next, let us estimate the per-sample second moment. First,

0 4 E[X X ∗] =
∑d

k=1
pk

(
p−1k c k r ∗k

) (
p−1k c k r ∗k

)∗
=

∑d

k=1
p−1k ‖r k ‖

2c k c ∗k

4 d · maxk ‖r k ‖
2
∑d

k=1
c k c ∗k

= µ(R )(CC ∗).

As usual, 4 denotes the psd order. A parallel computation reveals that

0 4 E[X ∗X ] 4 µ(C )(RR ∗).

Together, these psd order relations ensure

v (X ) = ‖E[X X ∗]‖ ∨ ‖E[X ∗X ]‖

≤ ‖µ(R )(CC ∗)‖ ∨ ‖µ(C )(RR ∗)‖

= µ(R ) ∨ µ(C ).

The last step requires the assumption that ‖C ‖ = ‖R ‖ = 1.
We can now invoke the matrix Monte Carlo theorem. If

s ≥

(
1
ε2
∨

1
3ε

)
(µ(C ) ∨ µ(R )) log(m + n), (4.4)

then
E ‖X̄ s −C R ∗‖

‖C ‖‖R ‖
≤ 2ε.

This result gives us an estimate for the number s of samples we need to approximate
the matrix product B = C R ∗ in terms of the coherence of the columns of the factors.
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Discussion
If C and R have uniformly small columns, then µ(C ) ≈ n and µ(R ) ≈ m. In this case,
we only need s ≈ ε2(m ∨ n) log(m + n) samples. The total arithmetic cost for the
Monte Carlo approximation is O

(
(m2n ∨mn2) log(m + n)

)
. When d � m ∨ n, the

cost of performing the approximation compares favorably with the O (dmn) cost of
naïve matrix multiplication.

4.3.3 Importance sampling
In the case where columns of C and R have disparate norms, it is natural to adjust the
sampling scheme to compensate. Specifically, we consider the following importance
sampling distribution

pk =
‖c k ‖

2 + ‖r k ‖
2

‖C ‖2F + ‖R k ‖
2
F

for each k = 1, . . . ,d . (4.5)

This construction has a natural interpretation: we sample the k th term in the decom-
position (4.3) with probability proportional to a measure of its energy. The justification
for the precise form of (4.5) comes from the fact that it controls the parameters that
arise from the matrix Monte Carlo theorem.

Warning 4.6 The importance sampling distribution (4.5) does not come for free.
Assuming that C and R are dense, the arithmetic cost is O (d(m + n)). We also
need access to the columns of the factors. �

Stable rank
To analyze the performance ofmatrixMonte Carlo estimationwith importance sampling,
we recall the definition of the stable rank stable rank:

srank(C ) = intdim(C ∗C ) =
‖C ‖2F
‖C ‖2

∈ [1, rank(C )].

The stable rank already arose in our discussion of trace estimators.

Exercise 4.7 (Stable rank versus coherence). Under the assumption that ‖C ‖ = 1, check
that srank(C ) ≤ µ(C ).

Analysis
One can show that importance sampling always outperforms uniform sampling. We
leave the details of the computation to the reader.

Exercise 4.8 (Approximate matrix multiplication by importance sampling). Construct the
sample matrix X using the importance sampling probabilities (4.5). Show that
the per-sample second moment v (X ) and the uniform bound on the spectral norm
‖X ‖ ≤ L satisfy the relation

L ∨ v (X ) ≤
1
2
(srank(C ) + srank(R )).

Hint: Do not forget that we imposed the normalization ‖C ‖ = ‖R ‖ = 1.

With the result from Exercise 4.8 at hand, the matrix Monte Carlo theorem tells us
that

s ≥

(
1
ε2
∨

1
3ε

)
(srank(C ) + srankR ) log(m + n) (4.6)
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implies that
E ‖X̄ s −C R ∗‖

‖C ‖‖R ‖
≤ 2ε.

This result gives a bound for the number s of samples we need to approximate the
product B = C R ∗ in terms of the stable ranks of the factors.

Discussion
Note that srank(C ) ≤ m and srank(R ) ≤ n, so that the arithmetic cost of forming
the approximation is always O ((mn2 ∨m2n) log(m + n)). In fact, there are many
matrices for which the stable rank is significantly smaller than the algebraic rank, and
importance sampling works especially well for these instances. Recall, however, that
we also pay O (d(m + n)) arithmetic to compute the importance sampling distribution,
and it requires a separate pass over the data.

Exercise 4.7 implies that srank(C ) + srank(R ) ≤ µ(C ) + µ(R ). Therefore, we may
conclude that the bound (4.6) for the sample complexity of matrix multiplication by
importance sampling always improves on the bound (4.4) for uniform sampling. The
discrepancy is particularly large for matrices that are low-rank (the stable rank is small)
and non-uniform columns (the coherence is large). Of course, it costs us some effort
to compute the importance sampling probabilities, whereas the uniform sampling
probabilities are free.

Problems
Exercise 4.9 (Subspace embeddings). Let U ∈ Fn×k be an orthonormal matrix; that is,
U ∗U = Ik . We can interpret U as the basis for some k -dimensional subspace in Fn .
Suppose that we would like to approximate the product using the Monte Carlo matrix
multiplication estimate X̄ s .

1 If we use uniform sampling, how many samples do we need to guarantee that
E ‖X̄ s − I‖ ≤ ε? What summary statistic of U determines the behavior of the
approximation?

2 Repeat the last part for importance sampling. How much does it cost us to get
the sampling probabilities? Do we need to know U to construct the sampling
distribution?

3 Suppose that we sample a set S of coordinates and achieve error ε in the
approximate matrix product. What can we say about the singular values of
the submatrix U (S, :)? How does ‖U (S, :)x ‖ compare with ‖x ‖? How do you
interpret the last observation?

4 Implement both procedures. Apply them to (i) the matrix obtained by stacking
n/k copies of the identity matrix Ik and rescaling; and (ii) the matrix obtained
from the first k columns of the unitary DFT matrix. Plot the sampling distribution
of the spectral-norm error as a function of the number s of samples. How variable
is the error?

Problem 4.10 (Sparsification). Let B ∈ Fm×n be a matrix. In this problem, we will design
and analyze a Monte Carlo method for approximating B by a sparse matrix. Use the
Matrix Monte Carlo theorem to make short work of the computations.

1 Express B as a sum of mn matrices, each with one nonzero entry.
2 Show how to construct an unbiased estimator X of B via uniform sampling.
3 For ε ∈ [0, 1], give an upper bound on the number s of uniform samples needed
to obtain E ‖X̄ s − B ‖ ≤ 2ε‖B ‖. Interpret the result in words.
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4 Importance sampling works better. Define the probability mass

pi j =
1
2

[
|bi j |

2

‖B ‖2F
+
|bi j |

‖B ‖`1

]
for i = 1, . . . ,m and j = 1, . . . ,n.

Here, ‖·‖`1 is the entrywise `1 norm. Analyze the resulting matrix Monte Carlo
estimator to obtain a bound on the number s of samples needed to achieve
E ‖X̄ s − B ‖ ≤ 2ε‖B ‖. Express the result in terms of the stable rank, and give
an interpretation.

5 Implement both procedures, and apply them to the RBF kernel matrix associated
with a dataset. Plot the sampling distribution of the spectral-norm error as a
function of the number s of samples.

Problem 4.11 (Variance reduction). We designed the empirical matrix approximation
procedure to produce an unbiased estimate of the target matrix B by a pure iid
sampling method. This approach can result in an estimate with very high variance, so
the matrix Monte Carlo theorem will demand an unduly large sample complexity s .

There are twomechanisms for correcting this behavior. First, we can force important
terms Bk to appear in our approximation (those that would have large pk ), only using
sampling for less important summands. Second, we can omit unimportant terms Bk

entirely (those with very small pk ), not sampling them at all.

1 Develop a variant of the approximate matrix multiplication procedure that
incorporates both of these improvements. How do we define an “important”
term? How do we define an “unimportant” term? Give an explicit analysis of
your procedure. Implement it and compare it with basic importance sampling
for appropriate instances.

2 Do the same thing for randomized sparsification.
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5. Matrix Concentration

Date: 21 January 2020 Scribe: Nikola Kovachki

Agenda:
1 Scalar concentration
2 Matrix concentration
3 Matrix Bernstein
4 Rectangular case

In the previous lecture, we analyzed a method for approximate matrix multiplication
based on random sampling. The key theoretical tool was the Matrix Monte Carlo
theorem. In this lecture, we will explain how to derive results about the concentration
of random matrices. We will start with basic scalar concentration results and draw
an analogy to the matrix setting using deep methods from matrix analysis. This
development culminates in the Matrix Bernstein inequality. The matrix Monte Carlo
theorem is an easy corollary of this result.

5.1 Scalar concentration
Consider an independent family of random numbers {X1, . . . ,Xs } ⊂ R, and form their
sum:

Y =
∑s

i=1
Xi .

We wish to bound the probability that the random sumY exceeds a level t :

P {Y ≥ t } .

Using the strict monotonicity of the exponential function,

P {Y ≥ t } = P
{
eθY ≥ eθt

}
≤ e−θt E[eθY ] for any θ > 0. (5.1)

The last inequality is Markov’s. We have replaced the problem of bounding the
probability with the probability of bounding the moment generating function (mgf) moment generating function (mgf):

mY (θ) = E[eθY ].

Since the factors Xi are statistically independent, the mgf factorizes:

mY (θ) = E eθ
∑s

i=1 Xi = E
∏s

i=1
eθXi =

∏s

i=1
E eθXi =

∏s

i=1
mXi (θ)
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The logarithm of the mgf is called the cumulant generating function (cgf) cumulant generating function
(cgf)

, and we have
seen that the cgf obeys

logmY (θ) =
∑s

i=1
logmXi (θ).

We can now use the bound (5.1) to determine that

P {Y ≥ t } ≤ exp
(
−θt +

∑s

i=1
logmXi (θ)

)
.

This claim is valid for all θ > 0, so we can take the infimum of the right-hand side over
θ to obtain the tightest bound.

Similarly, we can obtain a bound for the lower tail of the sum by noting that

P {Y ≤ t } = P {−Y ≥ −t } ≤ inf
θ<0

exp
(
−θt +

∑s

i=1
logmXi (θ)

)
.

Note that the infimum takes place over negative values of the parameter θ.

5.2 Matrix concentration
The methods outlined in Section 5.1 are among the most familiar and powerful tools
from probability theory. In this section, we will execute an audacious and powerful
extension of this approach. We will figure out how to develop a variant of the Laplace
transform method that applies to an independent sum of random matrices.

5.2.1 The matrix Laplace transform method
Consider an independent family {X 1, . . . , X s } ⊂ Hn of random self-adjoint matrices,
and form the sum

Y =
∑s

i=1
X i .

The restriction to self-adjoint matrices is a natural generalization of real-valued random
variables. We will discuss extensions to rectangular matrices below (Section 5.4).

We want to obtain the probability that the matrix Y is “large and positive.” A
natural way to quantify the positive skew of a self-adjoint matrix is by passing to its
largest eigenvalue. As in the scalar setting, Markov’s inequality asserts

P {λmax(Y ) ≥ t } = P
{
eθλmax(Y ) ≥ eθt

}
≤ e−θt E eθλmax(Y ) for all θ > 0.

Now, things start to deviate from the scalar case, but the underlying intuition persists.
In particular, we can use the spectral mapping theorem to conclude that

P {λmax(Y ) ≥ t } ≤ E λmax(eθY ) ≤ e−θt E tr(eθY ). (5.2)

Indeed, the exponential of the maximum eigenvalue of θY coincides with the maximum
eigenvalue of the spectral function eθY because the exponential is strictly increasing.
The last step is valid because the matrix eθY is positive definite.

The last inequality may seem unnecessary, but it will allow us to exploit some
remarkable properties of the matrix exponential function. Moreover, the bounds that
result from this method are sharp—including the constants—for certain examples.
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5.2.2 Subbaditivity of matrix cumulants
Let us introduce the matrix mgf matrix mgfof the sum:

mY = E tr exp (θY ) = E tr exp
(
θ
∑s

i=1
X i

)
We now need some way of decomposing the matrix mgf into its individual constituents.
A straightforward generalization of the scalar argument is impossible, because matrix
exponentials do not factorize in general:

eA+B , eAeB for A,B ∈ Hn unless they commute.

One possible substitute is to apply the Golden–Thompson inequality:

tr(eA+B ) ≤ tr(eAeB ).

Although this seems like a promising way to bypass the issue, the relation does not
necessarily extend to three or more matrices. That is,

tr(eA+B+C ) � tr(eAeBeC ).

An example of where this fails is obtained from the set of three Pauli matrices, a
family of anti-commuting self-adjoint matrices that features prominently in quantum
information [Bha97, Prob. IX.8.4]. There is a more conceptual reason that this kind of
bound is impossible: the matrix on the right-hand side can have complex eigenvalues.

Despite this difficulty, Ahlswede and Winter [AW02] managed to iteratively apply
the Golden–Thompson inequality to factorize the matrix mgf step by step. Using
this method, they derived a matrix concentration inequality of Chernoff type. Their
analysis, while beautiful, leads to suboptimal results.

Here, we will pursue another approach, introduced by your lecturer [Tro12]. This
approach is based on the matrix cgf matrix cgf, the logarithm of the matrix mgf. Unfortunately,
taking logarithms does not immediately solve the problem:

logE eθY ,
∑s

i=1
logE eθX i .

Nevertheless, the sum of the matrix cgfs remains self-adjoint, which suggests that we
might be able to do something.

To proceed, we require a deep theorem from matrix analysis, established by Elliott
Lieb [Lie73].

Fact 5.1 (Lieb 1973). For each fixed H ∈ Hn , the function

A 7→ tr exp(H + log A)

is concave on the cone of positive semidefinite matrices. �

In the scalar case, the corresponding function a 7→ aeh is linear. Lieb’s theorem
identifies a new phenomenon that takes place in the matrix setting. See [Tro15,
Chap. 8] for a complete proof of Fact 5.1 from first principles.

Lieb’s theorem, Fact 5.1, immediately supplies the following corollaries.

Corollary 5.2 (Tropp 2012). Fix H ∈ Hn , and let X ∈ Hn be a random matrix. Then

EX tr exp(H + X ) ≤ tr exp(H + logE eX ).
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Proof. Since the logarithm is the inverse of the exponential,

EX tr exp(H + X ) = EX tr exp(H + log eX ).

Since the function is concave in X , we can use Jensen’s inequality to draw the
expectation inside the logarithm. �

By iterating the argument in Corollary 5.2, we arrive at the following important
result.

Corollary 5.3 (Subadditivity of matrix cgfs). Consider an independent family {X 1, . . . , X s } ⊂

Hn of random matrices. Then

E tr exp
(∑s

i=1
X i

)
≤ tr exp

(∑s

i=1
logE eX i

)
.

Equivalently,

tr exp
(
logE exp

(∑s

i=1
X i

))
≤ tr exp

(∑s

i=1
logE eX i

)
.

Corollary 5.3 is our substitute for the additivity law for scalar cgfs. To obtain the
equivalence between the first and the second display, simply note that the exponential
is the inverse function of the logarithm on the class of positive-definite matrices.

5.2.3 Master inequalities
We are now ready to state the key result of this lecture [Tro12].

Theorem 5.4 (Tropp 2012). Let Y =
∑s

i=1 X i be a sum of independent random
matrices. For all t ∈ R,

P {λmax(Y ) ≥ t } ≤ inf
θ>0

e−θt tr exp
(∑s

i=1
logE eθX i

)
. (5.3)

Furthermore,

E λmax(Y ) ≤ inf
θ>0

1
θ
log tr exp

(∑s

i=1
logE eθX i

)
.

Proof. This result is an immediate consequence of the matrix Laplace transform
inequality (5.2) and Corollary 5.3 on the subadditivity of cumulants. �

Exercise 5.5 (Expectation bound). Explain how to derive the inequality for the expectation
in Theorem 5.4.

Exercise 5.6 (Minimum eigenvalue). Derive an analog of Theorem 5.4 for λmin(Y ). Hint:
λmin(Y ) = −λmax(−Y ).

5.3 The Matrix Bernstein inequality
The master inequality (5.3) is general but abstract. To derive more applicable results,
we need to exploit properties of the random matrices X i to bound the matrix cgfs
logE eθX i . To execute this approach, we simply adapt existing techniques for bounding
the cgf of a real random variable.

As a concrete example, we shall prove the matrix Bernstein inequality in the
self-adjoint case. This is perhaps the single most useful matrix concentration theorem.
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5.3.1 The Bernstein matrix cgf bound
We begin with a lemma about the matrix cgf.

Lemma 5.7 (Bernstein cgf bound). Assume that X ∈ Hn is a random matrix that satisfies

E X = 0 and ‖X ‖ ≤ 1 almost surely.

For all θ ∈ R,

logE eθX 4 g (θ)(E X 2) where g (θ) =
θ2/2

1 − |θ |/3
.

Proof. The result follows from a natural extension of the scalar argument. For each
x ∈ [−1, 1], a Taylor expansion of the exponential gives

eθx = 1 + θx +
∑∞

p=2

θp

p!
x p ≤ 1 + θx +

θ2x2

2

∑∞

p=2

|θ |p−2

3p−2

= 1 + θx +
θ2x2

2
·

1
1 − |θ |/3

= 1 + θx + g (θ)x2.

This elementary argument extends directly to self-adjoint matrices. Let X = UΛU ∗

be an eigenvalue decomposition. The requirement that ‖X ‖ ≤ 1 ensures that each
(random) eigenvalue λi of the matrix X obeys the bound |λi | ≤ 1. Hence,

eθΛ 4 I + θΛ + g (θ)Λ2 where Λ = diag(λ1, . . . , λn).

Since the psd order is preserved by unitary conjugation,

eθX = U eθΛU ∗ 4 I + θUΛU ∗ + g (θ)UΛ2U ∗ = I + θX + g (θ)X 2.

Since the psd cone is convex, the psd order is preserved by expectations. Thus,

E eθX 4 I + θ E X + g (θ)E X 2 4 exp(g (θ)E X 2).

The last inequality is (the matrix extension of) the numerical relation 1 + a ≤ ea . To
conclude, we invoke the nontrivial fact that the logarithm preserves the psd order. �

Problem 5.8 (Logarithm is operator monotone). Suppose that 0 ≺ A 4 B . Prove that
log A 4 logB . Hint: Use an integral representation of the logarithm:

log a =

∫ ∞

0

[
(1 + u)−1 − (a + u)−1

]
du for a > 0.

You also need to argue that the negative inverse preserves the psd order, but this is
more straightforward.

5.3.2 Matrix Bernstein: Self-adjoint case
With the matrix cgf bound at hand, the matrix Bernstein inequality follows as an easy
consequence of the master tail bound, Theorem 5.4.

Theorem 5.9 (Matrix Bernstein: Self-adjoint case). Consider an independent family
{X 1, . . . , X s } ⊂ Hn of random matrices. Assume that

E X i = 0 and ‖X i ‖ ≤ L almost surely.
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LetY =
∑s

i=1 X i , and define the variance proxy

σ2 = ‖EY 2‖ =

∑s

i=1
E X 2

i

 .
For all t > 0,

P {λmax(Y ) ≥ t } ≤ n · exp
(
−t 2/2

σ2 + Lt /3

)
.

Furthermore,

E λmax(X ) ≤
√
2σ2 logn +

1
3

L logn.

When n = 1, this result collapses to the scalar Bernstein inequality. We have not
lost anything by extending to the matrix setting. When the dimension n > 1, we only
pay very weakly for the dimension—which is why this result is so powerful.

Proof. By homogeneity, we may rescale the matrices so that L = 1. Theorem 5.4
implies that

P {λmax(Y ) ≥ t } ≤ inf
θ>0

e−θt tr exp
(∑s

i=1
logE eθX i

)
≤ inf

θ>0
e−θt tr exp

(
g (θ)

∑s

i=1
E X 2

i

)
≤ n · inf

θ>0
e−θt λmax(exp(g (θ)EY 2)

= n · inf
θ>0

e−θt exp(g (θ)σ2).

The second inequality holds because the trace exponential is monotone with respect to
the semidefinite order. The third inequality holds because the trace of a pd matrix is at
most the dimension times the maximum eigenvalue. The last relation follows from
spectral mapping and the definition of σ2.

To complete the proof, we cleverly select θ = t /(σ2 + t /3). This is not the optimal
value, but it results in a clean bound. �

Exercise 5.10 (Trace exponential is operator monotone). Suppose that A 4 B . Show that
tr eA ≤ tr eB .

Exercise 5.11 (Expectation bound). Prove the expectation bound in Theorem 5.9.

Problem 5.12 (Intrinsic dimension). The dimensional factor n in the matrix Bernstein
inequality can be reduced to 4 intdim(EY 2). Prove it.

5.4 Matrix Bernstein: Rectangular case
Surprisingly, we can extend the matrix Bernstein inequality to rectangular matrices as
an easy corollary. The key idea is to extend the rectangular matrices to self-adjoint
matrices so that we can apply Theorem 5.9.

Corollary 5.13 (Matrix Bernstein inequality: Rectangular case). Consider an independent
family {Z 1, . . . , Z s } ⊂ Fm×n of random rectangular matrices. Assume that

EZ i = 0 and ‖Zi ‖ ≤ L almost surely.

Let S =
∑s

i=1 Z i , and define the variance proxy

σ2 = ‖E[S∗S]‖ ∨ ‖E[SS∗]‖.
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For all t > 0,

P {‖S ‖ ≥ t } ≤ (m + n) exp
(
−t 2/2

σ2 + Lt /3

)
.

Furthermore,

E ‖S ‖ ≤
√
2σ2 log(m + n) +

1
3

L log(m + n).

The only price we have paid for passing to the rectangular case is that we pay for
the sum of the two dimensions.

Proof. Apply Theorem 5.9 to the self-adjoint dilation

Y =

[
0 S

S∗ 0

]
=

∑s

i=1

[
0 Z i

Z ∗i 0

]
∈ Hn+m .

To complete the argument, observe that the self-adjoint dilation preserves spectral
properties. In particular,

λmax

( [
0 S

S∗ 0

] )
= ‖S ‖.

The remaining calculations are straightforward. �

Exercise 5.14 (Matrix Monte Carlo). Derive the matrix Monte Carlo theorem, Theorem 4.2,
from Corollary 5.13.

Exercise 5.15 (Intrinsic dimension). We can establish a version of Corollary 5.13 where the
sum (m + n) of dimensions is replaced by a kind of intrinsic dimension quantity. How
does this work out?

Problems
Problem 5.16 (Matrix Chernoff). This problem contains a derivation of another funda-
mental matrix concentration inequality and an application in statistics. This version
of the matrix Chernoff bound is different in spirit than the results that appear in the
literature, such as [Tro15, Thm. 5.1.1].

1 Consider an independent family {X 1, . . . , X s } ⊂ Hn of random psd matrices
that satisfy λmax(X i ) ≤ L almost surely. LetY =

∑s
i=1 X s , and define the mean

parameters
µmax := λmax(EY ) and µmin := λmin(EY ).

Prove that

P {λmax(Y − (1 + t )(EY )) ≥ 0} ≤ n ·

[
e+t

(1 + t )1+t

]µmin/L

for t ≥ 0;

P {λmax((1 − t )(EY ) −Y ) ≥ 0} ≤ n ·

[
e−t

(1 − t )1−t

]µmin/L

for t ∈ (0, 1).

Hint: The proof is analogous with the scalar Chernoff inequalities. You just need
to bound the matrix mgf by a linear function.

2 What implications do these maximum eigenvalue inequalities have for the
relationship betweenY and EY ?
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3 Let x be a centered random vector with covariance matrix C = E[xx ∗]. The
sample covariance estimator takes the form Ĉ s = s−1

∑s
i=1 x i x ∗i , where x i ∼ x

iid. Use the matrix Chernoff inequalities to estimate how many samples s are
required to obtain the pair of bounds Ĉ s 4 (1+ ε)C and Ĉ s < (1− ε)C . Explain
the significance of your bound. Hint: Before applying matrix Chernoff, conjugate
the random matrix Ĉ s by C −1/2 so that its expectation is I.
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Agenda:
1 (Random) embeddings
2 Gaussian width
3 Analysis of Gaussian

embeddings
4 Johnson-Lindenstrauss
5 Subspace embeddings

In this lecture, we begin our discussion of randomized linear embeddings, which are
a core tool in modern theory of algorithms. We introduce the simplest construction,
the Gaussian embedding. We show how to summarize its performance using the
Gaussian width. As applications, we establish the Johnson–Lindenstrauss lemma, and
we develop the concept of a subspace embedding.

6.1 Random embeddings
The purpose of a random embedding is to reduce the dimension of the data while
preserving its geometry. By operating on the low-dimensional representation, we can
develop faster algorithms that give approximate solutions to data analysis problems.

Consider a set E ⊂ Rn . Let ε ∈ (0, 1) be a tolerance, which we call the distortion.
A (linear) map S : E→ Rd is called an `2 embedding with distortion ε `2 embedding with distortion εif

(1 − ε)‖x ‖ ≤ ‖Sx ‖ ≤ (1 + ε)‖x ‖ for all x ∈ E. (6.1)

The unadorned norm ‖·‖ denotes the `2-norm of a vector. The linearity of S ensures
that S is a metric space embedding of (E, `2) into `2. See Figure 6.1 for a picture of a
dimension reduction map.

In many cases, the embedding dimension d is much smaller than the ambient
dimension n, so the map S performs dimension reduction on E. But how can we
construct such a map? Randomness offers a powerful mechanism.

Suppose that S ∈ Rd×n is a random matrix such that

E ‖Sx ‖2 = ‖x ‖2 for all x ∈ E.

In other words, S preserves the energy of a vector on average. A sufficient condition is
that the random matrix is isotropic: E[S∗S] = In . To verify that S is an embedding,
we need uniform control on the deviations from the average behavior. The question is
how large the embedding dimension d = d(ε) should be to guarantee distortion ε.



54 Lecture 6: Gaussian Embeddings

Figure 6.1 Dimension reduction.

6.2 Gaussian embeddings
In this lecture, we build and analyze the simplest example of a random embedding.
This theory allows us to understand the potential opportunities for dimension reduction.
Today, we will work in the real field (F = R) so that we can use methods for studying
Gaussian processes; this restriction is not necessary in applications.

Definition 6.1 (Gaussian embedding). A Gaussian embedding Gaussian embeddingis a real random matrix
Γ ∈ Rd×n whose entries are iid ∼ normal(0,d−1). The dimensions n and d are
respectively called the ambient / embedding dimension ambient / embedding dimension.

The Gaussian embedding has the following simple properties. First,

EΓ ‖Γx ‖2 = ‖x ‖2 for all x ∈ Rn . (6.2)

Second, the construction is oblivious obliviousto the set E; that is, we use no information about
the set to construct the embedding. Of course, the embedding dimension d that is
sufficient to achieve distortion ε will depend on the geometry of the set E.
Exercise 6.2 Check property (6.2).

6.2.1 Restricted singular values
Let us introduce some convenient notation for describing the embedding properties of
a linear map.

Definition 6.3 (Set-restricted singular values). Let E ⊂ Rn . The restricted singular values
restricted singular valuesof a (linear) map S : Rn → Rd are

σmin(S ; E) := inf
x ∈E

‖Sx ‖

‖x ‖
and σmax(S ; E) := sup

x ∈E

‖Sx ‖

‖x ‖
. (6.3)

To appreciate the terminology, notice that the restricted singular values for the set
E = Rn coincide with the ordinary minimal or maximal singular values. In practice,
σmin is more important than σmax. Indeed, σmin(S ; E) = 0 implies that S annihilates
points in E. The precise value of σmax does not usually matter so much.

The restricted singular values allow us to state an alternative definition of an
embedding. Note that

σmin(S ; E) ≤
‖Sx ‖

‖x ‖
≤ σmax(S ; E) for all x ∈ E

Therefore, if both 1 − ε ≤ σmin and σmax ≤ 1 + ε, then the matrix S is an embedding
of E of distortion ε.
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Figure 6.2 The support function
supx ∈E〈g , x〉 in the direction
g gives the level of a support-
ing hyperplane to E with out-
ward normal g .

6.3 Gaussian width
The analysis of a Gaussian embedding involves a parameter that summarizes the
geometry of the set E. For this purpose, we introduce the following concept.

Definition 6.4 (Gaussian width). Let E ⊂ Rn . The Gaussian width of E is defined as

w (E) := E sup
x ∈E
〈g , x〉 where g ∼ normal(0, In). (6.4)

See Figure 6.2 for an illustration.

In other words, the Gaussian width measures the level of a supporting hyperplane
of a set E, averaged over all directions. (Up to scaling, it is equivalent to average over
all unit vectors.) The Gaussian width w (E) can be computed analytically for many sets
E or approximated numerically.

The Gaussian width is a measure of content of a set E. It has the following
properties:

Monotonicity. The width is increasing with respect to set inclusion: E ⊂ F implies
w (E) ≤ w (F).

Invariance. The width is invariant under Euclidean rigid motions: w (t +Q E) = w (E)
for all t ∈ Rn and all orthogonal Q ∈ Mn .

Range. The width lies in the range 0 ≤ w (E) ≤
√

n radius(E).

Here is a simple, but important, example of a Gaussian width computation.

Example 6.5 (Subspace). Let L ⊂ Rn be a k -dimensional subspace ofRn . Let us evaluate
the width w (E) of the spherical set E = L ∩ Sn−1.

w (E) = E sup
x ∈L
‖x ‖=1

〈g , x〉 = E ‖P Lg ‖ = E χk ∈

[√
k − 1,

√
k
]
.

We have written χk for a chi random variable with k degrees of freedom. �

This example suggests the following heuristic interpretation.

Remark 6.6 (Heuristic). The squared Gaussian width w 2(E) is a measure of the “dimen-
sion” of a subset E of the unit sphere.

Remark 6.7 (Valuation). The Gaussian width is a valuation on the class of convex bodies
in Rn . This connection has many geometric consequences.

6.4 Analysis of Gaussian embedding
For a subset of the unit sphere, the behavior of a Gaussian embedding is controlled by
the Gaussian width.
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Theorem 6.8 (Restricted singular values of Gaussian embedding). Let E ⊂ Sn−1. Draw
a Gaussian embedding Γ ∈ Rd×n . The restricted singular values of Γ satisfy

P

{
σmax(Γ; E) ≥ 1 +

w (E)
√

d
+ t

}
≤ exp

(
−dt 2

2

)
;

P

{
σmin(Γ; E) ≤ 1 −

1 +w (E)
√

d
− t

}
≤ exp

(
−dt 2

2

)
.

(6.5)

Proof sketch. The two inequalities of Theorem 6.8 are respectively due to Chevet and
to Gordon. The book [Ver18] gives an account of these results. The paper [TOH14]
contains a partial converse for the lower bound on the restricted minimum singular
value. �

Theorem 6.8 has an immediate consequence. To embed E with distortion ε via a
Gaussian embedding, it suffices that the embedding dimension obeys d ∼ w 2(E)/ε2.
Moreover, the constant of proportionality is essentially equal to one.

An important fact is that the tail bound for σmin is universal over a large class of
random embeddings. In other words, the same result holds for random embeddings
with other distributions. In particular, [OT18] establishes that any random embedding
with iid subgaussian entries has essentially the same behavior as a Gaussian embedding,
provided that E is not too small. (More precisely, the universality result requires that
w (E) ∼ const · n.)

6.5 Application: The Johnson–Lindenstrauss lemma
In this section, we use Theorem 6.8 to develop a well-known result on random
embedding of a finite point set into a low-dimensional space. This fact follows from
more elementary arguments, but it serves as a nice illustration of the general theory.

Let X= {x1, . . . , x N } ⊂ Rn be a finite set of points. We want to embed X into Rd

while preserving point-wise distances approximately. In other words, we seek a linear
map S ∈ Rd×n such that

(1 − ε)‖x i − x j ‖ ≤ ‖Sx i − Sx j ‖ ≤ (1 + ε)‖x i − x j ‖ for all i , j .

Note that Sx i − Sx j = S(x i − x j ) since S is linear. See Figure 6.3 for an illustration. A
classic algorithmic application of this type of embedding is to accelerate approximate
nearest neighbor computation.

Figure 6.3 Preservation of point-
wise distances.

One way to achieve this goal is to make S a Gaussian embedding. Theorem 6.8
yields a short analysis. Define the set of secants

E :=
{

x i − x j

‖x i − x j ‖
: i < j

}
⊂ Sn−1.

Then we obtain an embedding guarantee if

1 − ε ≤ σmin(Γ; E) ≤ σmax(Γ; E) ≤ 1 + ε.
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Now, from Theorem 6.8 we know that

1 − σmin(Γ, E) ≈
1 +w (E)
√

d
, σmax(Γ; E) − 1 ≈

w (E)
√

d
.

Therefore we need d & w 2(E)/ε2 to obtain ε distortion. It remains to estimate w (E).
We have

w (E) = E sup
u i ∈E
〈g , u i 〉 ≤

√
2 log#E ≤ 2

√
logN .

The last inequality is true because the cardinality of E is less than N 2. Thus, if
d ≈ 4 logN /ε2, we get ε distortion. This result is called the Johnson–Lindenstrauss
lemma.

Exercise 6.9 Prove the inequality E supu i ∈E 〈g , u i 〉 ≤
√
2 log#E.

Observe that the embedding dimension does not depend on the ambient dimension
n at all, and it only depends logarithmically on the number N of points. Still, ε−2 is very
big when ε is small, so it is expensive to achieve small distortion using a randomized
linear embedding. This phenomenon is real—it is not an artifact of the analysis.
As a consequence, random embeddings are not very useful for achieving accurate
low-dimensional representations of a set. For most applications, more sophisticated
techniques are needed.

Exercise 6.10 (Johnson–Lindenstrauss; Indyk–Motwani). Develop a direct proof of the em-
bedding result in this section using only Gaussian concentration inequalities.

Remark 6.11 (History). The above problem was initially considered by Johnson and
Lindenstrauss [JL84] in the context of embedding a finite metric space into an `2
space. Later, their lemma was used to design approximation algorithms for graph
problems [LLR95]. The paper [HPIM12] connected randomized embeddings with the
approximate nearest neighbor problem. Subsequent work by Ravi Kannan and others
led to connections with numerical linear algebra.

6.6 Application: Subspace embeddings
For our purposes, the most important application of random embeddings is to preserve
the geometry of an entire subspace.

Let L ⊂ Rn be a k -dimensional subspace. A (linear) map S : Rn → Rd is called a
subspace embedding with distortion ε subspace embedding with

distortion ε
if

(1 − ε)‖x ‖ ≤ ‖Sx ‖ ≤ (1 + ε)‖x ‖ for all x ∈ L.

The embedding is oblivious if the construction of S does not require any knowledge of
L other than its dimension.

Random embeddings lead to easy constructions of oblivious subspace embeddings.
In particular, let us analyze the performance of a Gaussian embedding in this context.
To apply Theorem 6.8, define E = L ∩ Sn−1. By our earlier computation, we have
w (E) ≤

√
k . Thus, d ≈ k/ε2 is the embedding dimension that suffices to achieve

distortion ε. In practice, common choices of the embedding dimension are d = k + p ,
where p ∈ {5, 10,k }.
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7. Structured Random Embeddings

Date: 28 January 2020 Scribe: Fariborz Salehi

Agenda:
1 Review: Gaussian
embeddings

2 Structured embeddings
3 Tools of analysis
4 Sparse sign embeddings
5 SRFTs

In the last lecture, we studied (random) linear embeddings. In our setting, an
embedding is a linear operator that maps the points of a subset of a Euclidean space
into a lower-dimensional Euclidean space while approximately preserving the geometry
of the set. Our discussion focused on Gaussian embeddings, for which the analysis is
exceptionally clean.

In this lecture, we introduce two families of structured random embeddings. Unlike
Gaussian embeddings, these linear maps can be applied quickly to a vector. This
improvement, however, comes at a price. The mathematical analysis of these maps is
more complicated and less precise than the analysis in the Gaussian case. In the next
lecture, we will discuss some applications of structured subspace embeddings.

7.1 Review: Gaussian embeddings
First, let us recall the concept of an embedding.

Definition 7.1 (Embedding). Let E ⊆ Fn be a set. A linear map S : Fn → Fd is called an
`2-embedding of E with distortion ε ∈ (0, 1) if

(1 − ε) ‖x ‖ ≤ ‖Sx ‖ ≤ (1 + ε) ‖x ‖ for all x ∈ E.

We call d the embedding dimension embedding dimension.

We prefer to use embeddings that can be constructed with minimal knowledge of
the set E. In this case, we say that the embedding is oblivious oblivious.

Last timewe studied Gaussian embeddingswhereΓ : Fn → Fd has iidnormal(0,d−1)
entries. These embeddings are isotropic isotropic:

E ‖Γx ‖2 = ‖x ‖2 for all x ∈ Fn . (7.1)

For a subset E ⊆ Sn−1(R) of the real unit sphere, we saw that the performance of Γ
is controlled by the Gaussian width w (E) of the set. Roughly speaking, to achieve



60 Lecture 7: Structured Random Embeddings

distortion ε, it suffices to take the embedding dimension

d '
w 2(E)
ε2

.

The restriction to unit vectors is inoffensive because the map S is homogeneous.
We also have seen two applications of Gaussian embeddings:

Johnson–Lindenstrauss lemma. A Gaussian embedding with embedding dimension
O (logN )/ε2 approximately preserves the pairwise distances among N points in
Rn .

Subspace embeddings. A Gaussian embedding with embedding dimension O
(
k/ε2

)
approximately preserves any fixed k -dimensional subspace L ⊂ Rn .

We also discussed the universality universalityproperty. Matrices with iid entries have the same
embedding performance as a Gaussian matrix, modulo some technical assumptions.

7.2 Structured embeddings
Even though Gaussian embeddings work very well, there are several issues that limit
their applicability in practice. In particular:

• To construct a Gaussian embedding, we need to generate nd iid samples from
the normal distribution. This is costly.

• Gaussian embeddings are expensive to store because they have nd entries.
• Gaussian matrices lack any structure. Applying a Gaussian matrix to a vector

requires O (nd) arithmetic operations.

Inspired by the universality property of random embeddings, we study structured
random embeddings. We will see that structured random matrices can address the
shortcomings of Gaussian embeddings and (in some cases) give even better embedding
behavior. This improvement, however, comes at a theoretical price. The analysis of
structured embeddings is more complicated and less precise than the analysis of a
Gaussian embedding.

We shall focus on two concrete constructions of random embeddings:

1 Sparse sign matrices. These embeddings are constructed from a sparse random
matrix. Sparsity reduces the cost of construction, storage, and matrix–vector
multiplications.

2 Subsampled randomized Fourier transforms (SRFTs). These embeddings
are based on a Fourier transform that can be executed quickly using the FFT.
Since these matrices are partial unitaries (isometries), they can even outperform
Gaussian embeddings. Moreover, they use limited storage and are efficient to
construct.

Each of these constructions leads to embeddings that are effective for general sets
E. We will focus on their behavior as subspace embeddings, which is the core concern
for most NLA applications.

7.3 Tools for analysis
Let L ∈ Fn be a k -dimensional subspace. Recall that a linear map S : Fn → Fd is
called a subspace embedding subspace embeddingwith distortion ε if

(1 − ε) ‖x ‖ ≤ ‖Sx ‖ ≤ (1 + ε) ‖x ‖ for all x ∈ L. (7.2)
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The Gaussian case provides us with useful guiding intuition. We expect that the
embedding dimension should approximately scale like k/ε2.

To study other kinds of random embeddings, it is valuable to reformulate the
embedding condition. Let U ∈ Fn×k be a matrix whose columns form an orthonormal
basis for L. We can check whether S is an embedding of L by studying the matrix

Y = (SU )∗(SU ).

The condition (7.2) is equivalent to the following statement:

(1 − ε)2x ∗(U ∗U )x ≤ x ∗U ∗S∗SU x ≤ (1 + ε)2x ∗(U ∗U )x for all x ∈ Fk .

Next, use the fact that U ∗U = Ik and homogeneity to rewrite this condition as

(1 − ε)2 ≤ x ∗Y x ≤ (1 + ε)2 for all x ∈ Fk with ‖x ‖ = 1.

Equivalently,
(1 − ε)2 ≤ λmin(Y ) ≤ λmax(Y ) ≤ (1 + ε)2.

If we choose S at random, thenY is a random psd matrix. This condition lends itself
to analysis using tools from matrix concentration.

Since S is isotropic (7.1), the expectation of the matrix Y satisfies the required
bounds. Indeed,

E [S∗S] = In implies EY = Ik .
We can use the matrix Chernoff inequality to determine the likelihood that the random
matrixY deviates from its expectation.

Theorem 7.2 (Matrix Chernoff Inequality). Let X 1, X 2, . . . , X n ∈ Hk be statistically
independent psd matrices that obey ‖X j ‖ ≤ B . Define Y =

∑n
j=1 X j , and set

µmin = λmin(EY ) and µmax = λmax(EY ). Then,

P {λmax(Y ) ≥ (1 + t )µmax} ≤ k

(
et

(1 + t )1+t

)µmax/B

for t > 0;

P {λmin(Y ) ≤ (1 − t )µmin} ≤ k

(
e−t

(1 − t )1−t

)µmin/B

for t ∈ (0, 1).

This result is an extremely useful tool for controlling the extremal eigenvalues of
a random psd matrix. In case k = 1, it reduces to the scalar Chernoff inequality. In
contrast to the matrix Bernstein inequality, no matrix variance bounds are required,
which makes the Chernoff inequality easier to use.

Problem 7.3 (Matrix Chernoff). Prove the matrix Chernoff inequality by generalizing the
proof of the scalar Chernoff inequality and invoking the master matrix concentration
inequality.

7.4 Sparse sign matrices
Our first construction of an efficient random embedding is called a sparse sign matrix sparse sign matrix.
The idea is to construct the matrix S ∈ Rd×n randomly so that most of its entries are
zero. The simplest approach is based on (appropriately rescaled) matrices with iid
random ternary entries:

S = α


s11 · · · s1n
...

...
sd1 · · · sdn

 ∈ R
d×n where si j ∼


+1 w.p. p/2;
−1 w.p. p/2;
0 w.p. 1 − p .
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The probability p ∈ (0, 1) determines the proportion of nonzero entries. The parameter
α is an additional scaling factor that we adjust to ensure isotropy. Setting

α2 =
1

dp
implies ES∗S = In .

Exercise 7.4 Verify that this choice of α leads to an isotropic random embedding.

Each column contains dp nonzero entries on average. Therefore, the total storage
cost is roughly O (ndp). When p is small, this is much better than the O (nd) cost of
storing a dense matrix. Applying S to a vector requires roughly O (ndp) arithmetic
operations. Note that efficient implementation of a sparse random embedding requires
good sparse arithmetic libraries.

Having established isotropy, the next step is to apply matrix concentration. We
intend to do this via the matrix Chernoff inequality. To that end, we decompose the
matrixY into a sum of psd rank-one matrices:

Y =
∑d

j=1

1
dp

U ∗s j s ∗j U =
∑d

j=1
X j where s j is the j th row of S .

By construction, the X j are independent and psd. Moreover, isotropy implies

EY = Ik and therefore µmin = µmax = 1.

To invoke matrix concentration, we also require a suitable a priori bound on the
operator norm of X j . This step is actually a bit tricky. Indeed,

E ‖X j ‖ =
k

d
and ‖X j ‖ ≤

n

dp
.

The worst-case bound is much bigger than the typical value, and it is too large to
deduce any nontrivial result at all unless the embedding dimension d � n. At the
same time, it is extremely unlikely that summands with extremely large operator
norms ever occur.

We can use truncation to control the contribution for large summands. Define the
event

Aj :=

{
‖X j ‖ ≤

k

d
+

const ·
√

k log(n/p)
dp

}
.

We pass to the truncated matrix

Y trunc =
∑d

j=1
1Aj X j ,

where 1Aj denotes the indicator function associated with the event Aj . This truncation
enforces an operator norm bound, but it also introduces a bias: EY trunc , EY . Happily,
one can show that the bias is small, because each event Aj occurs with overwhelming
probability. By applying the matrix Chernoff inequality toY trunc, together with some
additional arguments, we arrive at the following result.

Theorem 7.5 (Sparse sign matrix—informal). For constants C1,C2 > 0, suppose that

d ' C1(k + logn) · logk and p ' C2 ·
logk

d
.

With high probability, for any fixed k -dimensional subspace, the sparse sign matrix



63 Lecture 7: Structured Random Embeddings

S is a subspace embedding with constant distortion (ε = 1
2).

In practice, sparse sign embeddings have similar performance to Gaussian embed-
dings, but they enjoy advantages in storage and arithmetic costs.

Problem 7.6 (Sparse sign matrices). Prove Theorem 7.5. Hint: Use the Hanson–Wright
inequality to control the probability of the events Aj .

Problem 7.7 (Fixed sparsity sign matrices). A more effective construction places exactly
ζ nonzero random signs in random locations in each column of S . Show that the
resulting random matrix is a more effective embedding than a sparse sign matrix with
independent entries. Hint: Use decoupling and matrix Bernstein.

Remark 7.8 (Analysis). We can obtain a cleaner analysis of sparse embeddings using
more sophisticated matrix concentration inequalities, such as the matrix Rosenthal
inequalities [Tro16].

7.5 Subsampled randomized Fourier transforms (SRFTs)
Our second construction of an efficient random embedding is called a subsampled
randomized Fourier transform (SRFT). subsampled randomized Fourier

transform (SRFT).
The basic idea is to apply a fast Fourier transform

to mix vector coordinates quickly and efficiently. The actual embedding is composed
of three simpler linear transforms:

S =

√
n

d
RF E where


R ∈ Cd×n is a random restriction,
F ∈ Cn×n is a discrete Fourier transform,
E ∈ Cn×n is random diagonal sign matrix.

The restrictionR extracts d entries at random, and the sign matrix E = diag(ε1, . . . , εn)

with εi ∼ {±1} iid. The SRFT is a partial unitary matrix, which allows the SRFT to
outperform Gaussian embeddings (which are not partial isometries) in some cases.

SRFTs are very cheap to store and apply. One simply needs to store n + d numbers,
namely the diagonal entries of the matrix E and the d coordinates chosen by the
restriction. Applying the SRFT to a vector in Cn can be achieved via a subsampled
Fast Fourier Transform (FFT) and requires only O (n logd) arithmetic operations. Note,
however, that a good FFT library is required to achieve this performance.

The most important feature of SRFTs is that they rapidly mix and flatten coordinates.
In expectation,

E |(F E x )i |
2 = E

���∑
j

fi jεi x j

���2 = 1
n
‖x ‖2 . (7.3)

Once the coordinates are flat, we can simply sample d coordinates to collect a (d/n)-
fraction of the total energy. Since the coordinates are small, the variance of the
sampling step is low.

7.5.1 Analysis of SRFTs
We can analyze the performance of an SRFT using the matrix Chernoff bound. As the
first step, we decompose the matrixY as a sum of independent psd matrices:

Y = U ∗S∗SU = (F EU )∗(R ∗R )(F EU ) =
n

d

∑n

j=1
δj w j w ∗j =

∑n

j=1
X j .

The random selector δj ∈ {0, 1} coincides with the j th diagonal entry of the diagonal
matrix R ∗R . The vector w ∗j is the j th row of the matrix F EU . Next, assume that
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R is prepared by selecting d rows of the identity matrix at random. Then each
δj ∼ Bernoulli(d/n) iid.

The remaining argument is based on two steps. First, we prove that the SRFT
flattens the rows of U with high probability:

P

{
maxj ‖e∗j (F EU )‖2 ≥

d

n
+

const · logn

n

}
is small.

This is achieved by applying Hoeffding’s inequality and a union bound.
Conditional on the first step succeeding, we continue to the second part of the

analysis. We can exploit the randomness in R ∗R to apply a matrix Chernoff argument.
Isotropy implies EY = Ik , which ensures that µmin = µmax = 1. Since the rows of
F EU are flat, we have the operator norm bound

‖X j ‖ ≤
n

d
‖w j ‖

2 =
n

d
‖e ∗j (F EU )‖2 ≤

k

d
+

const · logn

d
.

This analysis leads to the following result.

Theorem 7.9 (SRFTs—informal). For a constant C > 0, suppose that

d ' C (k + logn) · logk .

With high probability, for a fixed k -dimensional subspace, the SRFT matrix S is a
subspace embedding with constant distortion (ε = 1/2).

In practice, the extra factor of logk is usually unnecessary. There are also variants
of the SRFT that use random permutations or apply the randomized transform twice
to mix the coordinates better. These approaches are more reliable, and only slightly
more expensive.

Problem 7.10 (SRFTs). Prove Theorem 7.9.
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This lecture explores how subspace embeddings can improve on classical methods for
some problems in numerical linear algebra. Overdetermined least-squares serves as the
main case study; Section 8.1 gives the problem statement and important background
material. Section 8.2 covers three algorithms for least-squares based on subspace
embeddings, which we compare in Section 8.3. Section 8.4 covers implementation
details and further reading.

8.1 A case study: Overdetermined least-squares
Let A be a matrix in Fm×n with linearly independent columns, and let b be a vector in
Fm . The ordinary least squares problem with respect to these parameters is to compute

x? = argmin
{
‖Ax − b ‖2 : x ∈ Fn

}
. (8.1)

The assumption that A has linearly independent columns ensures that (8.1) has a
unique minimizer. In particular, x? solves the normal equations normal equationsA∗Ax? = A∗b . In the
regime n � m, the problem is said to be overdetermined overdetermined, and we have ‖Ax? − b ‖ > 0
for almost all b in Fm .

The methods presented in this lecture focus on highly overdetermined problems,
with n � m/logn. We also assume A is dense. This assumption is largely so we can
cleanly compare the asymptotic time complexities of various algorithms. Once the
reader understands the concepts presented here, it would be worthwhile to revisit this
problem assuming A is sparse, or assuming A can only be accessed with a matrix–vector
multiplication primitive.

8.1.1 A classical direct method for least-squares
In linear algebra, a direct method is an algorithm that produces an exact solution
to a given problem using a finite number of arithmetic operations. Modulo issues
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with finite-precision arithmetic, direct methods in numerical linear algebra generally
produce extremely accurate solutions. Direct methods exhibit almost no variation in
runtime, unless they attempt to account for sparsity.

Warning 8.1 Our description
of these classical algorithms
is a little simplified. Asymp-
totic runtimes are unchanged
from practical implementa-
tions, but some important im-
provements can be made. See
[She94] for details on the con-
jugate gradient method. �

Before we turn to the randomized algorithms for solving (8.1), we first review the
basics of classical algorithms for the same.

A common direct method for solving problem (8.1) is to employ a QR-factorization
of the matrix A. By applying (double) Gram–Schmidt to the columns of A, we can
factorize A = Q R with orthonormal Q ∈ Fm×n and nonsingular upper-triangular
R ∈ Fn×n . The columns of Q compose an orthonormal basis for the subspace range(A).
The factorization process takes O (mn2) time. From there, we may compute the
solution x? = R−1Q ∗b in O (mn) time. The total time complexity is dominated by the
factorization step, and comes in at O (mn2) arithmetic operations.

Remark 8.2 (Pivoting). In practice, it is often necessary to use column-pivoted QR
(CPQR). For conceptual and notational simplicity, we use a plain QR factorization
instead.

8.1.2 A classical iterative method for least-squares
An iterative method iterative methodis an algorithm that generates a sequence of points (z k )k ∈N, where
limk→∞ z k = z? for a value z? with some desired properties. Iterative methods are
essential for eigenvalue problems, but also play an important role in solving linear
equations.

Some of the methods in this lecture involve the conjugate gradient (CG) conjugate gradient (CG)algorithm.
The conjugate gradient method is usually introduced as a technique for solving positive-
definite linear systems G z = h with G in H++n . The advantage of CG over matrix
factorization methods, is that CG only requires access to G by way of the matrix–vector
multiplication primitive: z 7→ G z .

Algorithm 8.1 provides a basic implementation of the conjugate gradient method.
The time required by an iteration of Algorithm (8.1) is proportional to the time required
to evaluate G p for some p ∈ Fn . That is, O (n2) time per iteration in the dense case.

The intermediate calculations of Algorithm 8.1 may seem mysterious, but the overall
effect is this: CG is a descent method for minimizing the convex quadratic function
z 7→ 1

2z ∗G z − h∗z , where the k th search direction pk := z k − z k−1 is required to be
G -orthogonal (or “conjugate”) to all preceding search directions.

The following standard theorem [She94] addresses CG’s convergence, which tells
us how many iterations are required to achieve a certain error.

Theorem 8.3 (Convergence of CG). Let e k denote the error of Algorithm 8.1 after k
iterations; i.e., e k = z k − z? for z? = G−1h . We have the bound

‖G 1/2e k ‖ ≤ 2

(√
κ(G ) − 1√
κ(G ) + 1

)k

‖G−1/2h ‖

where κ(G ) = σmax(G )/σmin(G ) is the condition number of G .

Warning 8.4 Using CG di-
rectly on the normal equations
squares the condition number
of the problem. To avoid this
issue, we use a variant of CG,
called CGLS, to solve least-
squares problems. �

We can solve the least-squares problem (8.1) by applying CG to the normal equations
A∗Ax = A∗b . In this case, we identify G = A∗A and h = A∗b . Since CG only requires
access toG = A∗A via matrix–vector products, we do not need to formG explicitly. This
is good news, because while the complexity of forming G is O (mn2), the complexity
of applying G to a vector is onlyO (mn). We thus see that if the condition number of G
is small, a CG method for solving problem (8.1) can have overall complexity far lower
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Algorithm 8.1 BasicCG.

Input: Matrix G ∈ H++n , nonzero h ∈ Fn , tolerance ε ≥ 0, iteration limit kmax.
Output: Approximate solution z ∈ Fn of the system G z = h .

1 function BasicCG(G , h , ε, kmax)
2 z = 0 . The current approximate solution.
3 r = h . Residual: h −G z .
4 p = h . The current “conjugate direction.”
5 k = 0
6 while k < kmax do
7 num = r ∗r
8 den = p∗G p . Often, explicitly store the product G p .
9 α = num/den

10 z = z + αp
11 r = r − αG p . Reuse G p , if it was stored explicitly.
12 if ‖r ‖ ≤ ε then
13 Break
14 β = r ∗r /num
15 p = r + βp
16 k = k + 1
17 return z

than the O (mn2) method provided by a QR factorization.
But therein lies the problem. If the condition number of G is large, CG may be

prohibitively slow.
One remedy it to employ the preconditioned conjugate gradient (PCG) preconditioned conjugate gradient

(PCG)
method. The

idea behind PCG is to form a “preconditioner” C for which we can efficiently evaluate
both C and C −1, and the condition number of the matrix Ĝ := C −1G (C −1)∗ is O (1).
We then solve Ĝ y = C −1h with just a few iterations of CG. Last, we report z = (C ∗)−1y
.

Remark 8.5 (PCG variants). There is a variant of PCG which only requires access to G
and (C −1)∗(C −1), and so loosens the requirement on the preconditioner. We do not
need that refinement for this lecture.

8.2 Three randomized algorithms for least-squares
This section develops and analyzes three subspace embedding approaches to problem
(8.1). Each of these methods requires the user to specify the family of embeddings,
such as Gaussian, sparse sign matrices, or SRFTs.

Aside: A naive SRFT
implementation would require
O (m logm) to evaluate S via
FFT. The stronger O (m logd)
bound is possible when using a
subsampled FFT.

The embedding should always be chosen to take advantage of problem structure.
Since we assume A is dense, both sparse sign matrices and SRFTs are reasonable
candidates here. This lecture proceeds with SRFT embeddings, and henceforth reserves
S ∈ Fd×m as an SRFT embedding matrix, where d is determined from context. We use
the fact that S can be stored in O (m) space, and that S can be applied to a vector in
Fm in O (m logd) time. We also use the following theorem.

Theorem 8.6 (SRFTs). For a large positive integer m, consider a subspace L of
dimension n = Ω(logm)withinRm . Also consider distortion parameters ε ∈ (0, 1).
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If m tends to infinity while d is chosen according to

d ∈ Ω(n logn/ε2),

then the probability that a d-by-m SRFT matrix ε-embeds L tends to 1.

Remark 8.7 (Alternative formulation). The requirement that n ∈ Ω(logm) in Theorem
8.6 can equivalently be written as m ∈ O (2n). This requirement on n is only used
to keep downstream expressions simple. The theorem holds more generally with
d ∈ Ω([n + logm] logn/ε2).

8.2.1 One-shot sketch & solve
Given a matrix A ∈ Fm×n , a vector b ∈ Fm , and an embedding dimension d ≤ m the
Sketch-and-Solve Sketch-and-Solveparadigm first constructs a subspace embedding S ∈ Fd×m . Then we
find

x̂ ∈ argmin
{
‖S Ax − Sb ‖2 : x ∈ Fn

}
, (8.2)

and return x̂ as an approximate solution to (8.1).
Sketch-and-Solve is very simple, but there is intuition to support its use. Consider

how if S is an ε-embedding for the subspace spanned by vectors {Ax − b : x ∈ Fn},
then r? = Ax? − b will satisfy ‖Sr?‖ ∈ (1 ± ε)‖r?‖. So, since the optimal solution
x? for (8.1) has similar cost when considered in problem (8.2), perhaps x? is close to
to x̂?

While this intuition is not quite correct, we can say something interesting. We
indeed suppose S is an ε-embedding for range([A |b]). From there, we set r̂ = Ax̂ − b ,
and deduce the chain of inequalities

(1 − ε)‖r̂ ‖2 ≤ ‖Sr̂ ‖2 ≤ ‖Sr?‖
2 ≤ (1 + ε)‖r?‖2.

The first and third inequalities above used the ε-embedding property of S , and the
middle inequality used optimality of x̂ for problem (8.2). The preceding display can
be summarized as

‖Ax̂ − b ‖2 ≤

(
1 + ε
1 − ε

)
‖Ax? − b ‖2. (8.3)

One might simplify (8.3) further by using (1 + ε)/(1 − ε) < (1 + 3ε) for ε ∈ (0, 4/10),
or (1 + ε)/(1 − ε) ≈ 1 − 2ε for ε � 1.

What is the computational cost of the Sketch-and-Solve paradigm for overdeter-
mined least-squares? The cost of forming the sketched problem data S A and Sb takes
O (mn logd) time. Once this is done, we can solve (8.2) with a direct method in
O (dn2) time. If we weren’t worried about accuracy guarantees, the resulting runtime
of O (mn logd + n2d) would seem appealing.

However, if we want satisfy inequality (8.3) with high probability, we ought to set
d in accordance to Theorem 8.6. Supposing we choose d in this way the resulting
runtime of Sketch-and-Solve becomes O (mn logd + n3 log(n)/ε2). The dependence
1/ε2 is terrible, and it precludes the use of Sketch-and-Solve when high accuracy is
needed.

8.2.2 Iterative sketching
Here we describe the “Iterative-Sketch” algorithm. A key ingredient to this algorithm’s
success is sketching in a way that lends itself to successive refinement. To begin, note
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that (8.1) is equivalent to minimizing

f (x ) :=
1
2
‖Ax ‖2 − (A∗b)∗x .

Writing least-squares as minimizing f can make it easier to see the forces at play: on
one hand, we want x to point as far along the ray A∗b as possible, on the other hand,
the size of x is penalized by a quadratic term ‖Ax ‖2/2.

Idea: If we want an approximate minimizer of f over Fn , we should only apply
sketching to the quadratic penalty term.

We can put this idea into action by sampling a sketching matrix S , and setting x̂ as
the solution to

minimize
1
2
‖S Az ‖2 − (A∗r )∗z over z ∈ Fn (8.4)

for r = b . In principle, we could return x̂ as an approximate minimizer of f , but we
can also take this farther. Once x̂ is in hand, we

1 Replace r by r − Ax̂ .
2 Find the vector u ∈ Fn that solves (8.4).
3 Accumulate x̂ = x̂ + u .

The Iterative-Sketch paradigm repeats the above process for a prescribed number of
iterations.

All of the work in the Iterative Sketch approach is contained in Part (2). In order
to perform that task reliably, we use a direct method for solving the linear system
(S A)∗(S A)u = A∗r . The first iteration begins by forming the matrix G = (S A)∗(S A)
in O (mn logd + dn2) time, and then performing a Cholesky factorization of G at an
additional cost of O (n3) arithmetic. Since n < d , the overall complexity of forming G
and computing the Cholesky factorization is O (mn logd + dn2). In every iteration, we
must solve (8.3) with a new vector r . This requires forming h = A∗r in O (nm) time
and then solving Gu = h in time O (n2) � O (nm).

Note that the complexity of the first iteration of the Iterative Sketch approach is
the same as the entirety of the Sketch-and-Solve paradigm, provided that d is the
same. The difference between these two algorithms is that Sketch-and-Solve requires
d ∈ Ω(n logn/ε2) to produce an ε-accurate solution, but the inner Iterative-Sketch
steps can get away with d ∈ Ω(n logn). In the iterative approach, the dependence on
ε only comes into play in the number of iterations.

Let us see why this is the case. Begin by setting P ∈ Fm×m to the orthogonal
projector onto the subspace range(A). Verify the claim in the following exercise.

Exercise 8.8 (Iterative Sketching). Suppose S is subspace embedding for range(A) with
distortion δ ∈ (0, 0.25], and set r = b . Show that the solution x̂ to (8.4) satisfies

‖Ax̂ − P b ‖2 ≤ 3δ‖P b ‖2. (8.5)

Furthermore,
‖Ax̂ − b ‖2 ≤ ‖Ax? − b ‖2 + 3δ‖P b ‖2. (8.6)

The analysis of the Iterative Sketch approach becomes simple once (8.6) is in hand.
Suppose S is a δ-embedding for range(A), and that we run Iterative Sketch for k
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steps. Letting x k denote the accumulated approximate solution to (8.1), an inductive
argument establishes linear convergence (!)

‖Ax k − b ‖2 ≤ ‖Ax? − b ‖2 + (3δ)k ‖P b ‖2. (8.7)

Equation (8.7) is the key to the success of the Iterative Sketch paradigm. We can simply
take δ as a modest constant (e.g., δ = 1/4), and choose the embedding dimension
d ∈ Θ(n logn). In terms of the dynamic range dynamic rangeD := ‖P b ‖/‖(I − P )b ‖ > 0 of the
least-squares problems, we need only run forO (log(D/ε)) before finding an ε-accurate
solution x̂ .

Theorem 8.9 (Iterative Sketching). Let A ∈ Fm×n and b ∈ Fm specify an instance
of problem (8.1). Set D = ‖P b ‖/‖(I − P )b ‖ and assume D > 0. With high
probability, the SRFT-based Iterative Sketch procedure produces a solution x̂
satisfying

‖Ax̂ − b ‖2 ≤ (1 + ε)‖Ax? − b ‖2.

The arithmetic cost is

O
(
mn logn + n3 logn +mn log(D/ε)

)
.

8.2.3 Sketch & precondition
The Sketch-and-Solve and Iterative-Sketch paradigms use subspace embeddings to
directly transform the problem data for (8.1). This section introduces the Sketch-and-
Precondition approach, which operates in a different way: the subspace embedding is
only used to accelerate the classical conjugate gradient method.

We proceed by sampling a δ-distortion subspace embedding S for range(A), where
δ is a modest constant. By Theorem 8.6, taking d = Θ(n logn) allows us to sample
such S with high probability. Form the dense matrixY = S A inO (mn logn) time, and
perform the QR factorizationY = Q R in additional O (n3 logn) time.

We solve the least-squares problem (8.1) using preconditioned conjugate gradient,
where the matrix R ∗ serves as the preconditioner. Since R is upper-triangular, we
can compute matrix–vector products with G = (AR−1)∗(AR−1) in O (nm) time. Thus,
the complexity of each PCG iteration is only O (mn). The postprocessing step of
transforming the preconditioned solution back to the original domain is done in
negligible O (n2) time. The total arithmetic cost of the Sketch-and-Precondition
approach with k iterations is O (mn logn + n3 logn +mnk ).

Now we bound the number k of iterations in terms of a desired precision ε.

Exercise 8.10 (Preconditioning by subspace embedding). Prove the two-sided linear matrix
inequality

(1 − δ)A∗A 4 R ∗R 4 (1 + δ)A∗A (8.8)

where R is as defined above.

Continuing from the exercise, conjugate the relations in (8.8) by R−1, and substitute
the definition of G to obtain

(1 − δ)G � I � (1 + δ)G . (8.9)

The linear matrix inequalities (8.9) ensure the condition number of G is bounded by
(1 + δ)/(1 − δ). We can easily take δ = 1/3 so that κ(G ) ≤ 2.
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Theorem 8.11 (Sketch and precondition). Let A ∈ Fm×n andb ∈ Fn specify an instance
of (8.1), let D denote the corresponding dynamic range of (A,b). With high
probability, the Sketch-and-Precondition approach obtains a solution x̂ satisfying

‖Ax̂ − b ‖2 ≤ (1 + ε)‖Ax? − b ‖2.

The arithmetic cost is

O (mn logn + n3 logn +mn log(D/ε)).

Proof. Most of the work in PCG is spent computing ŷ which approximates y = G−1h
for h = (AR−1)∗b . We need to address the nature of this approximation, and
translate that approximation to the final solution x̂ . To reduce clutter in notation, let
B = AR−1, so that G = B∗B and h = B∗b . Also set P as the orthogonal projector
onto range(B) = range(A).

Theorem 8.3 gives us a bound on the error E := ‖G 1/2(ŷ − y )‖; we need to
express E in terms that are closer to the claim of the theorem. Begin by observing
‖G 1/2(ŷ − y )‖ = ‖B(ŷ − y )‖. Next, consider how y can equivalently be expressed as
y = B+b where B+ is the pseudo-inverse of B . This allows us to write

B(ŷ − y ) = Bŷ − BB+b = Bŷ − P b =: u .

In order to express E := ‖u ‖ in more useful terms, set r = (I − P )b . Then check that

‖u ‖2 + ‖r ‖2 = ‖Bŷ − b ‖2 (8.10)

by using u ∗r = 0 and Bŷ − b = u − r . We use (8.10) with identities

‖r ‖2 = ‖Ax? − b ‖2 and ‖Bŷ − b ‖2 = ‖Ax̂ − b ‖2

to establish ‖Ax̂ − b ‖2 − ‖Ax? − b ‖2 = E 2.
Now we turn to appropriately bounding E 2. Letting κ = κ(G ), Theorem 8.3 tells us

that

E 2 ≤ 4
(√

κ − 1
√
κ + 1

)2k

‖G−1/2h ‖2.

One may then verify that ‖G−1/2h ‖ = ‖P b ‖. Taking this as given, we arrive at the
inequality

‖Ax̂ − b ‖2 − ‖Ax? − b ‖2 ≤ 4θ2k ‖P b ‖2 (8.11)

for θ = (
√
κ − 1)/(

√
κ + 1). The quantity θ < 1 is bounded away from 1 in a manner

independent of A and b . For example, κ ≤ 2 when S embeds range(A) with distortion
δ = 1/3.

The essence of the inequality (8.11) is the same as that of inequality (8.7) for the
Iterative Sketch approach. Since the runtime claim of this theorem matches that of
Theorem 8.9, we may conclude the proof. �

8.3 Runtime comparisions of the least-squares algorithms
We begin by summarizing the runtimes of the approaches from the previous sections.
Each of these runtimes involves parameters m, n, and relative backward-error tolerance
0 < ε � 1. In the case of Iterative Sketching and Sketch-and-Precondition, we also
involve the dynamic range D := ‖P b ‖/‖(I − P )b ‖ where P is the orthogonal projector
onto range(A). Naturally, we assume ‖P b ‖ < ‖b ‖ so that the dynamic range is finite.
The runtimes are
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• O (mn logn + n3 log(n)/ε2) for Sketch-and-Solve;
• O (mn logn + n3 logn +mn log(D/ε)) for Iterative Sketching; and
• O (mn logn + n3 logn +mn log(D/ε)) for Sketch-and-Precondition.

It’s clear that Sketch-and-Solve requires far more time than the other algorithms.
However it does have a redeeming property that there is no dependence on D . In
particular, it can handle the case when Ax? = b . Nevertheless, this property alone is
not enough to make Sketch-and-Solve viable for practical levels of precision.

Our runtime bounds for Iterative Sketching and the Sketch-and-Precondition
approaches match. However, Sketch-and-Precondition is likely superior to Iterative-
Sketch when A is sparse. In such a situation, Sketch-and-Precondition still pays
O (mn logn + n3 logn) time to form the preconditioner, but the complexity of a
conjugate gradient step is reduced from O (mn) to O (n2 + nnz(A)). Moreover, Sketch-
and-Precondition can then be implemented using sparse matrix products instead of
using the FFT algorithm to apply the SRFT embedding.

The classical QR-based algorithm for (8.1) takes time O (mn2), and it solves the
least-squares problem to near machine precision εm. Treating εm and D as constants,
both Sketch-and-Precondition and Iterative Sketching compare favorably to the classical
method when logn � n � m/logn.

Remark 8.12 (Constants). Constant factors matter in numerical linear algebra, and not
all convergence rates of the form “O (log(D/ε))” are created equal. The exercises
address convergence rates in more detail.

Remark 8.13 (Removing the dynamic range). While it is somewhat dubious to treat D
as a constant, the exercises will show how modifications to Iterative Sketching or
Sketch-and-Precondition can remove dependence on dependence on D .

8.4 Practical implementations and further reading
The conjugate gradient algorithm works wonderfully in exact arithmetic, however in
finite precision there can be catastrophic rounding errors. Specialized implementations
exist to reduce the effects of these rounding errors. For generic positive-definite
systems, you should follow Appendix B of [She94]. For least-squares problems you
should ideally use the LSQR algorithm [Pai82], but the simpler PCGLS algorithm is a
reasonable alternative; see Section 7.4 of [Bjö96] for information on the latter method.
Most programming languages have easy access to high quality implementations of
these algorithms.

One issue we did not cover here is how to solve least-squares problems when A has
linearly dependent columns. In such a setting, any of the standard conjugate gradient
algorithms should converge to the optimal solution A+b as long as the initial point x0
belongs to the range of A∗ [Bjö96]. Iterative Sketching should also work in this setting,
although more care is required with the initial Cholesky factorization.

A slightly more direct proof of Theorem 8.11 is possible if you work with convergence
bounds stated directly for least-squares conjugate gradients [Bjö96, Eqn. 7.4.6].

The Sketch-and-Precondition approach is a reinterpretation of an algorithm pro-
posed by Rokhlin and Tygert [RT08]. The reported “typical” runtime of that algorithm
is O (mn logn + n3 +mn log(1/ε)). We note this runtime is called “typical” because
it uses d ∼ n, rather than the theoretical requirement d ∼ n2 stated in the paper’s
main technical lemma. The term log(1/ε) is meaningfully distinct from the log(D/ε)
proven in these lecture notes. The difference can be attributed to how Rokhlin and
Tygert’s PCG algorithm is initialized, and it is explored in the exercises.
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The idea of iterative sketching emerged from work on the randomized Kaczmarz
method [SV09], which is a variant of stochastic gradient descent for overdetermined
least-squares problems. Gower & Richtárik reinterpreted this approach as an iterative
sketching technique [GR15]. The specific approach here was proposed by Mert Pilanci
and collaborators in [PW16] and elaborated in [LP19]. In [PW16, Lemma 1, displays
22b and 23], the sketching matrices are resampled at each iteration, and the embedding
dimension d is required to be on the order of O (n(logn)4).

Warning 8.14 Our
parameters (d ,m,n)
correspond to (m,n,d) in
[PW16], [PW17], and [LP19].
�

[LP19] addresses the case
where the sketching matrix is only sampled once, but then it modifies the resulting
algorithm to take step sizes x = x + ηu for η , 1. The effect of this revision is a
modest improvement in the convergence rate, relative to the one described here.

The article [PW17] specifically addresses sketching in the context of convex opti-
mization. The approach of that article is along the lines of Iterative Sketching, where
the decision variable x (and hence the nominal Hessian ∇2f (x )) is updated with each
solution to (8.4).

Problems and additional exercises
Exercise 8.15 (Relative performance of methods). Suppose Iterative Sketching and Sketch-
and-Precondition are both used to solve the same (dense) least squares problem, with
the same sketching matrix S . Is there reason to believe that either algorithm will
terminate before the other? If so, what can you say about the ratio of the faster
algorithm’s runtime divided by the slower algorithm’s runtime? Justify your answer
rigorously.

Exercise 8.16 (Removing the dynamic range). Let S be a sketching matrix for range(A)
with distortion δ = 1/4. The current formulations of Iterative Sketching and Sketch-
and-Precondition essentially initialize x0 = 0. Suppose instead that x0 is the result
of running Sketch-and-Solve with embedding matrix S . Address how the runtimes
of both Iterative Sketching and Sketch-and-Precondition would change with this new
initialization. (Note: for convergence of conjugate gradient method in Theorem 8.3,
the term ‖G−1/2h ‖ is a simplification of ‖G 1/2(z 0 − z?)‖.”)
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Today we are going to talk about one of the most widely used randomized linear
algebra methods. Randomized SVD refers to a family of randomized algorithms for
computing truncated singular value decompositions.

9.1 The truncated SVD
Every matrix B ∈ Fm×n has a singular value decomposition:

B = UΣV ∗,

where U ∈ Fn×n andV ∈ Fm×m are unitary and Σ = diag(σ1,σ2, . . .) is nonnegative,
diagonal, and weakly decreasing. The columns of U are called left singular vectors,
the columns of V are called right singular vectors, and the numbers σ1,σ2, . . . are
called singular values. For concreteness, we assume that m ≥ n.

We are going to be interested in a related matrix decomposition. For a parameter
k ≤ n, write

Σ =

[
Σ1 0
0 Σ2

]
with Σ1 ∈ R

k×k and Σ2 ∈ R
(n−k )×(n−k ).

The matrix Σ1 = diag(σ1, . . . ,σk ) lists the largest k singular values. We conformally
decompose the singular vector matrices as

U =
[
U 1 U 2

]
and V =

[
V 1 V 2

]
,

where U 1 andV 1 each have k columns. The k -truncated SVD k -truncated SVDis the matrix approxima-
tion:

JBKk := U 1Σ1V
∗
1

The matrices U 1 ∈ F
n×k andV 1 ∈ F

m×k have orthonormal columns and Σ1 ∈ Rk×k is
nonnegative, diagonal and weakly decreasing.
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9.1.1 Uniqueness
The singular values are always determined uniquely. But the SVD is never unique.
Indeed, we can always switch column signs to obtain an ostensibly different factoriza-
tion. When there is a duplicated singular value, we can also choose singular vectors
to form arbitrary bases for the singular subspaces associated with that singular value.
The truncated SVD inherits this lack of uniqueness.

Warning 9.1 (Uniqueness). Since the truncated SVD is not unique, the symbol JBKk is
not well-defined. We use it informally to represent any k -truncated SVD. Typically,
we will use this notation in contexts where the statement is valid for any k -truncated
SVD. �

9.1.2 Applications
The truncated SVD plays a fundamental role in matrix approximation because of the
following classic theorem.

Fact 9.2 (Eckart–Young, Mirsky). The k -truncated SVD gives a best rank-k approximation
best rank-k approximationof a matrix B with respect to the Frobenius norm and the spectral norm. More precisely,

min
rk(B̂)=k

‖B − B̂ ‖F = ‖B − JBKk ‖F =
(∑

j>k
σj

)1/2
(Eckart–Young);

min
rk(B̂)=k

‖B − B̂ ‖ = ‖B − JBKk ‖ = σk+1 (Mirsky).

A similar statement holds for every unitarily invariant norm. �

The truncated SVD has a wide range of applications in linear algebra, statistics,
and related fields. These include

• Principal component analysis (PCA), total least-squares (TLS), proper orthogonal
decomposition (POD), Karhunen–Loève expansions;

• Computations for ordinary least-squares, regularized least-squares problems
(ridge regression or Tykhonov regularization), and regularized solution of linear
systems;

• Data reduction, feature extraction, compression, and visualization.

9.1.3 Classical SVD algorithms and runtime comparison
The truncated SVD is actually somewhat challenging to compute in the dense case. By
combining column pivoted QR, bidiagonal reduction, and bidiagonal SVD algorithms,
we can obtain a method for computing the k -truncated SVD of an m × n matrix that
O (mnk ) arithmetic cost.

There are also algorithms designed for computing the k -truncated SVD of a sparse
matrix. These methods are based on Lanczos bidiagonalization, and they require
k matrix–vector multiplies in sequence plus O (k (m + n)) extra arithmetic. These
methods require care to implement properly.

Randomized SVD algorithms do not achieve better complexity. Indeed, they require
a small number of m × n × k matrix–matrix multiplies, plus O ((m + n)k ) extra
arithmetic. This profile resembles an algorithm for sparse SVD computation. But
the matrix–matrix multiplies are practically much more efficient than a sequence of
matrix–vector multiplies. Indeed, most computational platforms have highly optimized
matrix multiplication routines, and there is commodity hardware (for example, GPUs)
that can achieve very high speed for this primitive. As a consequence, randomized SVD
methods can be much faster than classical SVD algorithms.
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9.2 Two-phase randomized SVD algorithms and the rangefinder problem
Randomized SVD algorithms are based on a two-phase approach:

(A) Find a subspace aligned with the span of the dominant left-singular vectors,
range(U 1).

(B) Compress the matrix to this subspace, and compute its SVD.

This procedure instantiates the motto “figure out where to look, and go look there.”

9.2.1 The rangefinder
The first step is called the rangefinder problem rangefinder problem. Given a matrix B ∈ Fm×n , a target
rank k , and a number ` = k + p of samples, we want to find an orthonormal matrix
Q ∈ Fm×` such that range(Q ) ≈ range(U 1). Heuristically, we want

‖B −QQ ∗B ‖ / σk+1.

The key idea is to choose ` = k + p slightly larger than the actual target rank k . Note
that the new matrix QQ ∗B has rank at most `. Mirsky’s theorem (Fact 9.2) imposes a
fundamental restrictions on this procedure: the approximation error must be at least
σ`+1. By allowing ` > k and aiming for an error σk+1, we can develop very reliable
algorithms.

9.2.2 The reduced SVD computation
Given a solution Q to the rangefinder problem, we can approximate the k -truncated
SVD of the matrix B .

1 Form C = Q ∗B ∈ F `×n using one ` ×m × n matrix–matrix multiply with B∗.
Note that we do need to apply the adjoint B∗.

2 Compute the dense ` × n full SVD

C = Û Σ̂V̂
∗

This step requires O (`2n) arithmetic, but ` � m.
3 We obtain an approximate truncated SVD of the original matrix in factored form:

B̂ = (QÛ )Σ̂V̂
∗

using a single m × ` × ` matrix multiplication.
4 Note that B̂ is actually a rank-` approximate SVD. We can truncate Σ̂ to JΣ̂Kk to
obtain a rank-k approximation of the k -truncated SVD. The cost of this optional
truncation is negligible, but the corresponding analysis turns out to be more
involved.

The total cost is one ` ×m × n matrix–matrix multiplication, plus O ((m + n)`)
additional arithmetic. Modulo rounding errors, the error in the approximate SVD B̂ is
the same as the approximation in the rangefinder step:

‖B − B̂ ‖ = ‖B −QQ ∗B ‖.

Therefore, it suffices to solve the rangefinder problem.
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Figure 9.1 (Geometry of the randomized rangefinder). The SVD has a geometric meaning.
The matrix B acts on the unit ball in Fn (left) by transforming it into an ellipsoid
(right). The left singular vectors (u1 and u2) indicate the direction of the principal
axes, while the corresponding singular values are the lengths of the semiaxes. If we
input a random vector (red), its image is going to roughly align with the longer axes.
Repeating this procedure several times and orthogonalizing the resulting vectors will
produce a basis whose span is close to range(U 1). This picture is completely accurate
for matrices with perfectly low rank. If this is not the case, the random vectors Bωk

will have some components along the shorter axes. By choosing additional random
vectors (` > k ), we can insulate the procedure against these devations.

9.3 The randomized rangefinder
So, how do we actually solve the rangefinder problem to execute phase (A)? It should
come as no surprise that the answer involves randomness. The approach is based on
geometric intuition, illustrated in Figure 9.1: If we multiply random vectors ω1, . . . ,ω`

into B and orthogonalize, we get a subspace that aligns well with the range of U 1.
We can translate this intuition into a computational procedure, called the randomized
rangefinder randomized rangefinder:

1 Draw a random test matrix Ω ∈ Fn×` (` samples).
2 ComputeY = BΩ (one m × n × ` matrix multiplication)
3 Orthogonalize: Y = Q R (one m × ` economic QR).

The total cost is dominated by the single m × n × ` matrix multiplication. Typically,
the additional cost O (m`2) is much smaller by comparison.

9.3.1 Implementation issues
This simple description of the randomized rangefinder masks a number of significant
decisions about the implementation

What test matrix?
It turns out Gaussian test matrices work fabulously. But sometimes, one can use an
SRFT (which works even better), or a sparse sign matrix (which works roughly the
same) and other candidates for random embeddings. Gaussians are actually pretty
natural in this setting.

What matrix multiplication?
Exploit advantageous structure in B (e.g., sparsity or a fast multiply) whenever possible.
There are instances where structure in Ω can be exploited as well. Unfortunately, the
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second phase in the randomized SVD procedure involves the basis Q , which is typically
dense and unstructured.

How should we orthogonalize?
It is important to use stable procedures. Most of the vectors Bωi will be aligned in
similar directions. Use Householder orthogonalization, or double Gram–Schmidt, or
another reliable method. Do not use (modified) Gram–Schmidt.

How much oversampling?
If k is known, it often suffices to take ` = k + p where p = 5 or p = 10 or maybe even
p = k . The theory gives detailed justification for these choices. If k is not known, use
randomized error estimation (based on randomized trace estimation), and adaptively
increase ` until you get satisfactory results.

Remark 9.3 (Matlab). These ideas lend themselves to straightforward Matlab implemen-
tations. If you use the built-in functions, the randomized SVD strategy will work! This
is one reason that the method has had a practical impact.

9.4 Analysis
We will present a detailed analysis of the randomized rangefinder problem in the next
lecture. This argument leads to an informative result [HMT11].

Theorem 9.4 (Randomized rangefinder). Let B ∈ Rm×n be a matrix with singular
values σ1 ≥ σ2 ≥ · · · . Let Ω ∈ Rn×` be standard normal. For each k < ` − 1,
the randomized rangefinder produces an orthogonal matrix Q with the following
property:

EΩ ‖B −QQ ∗B ‖ ≤

(
1 +

√
k

` − k − 1

)
σk+1 +

e
√
`

` − k

(∑
j>k

σ2
j

)1/2
This error bound features two constituents. The first term resembles the spectral-

norm error from Mirsky’s theorem; it shrinks slowly to zero as ` increases. The second
term resembles the Frobenius-norm error from the Eckart–Young theorem; it decreases
more quickly as the oversampling increases. If ` is very close to k , both contributions
can be large. But, if we allow ` to be just a bit bigger than k , the second factor
moderates quickly.

9.5 Randomized subspace iteration
The bounds in Theorem 9.4 suggest that the rangefinder procedure is most effective
when the matrix B exhibits strong spectral decay; that is,

∑
j>k σ

2
j is comparable with

σk+1. This insight is correct. Moreover, the converse is also true: the rangefinder
tends to produce large errors when the spectral tail has a lot of energy. In this case, we
can improve the performance of the rangefinder by augmenting it with powering.

The following method is called randomized subspace iteration randomized subspace iteration. It is based on a
classic approach from numerical linear algebra. Let ` be the number of samples, and
let q be a power parameter.

1 Draw a random test matrix Ω ∈ Fm×`, and set Q = Ω. We have changed the
dimension for reasons that will become clear in a moment.

2 For i = 1, 2, . . . ,q ,
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1 ConstructY = B(B∗Q )
2 Compute [Q ,∼] = qr_econ(Y )

The idea behind this approach is the following insight. Effectively, the algorithm
applies the randomized rangefinder to the matrix power. |B |2q := (BB∗)q . Matrix
powers suppress small eigenvalues very quickly. This procedure has the effective of
reducing the energy in the spectral tail.

9.5.1 Analysis
The analysis of randomized subspace iteration follows as a corollary of the analysis of
the randomized rangefinder. We need the following lemma.

Lemma 9.5 (Powering). Suppose that P is an orthogonal projector. For any matrix B
with compatible dimensions,

‖(I − P )B ‖2q ≤ ‖(I − P ) |B |2q ‖ for q ≥ 1.

Exercise 9.6 Prove this claim by using the Araki–Lieb–Thirring inequality.

As a consequence of Theorem 9.4 and Lemma 9.5, we immediately arrive at the
following result.

Corollary 9.7 (Randomized subspace iteration). Instate the hypotheses of Theorem 9.4.
Let Q be the orthonormal basis computed by the randomized subspace iterations after
q steps. Then

E ‖B −QQ ∗‖ ≤

[(
1 +

√
k

` + k

)
σ

2q
k+1 +

e
√
`

` − k

(∑
j>k

σ
4q
j

)1/2]1/(2q)

.

This statement implies that powering drives the error in the rangefinder to σk+1
exponentially fast as the power q increases. It is always sufficient to take q = log(m∧n),
because at that point everything else gets “destroyed,” and one copy of σk+1 remains
(with a constant close to one). In practice, q = 2 or q = 3 is entirely adequate for
most examples.

9.6 Randomized Krylov methods
To achieve very high accuracy, randomized subspace iteration may not be sufficient.
Instead, we can use a randomized block Krylov randomized block Krylovmethod. We give a brief summary of
the ideas here, but implementations require further attention.

The block Krylov method collects all of the information acquired during the
execution of randomized subspace iteration:

Y =
[
Ω BB∗Ω . . . (BB∗)qΩ

]
.

Then we compute a QR factorization of the sample matrix: Y = Q R . The matrix Q
is very well aligned with the dominant left singular subspace of B . We can use this
matrix Q to compute an approximate k -truncated SVD B̂ of the input matrix.

A detailed analysis of this approach is beyond the scope of this course. The singular
values of the approximation satisfy heuristic error bounds

|σj (B) − σj (B̂)| /
σj (B)

q2 for j < `.
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In contrast, randomized subspace iteration only yields a bound like

|σj (B) − σj (B̂)| /
σj (B)

q
for j < `.

This improvement is similar to what we saw when comparing the randomized power
method with the randomized Krylov method for computing the maximum eigenvalue.
It indicates that we can obtain much better relative accuracy by means of a Krylov
method.
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Last time we discussed the randomized SVD algorithm. At the core of this technique is
the randomized rangefinder. Today, we will discuss this important subroutine and will
derive strong performance guarantees. These are based on a deterministic analysis
using Schur complements. Randomness will then allow us to find simple and intuitive
bounds on the relevant parameters.

10.1 The randomized rangefinder (RFF)
Recall that the randomized rangefinder (RRF) randomized rangefinder (RRF)is designed to capture the action of a
matrix. Here is a quick review of the procedure and the main result that we will
establish.

10.1.1 Procedure
Let B ∈ Fm×n be a fixed target / input matrix. Draw a random test matrix Ω ∈ Fm×`,
where ` is the number of samples. When computing a truncated SVD, the number
` is typically close to the rank of the truncated SVD. Form the sample matrix Y =
BΩ ∈ Fm×`, and compute its QR decomposition: Y = Q R , where Q ∈ Fm×` is an
orthonormal basis for the range ofY .

10.1.2 Error bounds
To quantify how well the rangefinder (RRF) works, that is, how well it captures the
action of B , we need a bound of the form

‖(I − PY )B ‖

where PY = QQ ∗ is the orthoprojector onto the range of Y . This type of estimate
controls the performance of the RRF, and it also leads directly to estimates for the
approximation error in the randomized SVD. The following result, developed by Halko
et al. [HMT11], establishes strong bounds for Gaussian test matrices.
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Theorem 10.1 (Randomized rangefinder). Let B ∈ Rm×n be a matrix with singular
values σ1 ≥ σ2 ≥ · · · . Let Ω ∈ Rn×` be standard normal. For each k < ` − 1,
the randomized rangefinder produces an orthogonal matrix Q such that the
orthoprojector PY = QQ ∗ obeys

EΩ ‖(I − PY )B ‖ ≤

(
1 +

√
k

` − k − 1

)
σk+1 +

e
√
`

` − k

(∑
j>k

σ2
j

)1/2
This bound has two constituents: a spectral-norm type error and a Frobenius-norm

type error. It turns out that this mixed error bound is unavoidable, even if the left
hand side only features the spectral norm.

10.1.3 Proof strategy
We will prove most of Theorem 10.1, as well as some related things. The overall proof
strategy is simple:

1 Understand the form of the error and single out extremal target matrices.
2 Compute a deterministic bound on the error.
3 Use random matrix theory to get explicit results for Gaussian test matrices.

We will phrase most of the argument for Frobenius norm errors, not the operator
norm. The analysis is slightly simpler than the spectral norm case, and the two results
are similar in spirit.

10.2 Step 1: Schur complements and extreme cases
The rangefinder procedure finds its most natural expression using the language of
Schur complements. For the moment, we will work in either the real or complex field.

Definition 10.2 (Schur complement). Let A ∈ Hn be a psd matrix and let X ∈ Fn×k be a
test matrix. The Schur complement Schur complementis the matrix

A/X = A − (AX ) (X ∗AX )† (AX )∗, (10.1)

where † denotes the pseudo-inverse.

There are a lot of things to say about Schur complements and their properties;
see the homework for an introduction. Schur complements occur naturally in block
Gaussian elimination and Cholesky decompositions. Other applications include partial
least squares, as well as Nyström decompositions.

We can write the error in the rangefinder procedure in terms of a Schur complement.

Proposition 10.3 (Rangefinder error). Fix a target B ∈ Fm×n and let X ∈ Fn×` be a test
matrix. Define the (matrix) error in the rangefinder:

E := E (B , X ) = (I − P B X )B (10.2)

Then the squared error matrix takes the form

|E |2 := E ∗E = (B∗B)/X .

Proof. Recall that the orthogonal projector onto the range of Y can be written as
PY = Y (Y ∗Y )†Y ∗. Hence,

P B X = (B X ) (X ∗B∗B X )† (B X )∗.
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Computing the squared absolute value reveals a Schur complement (10.1):

E ∗E = B∗ (I − P B X )B = B∗B − B∗P B X B

= B∗B − (B∗B X ) (X ∗B∗B X )† (B∗B X )∗

= (B∗B) /X .

This is the required result. �

This reformulation implies several interesting properties. First, observe that the
error in the rangefinder is a monotone increasing function of the square of the input
matrix.

Corollary 10.4 (Rangefinder: Monotonicity). Suppose thatB∗B 4 C ∗C . Then |E (B , X )|2 4
|E (C , X )|2.

Proof. The Schur complement with respect to a fixed test matrix X is operator
monotone. See the homework. �

This monotonicity result allows us to identify extremals extremals, or worst-case target
matrices, for the rangefinder.

Corollary 10.5 (Extremals). Let B = UΣV ∗, where Σ = diag(σ1,σ2, . . .). Fix k and
define C = U Σ̄V ∗, where Σ̄ = diag(σ1, . . . ,σ1,σk+1,σk+2, . . .). Then

|E (B , X )|2 4 |E (C , X )|2.

Proof. By construction, B∗B 4 C ∗C . �

We conclude this section with another fact about Schur complements that will play
a role in the analysis.

Fact 10.6 (Schur complements: Inclusion). Fix a psd matrix A. Let X , Z be test matrices.
If range(Z ) ⊂ range(X ), then A/X 4 A/Z . �

In other words, if Z is smaller than X , then the Schur complement with respect to
Z removes less stuff from A than the Schur complement with respect to X .

10.3 Step 2: Deterministic bounds
In this section, we will develop a deterministic bound for the rangefinder that operates
for an arbitrary test matrix. In the next section, we will instantiate this result using a
random test matrix.

This approach requires a fair amount of notation. Let B = UΣV ∗ be a SVD of the
target matrix. For a parameter k ≤ `, write

Σ =

[
Σ1 0
0 Σ2

]
with Σ1 ∈ R

k×k and Σ2 ∈ R
(n−k )×(n−k ).

Equivalently, Σ1 = diag(σ1, . . . ,σk ) and Σ2 = diag(σk+1,σk+2, . . .). We conformally
decompose the singular vector matrices as

U =
[
U 1 U 2

]
and V =

[
V 1 V 2

]
,

and we extend this partition to the test matrix X :

Y = B X =
[
U 1 U 2

] [
Σ1 0
0 Σ2

] [
V ∗1X
V ∗2X

]
=:

[
U 1 U 2

] [
Σ1 0
0 Σ2

] [
X 1
X 2

]
.
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To be more explicit, we have defined

X 1 = V ∗1X and X 2 = V ∗2X .

From now on, we assume that X 1 ∈ F
k×` has full row rank. This assumption is natural

(and essential).
The first matrix X 1 tells us how much the test matrix is aligned with the k dominant

right singular vectors of B ; this is the important part of B . The second matrix X 2 tells
us how well X is aligned with the tail singular vectors of B; this is the unimportant
part of B .

The following deterministic theorem relates the rangefinder to the interplay between
X 1 and X 2. This statement and proof are essentially due to Halko et al. [HMT11]. The
argument has been streamlined using some more recent insights.

Theorem 10.7 (Deterministic error bound). The error (10.2) in the rangefinder satisfies
the following bound:

‖E (B , X )‖2ξ ≤ ‖Σ2‖
2
ξ + ‖Σ2X 2X †1‖

2
ξ .

Here, ‖·‖ξ denotes either the Frobenius or the spectral norm.

Note that the first term exactly reproduces the error in the best rank-k approximation
of the matrix B . The second term reflects the energy of X contained in the tail subspace
range(V 2), weighted by the associated singular values listed inΣ2. The pseudo-inverted
matrix reflects the conditioning of X 1.

Example 10.8 (Ideal case). If X = V 1, then ‖Σ2X 2X †1‖
2
ξ = 0. �

The proof of Theorem 10.7 is based on perturbation theory perturbation theory. We first isolate an ideal
test matrix case and treat the concrete instance as a perturbation of the ideal.

Proof of Theorem 10.7. We already know that |E (B , X )|2 = (B∗B)/X . Let us start with
some simplifications. Without loss, assume that B∗B is diagonal; that is, B∗B = Σ∗Σ =
diag(σ2

1 ,σ
2
2 , . . .). Next, by Corollary 10.5, we can assume the worst-case distribution

of singular values: σ1 = σ2 = · · · = σk . Finally, by homogeneity of the error bound,
we can rescale the matrix B so that σ1 = 1.

In short, it is sufficient to produce a semidefinite upper bound for the matrix(
Ik ⊕ Σ

2
2
)
/X where Σ22 = diag

(
σ2

k+1,σ
2
k+2, . . .

)
.

The direct sum operator ⊕ constructs a block-diagonal matrix from its arguments.
For intuition about how to proceed, we consult the ideal case. If X = V , then

X =

[
X 1
X 2

]
=

[
I
0

]
.

We can treat the actual situation as a perturbation of this idealized case. Define

Z = X X †1 =

[
Ik

F

]
where F = X 2X †1.

This construction ensures range(Z ) ⊂ range(X ). We can invoke Fact 10.6 to conclude(
Ik ⊕ Σ

2
2
)
/X 4

(
Ik ⊕ Σ

2
2
)
/Z .

This final Schur complement can be computed explicitly.
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In the next calculation, we use the symbol � to indicate a block matrix that does
not play a role in the argument:(

Ik ⊕ Σ
2
2
)
/Z =

[
Ik 0
0 Σ22

]
−

[
Ik

Σ22F

] (
Ik + F ∗Σ22F

)−1 [
Ik

Σ22F

]∗
=

[
Ik −

(
Ik + F ∗Σ22F

)−1
�

� Σ2(Ik − · · · )Σ2

]
4

[
F ∗Σ22F �
� Σ22

]
.

The matrix abbreviated as · · · is psd, so the bottom-right block increases when we drop
this term. We bound the top-left block by applying the numerical fact 1−(1+a)−1 ≤ a ,
valid for a ≥ 0, to the eigenvalues of this block.

The Frobenius norm bound follows readily:

‖E (B , X )‖2F ≤ tr
(
Ik ⊕ Σ

2
2
)
/Z ≤ trΣ22 + trF ∗Σ22F .

Indeed, the trace is operator monotone. The spectral norm bound requires an additional
argument, which we leave as an exercise. �

10.4 Random test matrices
Theorem 10.7 provides us with crucial insights about the rangefinder performance for
any test matrix X . It turns out that using a random test matrix leads to near-optimal
bounds, regardless of the singular-value spectrum of the target matrix B .

To obtain probabilistic results, we work with a standard normal test matrix
Ω ∈ Fn×`. To make the computations, we will exploit the fact that Ω1 = V ∗1Ω and
Ω2 = V ∗2Ω are statistically independent standard normal matrices. Moreover, the
random matrix Ω1 is usually well-conditioned if k � `. These insights already suffice
to deduce a strong Frobenius-norm error bound. The next result is drawn from Halko
et al. [HMT11].

Theorem 10.9 (Randomized rangefinder: Frobenius-norm error). Suppose that the test
matrix Ω is standard normal. For all k < ` − α, the error in the randomized
rangefinder approximation obeys

EΩ ‖(I − PY )B ‖
2
F ≤

(
1 +

k

` − k − α

) (∑
j>k

σ2
j

)
.

The field parameter α = 1 when F = R, while α = 0 when F = C.

Proof. We begin with the bound from Theorem 10.7:

EΩ ‖E (B ,Ω)‖2F ≤ ‖Σ‖
2
F + E ‖Σ2Ω2Ω

†

1‖
2
F .

We compute the expectation in two steps. First, use independence of Ω1 and Ω2
to take the expectation with respect to Ω2. An easy computation (using rotational
invariance) reveals that

EΩ2 ‖Σ2Ω2Ω
†

1‖
2
F = ‖Σ2‖

2
F ‖Ω

†

1‖
2
F .
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The remaining expectation equals the expected trace of a k × k inverted Wishart
matrix with ` degrees of freedom. This expectation is a classical computation from
multivariate statistics:

EΩ1 ‖Ω
†

1‖
2
F =

k

` − k − α
.

Combine the displays to complete the argument. �

In the real case (F = R), we can also establish a probabilistic spectral-norm error
bound. For all matrices with compatible dimensions, Chevet’s theorem states that

EΩ2 ‖SΩ2T ‖2 ≤ (‖S ‖‖T ‖F + ‖S ‖F‖T ‖)
2 .

Using this result in the previous argument leads to the following result.

Theorem 10.10 (Randomized rangefinder: Spectral-norm error). Fix F = R. Let Ω ∈
Rn×` be standard Gaussian, and defineW = ‖Ω†1‖

2. For all k < ` − 1,

EΩ ‖(I − PY )B ‖
2 ≤ σ2

k+1 +

(√
k

` − k − 1
σk+1 + (EW )1/2

(∑
j>k

σ2
j

)1/2)2
.

The expectation of the random variable W takes some effort to compute. The
follow bound is always valid:

EW ≤
e
√
`

` − k
for all 2 ≤ k < `.

When k � `, this estimate can be somewhat wasteful. In this setting, the following
heuristic is more accurate:

EW ≈
1

√
` −
√

k
, when k � `.

Introducing these estimates into Theorem 10.10, we obtain detailed information about
the performance of the randomized rangefinder procedure with respect to the spectral
norm.
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In this lecture, we are going to be interested in computing a truncated SVD approxi-
mately when we can only look at the matrix once, or the matrix is evolving. This is
called a streaming model and occurs in a variety of applications. It may seem surprising
that we can do this at all. But, we actually can approximately compute an SVD without
ever visiting the matrix twice.

11.1 Turnstile streaming problem
Let B ∈ Fm×n be a matrix that is presented as a sequence of linear updates:

B = H 1 +H 2 +H 3 + · · · where H i ∈ F
m×n .

Typically, the innovations H i are very simple objects. For example, they might be sparse
or low-rank matrices. We think about the ambient dimensions m and n as very large,
or enormous. Even if we see the entire matrix, we do not want to store a complete
representation of B in memory. Algorithmically, this means that we must process each
innovation and then discard it. This general model is called a termturnstile streaming
model to differentiate it from other types of simpler streaming model.

Significant examples that fit into this model include

1 H j = b je∗j : updates are individual matrix columns.
2 H j = ei b∗j : updates are individual matrix rows.
3 H i j = hi jEi j : updates are individual matrix entries.

We can also consider cases where the columns/rows/entries are updated in an arbitrary
order or where they are updated repeatedly.

This streaming formulation is oftenmotivated in terms of inventorymodels inventory models, where the
number of items in an inventory can go down (sales) or up (returns or replenishment).
More recently, turnstile streaming has been used to model one-pass data access models one-pass data access models:
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If a big matrix B is stored on tape drive, random or repeated access can be prohibitively
expensive. Another prominent application is scientific simulation scientific simulation. The numerical
solution of a PDE often proceeds iteratively, computing the next solution field from the
previous ones. In many situations, each solution field is very large, and the computation
is quite expensive.

The goal for this lecture is to develop an approximate SVD algorithm that can
operate in the turnstile streaming model. For a rank parameter k , given a priori, we
want to compute an approximate k -truncated SVD of B at a given time T . We need to
control the working storage, the time for individual updates, and the time for the SVD
computation.

Warning 11.1 We are going to focus on the single-shot case single-shot casewhere we only compute
the approximate SVD once. If we need to compute the truncated SVD repeatedly,
there are additional complications that arise because of failure probabilities and
lack of independence among the approximations. �

11.2 Randomized linear sketching
Instead of storing the entire matrix B , we are going to maintain a random linear image
of B . More precisely, let S : Fm×n → Fd be a linear map from matrices to vectors. We
are going to track

S(B) = S(H 1) + S(H 2) + S(H 3) + · · ·

Linearity allows us to sketch each innovation and add it to the existing sketch.
The embedding dimension d is still a free parameter. If d � mn, then Smust

have a substantial nullspace. However, if we choose Sat random, it is likely that the
sketch works for any particular matrix B that is statistically independent from S. After
we see the whole data stream, we can use the sketch S(B) to compute the SVD. We get
a guarantee that holds at a particular time T with high probability. Nevertheless, we
cannot use the computed SVD to make decisions that affect the data stream without
sullying the randomness in the sketch.

The idea of sketching is due to Noga Alon et al. [AMS99; Alo+02] who were
interested in scalar quantities, like the energy in a data stream. The first SVD algorithm
that can operate in the streaming setting was proposed by Wolfe et al. [Woo+08].
Later, Clarkson and Wodruff [CW09] developed the basic theory of sketching for
numerical linear algebra computations. For the turnstile model, randomized linear
sketches are essentially the only kind of algorithm; see [LNW14].

11.3 The SketchySVD algorithm
With randomized linear sketching at hand, the obvious question becomes: how do we
design a streaming SVD algorithm? Let us start with the randomized SVD algorithm
in its simplest form and see where it breaks.

11.3.1 Review of the randomized SVD
First, use the randomized rangefinder to find a basis Q that captures the range of B :

BΩ = Y = Q R

The matrix Ω ∈ Fm×` is random. The second step is to compress B to the range of Q .
Then we perform a dense SVD computation:

C = Q ∗B = Û Σ̂V̂
∗.
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Finally, we obtain a factored SVD:

B =
(
QÛ

)
Σ̂V̂
∗.

On the positive side, we collect linear dataY = BΩ. This already may be viewed as a
(linear) sketch. On the negative side, we have to look at B again to perform the second
step.

11.3.2 Avoiding the second pass
We can bypass this problem by sketching the matrix B on the left too. After all, the
action of the matrix and its adjoint can be quite different. More precisely, we maintain

Y = BΩ ∈ Fm×` and X = ΥB ∈ F `×m .

These are sketches for range and co-range, respectively. To compute an SVD, we first
perform two QR decompositions:

Y = Q R1 where Q ∈ Fm×` orthonormal;

X ∗ = P R2 where P ∈ Fn×` orthonormal.

The columns of Q capture the range of B , while the columns of P capture the co-range.
Heuristically,

B ≈ QQ ∗BP P ∗ = Q (Q ∗BP )P ∗ =: QC P ∗ where C = Q ∗C P .

Indeed, we have the intuition that the matrix B is well-approximated by its projection
onto the range of Q on the left and its projection onto the range of P on the right. We
have also defined the core matrix C = Q ∗C P ∗.

If we had access to C directly, we would be done. But this is not the case, because
we can only query B once and we already used B to compute Q and P . To bypass this
problem, let us tabulate the information we already have:

Y = BΩ ≈ QC P ∗Ω,
X = ΥB ≈ ΥQC P ∗.

The matrices on the left-hand side are known, and the only unknown on the right-hand
sides is the core matrix C . Hence, we can use these formulas to find C by solving a
least-squares problem.

This works reasonably well, as pointed out by Wolfe et al. [Woo+08] and Halko et
al. [HMT11]. In fact, we can obtain significantly better performance ifΩ has ` columns
while Υ has, say, 2` or 4` rows [CW09; Tro+17a].

11.3.3 Adding a core sketch
Today, we are going to pursue a more elaborate algorithm that collects additional
information to approximate the core matrix C more accurately. Draw and fix two
additional random matrices

Φ ∈ F s×m and Ψ ∈ Fm×s where s ≥ `.

We use these additional matrices to maintain a s × s core sketch

Z = ΦBΨ ∈ F s×s .
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Heuristically, we expect
Z ≈ (ΦQ )C (P ∗Ψ).

We can use this relation to approximate the core matrix as follows.

Ĉ = (ΦQ )†Z (P ∗Ψ)†

by solving a least-squares problem.
This approach has a crucial advantage. The sketch for the core is statistically

independent from the sketches for the row and column spaces. If the test matrices are
Gaussian, the approximated core matrix is even an unbiased estimator for the true core
matrix. The idea of adding a core sketch is due to Upadhyay [Upa16], with subsequent
improvements by Tropp et al. [Tro+17b].

11.3.4 The procedure
The SketchySVD SketchySVDprocedure implements the following steps:

1 Draw and fix random matrices Ω ∈ Fn×`, Ψ ∈ Fn×s , Υ ∈ F `×m and Φ ∈ F s×m

with the only requirement s ≥ `.
2 Maintain three sketches:

Y = BΩ (range sketch),
X = ΥB (co-range sketch),
Z = ΦBΨ (core sketch).

These sketches are all linear, so they can be maintained in the turnstile streaming
model.

3 Perform two QR factorizations: Y = Q R1 and X ∗ = P R2.
4 Compute a core approximation: Ĉ = (ΦQ )† Z (P ∗Ψ)†.
5 Form an SVD of the core: Ĉ = Û Σ̂V̂

†
∈ F s×s

6 Set B̂ = (QÛ )Σ̂(PV̂ )∗

7 Truncate: Σ̂→ JΣ̂Kk with truncation rank k .

11.3.5 Storage, runtime and analysis
The storage cost of this procedure is O (s2 + `(m + n)); one can use structured random
matrices to nearly eliminate the cost of storing the sketching operators themselves.
The arithmetic cost is O (s3 + `2(m + n)) for the SVD computation; this is dominated
by the cost of the QR decompositions.

A serious drawback of such methods is that we can only query B once. If we make a
mistake, we cannot hope to rectify it by revisiting B . The implications of this limitation
are two-fold:

1 We need good parameter choices (s , `). This requires serious theory.
2 A posteriori validation is important.

We will quickly discuss these points in the following subsections.

11.4 A priori analysis for parameter choices
The following rigorous theorem is due to Tropp et al. [Tro+17b], and it provides
guidance for how to choose the sketching parameters s and `.



92 Lecture 11: Streaming SVD

Theorem 11.2 (Tropp et al. 2019). Assume F = C. If the test matrices are iid standard
normal and s ≥ 2`, then

E ‖B −QĈ P ∗‖2F ≤
s

s − `
min
k<`

` + k

` − k

(∑
j>k

σ2
j (B)

)
. (11.1)

Although this bound seems complicated, it can provide good advice on choosing
the sketching parameters. To use it, we need to have an estimate for the target rank k ,
and we require some knowledge about the spectral decay of B . In many cases, the
choices ` = 4k and s = 2` are effective.

Warning 11.3 Unusually for us, the bound (11.1) reports an estimate for the Frobenius-
norm error. It turns out to be impossible to get relative-error spectral-norm error
bounds for turnstile streaming algorithms. �

11.5 A posteriori error validation
To validate the quality of the computed SVD, we can maintain another sketch of B to
evaluate the approximation error. To do so, we draw and fix another Gaussian matrix
Θ ∈ Fn×q . We also form the sketch

W = BΘ.

Given any approximation B̂ that is statistically independent fromΘ, the Frobenius-norm
error in the approximation obeys

‖B − B̂ ‖2F = E

[
1
q
‖W − B̂Θ‖2F

]
.

This result is drawn from our discussion about randomized trace estimation. Perhaps
surprisingly, an extremely small sketch suffices for this validation step. The choice
q = 5 is typically good enough.

We can also use the empirical estimate of the error to try to determine a suitable
value for truncation rank k .
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This lecture explores how to find a low-rank approximation that contains a subset
of columns or rows of the original matrix. This type of factorization admits a more
natural interpretation, so it can be valuable for practical data analysis. To that end,
we will first develop deterministic methods to compute row and column-based matrix
factorizations. We will then introduce randomness to make the algorithms more
efficient and scalable.

12.1 Motivation: Natural bases versus eigenbases
To begin, let us introduce the concept of a factor model. Then we discuss the relative
merits of factor models constructed from the SVD, versus models where the factors are
data points.

12.1.1 Factor models
The truncated singular value decomposition (SVD) and its randomized variants (dis-
cussed in Lecture 9) find many applications in exploratory data analysis. In particular,
principal component analysis (PCA) applies the truncated SVD to a standardized
data covariance matrix. The computed singular values and singular vectors give
information are interpreted as latent structures that appear in the data. Applications of
such factor models factor modelsinclude identifying “meta-genomes” (e.g., regional, environmental
attributes) from genetic marker data in biology, classifying documents into different
“topics” according to the term frequency (e.g., the TF-IDF measure) in natural language
processing, detecting “communities” in a social media platform based on the connection
(e.g., friendship, common sharing of a post) among the users, etc. We refer the reader
to [MD09] for more data analysis applications.

In a factor model, we want to obtain a low-rank approximation

B
m×n

≈ F
m×k

W
k×n

(12.1)
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at some target rank k � min{m,n}, or equivalently

b j ≈
∑m

i=1
wi j f i j = 1, . . . ,n (12.2)

for each column of B . In the expression (12.2), the columns f i of F are called factors factors,
which are viewed as latent variables that can summarize the data. The entries wi j

of W are called weights / loadings weights / loadings, and they specify how the factors are combined
together to represent each column b j of the original data matrix.

12.1.2 Reification and structural issues with the SVD
Unfortunately, while the SVD produces a rank-k matrix factorization (12.1) that has
minimal error, it can be challenging to interpret the obtained factors in terms of the
data or the underlying data-generating mechanism. More seriously, the computed
factors may not correspond with any object that actually exists in the world. The latter
issue is called reification reification, and it is one major reason that data analysis can lead to
fallacious or inappropriate conclusions.

For example, a movie recommendation system might construct a factor that
describes a category of movies:

(1/2) comedy content
(−1/
√
2) action content

(1/2) a blockbluster


In this case, we can view the positive values as correlations and negative values as
anti-correlations. But there may be no such thing as a funny-placid-blockbuster movie.

The same approach can be deeply problematic for other kinds of data, like genomic
data or text data. Indeed, we can formulate the concept of a “meta-genome” or a
“topic” as being a linear combination of a given set of data points, but it is questionable
to try to interpret a negative SNP in genetic data or a negative word count in text
data. As quoted in [KPS01], “While very efficient basis vectors, the (singular) vectors
themselves are completely artificial and do not correspond to actual [DNA expression]
profiles. ... Thus, it would be interesting to try to find basis vectors for all experiment
vectors, using actual experiment vectors and not artificial bases that offer little insight.”

Apart from the reification issue, there are also computational challenges computational challengesthat can
arise because factor models may not preserve or exploit matrix structure. For instance,
given a sparse matrix B in (12.1), the factored matrices F and W may no longer be
sparse.

To improve the interpretability and computational profile of a matrix decomposition,
we will study factor models that respect the coordinate structure. The idea is to build
low-rank matrix approximations where the factors are columns of the original matrix.
In other words, we factorize a given dataset by identifying exemplars exemplars, or “typical”
members of the population. This corresponds to finding individuals that can serve as
representatives for larger populations (in genetic data), or to finding documents that
epitomize specific topics (in text data).

12.2 Row/column-based factorizations
We proceed to a more formal development. This section describes several types of
matrix factorizations induced by rows or columns. For simplicity, we focus on the
case where the input matrix has low rank. Afterward, we turn to questions about
approximating a matrix that may not have low-rank, and we discuss computational
issues.
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12.2.1 Interpolative decompositions
We start with a column-based factorization when the rank of the original matrix is
known a priori.

Definition 12.1 (Column ID). Let B ∈ Fm×n be a fixed matrix with exact rank k . A column
interpolative decomposition (ID) column interpolative

decomposition (ID)
is a factorization of the form

B
m×n

= C
m×k

Z
k×n

, (12.3)

where the matrix C comprises a subset of the columns of B and the matrix Z contains
the k × k identity matrix. In other words,

C = B( : , Js ) and Z ( Js , Js ) = Ik

where Js ⊂ {1, . . . ,n} indexes the columns and | Js | = k .

In the decomposition (12.3), those columns of Z that are outside Js specify how
to represent the remaining columns of B as linear combinations of the distinguished
columns, indexed by Js . The fact that such a decomposition exists is a direct conse-
quence of the definition of rank. Moreover, we can ensure that the decomposition (12.3)
is well-conditioned, in the sense that entries of the coefficient matrix Z are bounded.

Parallel to the column ID, we can also define a factorization that uses a subset of
rows of the original matrix B to span its co-range.

Definition 12.2 (Row ID). Let B ∈ Fm×n be a fixed matrix with exact rank k . A row
interpolative decomposition row interpolative decompositionis a factorization of the form

B
m×n

= X
m×k

R
k×n

, (12.4)

where
R = B(Is , : ) and X (Is , Is ) = Ik

for some row-index set Is ⊂ {1, . . . ,m} with |Is | = k .

We can even consider a two-sided factorization that extracts both rows and columns
of B . Such factorizations, however, are less interpretable.

Definition 12.3 (Two-sided ID). Let B ∈ Fm×n be a fixed matrix with exact rank k . A
two-sided interpolative decomposition two-sided interpolative

decomposition
is a factorization of the form

B
m×n

= X
m×k

B s
k×k

Z
k×n

, (12.5)

where
B s = B(Is , Js ).

Here, the matrix Z and the index set Js are the same as in Definition 12.1, while X and
Is are the same as in Definition 12.2.

Remark 12.4 (Conditioning and Computation). There exists a factorization (12.3) for which
no entry of Z has magnitude larger than one. We refer the reader to [Pan00] for a
constructive proof, but [CMI09] points out that it is NP-hard to compute this kind
of factorization. Nevertheless, if we relax the requirement and search for a factor
Z whose entries have magnitude no larger than two, there are stable and efficient
algorithms for computing the ID. See [GE96; Che+05].
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12.2.2 CUR decomposition
The final decomposition that we introduce in this lecture has a similar flavor to the
two-sided ID.

Definition 12.5 (CUR decomposition). Let B ∈ Fm×n be a fixed matrix with exact rank k .
A CUR decomposition CUR decompositionis a factorization

B
m×n

= C
m×k

U
k×k

R
k×n

(12.6)

where C and R are the matrices that appear in (12.3) and (12.4).

Here, U is a small core / linkage matrix core / linkage matrixthat ties the matrices C and R together. In
this subsection, where B is assumed to have exact rank k , we can translate between
the two-sided ID (12.5) and the CUR decomposition (12.6) through the relation

B = X B s Z = (X B s )︸︷︷︸
C

B−1s︸︷︷︸
U

(B s Z )︸︷︷︸
R

. (12.7)

Remark 12.6 (Naming history). These types of approximations date back at least as
far as the paper [GZT97], which uses the term skeleton skeletondecompositions to refer to
interpolative decompositions. The same paper also discusses CUR decompositions,
which are referred to as pseudo-skeleton pseudo-skeletondecomposionts. The subscript s on the index
vectors Is and Js stands for skeleton, in recognition of this history.

12.2.3 Comparisons: CUR vs. two-sided ID
The CUR decomposition (12.6) has an advantage that it requires less storage than
the two-sided ID (12.5). In addition to the linkage matrix U , storing the row index
Is and the column index Js suffices to reconstruct the matrices R and C in a CUR
decomposition, provided that the original matrix B is directly accessible. When it is
not, we can still exploit structure of B (e.g., sparsity) to achieve efficient storage. In
contrast, the coefficient matrices Z and X in a two-sided ID does not preserve the
matrix structure as the sub-matrices R and C do.

A disadvantage of the CUR decomposition is that the matrix U is ill-conditioned
when the original matrix B has a fast-decaying spectrum. In such cases, the singular
values of the k × k sub-matrix B s often approximate the k dominant singular values
of B . Hence, the relationship U = B−1s in (12.7) implies that U will have elements in
the order of 1/σk (B s ). On the other hand, the two-sided ID tends to be more stable
and numerically benign since we can find an interpolative decomposition where the
coefficient matrices Z and X have entries no larger than one in modulus, as we point
out in Remark 12.4.

12.3 Row/column-based approximations
In a real-world application, we typically do not know the precise rank of a data
matrix B in advance. Nevertheless, the singular values of B usually decay fast enough
so that it is reasonable to form a low-rank approximation. This section describes
row/column-based matrix approximations that are applicable in this setting.

12.3.1 Low-rank approximations
Let B ∈ Fm×n be a fixed tall (i.e., m ≥ n) matrix. Recall a fact from Lecture 9: The
truncated k -SVD JBKk gives the best rank-k approximation with respect to the spectral
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norm in the sense that

min
rank(B̂)=k

‖B − B̂ ‖ = ‖B − JBKk ‖ = σk+1(B), (12.8)

which is attributed to Mirsky [Mir60].

12.3.2 Approximation error of IDs
The situation is somewhat different for row/column-based approximations. Let
k < min{m,n} be given, and consider a k -column ID approximation:

B
m×n

≈ C
m×k

Z
k×n

(12.9)

It is known that
‖B −C Z ‖ ≤

√
k (n − k ) + 1 · σk+1(B) (12.10)

in the worst case [Lib+07]. We can see from (12.10) that column-based approximations
(12.9) pay an extra multiplicative factor in the order of

√
k (n − k ), which may be much

worse than the k -truncated SVD.
If B exhibits fast (e.g., exponential) spectral decay, then the approximation error

(12.10) attained by a column ID is roughly the same as the optimal one (12.8) since
σk+1(B) is tiny. When the singular values of B decay slowly, then the number of
columns that we need to achieve an error close to the optimal value σk+1(B) can be
much larger than k . Similar problems arise for row ID approximations of the form
(12.4) and for two-sided-ID approximations of the form (12.5).

12.3.3 CUR approximations
For a CUR approximation of the form (12.6) when rank(B) is not known a priori, it is
common practice to identify the representative index sets (Is , Js ) first and then find
a proper linkage matrix U . We will leave the first problem to the next section and
discuss the second problem of finding U here.

In principle, we can use the relation U = B−1s once the indices are determined.
This is not a good idea in practice, however, because the matrix B s may not even be
invertible. One reason is that the common practice of oversampling can easily make
B s singular or ill-conditioned. Therefore, a better construction of U is to solve a
least-squares problem based on (12.6):

U = C †BR†. (12.11)

We refer the reader to [VM17] for an error analysis of the CUR approximations.

12.4 CPQR: A deterministic ID algorithm
We continue with a discussion of classical deterministic algorithms for computing
interpolative decompositions.

12.4.1 Classical solution
Now, let us return to the question of how to find a set of columns that span the range
of a given matrix B . As we discussed after Definition 12.1, a column ID exists by the
very definition of rank. Hence, a natural way to compute it is through a column-pivoted
QR (CPQR) column-pivoted QR (CPQR)decomposition. For instance, we can use the (double) Gram–Schmidt
process with greedy pivoting, which always chooses to orthogonalize the column of
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B that has the largest Euclidean norm. After k iterations, the CPQR returns a partial
decomposition of the matrix B :

B
m×n

Π
n×n
= Q

m×k
T

k×n
+ E

m×n
. (12.12)

Here, the columns of Q forms an orthonormal basis for the space spanned by the k
selected columns of B , and T is an upper triangular matrix that specifies how these k
columns of Q are related to the original k columns of B . Moreover, the matrix Π is a
permutation matrix that ensures the k columns picked are the first k columns of BΠ,
and E is a residual matrix that holds the information on those n − k columns that are
yet to be processed.

12.4.2 Conversion from CPQR to ID
To see how CPQR gives a column ID algorithm, we split the matrix T in (12.12) into
panels:

T
k×n
= [ T 1

k×k
T 2

k×(n−k )
]

where T 1 is upper-triangular and corresponds to the most important k columns of B .
Multiplying both sides of (12.12) by the inverse permutation matrix Π∗ on the right
and factoring T 1 out front, we have

B = QT 1︸︷︷︸
C

[ Ik T −11 T 2]Π
∗︸              ︷︷              ︸

Z

+ EΠ∗ (12.13)

where the term EΠ∗ is the error in approximating B .
A row ID (12.4) can be obtained similarly by applying the Gram–Schmidt procedure

to the rows of B , or by applying the CPQR to the adjoint B∗. To get a two-sided ID
(12.5), we can perform another row ID computation on the matrix Z obtained by the
column ID algorithm (12.13). Finally, to get a CUR decomposition (12.6), we can use
(12.11) to compute the linkage matrix U .

12.4.3 Complexity and quality
The CPQR algorithm that computes a k -column approximate ID of an m × n matrix
B has the following time complexity: O (k 2m) for the QR decomposition and O (mn)
for pivoting at each iteration, which leads to a total cost of O (k 2m +mnk ). For large
matrices (i.e., large m or n), this could be very expensive because of the pivoting steps.

We should also mention that CPQR can fail. Indeed, Kahan constructed a famous
example where CPQR performs very poorly [Kah66]. A completely reliable counterpart
to CPQR is the rank-revealing QR rank-revealing QR(RRQR) decomposition algorithm [GE96], which is
guaranteed to produce near-optimal results at a slightly higher complexity. Practically
speaking, CPQR works well. The major practical issue is that CPQR requires random
access to B because the pivot choices cannot be computed in advance.

12.5 Randomized interpolative decompositions
We are now prepared to discuss randomized algorithms for computing interpolative
decompositions more efficiently.
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12.5.1 Row/column IDs for large matrices
As we have discussed at the end of the previous section, the CPQR algorithm is not
so efficient for large data sets. In this section, we describe how to use randomized
methods to improve the computational profile of an ID algorithm.

In particular, consider the task of constructing a column ID of an m × n matrix B ,
and assume that rank(B) = k for simplicity. The idea is to first build a smaller matrix
Y that spans the co-range of B well. Then, we find the representative column index
set Js ofY by applying CPQR to this smaller matrix. Then we argue that the resulting
column ID ofY is a column ID of the original matrix B .

First, let us examine how the computed ID ofY leads to an ID of B . Suppose we
have determined an k × n matrixY whose rows span the co-range of B . We obtain a
factorization

B
m×n
= F

m×k
Y

k×n
(12.14)

for some coefficient matrix F . We then proceed to compute a column ID of Y using
CPQR:

Y
k×n
= Y ( : , Js )

k×k
Z

k×n
. (12.15)

The following fact claims that, to compute a column ID of a matrix B , it suffices to
compute a column ID of a smaller matrixY whose columns fully spans range(B).

Proposition 12.7 (Transfer principle for ID). The pair { Js , Z } in (12.15) determines a column
ID of the original matrix B .

Proof. Observe that

B( : , Js )Z = FY ( : , Js )Z by (12.14) restricted to columns in Js

= FY by (12.15)
= B .

This is the required statement. �

Exercise 12.8 (Drop the exact-rank assumption). Prove a similar claim to Fact 12.7 when B
is not rank-deficient.

12.5.2 Old friends who well span the range
Finally, we return to the problem of finding a matrixY that captures the co-range of B .
Recall from Lecture 9 and Lecture 10 that the randomized rangefinder (RRF) gives
us enough information to choose significant rows/columns of the original matrix B ,
which serves our purpose here. Combining the RRF with the column ID algorithm
that we discussed in the previous subsection, we arrive at the following randomized ID
algorithm.

Algorithm 12.1 has a complexity of O (k mn + k 2n), due to the matrix–matrix
multiplications and the column ID steps. For practical implementations, we can take
the oversampling parameter p to be a small constant (e.g., p = 5). Moreover, we can
use the structured random embeddings introduced in Lecture 7 to obtain a random
embedding with O (mn logk ) complexity.

Remark 12.9 (Coordinate sampling). We refer the reader to Section 13.5 in the reference
survey [MT20] for a discussion of techniques based on random coordinate sampling.
Although it may seem appealing, we recommend against using coordinate sampling to
compute IDs. The methods described here are significantly more effective in practice.
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Algorithm 12.1 Randomized ID.

Input: Matrix B ∈ Fm×n , target rank k , and oversampling parameter p
Output: A column ID [ Js : Z ] of the matrix B such that B = B( : , Js )Z

1 function RandomizedID(B ; k ; p)
2 Draw a random (e.g., Gaussian) test matrix S ∈ F (k+p)×n

3 Form the sample matrixY = SB ∈ F (k+p)×n . may use Power/Krylov method
4 Compute a column ID [ Js : Z ] ofY with CPQR . may use RRQR to improve
accuracy
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13. Kernel Methods

Date: 18 February 2020 Scribe: Po-Chih Chen

Agenda:
1 Positive-definite kernels
2 Feature space
3 Examples
4 Kernel PCA
5 Computation

This lecture begins our discussion of kernel methods, which appear in a wide range of
modern machine learning algorithms. First, we introduce the notion of positive-definite
kernels and their interpretation as (nonlinear) features. We give several canonical
examples of positive-definite kernels. We outline the method of kernel principal
component analysis (KPCA). Finally, we mention some computational issues that arise
from kernel methods. The idea of using randomized linear algebra to implement
kernel methods more efficiently will be the main topic of the next few lectures.

13.1 Positive-definite kernels
LetXbe a set, called the input space or the data space. Suppose we acquire observations
{x1, . . . , xn} ⊂ X. Our goal is to use this data for learning tasks.

To this end, we introduce a kernel function kernel functionk : X× X→ F . The value k (x , y ) is
a measure of similarity between observations x and y . The n × n kernel matrix kernel matrixK
tabulates the similarity for each pair of observations:

(K )i j = k (xi , x j ) for i , j = 1, . . . ,n.

The kernel matrix is an analog of the Gram matrix of data points in (Fd , `2).

Definition 13.1 (Positive-definite kernel). A kernel function k is positive definite (pd) positive definite (pd)if, for
each n ∈ N and each {x1, . . . , xn} ⊂ X,

K = [k (xi , x j )]i ,j=1,...,n ∈ Hn

is a positive-semidefinite matrix. The kernel k is said to be strictly positive definite strictly positive definiteif K
is positive definite.

A positive-definite kernel necessarily has several properties:

• k (x , x) ≥ 0 for all x ∈ X.
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• k (x , y ) = k (y , x)∗ for all x , y ∈ X.

The properties of the associated kernel matrix mirror the properties of the Gram matrix
of Euclidean data.

13.1.1 Feature space
A kernel function can be interpreted as reporting the inner product between features
derived from the data. Let F be a Hilbert space, which is called the feature space feature space.
Consider a function from data into the feature space Φ : X→ F, which is called the
feature map feature map. Heuristically, Φ extracts numerical information from a data point that is
relevant for leaning goals (although the features are usually not directly interpretable).

Under mild conditions, the feature map induces a pd kernel:

k (x , y ) = 〈Φ(x), Φ(y )〉F for all x , y ∈ X.

Conversely, a pd kernel k always induces a feature map from X into an appropriate
feature space F.

Idea: Kernels get more information out of the data. We can select, tune, or design
the kernel function.

13.1.2 Examples
Let us introduce some of the most important positive-definite kernels.

Example 13.2 (Inner product kernel). Let X= Fd . Then, the inner product kernel inner product kernel

k (x , y ) = 〈x , y 〉Fd for x , y ∈ X

is a pd kernel. �

Proof. Positive semidefiniteness follows from the fact that the kernel matrix K is the
ordinary Gram matrix. �

Example 13.3 (Angular similarity kernel). Let X= Sd−1(R). Then, the angular similarity
kernel angular similarity kernel

k (x , y ) =
2
π
arcsin 〈x , y 〉 = 1 −

2
π
θ(x , y ) for x , y ∈ X

is a pd kernel. �

Proof. Let G = X ∗X be the Gram matrix of X = [x1 · · · x n]. Then

K =
2
π
arcsin [G ] =

2
π

∑∞

p=0

(2p − 1)!!
(2p)!!

·
1

2p + 1
·G [2p+1].

We use brackets to denote an entrywise matrix function, so arcsin[G ] applies the
arcsine function to each entry of G . The notation G [k ] refers to the k th entrywise
power. By the Schur product theorem, each matrix G [k ] is psd. Since all coefficients in
the series are positive, K is also psd. �

Example 13.4 (Polynomial kernel). LetXbe a subset of Fd . For p ∈ N, the inhomogeneous
polynomial kernel polynomial kernel

k (x , y ) = (1 + 〈x , y 〉)p for x , y ∈ X

is a pd kernel. �
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Proof. The proof is left as an exercise. �

Example 13.5 (Gaussian kernel). Let X= Fd . For a bandwidth σ > 0, the Gaussian kernel
Gaussian kernelis pd:

k (x , y ) = exp
(
−
‖x − y ‖2

2σ2

)
for x , y ∈ X

This is a specific example of a radial basis function kernel. �

Proof. See the next lecture. �

13.1.3 The kernel trick
The reason that kernels are valuable is summarized in the following principle.

Idea: (The kernel trick). “Given an algorithm which is formulated in terms of a pd
kernel k , one can construct an alternative algorithm by replacing k with another
pd kernel k̃ .” [SS01, Rem. 2.8].

In particular, any algorithm that can be formulated using the Gram matrix (as the
only access to the data) can be ported to any other pd kernel. This approach leads to
kernel-based algorithms for processing images, text, DNA, and data from many other
domains!

13.2 Kernel PCA
Kernel principal component analysis (KPCA) Kernel principal component

analysis (KPCA)
is a method for extracting the directions

of maximum variance of the data in feature space. To derive this algorithm, we first
develop a dual description of ordinary principal component analysis for Euclidean data.

Let {x1, . . . , x n} ⊂ Fd be data in an `2 space. For simplicity, suppose the dataset
is already centered (that is, sums to zero). We form the covariance matrix

C =
1
n

∑n

i=1
x i x ∗i =

1
n

X X ∗ ∈ Hd .

The dominant eigenvector u ∈ Fd of the matrix C is called the first principal component first principal component.
It satisfies

λu = C u , where λ > 0 and ‖u ‖ = 1.

Since λ , 0, the eigenvector u is contained in span{x1, . . . , x n}, so

λ〈x i , u 〉 = 〈x i , C u 〉 for i = 1, . . . ,n.

Furthermore,
u =

∑n

j=1
αj x j for α ∈ Fn .

Combining all of these relations, we obtain the following identity for each i = 1, . . . ,n:

λ
∑n

j=1
αj 〈x i , x j 〉 =

1
n

∑n

j=1
αj

∑n

l=1
〈x i , x l 〉〈x l , x j 〉.

We may rewrite these conditions in terms of the Gram matrix K = X ∗X :

λK α =
1
n

K 2α.
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Equivalently,

λα =
1
n

K α.

This is called the dual eigenvalue problem dual eigenvalue problem. In other words, the coefficient vector α that
describes the first principal component as a linear combination of data points can be
found by solving the dual eigenvalue problem.

We still need to determine the correct scaling for the coefficient vector α. To do so,
note that

1 = 〈u , u 〉 =
∑n

i ,j=1
αiαj 〈x i , x j 〉 = α

∗K α = nλ‖α‖2.

The normalization constraint normalization constraint‖u ‖ = 1 is equivalent to demanding

‖α‖2 =
1

nλ
.

This formula tells us how to rescale α so we obtain a unit-norm eigenvector..
Now, given a new data point x , we can evaluate its first principal component:

PC1(x ) = 〈u , x〉 =
∑n

j=1
αj 〈x j , x〉.

Observe that we can compute the coefficient vectors α using only the Gram matrix
K . Furthermore, we can evaluate the projection of the data point x onto the first
principal component using only inner products. We can also repeat the same derivation
to obtain formulas for more principal components; the associated coefficient vectors
are eigenvectors attached to the largest eigenvalues of the kernel matrix.

Invoking the kernel trick, we can do exactly the same thing in the kernel setting:

1 Let K ∈ Hn be the kernel matrix.
2 Compute the dominant eigenpair (λ,α) of K .
3 Scale so that ‖α‖2 = 1/(nλ).
4 Given a new data point x ∈ Fd , its first principal component is

PC1(x ) =
∑n

j=1
αj k (x j , x ).

5 Similarly, we compute more principal components by computing more eigenvec-
tors of K .

This construction has a nice interpretation. In feature space,
∑n

j=1 αjΦ(x j ) is a direction
of maximum variance of the features induced by the data.

Remark 13.6 (Centering). The interpretation of principal components as directions of
maximum variance relies on the assumption that the dataset is centered. It is possible
to center the (implicit) feature vectors Φ(x i ) associated with the dataset using only
kernel evaluations.

13.3 Computational issues and outlook
Kernel methods are widely applicable and there are many kernelizable algorithms,
including kernel nearest neighbors, kernel k -means, and kernel ridge regression.
However, when implementing these approaches, we encounter a serious problem: it is
very expensive to construct kernel matrices.

Indeed, if X has a d-dimensional parameterization, then it often takes O (d)
arithmetic operations per kernel evaluation, or O (n2d) operations to compute the full
kernel matrix. Moreover, after computing the kernel matrix, we still have to do some
more linear algebra. For example, we anticipate that it will require O (n2`) operations
to compute ` kernel principal components.
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Idea: Use randomized linear algebra to implement kernel methods more efficiently.

One challenge is that the access to the kernel matrix is very restricted; we can
only compute one entry at a time. In the upcoming lectures we will introduce two
approaches to address this difficulty: Random features and Nyström approximation by
column sampling.
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kernels
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In the last lecture, we introduced kernel methods. The bottleneck for kernel methods
is their computational cost, which calls for efficient approximation strategies. In
this lecture, we will discuss a Monte Carlo method, called random features, for
approximating a kernel matrix.

As a motivating example, we begin with the angular similarity kernel, and then
we continue to the abstract definition of random features. Two useful examples,
translation-invariant kernels and dot-product kernels, will be discussed in detail.
Finally, we will touch on the streaming KPCA algorithm, which allows us to process
random features with minimal storage.

14.1 Introduction
Let k : X× X→ F be a positive-definite kernel on the input space X. Suppose we
have a family of observations {x1, ..., x n} ⊂ X. The associated kernel matrix kernel matrixis the psd
matrix

K = [k (x i , x j )]i ,j=1,...,n ∈ Hn .

We can also interpret the kernel matrix as the Gram matrix for (possibly infinite-
dimensional) feature vectors extracted the observations.

Issue: Computing the kernel matrix is very expensive. Moreover, it takes a lot of
storage.

This issue is very real and motivates the following question: Can we approximate K
more efficiently? An effective approximation is beneficial for speeding up computations.
What is more, the approximation can also act as a form of regularization, which is
good from a learning point of view. The challenge for approximation is that we only
have restricted access to the kernel matrix.
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Figure 14.1 (Grothendieck identity). Proposition 14.1 in 2 dimensions: The sectors where
the inner products 〈u , x〉 and 〈u , y 〉 have opposite signs subtend the same angle as
the sector generated by x and y .

In this lecture, we will discuss a Monte Carlo method for approximating kernel
matrices. We will see that there are close similarities to randomized approaches for
matrix multiplication, the topic of Lecture 4.

14.2 Motivating example: Angular similarity kernels
We warm up with a concrete example: the angular similarity kernel angular similarity kernel. For X= Sd−1(R),
this kernel assumes the following form:

k (x , y ) =
2
π
arcsin〈x , y 〉 = 1 −

2
π
θ(x , y ) for all x , y ∈ X= Sd−1(R).

We can relate this kernel to an expectation involving Gaussian random vectors.

Proposition 14.1 (Grothendieck identity). Let x , y ∈ Sd−1(R), and draw g ∼ normal(0, Id ).
Then

k (x , y ) = Eg [sgn〈x , g 〉 · sgn〈y , g 〉] .

Proof. By rotational invariance and linearity, we can reduce the problem to two
dimensions only. Moreover, the signum function is scale-invariant, so we can pass
to a random vector u that is uniformly distributed on the unit circle in R2. We can
understand this case by looking at an illustration; see Figure 14.1.

Let θ := arcsin〈x , y 〉 denote the angle between x , y ∈ R2. We see that the
proportion of random vectors u where the product sgn〈x , u 〉 · sgn〈y , u 〉 = −1 equals
(2θ)/(2π). Therefore, the expectation satisfies

Eu [sgn〈x , u 〉 · sgn〈y , u 〉] = (+1) ·
[
1 −

θ

π

]
+ (−1) ·

θ

π
= 1 −

2
π
θ.

This is the required result. �

Proposition 14.1 has many applications in computational mathematics. For instance,
it features prominently in the randomized rounding procedure for approximately
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solving MaxCut. For the task at hand, Proposition 14.1 allows us to recast the kernel
matrix as an expectation value.

Corollary 14.2 (Angular similarity kernel matrix). Consider a set {x1, ..., x n} ⊂ Sd−1(R),
and draw g ∼ normal(0, Id ). Construct a vector z ∈ Rn with entries zi = sgn〈x i , g 〉.
Then

K = E[z z ∗].
The random vector z ∈ Rn appearing in Corollary 14.2 is called a random feature random feature.

Proof. For each pair (i , j ), we calculate

(K )i j = k (x i , x j ) = Eg [zi · z j ] = Eg [(z z ∗)i j ] = (Eg [z z ∗])i j .

This result implies that the two matrices are equal. �

Corollary 14.2 asserts that each random features z leads to an unbiased estimator
of the angular similarity kernel matrix. The computation of a random feature vector is
relatively cheap. As a consequence, we can compute an iid family of random features
{z 1, . . . , z s } ⊂ Rn and approximate the kernel matrix by a sample average:

K̂ s =
1
s

∑s

i=1
z i z ∗i such that E K̂ s = K

The hope is that we can achieve an accurate estimate with a moderate number s of
samples, where s � n. The cost associated with this Monte Carlo approximation is
O (sdn), which can be much cheaper than the naive cost O (dn2) for computing the full
kernel matrix.

An alternative view reveals close connections to randomized matrix multiplication randomized matrix multiplication.
Rewrite the kernel matrix as

K = BDB∗,
where B ∈ {±1}n×2

n
tabulates all possible sign vectors and the diagonal matrix D

records sampling probabilities. Effectively, we aggregate all possible choices of signs
in the matrix B . The sample probability matrix tells us what proportion of each sign
patterns we need to represent the kernel matrix. Subsequently, we just sample from
this complicated distribution using Corollary 14.2. This approach is parallel to the
randomized matrix–matrix multiplication procedure we discussed in Lecture 4.

14.3 Abstract random features
Let us continue with an abstract generalization of the ideas in the previous section.

14.3.1 Random feature maps
Let X be an input space with a positive-definite kernel function k . Let W be a
probability space with probability measure µ.

Definition 14.3 (Random feature map). A function ψ : X× W→ F is called a random
feature map random feature mapfor the kernel k if

k (x , y ) =

∫
ψ(x ;w ) · ψ(y ;w )∗ dµ(w )

= Ew∼µ[ψ(x ;w ) · ψ(y ;w )∗]

for all x , y ∈ X. That is, a random feature map reproduces the kernel evaluation in
expectation.
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This definition generalizes the simple and intuitive concepts that featured in our
discussion of angular similarity kernels.

Example 14.4 (Angular similarity kernel) Let X = Sd−1. Let W = (Rd , γ), where γ
is the standard normal measure. The associated random feature map is ψ(x ;w ) =
sgn〈x , w 〉.

14.3.2 Kernel matrix approximation
Using the random feature map, we can develop a strategy for approximating the kernel
matrix:

1 Given observations {x1, ..., x n} ⊂ X , construct a random feature z ∈ Fn by
drawing w ∼ µ and computing zi = ψ(x i ;w ) for i = 1, ...,n. Note, that we use
the same random vector w for all data points.

2 By construction, K = Ew [z z ∗]. In other words, the random feature reproduces
the kernel matrix on average over the randomness in w .

3 To approximate the kernel, we draw iid random features z 1, ..., z s ∈ Fn and
form the Monte Carlo approximation

K̂ s =
1
s

∑s

i=1
z i z ∗i .

This construction also demonstrates that feature maps only exist for positive-definite
kernel functions.

14.3.3 Quality of approximation
Let us talk briefly about the quality of such an approximation. We can use the matrix
Monte Carlo theorem (based on Matrix Bernstein) to derive rigorous convergence
guarantees convergence guarantees. Consider a kernel that obeys k (x , x) = 1 for all x ∈ X, and suppose that
the feature map is bounded: |ψ | ≤ b . Then

s ≥ 2bε−2intdim(K ) log(2n) implies
E ‖K̂ s − K ‖

‖K ‖
≤ ε + ε2.

In this setting, intdim(K ) = n/‖K ‖, which can be much smaller than n when the data
points carry some redundant information. If this is the case, we can approximate the
kernel with s � n random features.

14.3.4 Cost
If the data has a d-dimensional representation, we anticipate that it will take O (sdn)
arithmetic operations to compute s random features. Using a randomized SVD
algorithm, we can perform kernel PCA to compute ` kernel principal components at an
extra cost of O (`sn).

14.4 Translation invariant kernels
In this section, we discuss an important class of kernels for which random feature maps
can be constructed.

Definition 14.5 (Translation invariant kernels). Let X = Fd . We say that a kernel k is
translation invariant translation invariantif there is a function ϕ : Fd → F such that k (x , y ) = ϕ(x − y ) for
all x , y ∈ Fd .
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Note that the angular similarity kernel is not translation invariant, but some other
prominent examples are.

Example 14.6 (Gaussian kernel). The kernel kσ(x , y ) = exp(−‖x − y ‖2/(2σ2)) is trans-
lation invariant. �

Translation-invariant kernels are characterized completely by a classical result due
to Bochner.

Theorem 14.7 (Bochner, 1930). A continuous translation invariant kernel k (x , y ) =
ϕ(x − y ) is positive definite if and only if

k (x , y ) = const ·
∫
Fd

ei〈x , w 〉e−i〈y , w 〉 dµ(w )

for some Borel probability measure µ on Fd . That is,

ϕ(u ) = const ·
∫
Fd

ei〈u , w 〉 dµ(w )

is the Fourier transform of a probability measure.

One direction of Bochner’s theorem is easy. (In fact, we already proved it.) The
converse direction is moderately hard. In practice, we typically use the easy direction.
Indeed, if we set W= (Fd , µ), then the function

ψ(x ;w ) =
√
const · ei〈x , w 〉 for x ∈ Fd

is a random feature map for the kernel k (x , y ) = ϕ(x − y ).

Example 14.8 (Gaussian kernel). For the Gaussian kernel, the probabilitymeasure promised
by Bochner’s theorem is µ ∼ normal(0,σ−2Id ). We leave the details of the argument
as an exercise. �

14.5 Dot-product kernels
In this section, we briefly touch on a second class of kernels that admit random feature
maps.

Definition 14.9 (Dot-product kernels). A kernel k is called a dot-product kernel dot-product kernelif k (x , y ) =
f (〈x , y 〉) for some scalar-valued function f .

Example 14.10 (Angular similarity kernel). The angular similarity kernel is a dot-product
kernel with f (t ) = (2/π) arcsin(t ) for t ∈ [−1, 1]. �

Example 14.11 (Inhomogeneous polynomial kernel). This kernel is generated by the func-
tion f (t ) = (1 + t )p for some p ∈ N. �

Theorem 14.12 (Schoenberg, 1942). A dot-product kernel k (x , y ) = f (〈x , y 〉) is
positive definite on B(0; r ) ⊂ Fd if and only if the function f (t ) =

∑∞
p=0 apt p

where ap ≥ 0 and the series converges for |t | ≤ r .

One direction is easy and follows from the Schur product theorem. This is how we
checked that the aforementioned examples are positive-definite kernels. The converse
direction is moderately hard. It is a nontrivial problem to construct a random feature
map using Schoenberg’s theorem, but it can be done [KK12].
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14.6 Streaming KPCA
We still have not talked about the storage issues. Indeed, the random features and the
associated kernel matrix approximation can take a substantial amount of space. Let us
discuss an approach to control the space complexity of performing KPCA.

Idea: Use a streaming PCA algorithm to process random features.

This approach is called Streaming Kernel PCA Streaming Kernel PCA[GPP16]. We will outline a variant
proposed in [MT20, Sec. 19].

Let z 1, z 2, z 3, ... be a sequence of random features for a dataset. Define the kernel
matrix approximations

K̂ s =
1
s

∑s

i=1
z i z ∗i for s ∈ N.

Observe that we can rewrite this formula as a dynamical system

K̂ s+1 =

[
1 −

1
s + 1

]
K̂ s +

1
s + 1

z s+1z ∗s+1 for each s ∈ N. (14.1)

This is a linear update rule. As a consequence, we can use a streaming SVD method to
reduce the storage! Moreover, since K̂ s is psd, we can use a specialized algorithm to
improve the performance.

Here is a summary of the procedure:

1 Draw and fix a random test matrix Ω ∈ Fn×`, where ` is roughly twice the
number of principal components to be computed.

2 MaintainY s = K̂ sΩ, and update it using the linear update rule (14.1).
3 Once we have processed a sufficient number s of random features, we compute a
Nyström approximation Nyström approximationof K̂ s :

K̃ s = Y s (Ω
∗Y s )

†Y ∗s = (K̂ sΩ)(Ω
∗K̂ sΩ)

†(K̂ sΩ)
∗.

This method offers a very space-efficient technique for kernel PCA. The storage cost is
only O (n`).

To analyze this algorithm, observe that

K̂ s − K̃ s = K̂ s/Ω

is a Schur complement. This identity suggests that we can exploit the analysis of
the randomized rangefinder (Lecture 10) to understand the performance of this
approximation. See [MT20, Sec. 14] for more discussion, or see the paper [Tro+17a]
for details.
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15. Kernel Sampling
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pling
5 Approximating ridge lever-

age score

In the past two lectures, we have discussed kernel methods, random features maps,
and streaming kernel PCA. In this lecture, we will discuss a more direct approach for
approximating the kernel matrix by sampling the coordinates. This approach relies
on a matrix approximation that dates back to work of Nyström [Nys+30] on integral
equations.

We begin with a recap of kernel matrices and the computational challenges that arise.
To address these challenges, we consider the idea of sampling coordinates and using the
sampled coordinates to approximate the matrix. Afterward, we discuss a regularization
method that can improve the quality of approximations. This regularization leads us to
consider a specific set of sampling probabilities, called ridge leverage scores. Although
this sampling distribution is mathematically appealing, it is quite hard to compute. We
give a brief discussion of some of the methods that have been proposed for this task,
although it remains a subject of ongoing research.

15.1 Motivation: Kernel approximation
LetXbe an input space and k : X×X→ F a positive-definite kernel. Let {x1, ..., x n} ⊂

X be a dataset with the associated psd kernel matrix

K = [k (x i , x j )]i ,j=1,...,n ∈ Hn .

In most situations, we have to pay for each individual entry of the kernel matrix that
we access. As a consequence, working with kernel matrices can be very expensive.

When the data points have a d-dimensional parameterization, the cost of forming
K is typically O (dn2) operations because we need to compute k (x i , x j ) for each pair
(i , j ). Furthermore, the kernel matrix requires O (n2) storage. It is natural to seek
methods for working with kernel matrices that do not require us to form the entire
matrix.
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Idea: Can we approximate a general kernel matrix without forming it explicitly?

In the last lecture, we studied random feature maps. For kernels that admit a
random feature map, we can compute s random features using O (sdn) operations
plus O (sn) storage. The number s of random features we need is proportional to the
intrinsic dimension of the kernel matrix.

In this lecture, we discuss a more direct approach to approximate kernel matrices
by sampling columns. Unfortunately, it is complicated to design a theoretically sound
procedure for coordinate sampling, and the analysis is not very transparent. The goal
of this lecture is to offer an introduction to this circle of ideas, without too many details.

15.2 The Nyström method
The Nyström method is the most natural way to construct a low-rank approximation of
a psd matrix. We begin with the general construction, which is closely related to the
rangefinder problem. Afterward, we specialize to the case of column sampling.

15.2.1 Abstract Nyström approximation
Consider a psd input matrix A ∈ Hn . Let Ω ∈ Fn×s be an arbitrary test matrix, and
form the sample matrix Y = AΩ ∈ Fn×s . The Nyström approximation of the input
matrix A with respect to (the range of) the test matrix Ω is the matrix

A〈Ω〉 := Y (Ω∗Y )†Y ∗ = (AΩ)(Ω∗AΩ)†(AΩ)∗. (15.1)

As usual, † denotes the pseudoinverse. The error incurred by approximating A with
A〈Ω〉 is precisely the Schur complement of A with respect to Ω:

A − A〈Ω〉 = A/Ω.

This observation shows that there is a close connection between Nyström approxi-
mations and the rangefinder problem. In particular, for random test matrices, we
can invoke our analysis of the randomized SVD to obtain bounds for the error in the
Nyström approximation.

Before moving on to discuss an important special case, let us quickly review
the arithmetic cost associated with a general Nyström approximation. The cost is
dominated by the matrix–matrix multiply AΩ, which requires O (n2s ) arithmetic
operations. This cost can be reduced if either A or Ω admits a fast multiply. The
subsequent approximation steps involve O (ns2) arithmetic operations. Meanwhile,
storage costs are O (ns ).

15.2.2 Column Nyström approximation
The Nyström approximation (15.1) can be constructed for any test matrixΩ. Historically,
these approximations were constructed using test matrices that select columns from the
input matrix. This special case is also the focus of today’s lecture. Indeed, we cannot
easily multiply a kernel matrix by an arbitrary vector to form an abstract Nyström
approximation, but we can extract individual columns by evaluating a relatively small
number of entries.

Consider a test matrix of the form

Ω = S =
[
ej1 . . . ejs

]
where J = {j1, . . . , js } ⊂ {1, . . . ,n} .
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In this case, the sample matri Y = AS = A(:, J ) extracts precisely s columns of the
input matrix A. The compression S∗AS = A( J, J ) is a s × s submatrix of A. Pictorially,

S =


∗

∗

∗︸   ︷︷   ︸
s




n and S∗AS = A( J, J ) =


∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗


.

For this special case, the Nyström approximation only depends on the index set J . We
introduce special notation:

A〈S〉 =: A〈 J 〉 := A(:, J )A( J, J )†A(:, J )∗.

Computing a column Nyström approximation is relatively fast, because it only requires
evaluation of s individual columns from A.

Let us emphasize the connection with Schur complements. Without loss, we may
permute the columns of the input matrix so that the index set J = {1, . . . , s } contains
the first s column indices. Write the psd matrix A as a conformal block matrix:

A =

[
A11 A∗21
A21 A22

]
such that A(:, J ) =

[
A11
A21

]
, and A( J, J ) = A11.

If A11 is invertible, the Nyström approximation becomes

A〈 J 〉 =

[
A11
A21

]
A−111

[
A11
A21

]∗
=

[
A11 A∗21
A21 A21A−111 A12

]
.

The approximation error is precisely the Schur complement:

A − A〈 J 〉 =

[
0 0
0 A22 − A21A−111 A12

]
= A/A11 = A/A( J, J ).

Equivalently, we apply Gaussian elimination to remove the first s rows and columns of
the matrix A, which results in the Schur complement.

15.3 Regularized Nyström approximation
Numerically, wemust take care in forming a Nyström approximation to avoid inversion of
a badly conditioned matrix. An alternative approach is to regularize the approximation
to improve the conditioning. This modification is closely related to ridge regression
(or Tykhonov regularization), and it can also be valuable for improving the statistical
properties of kernel computations.

For a parameter ε > 0, the regularized Nyström approximation adds The scalar
matrix εI before computing the inverse. More precisely, we consider the approximations

A〈Ω〉ε := (AΩ)(Ω∗AΩ + εI)−1(AΩ)∗;

A〈 J 〉ε := A(:, J )(A( J, J ) + εI)−1A( J, :).

The first formula is the regularization of an abstract Nyström approximation, and the
second describes regularization of a column Nyström approximation.
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Proposition 15.1 (Monotonicity). For any test matrix Ω, the mapping ε 7→ A〈Ω〉ε is
operator monotone decreasing. That is,

ε ≤ ε′ implies A〈Ω〉ε′ 4 A〈Ω〉ε.

In particular, A〈Ω〉ε 4 A for any ε > 0

Exercise 15.2 (Monotonicity). Prove Proposition 15.1.

To understand the behavior of the regularized Nyström approximation, we define
the smoothed projection matrix smoothed projection matrix

P ε = A(A + εI)−1.

This matrix filters the eigenvalues of A to produce an approximate projector on a
dominant eigenspace of A.

Proposition 15.3 (Smoothed projection matrix). The smoothed projection matrix P ε satis-
fies 0 4 P ε 4 I. More precisely,

λi (P ε) =
λi (A)

λi (A) + ε
for each i = 1, . . . ,n.

In particular,

P ε → 0 as ε →∞;
P ε → P A as ε → 0.

As usual, P A is the orthogonal projector onto the range of A.

Exercise 15.4 (Smoothed projection matrix). Prove Proposition 15.3.

We are now prepared to develop an expression for the error in the regularized
Nyström approximation in terms of the smoothed projector P ε and the test matrix Ω.

Proposition 15.5 (Regularized Nyström: Approximation error). The error in the regularized
Nyström approximation can be written in terms of the smoothed projection matrix:

0 4 A − A〈Ω〉ε = ε · P
1/2
ε

(
I − P 1/2

ε (I −ΩΩ
∗)P 1/2

ε

)−1
P 1/2
ε

In particular,

λmax(P
1/2
ε (I −ΩΩ

∗)P 1/2
ε ) ≤ α implies A − A〈Ω〉ε 4

ε

1 − α
P ε.

Proof. Define the matrix R = A1/2Ω. We can rewrite the approximation error as

A − A〈Ω〉ε = A − A1/2R (R ∗R + εI)−1R ∗A1/2

= A1/2(I − R (R ∗R + εI)−1R ∗)A1/2.

Direct calculation reveals that

I − R (R ∗R + εI)−1R ∗ = ε · (RR ∗ + εI)−1.

The inverted matrix admits an alternative expression:

R ∗R + εI = A1/2ΩΩ∗A1/2 + εI = A + εI − A1/2 (I −ΩΩ∗) A1/2

= (A + εI)1/2
(
I − P 1/2

ε (I −ΩΩ
∗)P 1/2

)
(A + εI)1/2 .

Combine these three displays, and identify copies of the matrix P 1/2
ε to complete the

argument. �
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15.4 Ridge leverage scores
Proposition 15.5 shows how to express the approximation error of a regularized Nyström
approximation in terms of the largest eigenvalue of the matrix P 1/2

ε (I −ΩΩ∗)P
1/2
ε .

The smaller this eigenvalue, the better the approximation.
To that end, observe that the error matrix can be expressed in the form

P 1/2
ε · P

1/2
ε − P 1/2

ε ΩΩ
∗P 1/2

ε .

In other words, we need a test matrix Ω that controls the error in an approximate
matrix multiplication.

Idea: Use importance sampling to bound the error P 1/2
ε (I −ΩΩ∗)P

1/2
ε .

In Lecture 4, we studied how to choose sampling distributions to control the error
in approximate matrix multiplication. Using the insights from this analysis, we realize
that the sampling probabilities should be proportional to the diagonal entries of the
smoothed projector:

pi ∝ ‖P
1/2
ε ei ‖

2 = e∗i P εei = (P ε)i i .
It is convenient to introduce notation and terminology related to these quantities.

Definition 15.6 (Ridge leverage scores). For a regularization parameter ε > 0, the ridge
leverage scores (RLS) ridge leverage scores (RLS)of a psd matrix K ∈ Hn are the quantities

`i (ε) := (P ε)i i = [K (K + εI)−1]i i for i = 1, . . . ,n.

The sum of the ridge leverage scores is called the effective dimension effective dimensionof the regularized
projector:

deff(ε) :=
∑n

i=1
`i (ε).

These quantities have a long history in statistics. Kernel ridge regression is an
optimization problem of the form

minimize ‖K 1/2(u − b)‖22 + ε · ‖u ‖
2
2 .

The i th ridge leverage score `i (ε) is a measure of the influence of the i th data point on
the solution to the ridge regression problem. The effective dimension deff(ε) captures
the number of degrees of freedom in the model.

Given the ridge leverage scores, we can construct a sampling distribution over the
data points.

pi =
`i (ε)

deff(ε)
for i = 1, . . . ,n

If we sample enough columns from this distribution, then we can control the size of
the error in the regularized Nyström approximation. Here is a more precise version of
this claim.

Proposition 15.7 (RLS sampling). For a parameter β > 0, consider a probability distribu-
tion that satisfies

pi ≥ β ·
`i (ε)

deff(ε)
for each i = 1, . . . ,n.

Let S ∈ Fn×s be a sampling matrix whose columns select s coordinates drawn
independently from the probability distribution. For each t ∈ (0, 1),

P
{
λmax(P

1/2
ε (I − SS∗)P 1/2

ε ) ≥ t
}
≤ n exp

(
−st 2/2

deff(ε/β + t /3)

)
.
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On the complement of this event,

0 4 K − K 〈S〉ε 4
ε

1 − t
P ε,

where P ε = K (K + εI)−1 is the smoothed projector.

Exercise 15.8 (RLS sampling). Prove Proposition 15.7

This result indicates that we can approximate the kernel matrix K by sampling
about deff(ε) coordinates from the RLS distribution and forming a regularized Nyström
approximation. This approach is efficient when the effective dimension is small.

15.5 Approximating ridge leverage scores
In the last section, we have seen that it is possible to approximate a psd matrix by
sampling a moderate number of columns from the RLS distribution. This raises another
question:

How do we compute the ridge leverage scores?

In a sense, estimating the RLS distribution is just as hard as the original problem
of approximating the input matrix. Although there are many papers [AM15; MM17;
Rud+18] that contain algorithms for estimating the RLS distribution, there is still no
fully satisfactory solution to the problem. In the remainder of this section, we outline
some of the ideas that have been proposed for this task.

Idea: Use uniform sampling to compute a coarse approximation of K . Use the
coarse approximation to estimate the RLS distribution.

Let us explain how one might implement and analyze this approach. Fix a sampling
set J , and form the Nyström approximation K 〈 J 〉. Compute a Cholesky decomposition:
K 〈 J 〉 = BB∗. Then we can estimate the RLS using the formula

ˆ̀
i (ε) = b∗i (B

∗B + εI)−1b i .

In this expression, b i is the i th row of the Cholesky factor B . The next result indicates
why this estimate is sensible.

Proposition 15.9 (RLS estimates). Instate the prevailing notation. Then

ˆ̀
i (ε) =

(
K 〈 J 〉 · (K 〈 J 〉 + εI)−1

)
i i .

Exercise 15.10 (RLS estimates). Prove Proposition 15.9.

Proposition 15.11 (RLS estimates via diagonal sampling). Let t > 0 be a parameter. Suppose
that we sample a set J consisting of s ≥ tr(K )/(t ε) points from the probability
distribution pi = K i i/trK . With high probability, the RLS estimates satisfy

`i (ε) − 2t ≤ ˆ̀
i (ε) ≤ `i (ε), for all i = 1, . . . ,n.

Exercise 15.12 (RLS estimates via diagonal sampling). Prove Proposition 15.11.

This result indicates that we can obtain reasonable estimates for the large elements of
the RLS distribution using a simple sampling scheme that involves minimal computation.
Nevertheless, this approach is not powerful enough to estimate the smaller elements
without an exorbitant number of samples.
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Idea: Refine the RLS estimates by sampling repeatedly, using homotopy to reduce
the parameter ε.

Here is how this approach works. For a large value of ε0, we use diagonal sampling
to obtain estimates ˆ̀i (ε0) for the RLS at the scale ε0. We reduce the scale by a constant
factor: ε1 = c · ε0 where c < 1. We use our RLS estimates ˆ̀

i (ε0) to sample more
coordinates, and we obtain new estimates ˆ̀

i (ε1) for the RLS at the scale ε1. This
process is repeated about log(ε0/ε) times, where ε is the smallest scale.

It is possible to justify this approach and provide estimates for the number of samples
required at each steps. Algorithms based on this type of scheme have reasonable
performance in practice, but they are still not fully satisfactory.

15.6 History
The Nyström approximation was originally developed in the context of integral equa-
tions [Nys+30]. It has had a substantial impact in machine learning, beginning with
the work of Williams and Seeger [WS01] on the randomized low-rank approximation
of kernel matrices. The paper of Bach [Bac13] clarified the role of sampling for
approximating kernel matrices. Alaoui and Mahoney [AM15] proposed the sampling
scheme based on approximate ridge leverage scores and developed the initial estimate
based on diagonal sampling. Musco and Musco [MM17] introduced a recursive method
for estimating the RLS distribution. The current state of the art for RLS sampling is
the paper of Rudi et al.[Rud+18].
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