
Matrix Concentration &
Computational Linear Algebra

Short course at École Normale Supérieure, Paris, July 2019

Joel A. Tropp
Steele Family Professor of Applied & Computational Mathematics

California Institute of Technology

Typeset on February 23, 2021

Copyright ©2019 Joel A. Tropp

Cite as:
Joel A. Tropp, Matrix Concentration & Computational Linear Algebra, Caltech CMS
Lecture Notes 2019-01, Pasadena, July 2019.

Available from
http://resolver.caltech.edu/CaltechAUTHORS:20190715-125341188

These lecture notes are composed using an adaptation of a template designed by
Mathias Legrand, licensed under CC BY-NC-SA 3.0 (http://creativecommons.org/
licenses/by-nc-sa/3.0/).

http://resolver.caltech.edu/CaltechAUTHORS:20190715-125341188
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

Public domain

Contents

Preface . ix

Notation . xiii

1 Matrix Concentration . 1
1.1 The matrix Laplace transform method 1
1.1.1 Tail bounds . 1
1.1.2 Expectation bounds . 3

1.2 Matrix moments and cumulants 3
1.2.1 The matrix mgf and cgf . 3
1.2.2 The failure of the matrix mgf . 4
1.2.3 A theorem of Lieb . 5
1.2.4 Subadditivity of the matrix cgf . 6

1.3 Master bounds for sums of independent random matrices 6
1.3.1 The master inequalities . 7
1.3.2 Additional tools . 7

1.4 Example: Matrix Bernstein 7
1.4.1 Bernstein cgf bound . 7
1.4.2 The matrix Bernstein inequality . 8

1.5 Example: Matrix Chernoff 9
1.5.1 Chernoff cgf bound . 10
1.5.2 Matrix Chernoff inequalities . 10

1.6 The rectangular case 12
1.6.1 The self-adjoint dilation . 12
1.6.2 Rectangular matrix Bernstein . 12

2 Matrix Approximation by Sampling . 15
2.1 Matrix sampling estimators 15
2.1.1 An error estimate . 16
2.1.2 Discussion . 18
2.2 Application: Random features 20
2.2.1 Kernel matrices . 20
2.2.2 Random features and low-rank approximation of the kernel matrix 21
2.2.3 Examples of random feature maps . 23
2.2.4 Error bound for the random feature approximation . 24
2.2.5 Analysis of the random feature approximation . 25

3 Quantum State Tomography . 27
3.1 Postulates of quantum mechanics 27
3.1.1 Recapitulation: Discrete probability theory . 27
3.1.2 Noncommutative probability theory . 29
3.1.3 Aside: Geometric intuition and the Bloch ball . 30
3.2 Quantum state tomography 32
3.2.1 Geometric aspects and measurement design . 33
3.2.2 Statistical aspects and convergence . 35
3.3 Quantum state tomography via matrix sampling 36
3.3.1 Estimating the bias of a coin . 36
3.3.2 The matrix sampling estimator . 37
3.3.3 Sample complexity of the sample average . 37
3.3.4 Projection onto the set of quantum states . 39
3.3.5 Generalization: Projected least squares . 41

4 Graph Laplacians . 43
4.1 Multigraph basics 43
4.1.1 Undirected multigraphs . 43
4.1.2 Connected components . 44
4.1.3 Multidegree and total weight . 45
4.1.4 Interpretation: Plumbing . 45
4.1.5 Interpretation: Resistor networks . 45
4.1.6 Example: A random walk . 45
4.2 Laplacian basics 46
4.2.1 The Laplacian of a multigraph . 46
4.2.2 Correspondence between multigraphs and Laplacians . 47
4.2.3 Projectors and pseudoinverses . 47
4.2.4 The Dirichlet form . 48
4.2.5 Example: Laplacians and cuts . 48

4.3 Harmonic analysis on multigraphs 49
4.3.1 Harmonic functions . 49
4.3.2 Example: Hitting probabilities . 49
4.3.3 The maximum principle . 49
4.3.4 Poles . 50
4.3.5 Harmonic extensions . 50
4.3.6 Interpretation: Plumbing . 51
4.3.7 Interpretation: Resistor networks . 52

5 Effective Resistance . 53
5.1 Resistance distance 53
5.1.1 Effective resistance . 53
5.1.2 Effective resistance is a metric . 54
5.1.3 An alternative representation . 55
5.1.4 Leverage of a multiedge . 56
5.2 Approximating a Laplacian by sampling 57
5.2.1 Spectral approximation . 57
5.2.2 The sampling model . 58
5.2.3 The sampling probabilities . 58
5.2.4 The analysis . 58
5.2.5 Computational aspects . 59
5.2.6 Conclusion . 59

6 Solving Laplacian Systems . 61
6.1 Cholesky meets Laplace 61
6.1.1 Setup . 61
6.1.2 Laplacian systems . 61
6.1.3 Solution via Cholesky decomposition . 62
6.2 Cholesky decomposition: Matrix view 62
6.2.1 Setup . 62
6.2.2 First step of the Cholesky decomposition . 62
6.2.3 Cholesky decomposition, without pivoting . 63
6.2.4 Cholesky decomposition, with pivoting . 64
6.2.5 Computational cost . 64
6.3 Cholesky decomposition: Graph view 64
6.3.1 Setup . 64
6.3.2 First step of the Cholesky decomposition . 64
6.3.3 Stars and cliques . 66
6.3.4 Cholesky decomposition of a Laplacian . 67
6.3.5 An opportunity . 67

7 Matrix Martingales . 69
7.1 Matrix-valued random processes 69
7.1.1 Martingales . 69

7.1.2 Matrix martingales . 70
7.1.3 Adapted sequences . 70
7.1.4 Stopped processes . 70

7.2 Tail bounds for matrix-valued processes 70
7.2.1 Corrector processes . 71
7.2.2 Lower bounds for the supermartingale . 71
7.2.3 A tail bound for matrix martingales . 71

7.3 Building a corrector process 72
7.3.1 Correctors . 73
7.3.2 Lieb’s theorem and Tropp’s corollary . 73
7.3.3 Example: The Bernstein corrector . 73
7.3.4 Example: The Chernoff corrector . 74
7.3.5 From correctors to corrector processes . 74
7.3.6 Correctors tensorize . 74
7.3.7 The composition rule . 75

7.4 Example: The matrix Freedman inequality 75

8 Sparse Cholesky . 77
8.1 Approximate solutions of Laplacian systems 77
8.1.1 Approximate solutions . 77
8.1.2 Approximate Cholesky decomposition . 78
8.1.3 Preconditioning . 78
8.1.4 Summary . 78

8.2 Overview of the algorithm 79
8.2.1 Setup . 79
8.2.2 The SparseCholesky procedure . 79
8.2.3 Laplacian approximations . 81

8.3 Preliminaries for the analysis 81
8.3.1 The normalizing map . 81
8.3.2 The approximation requirement . 82
8.3.3 Splitting the edges . 82

8.4 Sampling from a clique 83
8.4.1 Setup . 83
8.4.2 Eliminating a vertex . 84
8.4.3 The sampling procedure . 84
8.4.4 Expectation of the randommultiedge . 85
8.4.5 Each multiedge has bounded leverage . 85
8.4.6 Corrector for the randommultiedge . 86
8.4.7 An unbiased estimator for the clique . 87
8.4.8 The clique induced by a random vertex . 87
8.4.9 Corrector for the clique estimator . 88

8.5 Analysis of SparseCholesky 89
8.5.1 A stopping time . 89
8.5.2 The approximate Schur complements . 89
8.5.3 The corrector process . 90
8.5.4 The martingale tail bound . 90
8.5.5 The running time . 91
8.5.6 The grand finale . 91

Further Reading . 93

Bibliography . 97

©Institute of Advanced Study

Preface

Over the last decade, random matrices have become ubiquitous in applied and com-
putational mathematics. As this trend accelerates, more and more researchers must
confront random matrices as part of their work. Classical random matrix theory can
be difficult to use, and it is often silent about the questions that come up in modern
applications. As a consequence, it has become imperative to develop new tools that are
easy to use and that apply to a wide range of random matrices.

Matrix concentration inequalities
Matrix concentration inequalities are among the most popular of these new methods.
For a self-adjoint randommatrixY with expectation EY , matrix concentration theorems
provide probabilistic bounds on quantities like

‖Y − EY ‖.

The symbol ‖·‖ always refers the spectral norm, also known as the `2 operator norm.
Bounds of this form give us a lot of information about how the random matrix Y is
related to its expectation EY . In particular,

• Each linear functional ofY is close to the same linear functional of EY .
• Each eigenvalue ofY is close to the corresponding eigenvalue of EY .
• Each eigenvector ofY is close to the corresponding eigenvector of EY when the

eigenvalue is isolated from the rest of the spectrum.
• We can bound the expected norm of the random matrix:

‖Y ‖ = ‖EY ‖ ± ‖Y − EY ‖.

x

The last point is, perhaps, the most interesting. Indeed, norm bounds for random
matrices are quite valuable by themselves, and they used to be rather hard to obtain
before the matrix concentration technology was developed.

Matrix concentration results for self-adjoint random matrices also have formal
consequences for rectangular random matrices. We will focus on the self-adjoint case
because it is more fundamental, and it already supports many fascinating applications.

Random matrix models
Without additional information about the random matrix Y , we cannot hope to say
anything interesting. This work treats two basic, but very fruitful, models for the
random matrix.

First, the independent sum model posits that

Y =
∑n

i=1
X i where {X i } is statistically independent.

This model captures a wide range of examples. The most classical is the sample
covariance matrix; see [Tro15, Chap. 1] for discussion and analysis. In this course,
we will explore more modern examples from machine learning, quantum information
theory, and combinatorics.

Second, we will consider the matrix martingale model, where

Y k =
∑k

i=1
X i is a martingale.

This model offers a powerful lens for studying the behavior of iterative randomized
algorithms in linear algebra. The main purpose of this course is to show how concen-
tration for matrix martingales supported the development and analysis of an efficient
algorithm for solving graph Laplacian linear systems.

Other applications of matrix concentration
Matrix concentration tools have already found a place in many areas of the mathematical
sciences, including

• numerical linear algebra [Tro11b]
• numerical analysis [MB17]
• uncertainty quantification [CG14]
• statistics [Kol11]
• econometrics [CC13]
• approximation theory [CDL13]
• sampling theory [BG13]
• machine learning [DKC13; Lop+14]

• learning theory [FSV12; MKR12]
• math signal processing [Che+14]
• optimization [CSW12]
• graphics and vision [HCG14]
• quantum information [Hol12]
• algorithms [HO14; Kyn17]
• combinatorics [Oli10]
• et cetera.

These references are chosen more or less at random from a long menu of possibilities.
See the monograph [Tro15] for an overview of the main results on matrix concen-
tration, many detailed applications, and additional background references. Other
recommendations for further reading appear at the end of these notes.

xi

About this course
These lecture notes were written to support the short course

Matrix Concentration & Computational Linear Algebra

delivered by the author at École Normale Supérieure in Paris from 1–5 July 2019 as part
of the summer school “High-dimensional probability and algorithms.”

The aim of this course is to present some practical computational applications of
matrix concentration. Lecture 1 provides a brief treatment of the matrix Bernstein
inequality, which is the most valuable single result about matrix concentration. We
apply this result to study several empirical matrix approximations:

• Random feature approximation of a kernel matrix (Lecture 2).
• Linear estimators for quantum state tomography (Lecture 3).
• Sparse approximation of a combinatorial graph (Lecture 5).

Our primary goal is to develop a complete treatment of a near-linear time algorithm
for solving a linear system in a graph Laplacian matrix. This remarkable algorithm
was developed by Rasmus Kyng and Sushant Sachdeva [KS16], following earlier
work [Kyn+16] by Dan Spielman’s group. The algorithm closely resembles the classic
incomplete Cholesky decomposition, and I believe that it is likely to have an impact on
computational practice. Our presentation of this result takes place in steps:

• Harmonic analysis on graphs (Lecture 4).
• Interpretation of graphs as resistor networks (Lecture 5).
• Cholesky factorization of a graph Laplacian (Lecture 6).
• Theory of matrix martingales (Lecture 7).
• The SparseCholesky algorithm (Lecture 8).

In my opinion, the SparseCholesky algorithm is the most spectacular application of
matrix concentration. I doubt that it could have been developed before the foundations
of matrix concentration were in place.

Prerequisites
Since the audience of this short course consists primarily of French graduate students
and researchers, I have assumed a moderate level of mathematical and computational
preparation:

• Intermediate linear algebra [Axl15], including experiencewith positive-semidefinite
matrices and the semidefinite order [Bha97; Bha07].

• Elementary numerical linear algebra [TB97], including Cholesky decomposition,
solution of triangular systems, and the conjugate gradient algorithm.

• Intermediate probability, including basic scalar concentration inequalities [BLM13]
and real-valued discrete-time martingales [Wil91].

• Elementary spectral graph theory [Spi12].

We will develop the background for most of the applications in sufficient detail that
no additional preparation is needed.

xii

Caveat lector
These notes do not meet the standard of a scholarly publication. Here are some issues
that you should be aware of.

• Some of the text has been copied and pasted directly from my own published
work (Lectures 1, 2, and 7).

• The notes for Lecture 3 were written primarily by Richard Kueng on the basis of
our joint work [Guh+18]. I take responsibility for any mistakes that appear.

• The treatment of graph theory is my interpretation of Dan Spielman’s lecture
notes [Spi] and Rasmus Kyng’s dissertation [Kyn17]. Any errors are mine.

• Owing to the varied provenance of the material, the mathematical notation may
not be fully consistent among different lectures.

• I have tried to provide citations for the main results, but these notes are largely
devoid of references, historical background, and context.

• These notes have only received a cursory proofreading.

Why is there a photo of von Neumann?
You may be wondering why John von Neumann greets you at the door of this Preface.
In 1947, von Neumann and Goldstine [NG47] developed the foundations for rounding
error analysis. They formulated Gaussian elimination and Cholesky decomposition as
triangular matrix factorizations. They showed how to analyze the numerical properties
of the linear system solver based on this approach. In a 1951 follow-up paper [GN51],
they proposed a random matrix model for the rounding errors in these computations.
See [Grc11] for a gloss on this research.

The landmark papers of von Neumann and Goldstine are among the earliest works
on solving linear systems on a computer, and they are the first to bring random matrix
theory in contact with computational linear algebra. I cannot think of a more suitable
genie to inhabit these notes.

Acknowledgments
The summer school “High-dimensional probability and algorithms” was funded by
Université PSL and CNRS. I would like to thank the organizers, Claire Boyer, Djalil
Chafaï, and Joseph Lehec, for an engaging week. Additional funding for my research
and this course was provided by ONR Awards N00014-17-12146 and N00014-18-12363.

The computational cost of the SparseCholesky algorithm was miscalculated in the
original manuscript because of stray parentheses; the costs are slightly higher than
reported. This version corrects the error, which was reported by Rasmus Kyng.

Joel A. Tropp
jtropp@cms.caltech.edu

http://users.cms.caltech.edu/~jtropp

Steele Family Professor of Applied & Computational Mathematics
California Institute of Technology

Pasadena, California
July 2019

jtropp@cms.caltech.edu
http://users.cms.caltech.edu/~jtropp

Notation

I have selected notation that is common in the linear algebra and probability literature.
I have tried to been consistent in using the symbols that are presented below. There
are some minor variations in different lectures, including the letter that indicates the
dimension of a matrix and the indexing of sums.

Linear algebra
We work in a real or complex linear space. The letters d and n (and occasionally others)
are used to denote the dimension of this space, which is always finite. For example, we
write Rd or Cn . Matrix concentration results apply equally in the real and complex
setting. We may write F to refer to either field, or we may omit the field entirely.

We use the delta notation for standard basis vectors: δi has a one in the i th
coordinate and zeros elsewhere. The vector 1 has ones in each entry. The dimension of
these vectors is determined by context.

The symbol ∗ denotes the (conjugate) transpose of a vector or a matrix. We equip
Fd with the standard inner product 〈x , y 〉 = x ∗y . The inner product generates the
Euclidean norm ‖x ‖2 = 〈x , x〉.

We write Hd (F) for the real-linear space of d × d self-adjoint matrices with entries
in the field F . Recall that a matrix is self-adjoint when A = A∗. We equip the space Hd

with the trace inner product 〈X , Y 〉 = tr(XY), which generates the Frobenius norm
‖X ‖2F = 〈X , X 〉. The map tr[·] returns the trace of a square matrix; we instate the
convention that nonlinear functions bind before the trace.

A self-adjoint matrix with dimension d has d real eigenvalues, with an associated
orthonormal set of d eigenvectors. The maps λmin(·) and λmax(·) return the minimum
and maximum eigenvalues of a self-adjoint matrix. The symbol I denotes the identity
matrix; its dimensions are determined by context.

xiv

A self-adjoint matrix is positive semidefinite (psd) if its eigenvalues are nonnegative;
a self-adjoint matrix is positive definite (pd) if its eigenvalues are positive. The symbol
4 refers to the psd order: A 4 H if and only if H − A is psd.

We define a standard matrix function on a self-adjoint matrix using the eigenvalue
decomposition. For any f : R→ R,

A =
∑n

i=1
λi u iu ∗i implies f (A) =

∑n

i=1
f (λi)u iu ∗i .

When we apply a real function to a self-adjoint matrix, we are always referring to
the associated standard matrix function. In particular, we often encounter powers,
exponentials, and logarithms.

Occasionally, we need the linear space Md1×d2(F) of d1 × d2 matrices over the field
F . In this context, the symbol ‖·‖ also refers to the `2 operator norm.

We write lin for the linear hull of a family of vectors. The operators range and null
extract the range and null space of a matrix. The operator † extracts the pseudoinverse.

Probability
The map P {·} returns the probability of an event. The operator E[·] returns the
expectation of a random variable taking values in a linear space. We only include the
brackets when it is necessary for clarity, and we impose the convention that nonlinear
functions bind before the expectation.

Graphs
A multigraph G has a ground set V of n vertices. A multiedge is an undirected pair
e = uv = {u ,v } of vertices. A multigraph involves a set E of m multiedges, which may
involve many edges connecting the same pair of vertices. The absolute value |·| returns
the cardinality of a set of vertices or a set of edges.

We write RV for the set of real-valued functions on the set V of vertices. The symbol
HV refers to the linear space of (real) self-adjoint matrices acting on RV. We may
identify these linear spaces with Rn and Hn(R).

The notation u ∼ v means that two vertices are neighbors. The notations u ∈ e
and e 3 u both mean that the multiedge e is incident on (i.e., contains) the vertex u .

The degree deg(u ,G) of a vertex u in a multigraph G is the total number of
multiedges incident on u . The total weight wG(u) of a vertex u is the sum of the
weights of the multiedges incident on u .

We reserve the letter L for the Laplacian matrix of the multigraph G. The symbol
Φ denotes the normalizing map associated with this Laplacian:

Φ(M) = (L†)1/2M (L†)1/2.

The exponent 1/2 extracts the unique psd square root of a psd matrix. The number
%(u ,v) is the effective resistance between vertices u and v .

Order notation
We use the familiar order notation from computer science. The symbol Θ(·) refers to
asymptotic equality. The symbol O (·) refers to an asymptotic upper bound.

©1999–2003 by Jamie Zawinski

1. Matrix Concentration

Most of the text in this lecture is copied from my monograph [Tro15, Chaps. 3, 5, 6].

This lecture contains the analysis that delivers exponential matrix concentration
inequalities. The approach that we take can be viewed as a matrix extension of the
Laplace transform method, sometimes referred to as the “Bernstein trick.” In the scalar
setting, this trick (soi disant) is one of the most basic and successful paths to reach
concentration inequalities for sums of independent random variables. It turns out that
there is a very satisfactory version of this argument that applies to sums of independent
random matrices. In the general setting, however, we must invest more care and wield
sharper tools to execute this technique.

1.1 The matrix Laplace transform method

In the scalar setting, the Laplace transform method allows us to obtain tail bounds for a
random variable in terms of its mgf. The starting point for our theory is the observation
that a similar result holds in the matrix setting.

1.1.1 Tail bounds

First, we introduce the Laplace transform method for bounding the extreme eigenvalues
of a self-adjoint matrix. This approach to matrix concentration was proposed by
Ahlswede & Winter [AW02]. We present a formulation and proof developed by Roberto
Oliveira [Oli10].

Proposition 1.1 (Tail bounds for eigenvalues). LetY be a random self-adjoint matrix. For

2 Lecture 1: Matrix Concentration

all t ∈ R,

P {λmax(Y) ≥ t } ≤ inf
θ>0

e−θt E tr eθY ; (1.1)

P {λmin(Y) ≤ t } ≤ inf
θ<0

e−θt E tr eθY . (1.2)

In words, we can control the tail probabilities of the extreme eigenvalues of a
random matrix by producing a bound for the trace of the matrix mgf. The proof of this
fact parallels the classical argument, but there is a twist.

Proof. We begin with (1.1). Fix a positive number θ, and observe that

P {λmax(Y) ≥ t } = P
{
eθλmax(Y) ≥ eθt

}
≤ e−θt E eθλmax(Y).

The first identity holds because a 7→ eθa is a monotone increasing function, so the
event does not change under the mapping. The second relation is Markov’s inequality.
To control the exponential, note that

eθλmax(Y) = eλmax(θY) = λmax
(
eθY

)
≤ tr eθY . (1.3)

The first identity holds because the maximum eigenvalue is a positive-homogeneous
map. The second depends on the spectral mapping theorem. The inequality follows
because the exponential of an self-adjoint matrix is positive definite. The maximum
eigenvalue of a positive-definite matrix is dominated by the trace. Combine the latter
two displays to reach

P {λmax(Y) ≥ t } ≤ e−θt E tr eθY .

This inequality is valid for any positive θ, so we may take an infimum to achieve the
tightest possible bound.

To prove (1.2), we use a similar approach. Fix a negative number θ, and calculate
that

P {λmin(Y) ≤ t } = P
{
eθλmin(Y) ≥ eθt

}
≤ e−θt E eθλmin(Y) = e−θt E eλmax(θY).

The function a 7→ eθa reverses the inequality in the event because it is monotone
decreasing. The last identity depends on the relationship between minimum and maxi-
mum eigenvalues. Finally, we introduce the inequality (1.3) for the trace exponential
and minimize over negative values of θ. �

In the proof of Proposition 1.1, it may seem crude to bound the maximum eigenvalue
by the trace. It turns out that, at most, this estimate results in a loss of a factor that is
logarithmic in the dimension of the matrix. At the same time, our maneuver allows us
to exploit some amazing convexity properties of the trace exponential.

1.2 Matrix moments and cumulants 3

1.1.2 Expectation bounds
We can adapt the proof of Proposition 1.1 to obtain bounds for the expectation of the
maximum eigenvalue of a random self-adjoint matrix. This argument is somewhat less
interesting in the scalar setting, where it states that the exponential mean of a random
variable is an upper bound for the arithmetic mean.

Proposition 1.2 (Expectation bounds for eigenvalues). LetY be a random self-adjoint ma-
trix. Then

E λmax(Y) ≤ inf
θ>0

1
θ
logE tr eθY ; (1.4)

E λmin(Y) ≥ sup
θ<0

1
θ
logE tr eθY . (1.5)

Proof. We establish the bound (1.4); the proof of (1.5) is quite similar. Fix a positive
number θ, and calculate that

E λmax(Y) =
1
θ
E log eλmax(θY) ≤

1
θ
logE eλmax(θY)

=
1
θ
logE λmax

(
eθY

)
≤

1
θ
logE tr eθY .

The first identity holds because the maximum eigenvalue is a positive-homogeneous
map. The second relation is Jensen’s inequality. The third follows when we use the
spectral mapping theorem to draw the exponential inside the eigenvalue map. The final
inequality depends on the fact that the trace of a positive-definite matrix dominates
the maximum eigenvalue. �

1.2 Matrix moments and cumulants
At the heart of the Laplace transform method are the moment generating function
(mgf) and the cumulant generating function (cgf) of a random variable. In this section,
we define these functions rigorously, and we explore some of their properties.

1.2.1 The matrix mgf and cgf
We begin by presenting matrix versions of the mgf and cgf.

Definition 1.3 (Matrix mgf and cgf). Let X be a random self-adjoint matrix. The matrix
moment generating function M X and the matrix cumulant generating function ΞX are
given by

M X (θ) = E eθX and ΞX (θ) = logE eθX for θ ∈ R. (1.6)

Note that the expectations may not exist for all values of θ.

The matrix mgf M X and matrix cgf ΞX contain information about the distribution of
the random matrix X , including its mean and variance. Propositions 1.1 and 1.2 show
how to exploit the data encoded in these functions to control the eigenvalues.

4 Lecture 1: Matrix Concentration

Let us dilate on Definition 1.3. Observe that the matrix mgf and cgf have formal
power series expansions:

M X (θ) = I +
∞∑

q=1

θq

q!
(E X q) and ΞX (θ) =

∞∑
q=1

θq

q!
Ψq .

We call the coefficients E X q matrix moments, and we refer to Ψq as a matrix cumulant.
The matrix cumulant Ψq has a formal expression as a (noncommutative) polynomial in
the matrix moments up to order q . In particular, the first cumulant is the mean and
the second cumulant is the variance:

Ψ1 = E X and Ψ2 = E X 2 − (E X)2.

Higher-order matrix cumulants are harder to write down and interpret.

1.2.2 The failure of the matrix mgf
We would like the use the Laplace transform bounds from Section 1.1 to study a sum of
independent random matrices. In the scalar setting, the Laplace transform method is
effective for studying independent sums because the mgf and the cgf decompose. In
the matrix case, the situation is more subtle, and the goal of this section is to indicate
where things go awry.

Consider an independent sequence {Xk } of real random variables. The mgf of the
sum satisfies a multiplication rule:

M(∑k Xk)(θ) = E exp
(∑

k
θXk

)
= E

∏
k
eθXk =

∏
k
E eθXk =

∏
k

MXk (θ). (1.7)

The first identity is the definition of an mgf. The second relation holds because the
exponential map converts a sum of real scalars to a product, and the third relation
requires the independence of random variables. The last identity, again, is the definition.

At first, we might imagine that a similar relationship holds for the matrix mgf.
Consider an independent sequence {X k } of random self-adjoint matrices. Perhaps,

M (∑k X k)(θ)
?
=

∏
k

M X k (θ). (1.8)

Unfortunately, this hope shatters when we subject it to interrogation.
It is not hard to find the reason that (1.8) fails. The identity (1.7) depends on

the fact that the scalar exponential converts a sum into a product. In contrast, for
self-adjoint matrices,

eA+H , eAeH unless A and H commute.

If we introduce the trace, the situation improves somewhat:

tr eA+H ≤ tr eAeH for all self-adjoint A,H . (1.9)

The result (1.9) is known as the Golden–Thompson inequality, a famous theorem from
statistical physics. Unfortunately, the analogous bound may fail for three matrices:

tr eA+H+T � tr eAeH eT for certain self-adjoint A,H ,T .

1.2 Matrix moments and cumulants 5

It seems that we have reached an impasse.
What if we consider the cgf instead? The cgf of a sum of independent real random

variables satisfies an addition rule:

Ξ(
∑

k Xk)(θ) = logE exp
(∑

k
θXk

)
= log

∏
k
E eθXk =

∑
k
ΞXk (θ). (1.10)

The relation (1.10) follows when we extract the logarithm of the multiplication rule (1.7).
This result looks like a more promising candidate for generalization because a sum of
self-adjoint matrices remains self-adjoint. We might hope that

Ξ(
∑

k X k)(θ)
?
=

∑
k
ΞX k (θ).

As stated, this putative identity also fails. Nevertheless, the addition rule (1.10) admits
a very satisfactory extension to matrices. In contrast to the scalar case, the proof
involves much deeper considerations.

1.2.3 A theorem of Lieb
To find the appropriate generalization of the addition rule for cgfs, we turn to the
literature on matrix analysis. Here, we discover a famous result of Elliott Lieb on the
convexity properties of the trace exponential function.

Theorem 1.4 (Lieb, 1973). Fix a self-adjoint matrix H with dimension d . The function

A 7−→ tr exp(H + log A)

is a concave map on the convex cone of d × d positive-definite matrices.

In the scalar case, the analogous function a 7→ exp(h + log a) is linear, so this result
describes a new type of phenomenon that emerges when we move to the matrix setting.
See [Tro15, Chap. 8] for a complete proof of Theorem 1.4 from first principles.

Lieb’s theorem is valuable to us because the Laplace transform bounds from
Section 1.1 involve the trace exponential function. To highlight the connection, let us
rephrase Theorem 1.4 in probabilistic terms.

Corollary 1.5 (Tropp, 2010). Let H be a fixed self-adjoint matrix, and let X be a random
self-adjoint matrix of the same dimension. Then

E tr exp(H + X) ≤ tr exp
(
H + logE eX)

.

Proof. Introduce the random matrixY = eX . Then

E tr exp(H + X) = E tr exp(H + log(Y))

≤ tr exp(H + log(EY)) = tr exp
(
H + logE eX)

.

The first identity follows from the interpretation of thematrix logarithm as the functional
inverse of the matrix exponential for positive-definite matrices. Theorem 1.4 shows
that the trace function is concave in Y , so Jensen’s inequality allows us to draw the
expectation inside the function. �

6 Lecture 1: Matrix Concentration

1.2.4 Subadditivity of the matrix cgf
We are now prepared to generalize the addition rule (1.10) for scalar cgfs to the matrix
setting. The following result is fundamental to our approach to random matrices.

Lemma 1.6 (Subadditivity of matrix cgfs). Consider a finite sequence {X k } of independent,
random, self-adjoint matrices of the same dimension. Then

E tr exp
(∑

k
θX k

)
≤ tr exp

(∑
k
logE eθX k

)
for θ ∈ R. (1.11)

Equivalently,

tr exp
(
Ξ(

∑
k X k)(θ)

)
≤ tr exp

(∑
k
ΞX k (θ)

)
for θ ∈ R. (1.12)

The parallel between the additivity rule (1.10) and the subadditivity rule (1.12) is
striking. With our level of preparation, it is easy to prove this result. We just apply the
bound from Corollary 1.5 repeatedly.

Proof. Without loss of generality, we assume that θ = 1 by absorbing the parameter
into the random matrices. Let Ek denote the expectation with respect to X k , the
remaining random matrices held fixed. Abbreviate

Ξk = logEk eX k = logE eX k .

We may calculate that

E tr exp
(∑n

k=1
X k

)
= EEn tr exp

(∑n−1

k=1
X k + X n

)
≤ E tr exp

(∑n−1

k=1
X k + log

(
En eX n

))
= EEn−1 tr exp

(∑n−2

k=1
X k + X n−1 + Ξn

)
≤ EEn−2 tr exp

(∑n−2

k=1
X k + Ξn−1 + Ξn

)
· · · ≤ tr exp

(∑n

k=1
Ξk

)
.

We use the statistical independence of {X i } to introduce the iterated expectation. At
each step m = 1, 2, 3, . . . ,n, we invoke Corollary 1.5 with the fixed matrix H equal to

H m =

m−1∑
k=1

X k +

n∑
k=m+1

Ξk .

This argument is legitimate because H m is independent from X m .
The formulation (1.12) follows from (1.11) when we substitute the expression (1.6)

for the matrix cgf and make some algebraic simplifications. �

1.3 Master bounds for sums of independent random matrices
We are now prepared to present some general results on the behavior of a sum of
independent random matrices. In the next section, we derive some concrete matrix
concentration inequalities using this approach.

1.4 Example: Matrix Bernstein 7

1.3.1 The master inequalities
To obtain the main abstract results, we simply combine the Laplace transform bounds
with the subadditivity of the matrix cgf.

Theorem 1.7 (Master bounds for a sum of independent random matrices). Consider a
finite sequence {X k } of independent, random, self-adjoint matrices of the same
size. Then

E λmax

(∑
k

X k

)
≤ inf

θ>0

1
θ
log tr exp

(∑
k
logE eθX k

)
; (1.13)

E λmin

(∑
k

X k

)
≥ sup

θ<0

1
θ
log tr exp

(∑
k
logE eθX k

)
. (1.14)

Furthermore, for all t ∈ R,

P
{
λmax

(∑
k

X k

)
≥ t

}
≤ inf

θ>0
e−θt tr exp

(∑
k
logE eθX k

)
; (1.15)

P
{
λmin

(∑
k

X k

)
≤ t

}
≤ inf

θ<0
e−θt tr exp

(∑
k
logE eθX k

)
. (1.16)

Proof. Substitute the subadditivity rule for matrix cgfs, Lemma 1.6, into the two matrix
Laplace transform results, Proposition 1.1 and Proposition 1.2. �

1.3.2 Additional tools
To use Theorem 1.7, we need semidefinite bounds on the matrix cgf that reflect structural
properties of the random matrices that appear in the sum. To implement this program,
we need several basic facts from matrix analysis.

Fact 1.8 (Trace exponential is monotone). If A 4 H , then tr exp(A) ≤ tr exp(H). �

Fact 1.9 (Logarithm is operator monotone). If A 4 H , then log A 4 logH . �

See [Tro15, Chap. 8] for the proofs of these results.
As a consequence of Fact 1.8, it suffices to produce semidefinite upper bounds for

the matrix cgfs that appear in the formulas of Theorem 1.7. As a consequence of Fact 1.9,
we can obtain a semidefinite upper bound for the matrix cgf from a semidefinite upper
bound for the matrix mgf. We will see these ideas in action in the next section.

1.4 Example: Matrix Bernstein
We continue with the matrix Bernstein inequality, the matrix concentration result that
has found the widest application. This result concerns a sum of independent zero-mean
random matrices that are subject to a uniform norm bound.

1.4.1 Bernstein cgf bound
The first step in using Theorem 1.7 is to develop an estimate for the cgf of a bounded,
zero-mean random matrix. This argument closely follows the analog argument in the
scalar setting.

8 Lecture 1: Matrix Concentration

Lemma 1.10 (Bernstein cgf). Suppose that X is a random self-adjoint matrix that satisfies

E X = 0 and ‖X ‖ ≤ 1.

Then

logE eθX 4
θ2/2

1 − |θ |/3
· E X 2.

Proof. Suppose that x ∈ [−1,+1]. Using the Taylor series expansion of the exponential,

eθx = 1 + θx +
∑∞

p=2

θp

p!
x p

≤ 1 + θx +

(∑∞

p=2

|θ |p

2 · 3p−2

)
· x2

= 1 + θx +
θ2/2

1 − |θ |/3
· x2.

Since each eigenvalue of X lies in the interval [−1,+1], we can apply this inequality to
each eigenvalue of X to obtain

eθX 4 I + θX +
θ2/2

1 − |θ |/3
· X 2.

Take the expectation:

E eθX 4 I +
θ2/2

1 − |θ |/3
· E X 2.

Invoke Fact 1.9:

logE eθX 4 log
(
I +

θ2/2
1 − |θ |/3

· E X 2
)
4

θ2/2
1 − |θ |/3

· E X 2.

The last relation follows when we apply the numerical inequality log(1 + x) ≤ x , valid
for x > −1, to each eigenvalue. �

1.4.2 The matrix Bernstein inequality
Combining the master tail bound, Theorem 1.7, with the cgf bound, Lemma 1.10, we
arrive at the matrix Bernstein inequality.

Theorem 1.11 (Matrix Bernstein). Consider a statistically independent sequence {X k :
1 ≤ k ≤ n} of random matrices with dimension d . Suppose that

E X k = 0 and ‖X k ‖ ≤ B for each index k .

Introduce the sum of the random matrices:

Y =
∑n

k=1
X k .

1.5 Example: Matrix Chernoff 9

Define the matrix variance proxy:

σ2 = ‖EY 2‖ =

∑n

k=1
E X 2

k

 .
Then, for all t ≥ 0,

P {‖Y ‖ ≥ t } ≤ 2d · exp
(
−t 2/2

σ2 + Bt /3

)
.

Furthermore,

E ‖Y ‖ ≤
√
2σ2 log(2d) +

1
3

B log(2d).

Proof. First, rescale so that B = 1. The general form of the result follows from
homogeneity arguments. The Bernstein cgf bound, Lemma 1.10, implies that

logE eθX k 4 g (θ)(E X 2
k) where g (θ) =

θ2/2
1 − |θ |/3

.

Note that g (θ) ≥ 0 for all θ ∈ R.
Substitute these cgf bounds into the master inequality (1.15) to obtain

P {λmax(Y) ≥ t } ≤ inf
θ>0

e−θt tr exp
(

g (θ)
∑

k
E X 2

k

)
≤ d inf

θ>0
e−θt λmax

(
exp

(
g (θ)(EY 2)

))
= d inf

θ>0
e−θt exp

(
g (θ)σ2) .

The first inequality depends on Fact 1.8. Afterward, we bound the trace by the dimension
times the maximum eigenvalue. Next, we invoke the spectral mapping theorem and the
fact that g (θ) > 0 to draw the maximum eigenvalue inside the exponential. Identify
the variance proxy σ2 by noting that the maximum eigenvalue of the psd matrix EY 2

coincides with its spectral norm.
Finally, we make the clever choice θ = t /(σ2 + t /3) to see that

P {λmax(Y) ≥ t } ≤ d · exp
(
−t 2/2
σ2 + t /3

)
.

An identical argument yields a corresponding probability bound for the minimum
eigenvalue ofY . Combine the two results with the union bound to arrive at the stated
probability bound for the spectral norm. �

Exercise 1.1 Use the master inequalities (1.13) and (1.14) to establish the expectation
bound that appears in Theorem 1.11.

1.5 Example: Matrix Chernoff
As a second example, we develop bounds for the extreme eigenvalues of an independent
sum of bounded, psd matrices.

10 Lecture 1: Matrix Concentration

1.5.1 Chernoff cgf bound
The matrix Chernoff inequality is based on the following cgf bound. It is a matrix
version of a scalar argument.

Lemma 1.12 (Chernoff cgf). Suppose that X is a random self-adjoint matrix that satisfies

0 4 X 4 I.

Then
logE eθX 4 (eθ − 1)(E X) for θ ∈ R.

This result is based on a classic computation for real random variables. The matrix
extension first appeared in the proof of [AW02, Thm. 19]. See also [Tro12, Lem. 5.8].

Proof. The function x 7→ eθx is convex, so the graph lies below the chord connecting
two points. In particular,

eθx ≤ 1 + (eθ − 1) x for x ∈ [0, 1].

The eigenvalues of X lie in the interval [0, 1], so

eθX 4 I + (eθ − 1) X .

Take the expectation:
E eθX 4 I + (eθ − 1)(E X).

Arguing as in the proof of Lemma 1.10,

logE eθX 4 (eθ − 1)(E X).

We have used Fact 1.9 and the numerical inequality log(1 + x) ≤ x . �

1.5.2 Matrix Chernoff inequalities
Combining the master tail bound, Theorem 1.7, with the cgf bound, Lemma 1.12, we
arrive at the matrix Chernoff inequalities.

Theorem 1.13 (Matrix Chernoff). Consider a statistically independent sequence {X k :
1 ≤ k ≤ n} of random matrices with dimension d . Suppose that

0 4 X k 4 B I for each index k .

Introduce the sum of the random matrices:

Y =
∑n

k=1
X k .

Define the lower and upper eigenvalues of the expectation:

µmin = λmin(EY) and µmax = λmax(EY).

1.5 Example: Matrix Chernoff 11

Then

P {λmin(Y) ≤ (1 − δ) µmin} ≤ d ·

(
e−δ

(1 − δ)1−δ

)µmin/B

for 0 < δ ≤ 1;

P {λmax(Y) ≥ (1 + δ) µmax} ≤ d ·

(
eδ

(1 + δ)1+δ

)µmax/B

for δ > 0.

Proof of Theorem 1.13, maximum eigenvalue bound. We begin with the tail bound for
the maximum eigenvalue λmax(Y). By a scaling argument, we may assume that B = 1.
The Chernoff cgf bound, Lemma 1.12, implies that

logE eθX k 4 g (θ)(E X k) where g (θ) = eθ − 1.

Note that g (θ) > 0 for θ > 0.
Using Fact 1.8, we substitute these cgf bounds into the master inequality (1.15) to

reach
P {λmax(Y) ≥ t } ≤ inf

θ>0
e−θt tr exp

(
g (θ)

∑
k
E X k

)
≤ inf

θ>0
e−θt d λmax

(
exp(g (θ)(EY))

)
= d inf

θ>0
e−θt exp

(
g (θ) λmax(EY)

)
≤ d inf

θ>0
e−θt exp (g (θ) µmax) .

In the second line, we use the fact that the matrix exponential is pd to bound the
trace by d times the maximum eigenvalue; we have also identified the sum as EY .
The third line follows from the spectral mapping theorem. Next, we use the fact
that the maximum eigenvalue is a positive-homogeneous map, which depends on the
observation that g (θ) > 0 for θ > 0. Finally, we identify the statistic µmax.

To complete the proof, make the change of variables t 7→ (1 + δ) µmax. Then the
infimum is achieved at θ = log(1 + δ), which leads to the upper tail bound. �

The lower bounds follow from a related argument that is slightly more delicate.

Proof of Theorem 1.13, minimum eigenvalue bound. We now establish the bound for the
minimum eigenvalue λmin(Y). As before, rescale so that B = 1. The Chernoff cgf
bound, Lemma 1.12, implies that

logE eθX k 4 g (θ)(E X k) where g (θ) = eθ − 1.

Note that g (θ) < 0 when θ < 0.
Introduce these cgf bounds into the master inequality (1.16) to reach

P {λmin(Y) ≤ t } ≤ inf
θ<0

e−θt tr exp
(

g (θ)
∑

k
E X k

)
≤ inf

θ<0
e−θt d λmin

(
exp(g (θ)(EY))

)
= inf

θ<0
e−θt d exp

(
g (θ) λmin(EY))

)
≤ d inf

θ<0
e−θt exp (g (θ) · µmin) .

12 Lecture 1: Matrix Concentration

The justifications here are similar to those in the previous argument. The only
noteworthy point is that we must replace the maximum eigenvalue map with the
minimum eigenvalue map because g (θ) < 0 for θ < 0.

Finally, we make the change of variables t 7→ (1 − δ) µmin. The infimum is attained
at θ = log(1 − δ), which yields the lower tail bound. �

Exercise 1.2 Derive the following consequences of Theorem 1.13. For δ ∈ (0, 1],

P {λmin(Y) ≤ (1 − δ)µmin} ≤ d · e−δ
2µmin/(2B);

P {λmax(Y) ≥ (1 + δ)µmax} ≤ d · e−δ
2µmax/(3B).

These simplifications are often more tractable in practice.

1.6 The rectangular case
In these lectures, we will only be using matrix concentration for self-adjoint matrices.
Nevertheless, it is important to be aware that concentration results for rectangular
matrices follow as a formal consequence. This section outlines the approach.

1.6.1 The self-adjoint dilation
The self-adjoint dilation H (S) of a rectangular matrix S ∈ Md1×d2 is the self-adjoint
matrix

H (S) :=
[
0 S

S∗ 0

]
∈ Hd1+d2 . (1.17)

Note that the map H is real-linear. By direct calculation,

H (S)2 =

[
SS∗ 0
0 S∗S

]
. (1.18)

We also have the spectral identity

λmax(H (S)) = ‖H (S)‖ = ‖S ‖. (1.19)

This point follows from some linear algebraic considerations.

1.6.2 Rectangular matrix Bernstein
Using the device of the self-adjoint dilation, we can develop a version of the matrix
Bernstein inequality for rectangular matrices.

Corollary 1.14 (Rectangular matrix Bernstein). Consider a statistically independent se-
quence {Sk : 1 ≤ k ≤ n} of d1 × d2 random matrices. Suppose that

ESk = 0 and ‖Sk ‖ ≤ B for each index k .

Introduce the sum of the random matrices:

Z =
∑n

k=1
Sk .

1.6 The rectangular case 13

Define the matrix variance proxy:

σ2 = max{‖EZ Z ∗‖, ‖EZ ∗Z ‖}

= max
{∑

k
ESk S∗k

 , ∑
k
ES∗k Sk

} .
Then, for all t ≥ 0,

P {‖Z ‖ ≥ t } ≤ (d1 + d2) · exp
(
−t 2/2

σ2 + Bt /3

)
.

Furthermore,

E ‖Z ‖ ≤
√
2σ2 log(d1 + d2) +

1
3

B log(d1 + d2).

Exercise 1.3 Establish Corollary 1.14 by applying Theorem 1.11 to the self-adjoint dilation
H (Z), perhaps with larger constants. Hint: To obtain the sharp constants presented
here, you need to use the maximum eigenvalue bound that appears inside the proof of
Theorem 1.11.

Notes
The modern theory of matrix concentration begins with the matrix Laplace transform
technique (Proposition 1.1) developed by Ahlswede & Winter [AW02] and refined
by Oliveira [Oli10]. The author of these notes recognized [Tro11a; Tro12; Tro15]
that Lieb’s theorem allows us to develop a perfect analogy (Theorem 1.7) with the
scalar concentration theory. This idea has had a profound impact on computational
mathematics over the last decade. These lectures explore some of the most striking
outcomes.

Matrix concentration inequalities have a long history. Early work in operator theory
and Banach space geometry includes [Buc01; Lus86; LP91; PX97; Rud99; Tom74]. The
monograph [Tro15] provides a more comprehensive account.

“Corncobs,” Wikimedia Commons

2. Matrix Approximation by Sampling

Most of the text in this lecture is copied from my monograph [Tro15, Chap. 6].

In applied mathematics, we often need to approximate a complicated target object
by a more structured object. In some situations, we can solve this problem using a
beautiful probabilistic approach called empirical approximation. The basic idea is to
construct a “simple” random object whose expectation equals the target. We obtain the
approximation by averaging several independent copies of the simple random object.
As the number of terms in this average increases, the approximation becomes more
complex, but it represents the target more faithfully. We must quantify this tradeoff.

In particular, we often encounter problems where we need to approximate a matrix
by a more structured matrix. For example, we may wish to find a sparse matrix that is
close to a given matrix, or we may need to construct a low-rank matrix that is close to
a given matrix. Empirical approximation provides one mechanism for obtaining these
approximations. The matrix Bernstein inequality offers a natural tool for assessing the
quality of the randomized approximation.

This lecture develops a general framework for empirical approximation of symmetric
matrices alongwith an application inmachine learning. Themonograph [Tro15, Chap. 6]
includes the extension to rectangular matrices and several other basic applications.

2.1 Matrix sampling estimators
Let A be a self-adjoint target matrix that we hope to approximate by a more structured
matrix. To that end, suppose we can represent the target as a sum of “simple” matrices:

A =
∑N

i=1
Ai . (2.1)

16 Lecture 2: Matrix Approximation by Sampling

The idea is to identify summands Ai with desirable properties (such as sparsity or low
rank) that we want our approximation to inherit.

Along with the decomposition (2.1), we need to construct a set of sampling proba-
bilities: ∑N

i=1
pi = 1 and pi > 0 for i = 1, . . . ,N . (2.2)

We want to ascribe larger probabilities to “more important” summands. Quantifying
what “important” means is themost difficult aspect of randomizedmatrix approximation.
Choosing the right sampling distribution for a specific problem requires insight and
ingenuity. Nevertheless, we will see that the matrix Bernstein inequality gives a strong
hint about which distributions lead to the most accurate approximations.

Given the data (2.1) and (2.2), we may construct a “simple” random matrix R by
sampling:

R = p−1i Ai with probability pi . (2.3)

This construction ensures that R is an unbiased estimator of the target: ER = A.
Even so, the random matrix R offers a poor approximation of the target A because it
has a lot more structure. To improve the quality of the approximation, we average n
independent copies of the random matrix R . We obtain an estimator of the form

R̄ n =
1
n

∑n

k=1
R k where each R k is an independent copy of R .

By linearity of expectation, this estimator is also unbiased: E R̄ n = A. The approxima-
tion R̄ n remains structured when the number n of terms in the approximation is small
as compared with the number N of terms in the decomposition (2.1).

Our goal is to quantify the approximation error as a function of the complexity n of
the approximation:

E ‖R̄ n − A‖ ≤ err(n).

As a reminder, ‖·‖ denotes the spectral norm; i.e., the `2 operator norm. There is a
tension between the total number n of terms in the approximation and the error err(n)
the approximation incurs. In applications, it is essential to achieve the right balance.

2.1.1 An error estimate
We can obtain an error estimate for the approximation scheme described in Section 2.1
as an immediate corollary of the matrix Bernstein inequality.

Theorem 2.1 (Matrix approximation by random sampling). Let A ∈ Hd be a fixed matrix.
Construct a random matrix R ∈ Hd that satisfies

ER = A and ‖R ‖ ≤ B .

Compute the per-sample second moment:

m2(R) = ‖ER2‖. (2.4)

2.1 Matrix sampling estimators 17

Form the matrix sampling estimator

R̄ n =
1
n

∑n

k=1
R k where each R k is an independent copy of R .

Then the estimator satisfies, for all t ≥ 0,

P
{
‖R̄ n − A‖ ≥ t

}
≤ 2d exp

(
−nt 2/2

m2(R) + 2Bt /3

)
. (2.5)

Furthermore,

E ‖R̄ n − A‖ ≤

√
2m2(R) log(2d)

n
+

2B log(2d)

3n
. (2.6)

Proof. Since R is an unbiased estimator of the target matrix A, we can write

Y = R̄ n − A =
1
n

∑n

k=1
(R k − ER) =

∑n

k=1
X k .

We have defined the summands X k = n−1(R k − ER). These random matrices form an
independent and identically distributed family, and each X k has mean zero.

Now, each of the summands is subject to an upper bound:

‖X k ‖ ≤
1
n
(‖R k ‖ + ‖ER ‖) ≤

1
n
(‖R k ‖ + E ‖R ‖) ≤

2B

n
.

The first relation is the triangle inequality; the second is Jensen’s inequality. The last
estimate follows from our assumption that ‖R ‖ ≤ B .

To control the matrix variance, first note that∑n

k=1
E X 2

k

 = n · ‖E X 2
1‖.

The identity holds because the summands X k are identically distributed. We may
calculate that

0 4 X 2
1 = n−2 E(R − ER)2 = n−2

[
ER2 − (ER)2

]
4 n−2 ER2.

The first relation holds because the expectation of the random psd matrix X 2
1 is psd.

The first identity follows from the definition of X 1 and the fact that R1 has the same
distribution as R . The second identity is a direct calculation. The last relation holds
because (ER)2 is psd. In summary,∑n

k=1
E X 2

k

 ≤ 1
n
‖ER2‖ =

m2(R)

n
.

The last line follows from the definition (2.4) of m2(R).
We are prepared to apply the matrix Bernstein inequality to the random matrixY .

This act delivers the stated results. �

18 Lecture 2: Matrix Approximation by Sampling

2.1.2 Discussion
One of the most common applications of the matrix Bernstein inequality is to analyze
empirical matrix approximations. As a consequence, Corollary 2.1 is one of the most
useful forms of the matrix Bernstein inequality. Let us discuss some of the important
aspects of this result.

Understanding the bound on the approximation error
First, let us examine how many samples n suffice to bring the approximation error
bound in Corollary 2.1 below a specified positive tolerance ε. Examining inequality (2.6),
we find that

n ≥
2m2(R) log(2d)

ε2
+

2B log(2d)

3ε
implies E ‖R̄ n − A‖ ≤ 2ε. (2.7)

Roughly, the number n of samples should be on the scale of the maximum of the
per-sample second moment m2(R) and the uniform upper bound B .

The bound (2.7) also reveals an unfortunate aspect of empirical matrix approxi-
mation. To make the tolerance ε small, the number n of samples must increase in
proportion to ε−2. In other words, it takes many samples to achieve a highly accurate
approximation. We cannot avoid this phenomenon if we construct an approximation
using an empirical average, because it is ultimately a consequence of the central limit
theorem.

On a more positive note, it is quite valuable that the error bound (2.5) involves the
spectral norm. This type of estimate simultaneously controls the error in every linear
function of the approximation:

‖R̄ n − A‖ ≤ ε implies |tr(R̄ nC) − tr(AC)| ≤ ε for ‖C ‖1 ≤ 1.

We have written ‖·‖1 for the Schatten 1-norm. These bounds also control the error in
each eigenvalue λ j (R̄ n) of the approximation:

‖R̄ n − A‖ ≤ ε implies |λ j (R̄ n) − λ j (A)| ≤ ε.

When there is a gap between two eigenvalues of A, we can also obtain bounds for
the discrepancy between the associated eigenvectors of R̄ n and A using perturbation
theory [Bha97, Chap. VII].

Constructing empirical estimates
To obtain an accurate structured approximation, we need to select the right set of
simple constituent matrices, as well as the right choice of sampling probabilities. In
practice, these choices demand considerable creativity.

Fortunately, the matrix sampling result, Theorem 2.1, offers us some guidance
because it identifies two summary parameters that control the quality of an empirical
approximation. Indeed, we want to select the random matrix R to ensure that the
upper bound B and the per-sample second moment m2(R) are both as small as possible.
Later, we will see that this insight gives us a mechanism for determining the right
sampling probabilities for certain problems.

2.1 Matrix sampling estimators 19

This observation also hints at the possibility of achieving a bias–variance tradeoff
when approximating A. Indeed, we might drop all of the “unimportant” terms in
the representation (2.1), i.e., those whose sampling probabilities are small. Then
we construct a random approximation R only for the “important” terms that remain.
Properly executed, this process may decrease both the per-sample second moment
m2(R) and the upper bound B . The idea is analogous with shrinkage in statistical
estimation.

A general sampling model
Corollary 2.1 extends beyond the sampling model based on the finite expansion (2.1).
Indeed, we can consider a general decomposition of the self-adjoint target matrix A:

A =

∫
Ω

A(ω) dµ(ω), (2.8)

where µ is a probability measure on a sample space Ω. As before, the idea is to
represent the target matrix A as an average of “simple” matrices A(ω). The main
difference is that the family of simple matrices may now be infinite. In this setting, we
construct the random approximation R so that

P {R ∈ E} = µ{ω : A(ω) ∈ E} for each Borel subset E ⊆ Hd

In particular, it follows that

ER = A and ‖R ‖ ≤ sup
ω∈Ω
‖A(ω)‖.

In this lecture, we will see how this abstraction allows us to approximate kernel matrices
for machine learning applications.

Suboptimality of sampling estimators
Another fundamental point about sampling estimators is that they are often suboptimal.
In other words, the matrix sampling estimator may incur an error substantially worse
than the error in the best structured approximation of the target matrix.

To see why, let us consider a simple form of low-rank approximation by random
sampling. The method here does not have practical value, but it highlights the reason
that sampling estimators usually do not achieve ideal results. Suppose that A is a
trace-one psd matrix with the eigenvalue decomposition

A =
∑d

i=1
λiu iu ∗i where

∑d

i=1
λi = 1 and λi ≥ 0.

Given the eigenvalue decomposition, we can construct a random rank-one approximation
R of the form

R = u iu ∗i with probability λi .

Per Corollary 2.1, the error in the associated sampling estimator R̄ n is a rank-n matrix
that satisfies

‖R̄ n − A‖ ≤

√
2 log(2d)

n
+

2 log(2d)

n

20 Lecture 2: Matrix Approximation by Sampling

On the other hand, a best rank-n approximation of A takes the form An =
∑n

j=1 λ j u j u ∗j ,
and it incurs error

‖An − A‖ = λn+1 ≤
1

n + 1
.

The second relation is Markov’s inequality, which provides an accurate estimate only
when the singular values λ1, . . . , λn+1 are comparable. Regardless, the sampling
estimator always incurs a somewhat larger error, which only converges as n−1/2.
Furthermore, there are many matrices whose singular values decay quickly, so that
λn+1 � (n + 1)−1. In the latter situation, the error in the sampling estimator is
potentially much worse than the optimal error.

2.2 Application: Random features
As a first application of empirical matrix approximation, let us discuss an idea from
machine learning called random features. The approach is based on the continuous sam-
pling model (2.8), but it depends on the same principles as the discrete approximations
that we introduced in Section 2.1.

Random feature maps were proposed by Ali Rahimi and Ben Recht [RR07], and
they have turned out to be useful in practice. The analysis in this section is due to
David Lopez-Paz et al. [Lop+14].

2.2.1 Kernel matrices
Let X be a set. We think about the elements of the set X as (potential) observations
that we would like to use to perform learning and inference tasks. Let us introduce a
bounded measure K of similarity between pairs of points in the set:

K : X ×X → [−1,+1].

The similarity measure K is often called a kernel. We assume that the kernel returns
the value +1 when its arguments are identical, and it returns smaller values when
its arguments are dissimilar. We also assume that the kernel is symmetric; that is,
K (x , y) = K (y , x) for all arguments x , y ∈ X .

A simple example of a kernel is the angular similarity between a pair of points in a
Euclidean space:

K (x , y) =
2
π
arcsin

〈x , y 〉

‖x ‖‖y ‖
= 1 −

2
π
·](x , y) for x , y ∈ Rd . (2.9)

We write](·, ·) for the planar angle between two vectors, measured in radians. As
usual, we instate the convention that 0/0 = 0. See Figure 2.1 for an illustration.

Suppose that x1, . . . , x N ∈ X are observations. The N ×N kernel matrixG = [gi j]

tabulates the values of the kernel function for each pair of data points:

gi j = K (x i , x j) for i , j = 1, . . . ,N .

We say that the kernel K is positive definite if the kernel matrixG is positive semidefinite
for any choice of observations {x i } ⊂ X . We will be concerned only with positive-
definite kernels in this discussion. It may be helpful to think about the kernel matrix G
as a generalization of the Gram matrix of a family of points in a Euclidean space.

2.2 Application: Random features 21

sgn 〈x , u 〉 · sgn 〈y , u 〉 = +1

sgn 〈x , u 〉 · sgn 〈y , u 〉 = −1

〈x , u 〉 = 0

〈y , u 〉 = 0

x

y

Figure 2.1: The angular similarity between two vectors. Let x and y be nonzero
vectors in R2 with angle](x , y). The light red region contains the directions u where
the product sgn 〈x , u 〉 · sgn 〈y , u 〉 equals +1, and the dark blue region contains the
directions u where the same product equals −1. The blue region subtends a total angle
of 2](x , y), and the red region subtends a total angle of 2π − 2](x , y).

In the Euclidean setting, there are many statistical learning methods that only
require the inner product between each pair of observations. These algorithms can be
extended to the kernel setting by replacing each inner product with a kernel evaluation.
As a consequence, kernel matrices can be used for classification, regression, and feature
selection. In these applications, kernels are advantageous because they work outside
the Euclidean domain, and they allow task-specific measures of similarity. This idea,
sometimes called the kernel trick, is a major insight with wide applications [SS01].

A significant challenge for algorithms based on kernels is that the kernel matrix
is big. Indeed, G contains Θ(N 2) entries, where N is the number of data points.
Furthermore, the cost of constructing the kernel matrix is often Θ(dN 2) where d is the
number of parameters required to specify a point in the universe X .

Nevertheless, there is an opportunity. Large data sets tend to be redundant, so the
kernel matrix also tends to be redundant. This event manifests in the kernel matrix
being well-approximated by a low-rank matrix. As a consequence, we may try to
replace the kernel matrix by a low-rank proxy. For some similarity measures, we can
accomplish this task using empirical approximation.

2.2.2 Random features and low-rank approximation of the kernel matrix
In certain cases, a positive-definite kernel can be written as an expectation (2.8), and
we can take advantage of this representation to construct an empirical approximation
of the kernel matrix. Let us begin with the general construction, and then we will
present a few examples in Section 2.2.3.

Let W be a sample space equipped with a sigma-algebra and a probability measure

22 Lecture 2: Matrix Approximation by Sampling

µ. Introduce a bounded feature map:

ψ : X ×W → [−b ,+b] where b > 0.

Consider a random variable w taking values in W and distributed according to the
measure µ. We assume that this random variable satisfies the reproducing property

K (x , y) = Ew
[
ψ(x ;w) · ψ(y ;w)

]
for all x , y ∈ X . (2.10)

The pair (ψ,w) is called a random feature map for the kernel K . As we will see, this
hypothesis will lead to an instance of the expectation model (2.8) for the kernel matrix
of an arbitrary dataset.

We want to approximate the kernel matrix associated with a set {x1, . . . , x N } ⊂ X

of observations. To do so, we draw a random vector w ∈ W distributed according to µ.
Form a random vector z ∈ RN by applying the feature map to each data point with the
same choice of the random vector w . That is,

z =

z1
...

zN

 =

ψ(x1;w)

...
ψ(x N ;w)

 .
The vector z ∈ RN is sometimes called a random feature; it should be regarded as a
summary of the entire dataset. By the reproducing property (2.10) for the random
feature map, for each pair (i , j) of indices,

gi j = K (x i , x j) = Ew
[
ψ(x i ;w) · ψ(x j ;w)

]
= Ew

[
zi · z j

]
.

In other words, the feature map gives us an unbiased estimator for each entry of the
kernel matrix.

We can write this relation in matrix form as

G = E[z z ∗].

The random matrix R = z z ∗ is an unbiased rank-one estimator for the kernel matrix G .
This is an instantiation of the model (2.8)! Note that this representation demonstrates
that random feature maps, as defined here, only exist for positive-definite kernels. (But
we can construct random feature maps for some other kinds of kernels using related
approaches.)

We can construct a better empirical approximation of the kernel matrix G by
averaging realizations of the simple estimator R :

R̄ n =
1
n

∑n

k=1
R k where R k is an independent copy of R . (2.11)

In other words, we are using n independent random features z 1, . . . , z n to approximate
the kernel matrix.

The cost of computing a single random feature is typically Θ(dN), where d is the
number of parameters required to specify a point in the universe X . Therefore, the cost
of computing n random features is Θ(dnN). When n � N , the cost of obtaining the
random feature approximation R̄ n is substantially smaller than the cost of computing
the full kernel matrix. The question is how many random features n we needed before
our estimator is accurate.

2.2 Application: Random features 23

2.2.3 Examples of random feature maps
Before we continue with the analysis, let us describe some random feature maps. This
discussion is tangential to our theme of matrix concentration, but it is valuable to
understand why random feature maps exist.

The angular similarity kernel
First, let us consider the angular similarity (2.9) defined on Rd . We can construct a
random feature map using a classic result from plane geometry. If we draw w uniformly
from the unit sphere Sd−1 ⊂ Rd , then

K (x ; y) = 1 −
2
π
·](x , y)

= Ew
[
sgn 〈x , w 〉 · sgn 〈y , w 〉

]
for all x , y ∈ X .

(2.12)

The easy proof of this relation should be visible from the diagram in Figure 2.1. In light
of the formula (2.12), we set W = Sd−1 with the uniform measure, and we define the
feature map

ψ(x ;w) = sgn 〈x , w 〉.

The reproducing property (2.10) follows immediately from (2.12). Therefore, the pair
(ψ,w) is a random feature map for the angular similarity kernel.

The paper [KK12] explains how to compute random features for more general
inner-product kernels using a classic theorem of Schönberg.

Translation-invariant kernels
Next, let us describe an important class of kernels that can be expressed using random
feature maps. A kernel on Rd is translation invariant if there is a function ϕ : Rd → R

for which
K (x , y) = ϕ(x − y) for all x , y ∈ Rd .

Bôchner’s theorem, a classical result from harmonic analysis, gives a representation for
each continuous, positive-definite, translation-invariant kernel:

K (x , y) = ϕ(x − y)

= c

∫
Rd

ei〈x , w 〉 · e−i〈y , w 〉 dµ(w) for all x , y ∈ Rd .
(2.13)

In this expression, c is a positive scale factor c , and µ is a probability measure onRd , and
these objects depend only on the function ϕ. Conversely, for any probability measure µ,
the formula (2.13) induces a continuous, positive-definite, translation-invariant kernel.

Bôchner’s theorem (2.13) allows us to construct a (complex-valued) random feature
map for the kernel K :

ψC(x ;w) =
√

c ei〈x , w 〉 where w has distribution µ on Rd .

This map satisfies a complex variant of the reproducing property (2.10):

K (x , y) = Ew
[
ψC(x ;w) · ψC(y ;w)∗

]
for all x , y ∈ Rd ,

24 Lecture 2: Matrix Approximation by Sampling

where we have written ∗ for complex conjugation.
With a little more work, we can construct a real-valued random feature map. Recall

that the kernel K is symmetric, so the complex exponentials in (2.13) can be written in
terms of cosines. This observation leads to the random feature map

ψ(x ;w ,U) =
√
2c cos

(
〈x , w 〉 +U

)
where w ∼ µ and U ∼ uniform[0, 2π]. (2.14)

To verify that (ψ, (w ,U)) reproduces the kernel K , as required by (2.10), we just make
a short calculation using the angle-sum formula for the cosine.

We conclude this section with the most important example of a random feature
map from the class we have just described. Consider the Gaussian radial basis function
kernel:

K (x , y) = e−α ‖x−y ‖2/2 for all x , y ∈ Rd .

The positive parameter α reflects how close two points must be before they are regarded
as “similar.” For the Gaussian kernel, Bôchner’s Theorem (2.13) holds with the scaling
factor c = 1 and the probability measure µ = normal(0, αId). In summary, we define

ψ(x ;w ,U) =
√
2 cos

(
〈x , w 〉 +U

)
where w ∼ normal(0, αId) and U ∼ uniform[0, 2π].

This random feature map reproduces the Gaussian radial basis function kernel.

2.2.4 Error bound for the random feature approximation
We will demonstrate that the approximation R̄ n of the N × N kernel matrix G using n
random features, constructed in (2.11), leads to an estimate of the form

E ‖R̄ n −G ‖ ≤

√
2bN ‖G ‖ log(2N)

n
+

2bN log(2N)

3n
. (2.15)

In this expression, b is the uniform bound on the magnitude of the feature map ψ. The
short proof of (2.15) appears in Section 2.2.5.

To clarify what this result means, we introduce the intrinsic dimension of the N ×N
kernel matrix G :

intdim(G) =
trG

‖G ‖
=

N

‖G ‖
.

Note that trG = N because of the requirement that K (x , x) = +1 for all x ∈ X . The
intrinsic dimension intdim(G) is a continuous measure of the number of energetic
dimensions, and it is always bounded above by the algebraic rank of G .

Now, assume that the number n of random features satisfies the bound

n ≥ 2bε−2 · intdim(G) · log(2N),

In view of (2.15), the relative error in the empirical approximation of the kernel matrix
satisfies

E ‖R̄ n −G ‖

‖G ‖
≤ ε + ε−2.

2.2 Application: Random features 25

We learn that the randomized approximation of the kernel matrix G using n random
features can be accurate when n is proportional to the intrinsic dimension of G , even
if the intrinsic dimension is much smaller than the number of data points. That is,
n ≈ intdim(G) � N .

2.2.5 Analysis of the random feature approximation
The analysis of random features is based on Corollary 2.1. To apply this result, we need
the per-sample second-moment m2(R) and the uniform upper bound B . Both are easy
to come by.

First, observe that
‖R ‖ = ‖z z ∗‖ = ‖z ‖2 ≤ bN

Recall that b is the uniform bound on the feature map ψ, and N is the number of
components in the random feature vector z .

Second, we calculate that

ER2 = E
[
‖z ‖2 z z ∗

]
4 bN · E[z z ∗] = bN ·G .

Each random matrix z z ∗ is positive semidefinite, so we can introduce the upper bound
‖z ‖2 ≤ bN . The last identity holds because R is an unbiased estimator of the kernel
matrix G . It follows that

m2(R) = ‖ER2‖ ≤ bN · ‖G ‖.

This is our bound for the per-sample second moment.
Finally, we invoke Corollary 2.1 with parameters B = bN and m2(R) ≤ bN ‖G ‖ to

arrive at the estimate (2.15).

©CERN, CC BY-SA 3.0

3. Quantum State Tomography

This lecture was written primarily by Richard Kueng, on the basis of our joint
work [Guh+18]. Any errors that appear are the fault of the lecturer.

A core problem in quantum information science is to estimate the state of a quantum
system from measurements (of multiple realizations) of the system. This problem is
called quantum tomography. In quantum computing, the state is represented by a
finite-dimensional matrix, so we can formulate the tomography problem as a question
about matrix estimation.

This lecture considers a special class of quantum tomography problems that admit
a particularly simple analysis based on the matrix Bernstein inequality (Theorem 2.1).
A remarkable feature of this application is that random matrices arise as a consequence
of quantum mechanics!

3.1 Postulates of quantum mechanics
Quantum mechanics is a probabilistic theory, contra Einstein’s firm belief that “God does
not play dice.” In this lecture, we will restrict ourselves to finite-dimensional quantum
mechanics, where the principles are clearest. The extension to infinite dimensions is
conceptually straightforward, and it resembles the transition from matrix analysis to
functional analysis. To begin, we will develop the fundamental axioms of quantum
mechanics as a noncommutative extension of discrete probability theory.

3.1.1 Recapitulation: Discrete probability theory
Recall that 〈·, ·〉 is the standard inner product on Rd . We denote the vector of ones by
1 = (1, . . . , 1)∗ ∈ Rd ; this is the unit for the Hadamard product of vectors.

28 Lecture 3: Quantum State Tomography

A discrete probability distribution on d points is fully characterized by a d-
dimensional probability vector. A probability vector is just a nonnegative vector
whose entries sum to one. The set ∆d of all d-dimensional probability vectors is called
the probability simplex:

∆d = {p ∈ R
d : p ≥ 0 and 〈1, p〉 = 1}.

The probability simplex is a compact, convex set of vectors. The extreme points δi of
the probability simplex are the nonrandom probability distributions. The barycenter
d−11 of the probability simplex is the uniform distribution.

Elementary events (singleton outcomes) are encoded by the d standard basis vectors
δ1, . . . , δd ∈ R

d . Thus, the probability rule is given by the inner product:

P {i | p} = 〈δi , p〉 = pi ∈ [0, 1].

An event E is an element of the power set of {1, . . . ,d}. We may represent the event E
by the binary indicator vector 1E ∈ {0, 1}n . The probability rule remains the same:

P {E | p} = 〈1E, p〉 =
∑

i ∈E
pi ∈ [0, 1].

This formalism extends to convex mixtures of events, which we call generalized events.
The family of generalized events coincides with the standard cube:

conv{0, 1}d = {h ∈ Rn : 0 ≤ h ≤ 1} = Qd .

The probability of a generalized event h ∈ Qd is given by the inner product 〈h , p〉.
We can therefore associate generalized events with the class of nonnegative random
variables that are bounded by one, and the probability of a generalized event is the
expectation of this random variable. In summary, generalized events are dual to
probability distributions.

Next, we define the notion of a classical measurement.

Definition 3.1 (Classical measurement). A (classical) measurement {hλ1 , . . . ,hλm } ⊂ Qd

is a set of generalized events that forms a resolution of the vector of ones:

0 ≤ hλi ≤ 1 and
∑m

i=1
hλi = 1.

A measurement should be viewed as a complete set of (generalized) events.∑m

i=1
P {λi | p} =

∑m

i=1
〈hλi , p〉 = 〈1, p〉 = 1.

In other words, it is certain that one of the outcomes λ1, . . . , λm will occur.

Example 3.1 (What is a classical measurement?). Suppose that you and I agree on a bet
that involves two random variables: a fair coin toss and the roll of a die. We first toss
the coin and subsequently roll the die. The rules for victory depend on the outcome of
the coin toss:

1. If the coin comes up heads, then I win if the die produces an odd number {1, 3, 5}.
Otherwise, you win.

3.1 Postulates of quantummechanics 29

2. If the coin comes up tails, then I win if the die produces a number in the set
{1, 2, 3}. Otherwise, you win.

A generalized classical event allows us to absorb the randomness in the coin flip
into a generalized event that is associated only with the outcome of rolling the die:

h I win =
1
2
(1, 0, 1, 0, 1, 0) +

1
2
(1, 1, 1, 0, 0, 0) = (1, 0.5, 1, 0, 0.5, 0);

hYou win =
1
2
(0, 1, 0, 1, 0, 1) +

1
2
(0, 0, 0, 1, 1, 1) = (0, 0.5, 0, 1, 0.5, 1).

In other words, these two generalized events arise from marginalization over the first
variable. The generalized events reflect our suspense about who will win the game
once we roll the die.

The pair {h I win,hYou win} constitutes a classical measurement system. In this case,
performing the measurement amounts to completing the game (by rolling the die) and
recording the outcome.

An alternative perspective, that is more quantum in spirit, realizes the probability
rule as a tensor product and “sums out” one of the components. In the matrix setting,
the analogous operation is called a partial trace. �

Table 3.1 summarizes the basic concepts of classical discrete probability theory.

Concept Representation Formula
Probability density Normalized, nonnegative p ∈ Rd p ≥ 0 and 〈1, p〉 = 1
Measurement Resolution {hλi } of the unit 1 hλi ≥ 0 and

∑m
i=1 hλi = 1

Probability rule Standard inner product P {λi | p} = 〈hλi , p〉

Table 3.1: Axioms for classical probability theory. The structure of discrete probability
theory is captured by endowing Rd with the partial order ≥ and the identity element 1.

3.1.2 Noncommutative probability theory
The postulates of quantum mechanics arise naturally from a noncommutative extension
of classical probability theory. We simply replace the triple (Rd , ≥, 1) by the triple
(Hd , <, I). Recall that Hd = Hd (C) is the space of self-adjoint d × d complex matrices,
endowed with the trace inner product 〈X , Y 〉 = tr(XY), the semidefinite order <, and
the identity matrix I.

In quantum mechanics, the analog of a probability density vector is a (probability)
density matrix.

Definition 3.2 (Density matrix). The state of a d-dimensional quantummechanical system
is fully described by a density matrix ρ ∈ Hd , a self-adjoint matrix that satisfies

ρ < 0 and 〈I, ρ〉 = tr(ρ) = 1.

Density matrices are often called states.

30 Lecture 3: Quantum State Tomography

Introduce the family S(Hd) of all d-dimensional density matrices:

S(Hd) = {X ∈ Hd : X < 0 and 〈I, X 〉 = 1}

Like the probability simplex, the set S(Hd) of density matrices is compact and convex.
In parallel to a classical measurement system, we may now define a quantum

measurement system.

Definition 3.3 (Quantum measurement). A (quantum) measurement is a collection {H λi :
1 ≤ i ≤ m} of psd matrices that forms a resolution of the identity matrix:

0 4 H λi 4 I and
∑m

i=1
H λi = I.

When a measurement {H λi : 1 ≤ i ≤ m} is performed on a quantum mechanical
system with density matrix ρ, two things happen.

1. Born’s rule: We obtain a random measurement outcome λi that follows the
probability distribution

P {λi | ρ} = 〈H λi , ρ〉 = tr(H λi ρ). (3.1)

2. Collapse of wavefunction: The quantum system ceases to exist.

There is some philosophical debate about this model, but experimental evidence
suggests that it serves well as an ideal representation of what happens in real quantum
systems.

Table 3.2 summarizes the essential concepts of quantum probability theory. We
remark that the transition from classical to quantum probability theory resembles the
transition from linear to semidefinite programming.

Concept Representation Formula
Probability density Normalized psd matrix ρ ∈ Hd ρ < 0 and 〈I, ρ〉 = 1
Measurement Resolution {H λi } of the identity I H λi < 0 and

∑m
i=1 H λi = I

Born’s rule Trace inner product P {λi | ρ} = 〈H λi , ρ〉

Table 3.2: Axioms for quantum mechanics. The structure of quantum mechanics is
captured by the real-linear space Hd endowed with the psd order < and the identity
matrix I.

3.1.3 Aside: Geometric intuition and the Bloch ball
Since the set S(Hd) of states is a convex body, we can distinguish points that capture
information about its geometry.

• Extreme points: A density matrix ρ is an extreme point of S(Hd) if and only if
ρ has rank one. Equivalently, ρ = uu ∗ where u ∈ Cd is a unit vector. Extreme
points are called pure (quantum) states, and they generate S(Hd) via convex
mixtures:

S(Hd) = conv{uu ∗ : u ∈ Cd and ‖u ‖ = 1}.
A pure state is the quantum analog of a classical nonrandom distribution.

3.1 Postulates of quantummechanics 31

• Barycenter: The barycenter of S(Hd) is the state ρ0 = d−1I. It is called the
maximally mixed (quantum) state. The maximally mixed state is the quantum
analog of the classical uniform distribution.

For two-dimensional quantum states (called qubits), we can construct a beautiful
geometric representation, called the Bloch ball. This representation helps us visualize
the structure of the set of qubits, including the relationships between pure states and
the maximally mixed state.

To construct the Bloch ball, we first define the Pauli matrices:

σ0 = I; σ1 =

[
0 1
1 0

]
; σ2 =

[
0 −i
i 0

]
; σ3 =

[
1 0
0 −1

]
.

It is straightforward to check that these matrices form a basis of H2. Consider the
parameterized family

M (r) =
∑4

i=0
ri σi where r = (r0, r1, r2, r3)∗ ∈ R4.

We can easily characterize when M (r) is a density matrix:

• M (r) has unit trace if and only if r0 =
1
2 .

• M (r) is psd if and only if r 2
1 + r 2

2 + r 3 ≤ r 2
0 .

In other terms,

S(H2) =
{
1
2 σ0 +

1
2

∑3

i=1
ri σi : r 2

1 + r 2
2 + r 2

3 ≤ 1
}
. (3.2)

The set of qubits is parameterized by linear combinations of Pauli matrices whose
expansion coefficients r ′ = (r1, r2, r3) ∈ R3 are confined to the unit ball.

The formula (3.2) establishes a one-to-one correspondence between the density
matrices of two-dimensional quantum systems and the Euclidean unit ball S2 ⊂ R3.
This is called the Bloch ball representation, and it accurately reflects the geometry of
S(H2). Indeed,

• The maximally mixed state ρ0 =
1
2 I is associated with the point r ′ = 0 ∈ R3, the

center of the Bloch ball.
• A density matrix ρ is a pure state if and only if the associated vector r ′ ∈ R3 of

expansion coefficients has unit norm. This observation establishes a one-to-one
correspondence between pure states (the extreme points of H2) and unit vectors
(the extreme points of S2).

Figure 3.1 contains an illustration of this correspondence.

Example 3.2 (Stern–Gerlach experiment). Depending on the measurement, a single den-
sity matrix can produce both a completely deterministic and a uniformly random
outcome distribution. This observation is at the heart of the famous Stern–Gerlach
experiment (1922), one of the first demonstrations of genuine quantum behavior.

32 Lecture 3: Quantum State Tomography

ρ0 u1u ∗1u2u ∗2

v 1v ∗1

v 2v ∗2

w 1w ∗1

w 2w ∗2

Figure 3.1: Bloch ball representation of S(H2). The maximally mixed state ρ0 =
1
2 I

lies at the center of the Bloch ball. The surface of the ball is in one-to-one relation with
the set of all pure quantum states. Also displayed: Three pairs of mutually orthogonal
pure states that are evenly distributed across the boundary of S(H2).

Fix d = 2. Define four unit vectors:

u1 = (1, 0)∗ and v 1 =
1√
2
(1, 1)∗;

u2 = (0, 1)∗ and v 2 =
1√
2
(1,−1)∗.

Then {u1u ∗1,u2u ∗2} and {v 1v ∗1,v 2v ∗2} describe two different quantum measurements.
Applied to the pure two-dimensional state ρ = u1u ∗1, these measurements yield
radically different outcome distributions:

Measurement I: P {1 | ρ} = |〈u1, u1〉|
2 = 1 and P {2 | ρ} = 0.

Measurement II: P {2 | ρ} = |〈v 1, u1〉|
2 = 1

2 and P {2 | ρ} = 1
2 .

We refer to Figure 3.1 for a visualization of the underlying geometry. �

3.2 Quantum state tomography
Quantum state tomography is the task of reconstructing the density matrix of a quantum
system from measurement data. Quantum tomography is one of the oldest and most
fundamental learning problems in quantum information science. Today, quantum
tomography is a routine task that is essential for designing, testing, and tuning qubits
in our quest to building scalable devices for quantum information processing.

Recall that a density matrix ρ ∈ S(Hd) contains a complete description of a d-
dimensional quantum system. Knowledge of the density matrix, therefore, allows us
to make predictions about future quantum measurements of an equivalent system.
It also contains information about quantum-mechanical aspects of the system. For
example, we can compute the purity of the system (i.e., the approximate rank of ρ)
and the entanglement among subsystems of a multipart system (i.e., how strongly the
subsystems are correlated).

3.2 Quantum state tomography 33

ρ

{H λi }
m
i=1

λk

Figure 3.2: Schematic of quantum state tomography. A black box (machine) that is
capable of producing a quantum system with density matrix ρ upon request (red arrow).
A subsequent quantum measurement (gauge) yields a single outcome λk (blue arrow),
but destroys the quantum system. The procedure must be repeated on fresh copies of
the state in order to obtain additional information. Quantum state tomography is the
task of reconstructing ρ from multiple observed outcomes.

In most settings, the density matrix ρ is not directly accessible. Instead, we obtain
indirect information by performing a quantum measurement {H λi : 1 ≤ i ≤ m}.
Born’s rule (3.1) asserts that data about ρ is encoded in the probability distribution of
outcomes (rather than the specific outcome λk). Unfortunately, after a measurement
is performed, the quantum system ceases to exist. To counter this challenge, we can
prepare many copies of the same state, measure each one independently, and combine
the information to estimate the distribution of outcomes accurately. Figure 3.2 contains
a schematic.

Mathematically, this estimation problem combines interesting aspects of several
scientific disciplines, most notably geometry and statistics.

3.2.1 Geometric aspects and measurement design
To build up some intuition, we first ignore the statistical aspects of quantum state
tomography. Let {H λi }

m
i=1 ⊂ Hd be a fixed measurement. Suppose that we have the

capacity to repeatedly perform this measurement on n realizations of an unknown
quantum state ρ ∈ S(Hd), where n →∞. In principle, this operation would allow us
to determine the exact (classical) distribution of outcomes:

p ∈ ∆m where pk = P {λk | ρ} = 〈H λk , ρ〉 for 1 ≤ k ≤ m. (3.3)

Thus, Born’s rule (3.1) describes a linear map (3.3) between the set S(Hd) of density
matrices and the set ∆m ⊂ Rm of classical probability distributions.

In this mathematical idealization, quantum state tomography becomes a linear
inverse problem: Recover ρ ∈ S(Hd) from its linear image p ∈ ∆m . This task is possible
if and only if the linear measurement map (3.3) is injective. The following definition
captures this idea.

Definition 3.4 (Tomographic completeness). A quantum measurement system {H λi : 1 ≤
i ≤ m} ⊂ Hd is tomographically complete if and only if, for each pair ρ,σ ∈ S(Hd) of
distinct states, there exists an index k ∈ {1, . . . ,m} such that 〈H λk , ρ〉 , 〈H λk , σ〉.

34 Lecture 3: Quantum State Tomography

well conditioned not well-conditioned

Figure 3.3: Bloch sphere representation of two tomographically complete mea-
surements in H2. [left] The elements (points) of the measurement system are spread
out evenly, which results in a well-conditioned measurement map. Indeed, it is a
pair of mutually unbiased bases. [right] The elements (points) of the measurement
system cluster at opposite extremes. This measurement is ill-equipped to accurately
resolve points on the Bloch sphere in the vicinity of the north and south poles. As a
consequence, the associated measurement is not well-conditioned.

A measurement cannot be tomographically complete unless it contains a sufficiently
large number of outcomes. Indeed, the number m of potential measurement outcomes
must obey

m ≥ dimS(Hd) + 1 = dimHd = d2.

This is just a basic fact about linear algebra.
Tomographic completeness is not the only property that we require of ameasurement

system. Indeed, injectivity only implies that the condition number1 of the measurement
map (3.3) is finite. If the condition number κ is large, we will suffer large errors when
we try to solve the inverse problem (from a finite amount of data). In contrast, when the
condition number κ ≈ 1, the inverse problem can be solved in a stable fashion. Refer
to Figure 3.3 for an illustration of two extreme cases, via the Bloch ball representation.

A linear map has the minimal condition number κ = 1 if and only if the linear
map is an isometry. Unfortunately, a quantum measurement map (3.3) can never be
tomographically complete and isometric at the same time! The following definition
describes the best-conditioned measurement maps that do exist.

Definition 3.5 (Near-isotropic quantum measurement). A quantum measurement system
{H λi : 1 ≤ i ≤ m} ⊂ Hd is near isotropic when

1. Each element H λi = (d/m)v iv ∗i where v i ∈ C
d is a unit vector;

2. The measurement has the reconstruction property

1
m

∑m

i=1
〈v iv ∗i , X 〉 v iv ∗i =

1
(d + 1)d

(X + (tr X) · I) for all X ∈ Hd . (3.4)

1The condition number of a linear map is the ratio between largest and smallest singular value.

3.2 Quantum state tomography 35

The linear map (3.3) associated with a near-isotropic quantum measurement has
condition number κ that is bounded independent of the state dimension d . Moreover,
the condition number κ → 1 as the state dimension d →∞.

In other research areas, you may encounter a system {v 1, . . . ,v m} ⊂ Cd of unit
vectors that satisfies (3.4). In approximation theory, these systems are interpreted as
quadrature rules for polynomials on the complex unit sphere, and they are known as
(complex projective) 2-designs. In frame theory, these systems are called tight fusion
frames.

There are many interesting constructions of near-isotropic quantum measurements
that arise from these connections.

Example 3.3 (Near-isotropic quantum measurements). The following quantum measure-
ment systems are near-isotropic.

1. The uniform measurement is the infinite family {d vv ∗} of all rescaled rank-one
projectors d vv ∗, endowed with the unique rotation-invariant probability measure
dv on the complex unit sphere.

2. The union of d + 1 mutually unbiased bases2 forms a set of m = (d + 1)d unit
vectors that obey (3.4). Explicit constructions of these families are known when
the dimension d is a prime power.

3. A set of m = d2 equiangular lines in Cd also obeys (3.4). Zauner’s conjecture
states that such configurations should exist in any dimension d . A complete proof
of this conjecture is an important open problem.

In theory, each of these measurement systems provides an effective way of acquiring
information about a quantum state. But these measurements are not always realizable
in practical settings. Constructing well-conditioned, implementable measurements is a
major challenge in quantum engineering. �

3.2.2 Statistical aspects and convergence
So far, we have considered a mathematically ideal version of quantum state tomography
in which we measure an infinite number of realizations of the same state. In practice,
the number n of samples is necessarily finite, so we cannot determine the probability
distribution over the measurement outcomes exactly. As a consequence, we cannot
expect to recover an unknown density matrix exactly.

Nevertheless, we can obtain an accurate approximation of the state with high
probability, provided that we can perform a sufficient number of measurements. To
assess the accuracy of an estimate ρ̂ ∈ Hd of a state ρ ∈ S(Hd), we typically use the
Schatten 1-norm ‖ ρ̂ − ρ‖1. The Schatten 1-norm, also known as the trace norm, is
the quantum analog of the total-variation distance that arises in classical probability.
Furthermore, this error measure has a natural operational interpretation in terms of
quantum hypothesis testing.

Definition 3.6 (Sample complexity). Fix parameters ε, δ ∈ (0, 1) and a rank 1 ≤ r ≤ d .
Let ρ ∈ Hd be an unknown state with rank r . Perform the same quantum measurement

2Two orthonormal bases {b1, . . . ,bd } and {c1, . . . , c d } ⊂ Cd are mutually unbiased if |〈b i , c j 〉|
2 =

d−1 for all 1 ≤ i , j ≤ d . The standard basis and the discrete Fourier basis provide an instructive example.

36 Lecture 3: Quantum State Tomography

on n realizations of the state, and construct a tomographic estimate ρ̂n ∈ Hd . The
sample complexity of this family of estimators is the minimum number n required to
estimate the state with high probability:

‖ ρ̂n − ρ‖1 ≤ ε with probability 1 − δ.

The sample complexity will typically depend on the rank r .

Methods from quantum information theory lead to a rigorous lower bound on the
sample complexity of any tomographic estimation procedure [Haa+17].

Theorem 3.7 (Haah et al. 2017 — informal). Any tomographic estimator based on re-
peating the same measurement has sample complexity

n & r 2dε−2 log(1/δ).

3.3 Quantum state tomography via matrix sampling
We are going to present and analyze a simple, yet powerful, estimation technique for
quantum state tomography based on matrix sampling. To motivate the approach, we
first consider a problem in classical probability.

3.3.1 Estimating the bias of a coin
A classical analog of quantum state estimation is the problem of estimating the bias in
a coin by flipping it repeatedly.

A coin is a two-dimensional classical random variable that is described by a single
parameter, the bias p ∈ [0, 1]. The two outcomes follow the distribution P {heads} = p
and P {tails} = 1 − p . How can we estimate the bias p by repeatedly tossing the coin?
The simplest approximation procedure is based on a simple and intuitive decision rule.
Toss the coin once and set

p̂ =

{
1, if heads;
0, if tails.

.

In general, this is a terrible estimator. But it does have the virtue of being unbiased:

E p̂ = p × 1 + (1 − p) × 0 = p .

Instead, we toss the coin n times, form the estimators p̂1, . . . , p̂n , and construct the
empirical average:

p̄n = n−1
∑n

i=1
p̂i .

The empirical average will converge to the true bias of the coin.
To verify this claim and obtain a convergence rate, just apply Theorem 2.1 with

d = 1. For each t ∈ [0, 1],

P {|p̄n − p | ≥ t } ≤ 2 exp
(
−nt 2/2

p + 2t /3

)
≤ 2 exp

(
− 3

10nt 2
)
.

3.3 Quantum state tomography via matrix sampling 37

Therefore, for any parameters ε, δ ∈ (0, 1), if we perform

n ≥ 10
3 ε
−2 log(1/(2δ))

independent coin tosses, then the sample average satisfies the error bound |p̄n − p | < ε
with probability at least 1 − δ.

3.3.2 The matrix sampling estimator
The simple coin tossing example can readily be generalized to quantum state tomogra-
phy in d ≥ 2 dimensions. Construct a quantum system with unknown density matrix
ρ ∈ S(Hd), and perform the near-isotropic quantum measurement

{H λi = (d/m)v iv ∗i : 1 ≤ i ≤ m}.

When reading the measurement outcome, set

R =

(d + 1)v 1v ∗1 − I, if we observe outcome λ1;

...
(d + 1)v mv ∗m − I, if we observe outcome λm .

(3.5)

Born’s rule (3.1) and the geometric properties of near-isotropic measurements (3.4)
ensure that the quantum estimator (3.5) is correct in expectation:

E(R + I) =
∑m

i=1
P {λi | ρ} · (d + 1)v iv ∗i

=
(d + 1)d

m

∑m

i=1
tr(v iv ∗i ρ)v iv ∗i = ρ + I.

(3.6)

We also remark that R has trace one, but it need not be psd.
We repeat this estimation procedure n times, for n copies of the quantum system,

and we construct the sample average:

R̄ n =
1
n

∑n

i=1
R i where R i are iid copies of R .

The sample average has trace one, and it is an unbiased estimator of the state. On the
other hand, it is not always psd. See Figure 3.4 for an illustration of the convergence of
this sequence of estimates.

This construction is formally similar to the one in Lecture 2, but let us point out a
major conceptual difference. Before, we designed an algorithm that makes random
choices to construct random matrices that approximate a kernel matrix. In quantum
state tomography, the estimator (3.5) produces independent random matrices because
of the laws of quantum mechanics.

3.3.3 Sample complexity of the sample average
We quickly derive the convergence rate of the sample average using Theorem 2.1.

38 Lecture 3: Quantum State Tomography

ρ ρ ρ
R̄1

ρ
R̄1

ρ

R̄2

ρ

R̄2

ρ

R̄3
· · ·

ρ

R̂∞

ρ0

Figure 3.4: Convergence of a naïve tomography estimator. Perform a near-isotropic
measurement (blue points) on an unknown density matrix ρ (green). Upon receiving a
certain outcome (orange circle), we estimate ρ by the measurement element associated
with this outcome (red). Repeat this procedure n times and construct the empirical
average R̄ n . Convex mixing properties imply that this estimator is pushed inside the
set of quantum states (convex combination). But it maintains the correct direction in
the limit of many repetitions. This illustration is exact if we restrict attention to the
equatorial plane of the Bloch ball representation of S(H2).

3.3 Quantum state tomography via matrix sampling 39

Proposition 3.8 (Quantum state tomography with sample averages). Suppose that we have
access to n (unentangled) realizations of a quantum system with density matrix
ρ ∈ S(Hd). Perform a near-isotropic quantum measurement on the i th realization,
and construct the estimator R i ∈ Hd based on the decision rule (3.5). Then the matrix
sample average R̄ n = n−1

∑n
i=1 R i obeys the error estimate

P
{
‖R̄ n − ρ‖ ≥ t

}
≤ 2d exp

(
−3nt 2

16d

)
.

This formula is valid for all t ∈ [0, 1].

Proof. Let R be the estimator (3.5). First, compute the upper bound

B = sup ‖R ‖ = maxi=1,...,m ‖(d + 1)v iv ∗i − I‖ = d .

Another short calculation shows that the per-sample second moment satisfies

m2(R) = ‖ER2‖ = ‖(d − 1) ρ + d I‖ ≤ 2d .

We leave the details as an easy exercise.
Now, quantum measurements of unentangled quantum systems ensures are sta-

tistically independent. Therefore, the random matrices R i are independent copies
of the random matrix R . Theorem 2.1 implies that the matrix sample estimator
R̄ n = n−1

∑n
i=1 R i concentrates sharply around its expectation ρ. For t ≥ 0,

P
{
‖R̄ n − ρ‖ ≥ t

}
≤ 2d exp

(
−nt 2/2

m2(R) + 2Bt /3

)
≤ 2d exp

(
−3nt 2

16d

)
.

This is what we needed to show. �

3.3.4 Projection onto the set of quantum states
Proposition 3.8 equips thematrix sample average estimator R̄ n with a rigorous guarantee
that it converges to the unknown density matrix ρ ∈ S(Hd). For τ ∈ (0, 1), a total of
n & d log(d)/τ2 measurement repetitions are sufficient to ensure that ‖R̄ n − ρ‖ ≤ τ
with high probability. Although powerful, this statement has two drawbacks:

1. The matrix sample estimator R̄ n is typically not psd. We therefore estimate the
state ρ by something that is not itself a state.

2. Accuracy is reported in operator norm distance, rather than trace-norm distance.

Surprisingly, both drawbacks can be overcome by a single refinement. Just replace the
sample matrix estimator by the closest density matrix, computed with respect to the
Frobenius norm:

ρ̂n = argmin
σ∈S(Hd)

‖σ − R̄ n ‖F. (3.7)

We call this estimator the projected matrix sample average.
Intuitively, the projection onto the density matrices should decrease the distance

between the estimator and target state. The following technical result makes this claim
precise.

40 Lecture 3: Quantum State Tomography

Lemma 3.9 Fix a rank-r density matrix ρ ∈ S(Hd) and a matrix M ∈ Hd with trace
one. Then the closest density matrix σ to M necessarily obeys

‖ρ − σ‖1 ≤ 4r ‖ρ −M ‖.

Proof sketch. The difference X = ρ − σ is a traceless self-adjoint matrix. Moreover,
the positive part of X has rank no greater than r because both ρ and σ are psd and
rank(ρ) = r . Let P± ∈ Hd denote the orthogonal projectors onto the positive and
negative parts of X . Then

‖X ‖1 = 〈P+, X 〉 − 〈P−, X 〉 = 2〈P+, X 〉,

where the last equation follows from the fact that X is traceless. The matrix Hölder
inequality asserts that 〈P+, X 〉 ≤ ‖P+‖1 ‖X ‖. Therefore,

‖ρ − σ‖1 = ‖X ‖1 ≤ 2 tr(P+) ‖ρ − σ‖ ≤ 2r ‖ρ − σ‖.

Indeed, the range of the orthogonal projector P+ has dimension at most r . The result
follows once we establish that ‖ρ − σ‖ ≤ 2 ‖ρ −M ‖. This relation follows from the
assumption that M has unit trace, but the proof is somewhat less transparent. �

The following convergence bound is an immediate consequence of Proposition 3.8
and Lemma 3.9.

Theorem 3.10 (Projected sample average estimator). Suppose that we perform near-
isotropic quantum measurements on identical copies of a quantum system that has
the rank-r density matrix ρ. Then the projected matrix sample average (3.7) obeys

P
{
‖ ρ̂n − ρ‖1 ≥ t

}
≤ 2d exp

(
−3nt 2

256r 2d

)
The probability bound is valid for all t ≥ 0.

In short, the matrix Bernstein inequality leads quickly to a strong error bound on
the projected sample average estimator of a quantum state. The following observation
is an immediate consequence of Theorem 3.10.

Corollary 3.11 Fix a rank-r density matrix ρ ∈ S(Hd). Choose parameters ε, δ ∈ (0, 1).
Then a total of

n ≥ 86r 2dε−2 (log(2d) + log(1/δ))

measurement repetitions (samples) are sufficient to guarantee that the projected sample
average estimator obeys ‖ ρ̂n − ρ‖1 ≤ ε with probability at least 1 − δ.

We conclude that the projected sample average estimator almost saturates the
fundamental lower bound (Theorem 3.7) on the sample complexity of any quantum
state tomography procedure. Moreover, the performance is optimal up to a constant
factor in the regime where the probability of success is at least 1 − d−1!

3.3 Quantum state tomography via matrix sampling 41

3.3.5 Generalization: Projected least squares
The matrix sample average estimator for near-isotropic quantum measurements is a
special case of a general and practical procedure for quantum state tomography, called
projected least squares. Here is a summary of this approach:

1. Fix a tomographically complete measurement {H λi : 1 ≤ i ≤ m}.
2. Estimate the probabilities pi = P {λi | ρ} by frequencies. That is, prepare n

identical realizations of the quantum system, measure them separately, and set

f (n)i =
number of times outcome λi was observed

total number of measurements n
.

3. Construct the least-squares estimator that results from replacing the true proba-
bilities in Born’s rule (3.1) by the frequency approximations:

R̄ n = argmin
X ∈Hd

∑m

i=1
|f (n)i − 〈H λi , X 〉|2.

4. Compute the Frobenius-norm projection of R̄ n onto the set S(Hd) of quantum
states.

This procedure also results in a near-optimal quantum state estimator. As above,
the analysis relies on the matrix Bernstein inequality. The main difference is that
the solution to the linear inverse problem has a more complicated form when the
measurement is not near-isotropic.

“Pipes various,” Wikimedia Commons

4. Graph Laplacians

This lecture contains the fundamentals of spectral graph theory and harmonic
analysis on graphs. The presentation is inspired by Dan Spielman’s Fall 2018 course
on spectral graph theory [Spi], Yuval Wigderson’s notes on harmonic functions on
graphs [Wig], and Rasmus Kyng’s dissertation [Kyn17]. Any errors are my own.

A combinatorial graph encodes pairwise relationships among a family of objects.
Graphs have intrinsic mathematical interest, as well as numerous computational
applications. This lecture introduces the concept of a multigraph and the associated
Laplacian matrix. The Laplacian encodes structural properties of the multigraph, and it
can be understood with physical analogies to electrical networks.

Laplacian matrices play a role in learning methods based on harmonic analysis on
manifolds. They also arise from the discretization of elliptic PDEs. The ultimate goal of
this course is to present an efficient algorithm for solving a linear system in a graph
Laplacian matrix, which can be used for both of the applications mentioned in this
paragraph.

4.1 Multigraph basics
We will be working with (undirected) multigraphs, which are a lot like graphs, except
that there may be many edges connecting a pair of vertices. This level of generality is
important for us, so we must suffer the extra complexity.

4.1.1 Undirected multigraphs
Let V be a set of n points, called vertices. The letters u and v will denote vertices. We
may as well assume that V = {1, . . . ,n}, which allows us place the vertices in order.

44 Lecture 4: Graph Laplacians

A multiedge is an unordered pair e = {u ,v } of two distinct vertices u ,v ∈ V. A
multiedge represents an undirected link between the two vertices, and we forbid loops
that connect a vertex to itself. It is convenient to abbreviate e = uv = vu for any
multiedge connecting u and v . The notations u ∈ e and e 3 u both mean that the
multiedge e contains the vertex u . We also say that e is incident on u .

We assign each multiedge a unique label so we can tell it apart from other multiedges
between the same two vertices. At the risk of some confusion, we completely suppress
this label from the notation.

An (undirected) multigraph G consists of a ground set V of vertices, along with a
family E of multiedges. The letter m = |E| will refer to the total number of multiedges.

Somewhat abusively, we may write either e ∈ E or e ∈ G to indicate that the
multigraph contains the multiedge e . (There are further notational abuses to come!)

We also equip with the multigraph G with a nonnegative weight function w : E→
R++ that assigns a strictly positive value to each multiedge. Note that each multiedge
joining a single pair of vertices can have a distinct weight.

We will always be working with the same ground set V of vertices, but there will be
many multigraphs floating around. Therefore, is it often useful to qualify our notation
by specifying a multigraph. For example, we may write wG(e) or w (e ,G) to refer to
the weight of a multiedge in the multigraph G.

4.1.2 Connected components

A vertex u is a neighbor of a vertex v if the multigraph contains at least one multiedge
e = uv linking the vertices u and v . We write u ∼ v or v ∼ u to indicate that u and v
are neighbors.

We can iterate the neighbor relation to obtain multi-hop neighborhoods of a vertex.
For a vertex u ∈ V, iteratively define

N0(u) = {u} and Nk (u) = {v ′ ∈ V : v ′ ∼ v and v ∈ Nk−1(u)} for k ∈ N.

The set Nk (u) contains the vertices that are reachable from u by traversing exactly k
multiedges. It is common to abbreviate N(u) = N1(u).

The connected component N∞(u) of a vertex u is the set of all vertices that are
reachable from u via the neighbor relation:

N∞(u) =
⋃∞

k=0
Nk (u).

Every multigraph can be partitioned into a disjoint family of connected components.
The relation N∞(u) = V means that every vertex in the multigraph is reachable from u .
In the latter case, every vertex is reachable from every other vertex, and we say that
the multigraph is connected.

From now on, we will assume that the multigraph G is connected.

4.1 Multigraph basics 45

4.1.3 Multidegree and total weight
The degree, deg(u), of a vertex u in the multigraph G is the total number of multiedges
incident on u . That is,

deg(u) = deg(u ,G) = |{e ∈ G : e 3 u}|.

Note that the multidegree of u need not coincide with the number of vertices that
neighbor u .

The total weight w (u) of a vertex u in the multigraph G is the the sum of the weights
of the multiedges that are incident on u . That is,

w (u) = wG(u) =
∑

e ∈G, e 3u
wG(e).

Take care that the weight function has a different definition when applied to vertices
and edges.

4.1.4 Interpretation: Plumbing
We can interpret a multigraph G = (V, E,w) as a plumbing network that connects the
fixtures listed in V with the pipes listed in E. There may be many pipes connecting the
same two fixtures. The weight w (e) associated with a pipe e increases with the “size”
of the pipe.

For later reference, recall that the rate of flow along a pipe is proportional to the
“size” of the pipe times the difference in pressure at the two endpoints. (The size of a
circular pipe is the fourth power of the radius divided by the length.) This is called the
Hagen–Poiseuille law.

4.1.5 Interpretation: Resistor networks
We can interpret a multigraph G = (V, E,w) as a wiring diagram that connects the
terminals V with the wires E. There may be many wires connecting the same two
terminals in parallel. The weight w (e) of a wire e is proportional to the electrical
conductance of the wire. The weight w (e) is inversely proportional to the electrical
resistance.

For later reference, we recall Ohm’s law: V = I R . In words, the difference (V) in
voltage at two terminals is proportional to the electrical current (I) flowing between
the terminals times the electrical resistance (R) of the wire.

4.1.6 Example: A random walk
There is a natural construction of a random walk on G. Let u0 ∈ V be the initial vertex.
At each time k ∈ N ∪ {0}, we are at vertex uk , and we draw the next vertex uk+1 in
the walk at random according to the probability distribution

P {uk+1 = v |uk = u} =
1

w (u)

∑
e=uv ∈G

w (e) for each v ∈ N(u).

Each multiedge of the form e = uv appears once in the sum! In other words, we
randomly choose one of the multiedges incident on u with probability in proportion to

46 Lecture 4: Graph Laplacians

its weight, and we traverse this edge to arrive at a new vertex v . This process repeats
indefinitely.

The transition matrix Q of the random walk is called the random walk normalized
Laplacian, and it is obtained by diagonal reweighting of the ordinary Laplacian:

Q = diag(w (u) : u ∈ V)−1L .

One can understand many features of the random walk by studying the eigenvalues
and eigenvectors of the random walk normalized Laplacian. But this is a subject for
another day.

4.2 Laplacian basics
Every multigraph is associated with a psd matrix, called the Laplacian. The properties
of this matrix, as a linear operator, are intertwined with the structure of the multigraph.

4.2.1 The Laplacian of a multigraph
Let e = uv be a multiedge connecting distinct vertices u ,v ∈ V. The elementary
Laplacian induced by the multiedge e is the matrix

∆e = ∆uv = (δu − δv)(δu − δv)
∗ ∈ HV.

Recall that δu denotes the standard basis vector at vertexu . Observe that the elementary
Laplacian is a psd matrix. In addition, the null space of the elementary Laplacian
contains the constant vector 1 ∈ RV.

Definition 4.1 (Graph Laplacian). The Laplacian of the multigraph G is the matrix

L = LG =
∑

e ∈G
w (e)∆e ∈ HV. (4.1)

The Laplacian L is a psd matrix because it is a nonnegative sum of psd matrices.
For distinct vertices u ,v ∈ V, the uv off-diagonal entry of the Laplacian records (the
negative of) the total weight of all the multiedges connecting u and v :

(L)uv = −
∑

e=uv
w (e).

Meanwhile, the diagonal of the Laplacian records the total weight of each vertex of the
graph:

w (u) = (L)uu =
∑

e 3u
w (e) for each u ∈ V.

The diagonal and off-diagonal entries are related as

w (u) = (L)uu = −
∑

v,u
(L)uv .

The last display is another statement of the fact that L1 = 0.

Exercise 4.1 Assume that G is a connected multigraph. Prove that null(LG) = lin{1}.

Exercise 4.2 Consider a symmetric matrix M ∈ HV for which

4.2 Laplacian basics 47

1. M has nonnegative diagonal entries;
2. M has nonpositive off-diagonal entries;
3. M1 = 0.

Show that M is the Laplacian of some (multi)graph. In particular, the class of
Laplacian matrices forms a convex cone. (That is, the class is closed under addition
and nonnegative scaling.)

4.2.2 Correspondence between multigraphs and Laplacians
Each multigraph determines a unique Laplacian matrix, but the converse is not true. For
the purposes of our presentation, we will elide this point by treating the Laplacian of
the multigraph as a sum over multiedges. Moreover, we usually regard the multigraph
and the Laplacian as interchangeable.

Let us take a minute to justify this decision more rigorously. We will construct a
pair of matrices that are closely related to the Laplacian and that completely determine
the multigraph. This approach is also useful for implementing algorithms.

To that end, let us enumerate the multiedges in the multigraph: e1, e2, . . . , em ∈ E.
The ordering is arbitrary, but fixed. The signed vertex–multiedge adjacency matrix
A ∈ RV×E encodes the connectivity of the graph. The j th multiedge e j = u jv j

determines the j th column of the matrix:

a :j = δu j − δv j where u j < v j for each e j ∈ E.

The ordering is chosen for concreteness, but it is unimportant. Second, introduce a
nonnegative diagonal matrixW ∈ HE that encodes the weights in the obvious way:

w j j = w (e j) for each e j ∈ E.

Together, A andW contain all of the data about the graph.
These two matrices provide another construction of the Laplacian of the multigraph:

L = AW A∗.

This gives another precise sense to our identification of the Laplacian with a sum of
multiedges.

4.2.3 Projectors and pseudoinverses
We will be keenly interested in solving linear systems involving the Laplacian matrix L
of a multigraph G. This requires some care because the Laplacian is singular.

Definition 4.2 (Range projector and pseudoinverse). Let G be a connected multigraph with
Laplacian L. The orthogonal projector P ∈ HV onto the range of L is the matrix

P = I − |V|−111∗.

The pseudoinverse L† ∈ HV is the unique psd matrix that satisfies

LL† = P and range(L†) = range(L).

48 Lecture 4: Graph Laplacians

The next two results are easy consequences of the definitions.

Exercise 4.3 (Laplacian pseudoinverse). For a connected multigraph G, the Laplacian
matrix L and the range projector P enjoy the following relationships:

1. LP = P L.
2. L†L = P .
3. L†LL† = L†.
4. LL†L = L.

Exercise 4.4 (Laplacian linear systems). Let G be a connected multigraph with Laplacian
matrix L. Suppose that f ∈ RV satisfies the orthogonality relation 1∗f = 0. Then

Lx = f and 1∗x = 0 if and only if x = L†f .

4.2.4 The Dirichlet form
The Laplacian induces a quadratic form, called the Dirichlet form:

‖x ‖2L = x ∗Lx =
∑

e=uv
w (e) (xu − xv)

2 for x ∈ RV.

Note that each multiedge of the form e = uv appears once in the sum! The associated
pseudonorm is called the Dirichlet energy:

‖x ‖L = (x
∗Lx)1/2 for x ∈ RV.

The Dirichlet norm of a vector x ∈ RV reflects its smoothness with respect to the graph
structure.

The Dirichlet energy has various physical interpretations that are useful for con-
structing graph embeddings. The Dirichlet energy also provides a natural way to
quantify the error in solving a linear system in the Laplacian matrix.

4.2.5 Example: Laplacians and cuts
Here is a simple connection between the Dirichlet form and the combinatorial properties
of a graph. A cut in a multigraph is a subset U of the vertices. The weight of a cut is the
total weight of the multiedges that cross the cut:

weight(U) =
∑

e=uv ;u ∈U ;v<U
w (e).

Note that each multiedge e = uv in the multigraph appears at most once in the sum,
with the orientation u ∈ U and v < U. The Laplacian allows us to express the weight
of a cut. Evaluate the Dirichlet form at the indicator vector of the cut to obtain the
weight of the cut:

weight(U) = ‖ χU‖L = χ∗UL χU where χU(u) =

{
1, u ∈ U;
0, u < U.

This formula allows us to use algebra to study combinatorial problems.

4.3 Harmonic analysis on multigraphs 49

4.3 Harmonic analysis on multigraphs
We are now prepared to introduce the basic theory of harmonic functions on graphs.

4.3.1 Harmonic functions
Harmonic functions arise as the solutions to homogeneous linear equations involving
the Laplacian matrix.

Definition 4.3 (Harmonic function). Let G be a multigraph, and let U ⊆ V be a subset of
the vertices. A function ϕ : V→ R is harmonic on U if

(Lϕ)(u) = 0 for each u ∈ U.

In particular, we say that the function ϕ is harmonic at a vertex u if (Lϕ)(u) = 0.

Our first result provides more intuition: A function ϕ is harmonic at a vertex u when
the value ϕ(u) is the weighted average of the values ϕ(v) at its neighbors v ∈ N(u).

Proposition 4.4 (Averaging property). The function ϕ : V → R is harmonic at a vertex
u ∈ V if and only if

ϕ(u) =
1

w (u)

∑
e=uv

w (e) ϕ(v). (4.2)

Each distinct multiedge of the form e = uv appears once in the sum!

Proof. This statement follows immediately from the definition (4.1) of the Laplacian
and the definition (4.2) of harmonicity. �

4.3.2 Example: Hitting probabilities
Let B ⊆ V be a distinguished set of vertices. For a starting point u ∈ V and a vertex
b ∈ B, the hitting probability hb (u) is the probability that a random walk with initial
vertex u0 = u arrives at b before it arrives at any other vertex of B. Note that

hb (b) = 1 and hb (a) = 0 for each a ∈ B \ {b}. (4.3)

For each remaining vertex u < B, the hitting probability satisfies a simple recursion:

hb (u) =
∑

v ∈N(u)
P {u1 = v |u0 = u} · hb (v)

=
1

w (u)

∑
e=uv

w (e)hb (v).
(4.4)

Proposition 4.4 now implies that the hitting probability hb is harmonic on V \ B.

4.3.3 The maximum principle
The averaging property in Proposition 4.4 has a very significant consequence.

Theorem 4.5 (Maximum principle). Let G be a connected multigraph. If ϕ : V→ R

is harmonic on V, then ϕ is a constant function.

50 Lecture 4: Graph Laplacians

Proof. Suppose that ϕ is not constant. Introduce the set M of vertices where ϕ achieves
its maximum value:

M = argmax{ϕ(u) : u ∈ V}.

Since ϕ is not constant, M is a proper subset of V. Moreover, since G is connected, we
can extract adjacent vertices u ∼ u ′ where u ∈ M and u ′ < M. We calculate that∑

e=uv
w (e) ϕ(v) <

[∑
e=uv

w (e)
]
· max

v ∈N(u)
ϕ(v) = w (u) · ϕ(u).

Indeed, there is a multiedge uu ′ that participates in the sum, and ϕ(u ′) < max{ϕ(v) :
v ∈ N(u)} = ϕ(u). Equivalently,

ϕ(u) >
1

w (u)

∑
e=uv

w (e) ϕ(v).

Therefore, ϕ is not harmonic at u . We reject the hypothesis that ϕ is constant. �

4.3.4 Poles
Let us explain why Theorem 4.5 is called a maximum principle.

Definition 4.6 (Pole). Let ϕ : V → R be a function. A vertex v ∈ V is called a pole of
the function if ϕ is not harmonic at v .

Corollary 4.7 (Existence of poles). Let G be a connected multigraph. If ϕ : V→ R is a
nonconstant function, then ϕ attains its maximum and minimum value at poles. In
particular, ϕ has at least two poles.

Proof. In the proof of Theorem 4.5, we defined the set M of vertices where a function
ϕ achieves its maximum value. We proved that M contains a vertex u where ϕ is not
harmonic. Therefore, the function ϕ has a pole, and the maximum occurs there.

We can apply the same argument to the negation −ϕ to identify a pole u ′ where ϕ
achieves its minimum.

Since ϕ is not constant, the maximum and minimum are not achieved at the same
location. Thus u , u ′. We conclude that ϕ has at least two poles. �

4.3.5 Harmonic extensions
Next, let us consider what happens if we require a harmonic function to meet some
boundary conditions.

Definition 4.8 (Harmonic extension). Let ϕ0 : B→ R be a function on a nonempty set
B ⊆ V of vertices. A harmonic extension of ϕ0 is a function ϕ : V→ R that solves the
linear system {

(Lϕ)(u) = 0, u ∈ V \ B;
ϕ(u) = ϕ0(u), u ∈ B.

We can construct a unique harmonic extension under minimal hypotheses.

4.3 Harmonic analysis on multigraphs 51

Theorem 4.9 (Harmonic extensions). Let G be a connected multigraph. Distinguish
a nonempty set B ⊆ V of vertices. For any boundary data ϕ0 : B→ R, there is a
unique harmonic extension of ϕ0 to the set V \ B of remaining vertices.

Proof. Uniqueness: Let ϕ1 and ϕ2 be two harmonic extensions of ϕ0. Consider their
difference ψ = ϕ1 − ϕ2. By linearity, ϕ is harmonic on V \ B:

(Lψ)(u) = (Lϕ1)(u) − (Lϕ2)(u) = 0 for u ∈ V \ B.

Corollary 4.7 implies that ψ achieves its maximum and minimum on B. But ψ has zero
boundary data:

ψ(v) = ϕ1(v) − ϕ2(v) = 0 for each v ∈ B.

Therefore, ψ is identically equal to zero.
Existence: Using the hitting probabilities (Section 4.3.2), we define the real-valued

function
ϕ(u) =

∑
b ∈B

ϕ0(b)hb (u) for each u ∈ V.

By the property (4.3) of the hitting probability hb , the function ϕ agrees with ϕ0 on B.
Meanwhile, for u ∈ V \ B, the recursion (4.4) gives

ϕ(u) =
∑

b ∈B
ϕ0(b)

1
w (u)

∑
e=uv

w (e)hb (v)

=
1

w (u)

∑
e=uv

w (e)
∑

b ∈B
ϕ0(b)hb (v)

=
1

w (u)

∑
e=uv

w (e) ϕ(v).

Therefore, ϕ is a harmonic extension of ϕ0 from B to V. �

4.3.6 Interpretation: Plumbing
Let p ∈ RV denote the pressure at each fixture in a network of pipes. Suppose that the
network contains an inlet uin where the pressure p0(uin) > 0, usually called a source.
Suppose that the network also contains at outlet uout where the pressure p0(uout) < 0,
usually called a sink. The other fixtures are called internal nodes.

The theory of hydrodynamics states that the total (signed) flow f (u) at an internal
node u equals zero because any water that enters must also leave. Each pipe incident
on u contributes to the flow in or out of the fixture u . The rate of flow along a pipe
e = uv is (proportional to) the size w (e) of the pipe times the difference p(u) − p(v)
in pressure at the endpoints. Altogether,

0 = f (u) =
∑

e=uv
w (e) (p(u) − p(v)) for each internal u ∈ V.

We can rewrite this equation as

p(u) =
1

w (u)

∑
e=uv

w (e) p(v) for each internal u ∈ V.

52 Lecture 4: Graph Laplacians

In other words, the pressure p is harmonic at each internal node.
These equations can be combined:{

(Lp)(u) = 0, u is internal;
p(u) = p0(u), u ∈ {uin,uout}.

In summary, the pressure p ∈ RV is the harmonic extension of the pressure at the
source and sink. If there are many sources and sinks, a similar formula is valid.

4.3.7 Interpretation: Resistor networks
Let ϕ ∈ RV denote the voltage at each node in an electrical network. Suppose that the
network contains a source uin where the voltage ϕ0(uin) > 0; for example, a battery.
Suppose that the network also contains a sink uout where the voltage ϕ0(uout) < 0; for
example, the ground. The other fixtures are called internal nodes.

The theory of resistor networks states that the total current f (u) flowing through
an internal node u equals zero because there is no input or output. Each wire incident
on u contributes to the current flowing in or out of the node u . The amount of current
flowing along a wire e = uv is proportional to the conductance w (e) and the difference
ϕ(u) − ϕ(v) in voltage at the endpoints (i.e., the difference in electrical potential).
Altogether,

0 = f (u) =
∑

e=uv
w (e) (ϕ(u) − ϕ(v)) for each internal u ∈ V.

We can rewrite this equation as

ϕ(u) =
1

w (u)

∑
e=uv

w (e) ϕ(v) for each internal u ∈ V.

In other words, the voltage ϕ is harmonic at each internal node.
These equations can be combined:{

(Lϕ)(u) = 0, u is internal;
ϕ(u) = ϕ0(u), u ∈ {uin,uout}.

In summary, the voltage ϕ ∈ RV is the harmonic extension of the voltages at the source
and sink. If there are many sources and sinks, a similar formula remains valid.

Conversely, we can consider a vector f ∈ RV of external currents. The value f (u)
is the amount of current entering (or leaving) the network at vertex u . The network
cannot hold current, so we must assume that 1∗f = 0. That is, any current that enters
must also leave. Then the induced voltages ϕ ∈ RV at each node satisfy

ϕ = L†f .

One can easily verify that ϕ is harmonic, except at the nodes u where f (u) , 0. In
addition, the total induced voltage 1∗ϕ = 0, which reflects the fact that only voltage
differences between terminals play a role in determining the flow.

“Old radio resistors,” Wikipedia

5. Effective Resistance

This lecture is based on Dan Spielman’s Fall 2018 course on spectral graph the-
ory [Spi].

The parallel between harmonic analysis on graphs and electrical networks suggests
further analogies. In this lecture, we explore several important concepts that arise from
this perspective. We first discuss the notion of the effective resistance between two
vertices in a graph. Then we introduce the leverage of an edge, which is a reflection of its
importance in determining the graph structure. Using these concepts, we demonstrate
that every graph Laplacian can be approximated strongly by the Laplacian of a sparse
graph. We realize this approximation by nonuniform randomized sampling.

5.1 Resistance distance
We have introduced the machinery of harmonic functions so that we can understand
properties of the pseudoinverse of a Laplacian. Of course, the pseudoinverse plays a
role in the solution of linear systems. But it also has interesting physical interpretations
related to the properties of the electrical network determined by the graph.

5.1.1 Effective resistance
We begin with an important definition.

Definition 5.1 (Effective resistance). Let G be a connected multigraph on a vertex set V
and with Laplacian matrix L. For vertices u ,v ∈ V, not necessarily distinct, the effective
resistance %(u ,v) between the vertices u and v is the nonnegative number

%(u ,v) = (δu − δv)
∗L†(δu − δv).

54 Lecture 5: Effective Resistance

As usual, δu is a standard basis vector, and † denotes the pseudoinverse.

To understand why this quantity is called the effective resistance, note that

ϕ = L†(δu − δv) ∈ R
V

is the vector of induced voltages if we inject one unit of current at vertex u and extract
one unit of current at vertex v . Then

%(u ,v) = (δu − δv)
∗ϕ = ϕ(u) − ϕ(v).

In other words, %(u ,v) is the voltage difference between the vertices u and v , per unit
of current. In other words, we can interpret it as the resistivity of the entire network
against passing one unit of current from u to v .

In the hydraulic analogy, we can think about injecting a unit-rate flow at the inlet u
and extracting it at the outlet v . The whole plumbing network behaves like a pipe that
shunts the fluid between these two fixtures. The number %(u ,v) reflects the effective
“size” of this compound pipe.

5.1.2 Effective resistance is a metric
A wonderful fact is that the effective resistance induces a metric on the vertex set of a
multigraph. This result is an easy consequence of the maximum principle for harmonic
functions. It will play a central role in the algorithm for solving Laplacian systems.

Theorem 5.2 (Effective resistance is a metric). Let G be a connected multigraph on the
vertex set V. The effective resistance % determines a metric on the vertices. More
precisely, for all vertices t ,u ,v ∈ V, it holds that

1. %(u ,v) = 0 if and only if u = v .
2. %(u ,v) = %(v ,u).
3. %(t ,v) ≤ %(t ,u) + %(u ,v).

Proof. Let L be the Laplacian of the multigraph G. The first two properties are easy
exercises. For the triangle inequality, we define the functions

ϕt u = L†(δt − δu), harmonic on V \ {t ,u};
ϕuv = L†(δu − δv), harmonic on V \ {u ,v };
ϕt v = L†(δt − δv).

By linearity, these functions are related as ϕt v = ϕt u + ϕuv . Taking the inner product
of this identity with δt − δv gives

%(t ,v) = (δt − δv)
∗ϕt v = (δt − δv)

∗ϕt u + (δt − δv)
∗ϕuv .

It remains to bound the right-hand side in terms of the effective resistances %(t ,u) and
%(u ,v). We can accomplish this via the maximum principle.

To that end, we note the relation

ϕt u (t) − ϕt u (u) = %(t ,u) ≥ 0.

5.1 Resistance distance 55

By themaximum principle (Corollary 4.7), the harmonic function ϕt u takes its maximum
value at the pole t and its minimum at the pole u . Thus,

(δt − δv)
∗ϕt u = ϕt u (t) − ϕt u (v)

≤ ϕt u (t) − ϕt u (u) = (δt − δu)
∗ϕt u = %(t ,u).

Similarly,

(δt − δv)
∗ϕuv = ϕuv (t) − ϕuv (v)

≤ ϕuv (u) − ϕuv (v) = (δu − δv)
∗ϕuv = %(u ,v).

The result follows when we sequence the last three displays. �

5.1.3 An alternative representation
There is another way of writing the effective resistance that will be useful for us. Let us
introduce another piece of notation.

Definition 5.3 (Normalizing map). Let G be a connected multigraph with Laplacian matrix
L. Define the normalizing map

Φ(M) = ΦG(M) = (L
†)1/2M (L†)1/2 for M ∈ HV.

The exponent 1/2 extracts the unique psd square root. The normalizing map Φ is
associated with the Laplacian of a particular multigraph G, which will remain fixed
throughout our discussion.

Let us note some properties of this map. First,Φ(L) = P , where P is the orthogonal
projector onto range(L). The functionΦ is an example of a positive linear map. Among
many other properties,

M < 0 implies Φ(M) < 0.

See the book [Bha07] for an introduction to the theory of positive linear maps.
The normalizing map gives us another mechanism for expressing the effective

resistance between two vertices. Indeed, the effective resistance is the spectral norm of
the normalized elementary Laplacian of the unit edge connecting the two vertices.

Proposition 5.4 (Effective resistance). Let G be a connected multigraph on the vertex set
V and with normalizing map Φ. For vertices u ,v ∈ V,

%(u ,v) = ‖Φ(∆uv)‖.

As always, ‖·‖ is the spectral norm.

Proof. Since the effective resistance is nonnegative,

%(u ,v) = ‖(δu − δv)
∗(L†)1/2(L†)1/2(δu − δv)‖

= ‖(L†)1/2(δu − δv)(δu − δv)
∗(L†)1/2‖ = ‖(L†)1/2∆uv (L

†)1/2‖.

We make the transition to the second line using the relation ‖M M ∗‖ = ‖M ∗M ‖.
Identify the normalizing map to complete the argument. �

Exercise 5.1 Prove that %(u ,v) = trΦ(∆uv).

56 Lecture 5: Effective Resistance

5.1.4 Leverage of a multiedge
We are now prepared to introduce a notion of the importance of a multiedge to the
graph structure.

Definition 5.5 (Leverage). Let G be a connected multigraph on a vertex set V and with
normalizing map Φ. For each multiedge e = uv with weight w (e), the leverage of the
multiedge e is the quantity

`(e) = w (e) %(u ,v) = w (e) ‖Φ(∆e)‖.

As usual, % is the effective resistance induced by the multigraph G.
Proposition 5.6 (Leverage of a multiedge). Let G be a connected multigraph. For each
multiedge e in the multigraph, the leverage `(e) ≤ 1.

Proof. Introduce the Laplacian L of the multigraph:

L =
∑

e ∈G
w (e)∆e .

Apply the normalizing map to the last display:

P = Φ(L) =
∑

e ∈G
w (e)Φ(∆e). (5.1)

Since Φ is a positive linear map,

P < w (e)Φ(∆e) for each e ∈ G.

Taking the spectral norm, for each multiedge e = uv ∈ G, we have

1 ≥ w (e) ‖Φ(∆e)‖ = w (e) %(u ,v) = `(e).

The last identity follows from Proposition 5.4. �

The basic idea is that the effective resistance %(u ,v) measures how much voltage
we need to push a unit of current from the node u to the node v . Meanwhile, the
weight w (e) is proportional to the conductance of a wire that connects u and v . As
a consequence of Ohm’s law, the leverage `(e) measures the fraction of current that
travels along the wire e if we push one unit of current from u to v .

If there is only one way to get from u to v , all the current must pass along the wire
e = uv , and the leverage equals one. (Think of the edge connecting the two ends of
a barbell graph.) Conversely, if there are many ways to get from u to v , some of the
current may follow other routes, and the leverage of e = uv can be small. (Think of
the edges in a complete graph.)

Similarly, if two vertices are wired in parallel, each of the multiedges will carry
an equal proportion of the current between the vertices. By increasing the number of
multiedges, we thereby decrease the leverage of each one to an equal part of the total.

Exercise 5.2 (Total leverage). Assume that G is a connected multigraph on n vertices.
Prove that the total of all leverage scores is n − 1. That is,∑

e ∈G
`(e) = n − 1.

Hint: Use the identity (5.1) and Exercise 5.1.

5.2 Approximating a Laplacian by sampling 57

5.2 Approximating a Laplacian by sampling
As an application of these ideas, we will prove that every Laplacian is well-approximated
by the Laplacian of a sparse graph. We construct the sparse graph by randomly sampling
edges according to their leverage. The result and high-level approach are due to
Spielman & Srivastava [SS11]. The main tool in our analysis is the matrix Bernstein
inequality, Theorem 1.13.

5.2.1 Spectral approximation
Let L be the Laplacian of a connected graph G on a set V of n vertices, with normalizing
map Φ. Let S be the Laplacian of another graph on the same vertex set V. We are
interested in a very strong notion of approximation between these two Laplacians.

Definition 5.7 (Spectral approximation). For ε ∈ (0, 1), we say that S is a ε-spectral
approximation of L when

(1 − ε)L 4 S 4 (1 + ε)L .

If S is a spectral approximation of L, then the two Laplacians represent graphs with
similar properties. Among other things,

1. The effective resistance between a pair of vertices in S is comparable to the
effective resistance between the same pair of vertices in L.

2. The value of every graph cut in S is comparable to the value of the same cut in L.
3. The solution to the linear system Sx = f is not very different from the solution

of Lx = f .

The last fact will be very important when we talk about how to solve Laplacian linear
systems efficiently.

It is convenient to convert the spectral approximation condition into another form
that is more amenable to analysis.

Proposition 5.8 (Spectral approximation). Let L be the Laplacian of a connected graph,
and let S be the Laplacian of another graph on the same vertex set. Suppose that

‖Φ(S − L)‖ ≤ ε.

Then S is a spectral approximation of L with quality ε.

Proof. First, subtract L from both sides of the relation:

−ε L 4 S − L 4 +ε L .

Apply the normalizing map to this relation to obtain the equivalent condition

−ε P 4 Φ(S − L) 4 +ε P .

Since the range of Φ(S − L) is contained in the range of P , it is sufficient to prove that

‖Φ(S − L)‖ ≤ ε‖P ‖ = ε.

The last step uses the fact that P is an orthogonal projector. �

58 Lecture 5: Effective Resistance

5.2.2 The sampling model
The representation of the graph Laplacian as a sum of weighted edges allows us to
construct a matrix approximation by random sampling, similar to what we did in
Lecture 2.

Recall that the Laplacian L admits the representation

L =
∑

e ∈G
w (e)∆e .

To construct a sparse Laplacian that approximates L, we introduce a random elementary
Laplacian:

R =
w (e)

pe
∆e with probability pe > 0 for each e ∈ G.

It is immediate that ER = L. For a parameter K ≥ 1, we construct the Laplacian
approximation by averaging K copies of R :

S =
1
K

∑K

i=1
R i where R i ∼ R iid.

Then S is the Laplacian of a weighted graph with at most K edges, and S is an unbiased
estimator of L.

5.2.3 The sampling probabilities
Our goal is to control the size of Φ(S − L), and we will exploit our analysis of matrix
sampling estimators, Theorem 2.1. To activate this result, we need to make each
summand uniformly bounded. To that end, calculate that

‖Φ(R)‖ =
w (e)

pe
‖Φ(∆e)‖ =

`(e)

pe
.

Therefore, it is natural to select the sampling probabilities proportional to the leverage
of the edges: pe = c`(e). The constant is selected to obtain a probability mass:

1 =
∑

e
pe = c

∑
e
`(e) = (n − 1)c .

We have used Exercise 5.2 here. On other words, c = 1/(n − 1).

5.2.4 The analysis
The analysis is easy now. The upper bound parameter in Theorem 2.1 satisfies

B = sup ‖Φ(R)‖ = sup
`(e)

`(e)/(n − 1)
= n − 1.

The per-sample second moment satisfies

m2(Φ(R)) = ‖EΦ(R)
2‖ ≤

E [
‖Φ(R)‖ ·Φ(R)

]
≤ (n − 1) ‖Φ(ER)‖ = (n − 1) ‖P ‖ = n − 1.

5.2 Approximating a Laplacian by sampling 59

Theorem 2.1 immediately implies that

E ‖Φ(S − L)‖ ≤

√
2m2(R) log(2n)

K
+

2B log(2n)

3K

≤

√
2(n − 1) log(2n)

K
+

2(n − 1) log(2n)

3K
.

Set K = 4ε−2(n − 1) log(2n) to arrive at the bound

E ‖Φ(S − L)‖ < ε.

The final estimate assumes that ε ≤ 1.
By the probabilistic method, every graph with sufficiently small leverage scores

admits an ε-spectral approximation with at most 4ε−2n logn edges. Note that this
bound is independent of the number m of edges in the target graph G!

Let us remark that the approach here tracks the presentation in Lecture 2. We
recognize that the representation of the Laplacian as a sum of elementary Laplacians
furnishes a breakdown of the matrix into simple components. Once we agree that our
goal is to obtain an ε-spectral approximation, the matrix sampling result, Theorem 2.1,
tells us exactly what properties the sampling probability ought to have. The leverage
emerges as a formal consequence.

5.2.5 Computational aspects
This argument gives an algorithm for constructing a sparse graph that is a spectral
approximation of an arbitrary graph. Unfortunately, to implement this method, we need
to compute the leverages so that we can perform the sampling. The naïve approach
to this problem involves Θ(n3) computation. The literature on theoretical algorithms
contains techniques that can achieve this goal more efficiently, but these methods may
not be entirely practical. See [Spi] for discussion and references.

5.2.6 Conclusion
To conclude, we have established the following theorem.

Theorem 5.9 (Spielman & Srivastava, 2011). Let G be a connected graph on n vertices
with Laplacian L. Fix a parameter ε ∈ (0, 1). Then there is a connected graph on
the same vertex set, with at most 4ε−2n logn edges, and whose Laplacian is an
ε-spectral approximation to L.

The analysis of this sampling estimator cannot be improved in general beyond
the constants. Indeed, for a complete graph, the leverage of each edge is the same.
The sampling technique chooses each edge with equal probability, so an individual
sample is equally likely to be incident on each vertex. But the coupon collector problem
tells us that we need Θ(n logn) samples to acquire edges incident on all n vertices.
This outcome is prerequisite for S to be the Laplacian of a connected graph, which is
necessary if S is to approximate L spectrally.

Nevertheless, the sparsity bound in the theorem is not optimal for graph approxi-
mations. See [BSS14] for a sharp result based on a deterministic construction.

©École Polytechnique archives

6. Solving Laplacian Systems

This lecture is adapted from Rasmus Kyng’s dissertation [Kyn17].

In this lecture, we will discuss computational methods for solving Laplacian linear
systems. The classic direct method is based on computing the Cholesky decomposition
of the Laplacian matrix. This decomposition takes a special form for the Laplacian, as
compared with a general psd matrix. This special form will serve as the foundation for
developing a very efficient algorithm for solving graph Laplacian systems, as we will
see in Lecture 8.

6.1 Cholesky meets Laplace
This section gives an overview of a classic approach for solving a Laplacian system.

6.1.1 Setup
Let G be a connected multigraph. The vertex set V = {1, . . . ,n}. The multiedge set E
comprises m edges. The weight function wG : E → R++. As always, L denotes the
weighted Laplacian matrix of the graph. We will treat the multigraph and the Laplacian
as interchangeable by presenting the Laplacian as a weighted sum of multiedges.

6.1.2 Laplacian systems
Suppose that we are given a forcing vector f ∈ RV that is orthogonal to the constant
vector 1∗f = 0. Our aim is to solve the linear system

Lx = f . (6.1)

Write x? ∈ RV for the (unique) solution to this system with 1∗x? = 0.

62 Lecture 6: Solving Laplacian Systems

6.1.3 Solution via Cholesky decomposition
A standard approach to solving a Laplacian linear system is to extract a Cholesky
decomposition of the Laplacian:

L = CC ∗ where C is lower-triangular.

We will spend most of this lecture going over the details of how Cholesky decomposition
works for Laplacian matrices. The cost of producing this decomposition is usually
Θ(n3) arithmetic operations. Owing to fill-in, the lower-triangular factor C often has
fully Θ(n2) nonzero entries.

Once we have the triangular factorization, we can solve the linear system (6.1) with
Θ(n2) arithmetic operations. Indeed,

x? = L†f = (C ∗)†(C †f).

We can apply C † using forward substitution in time Θ(n2), and we can apply (C ∗)†

using backward substitution in time Θ(n2). This approach produces results that are
accurate (almost) to machine precision [Hig02, Chaps. 8, 10].

6.2 Cholesky decomposition: Matrix view
Let us explain the process of computing the Cholesky decomposition of a psd matrix.
We begin with a linear-algebraic treatment that is applicable to any matrix. In the next
section, we specialize to the case of Laplacian matrices.

6.2.1 Setup
Let M ∈ Hn be a psd matrix. The Cholesky decomposition iteratively reduces the psd
matrix to a product of lower-triangular factors.

6.2.2 First step of the Cholesky decomposition
Let us begin with a visual description of the first step in the Cholesky process. Writing
out the first row and column explicitly, we can express the matrix M as

M =

[
d −a∗

−a M 2

]
.

In this expression, d is a nonnegative number (because M is psd), a ∈ Rn−1 and
M 2 ∈ Hn−1. Construct the rank-one psd matrix

d†
[

d
−a

] [
d
−a

]∗
=

[
d −a∗

−a d†aa∗

]
.

(Since M is psd, if the diagonal entry d = 0, then also a = 0.) Therefore, we can
eliminate the first row and column of M by subtracting this rank-one matrix:

M /1 = M − d†
[

d
−a

] [
d
−a

]∗
=

[
0 0∗

0 M 2 − d†aa∗

]
.

6.2 Cholesky decomposition: Matrix view 63

The notation M /1 refers to the Schur complement of M with respect to the first
coordinate subspace.

Observe that the reduced matrix M /1 remains psd. Indeed, for each vector
x ∈ Rn−1, define α = d†a∗x , and calculate that

0 ≤
[
α
x

]∗
M

[
α
x

]
= dα2 − 2αa∗x + x ∗M 2x = x ∗(M 2 − d†aa∗)x .

Since x is arbitrary, the Schur complement M /1 is psd.
We can apply this elimination procedure to each remaining coordinate in sequence,

reducing the size of the nonzero block at each step.

6.2.3 Cholesky decomposition, without pivoting
Here is a more formal description of the Cholesky decomposition, where we eliminate
the coordinates in lexicographic order.

To begin the process, set S0 = M . At each step i = 1, 2, . . . ,n, we eliminate the
i th coordinate. We write ui = i to emphasize the difference between the choice of
coordinate (ui) and the step (i) in the iteration procedure. Introduce the vector

c i =
1√

(S i−1)ui ui

· S i−1δui .

(If the diagonal entry (S i−1)ui ui happens to equal zero, we set c i = 0.) Zero out the row
and column in S i−1 indexed by the coordinate ui by forming the Schur complement:

S i = S i−1/ui = S i−1 − c i c ∗i .

We continue this process for n steps.
At each iteration i , the matrix S i−1 is psd, and it has the block form

S i−1 =

[
0i×i 0i×(n−i)

0(n−i)×i ?

]
.

The symbol ? indicates an (n − i) × (n − i) block of nonzero coordinates. In particular,
after n steps of this procedure, S n = 0.

When the iteration is complete, we collect the vectors c i into a matrix:

C =
[
c 1 c 2 . . . c n

]
∈ Rn×n .

Since S i−1 is supported on the coordinates {i , . . . ,n}, so is the vector c i . Therefore,
the matrix C is lower-triangular.

To understand the role of the matrix C , observe that

M = S0 − S n =
∑n

i=1
(S i−1 − S i) =

∑n

i=1
c i c ∗i = CC ∗.

The factorization M = CC ∗ is called a Cholesky decomposition of the input matrix M .
The Cholesky procedure progressively decomposes the input matrix:

M = S i +
∑i

k=1
c k c ∗k for each i = 0, 1, 2, . . . ,n.

This relation breaks down the process into the part of the matrix that remains to be
factored (S i) and the part of the factorization that is done (the sum of rank-one terms).

64 Lecture 6: Solving Laplacian Systems

6.2.4 Cholesky decomposition, with pivoting
It is not necessary to eliminate the coordinates in the lexicographic order. At iteration i ,
suppose instead that we eliminate the coordinate ui = π(i), where π : {1, . . . ,n} →
{1, . . . ,n} is a permutation (i.e., a bijection). The permutation π can be chosen in
advance, or π(i)may be selected at iteration i . Otherwise, the decomposition algorithm
is the same as before.

In this case, the computed matrix C is morally lower-triangular. The permutation π
gives the order of elimination for solving the system C x = f by substitution. We omit
further details.

6.2.5 Computational cost
At the i th step of the Cholesky decomposition, the cost of computing the Schur
complement is Θ((n − i)2) arithmetic operations. Therefore, the total cost of n
iterations is Θ(n3).

When the input matrix is sparse, we may be able to economize during the early
iterations by exploiting sparsity. Nevertheless, each time we form a Schur complement,
the matrix often becomes denser, a process known as fill-in. It is hard to avoid fill-in,
except in special cases. As a consequence, we generally need Θ(n3) operations to
obtain the Cholesky decomposition. This is very expensive.

6.3 Cholesky decomposition: Graph view
When we apply the Cholesky algorithm to a Laplacian, we can interpret the basic step
as a combinatorial operation on a multigraph.

6.3.1 Setup
Let G be a connected multigraph with Laplacian matrix L. We can interpret the Cholesky
decomposition of the Laplacian matrix L in graph-theoretic terms. In particular, we
can express the matrices that arise during the process as Laplacians!

6.3.2 First step of the Cholesky decomposition
To illustrate the idea, suppose that we want to eliminate the first vertex. Isolating the
role of the first vertex,

L =
∑

e ∈G
w (e)∆e =

[
d −a∗

−a L2

]
.

Since L is a Laplacian, we can say more about the terms that appear here:

d = wL(1) ≥ 0 and a ≥ 0 and a∗1 = d .

Indeed, the first diagonal entry of the Laplacian is the total weight wL(1) of the first
vertex. We regard a ∈ RV\{1}. The off-diagonal entries in the Laplacian are nonpositive,
and the number av is the total weight of all multiedges of the form e = 1v for each
vertex v , 1. The identity a∗1 = d reflects the fact that the diagonal entry wL(1) is

6.3 Cholesky decomposition: Graph view 65

the sum of all the weights of multiedges incident on the first vertex. We write L2 as a
placeholder for the submatrix indexed by the vertices V \ {1}.

To compute the Schur complement L/1 with respect to the first vertex, we subtract
a rank-one matrix from the Laplacian. Introduce the vector

c =
1
√

d
Lδ1 =

1
√

d

[
d
−a

]
, so that c c ∗ =

[
d −a∗

−a d†aa∗

]
.

(If d = 0, we interpret the fraction as computing a pseudoinverse.) Then the Schur
complement takes the form

L/1 = L − c c ∗ =

[
0 0∗

0 L2 − d†aa∗

]
.

To understand what is really happening here, we will think about this operation as the
composition of two steps.

Define the Laplacian of the set of multiedges incident on the first vertex:

star(1) =
∑

e=1v
w (e)∆e =

[
d −a∗

−a diag(a)

]
.

Here, diag(a) is the diagonal matrix determined by the vector a . This Laplacian is
called the star induced by the first vertex. Adding and subtracting star(1) from the
Schur complement L/1, we obtain

L/1 =
(
L − star(1)

)
+

(
star(1) − c c ∗

)
.

We will check that each of the large parentheses defines a Laplacian matrix. Since
the class of Laplacians is closed under addition, the Schur complement L/1 is also a
Laplacian matrix!

The first parenthesis is simply the Laplacian of the multigraph obtained by removing
from G the multiedges incident on the first vertex:

L − star(1) =
∑

e=1
w (e)∆e .

This point follows immediately from the definitions. Observe that none of the remaining
multiedges is incident on the first vertex. This is equivalent to the matrix L − star(1)
being supported on the coordinates v , 1.

Consider the second parenthesis:

star(1) − c c ∗ =

[
0 0∗

0 diag(a) − d†aa∗

]
.

This matrix is also a Laplacian! Indeed, by direct calculation, the diagonal entries
are nonnegative, the off-diagonal entries are nonpositive, and each row sums to one.
Alternatively, we can write[

0 0∗

0 diag(a) − d†aa∗

]
=

1
2d

∑
v1,v2,1

av1av2(δv1 − δv2)(δv1 − δv2)
∗

=
1

2wL(1)

∑
e1=1v1
e2=1v2

w (e1)w (e2)∆v1v2 .

66 Lecture 6: Solving Laplacian Systems

(We interpret the fraction bar as computing a pseudoinverse.) This Laplacian is also
called the clique induced by eliminating the vertex 1.

To wit, the process of computing the Schur complement of a Laplacian with respect
to a vertex amounts to removing the star induced by the vertex and adding back the
clique induced by eliminating the vertex.

6.3.3 Stars and cliques
Let us develop this construction in more generality. Let S be the Laplacian of a
multigraph on the vertex set V, expressed as a weighted sum of multiedges:

S =
∑

e ∈S
wS (e)∆e ∈ HV.

It is rather irritating, but necessary, to keep track of which Laplacian we are operating
on. The notation will reflect the choice.

Suppose that we wish to eliminate the vertex u from the Laplacian. Define the star
induced by a vertex u is the Laplacian generated by the weighted edges in S that are
incident on u . That is,

star(u ,S) =
∑

e=uv ∈S

wS (e)∆e . (6.2)

The sum takes place over all multiedges e in S that are incident on the vertex u . The
clique induced by eliminating the vertex u from S is a weighted Laplacian

clique(u ,S) =
1

2wS (u)

∑
e1=uv1∈S

∑
e2=uv2∈S

wS (e1)wS (e2)∆v1v2 . (6.3)

Each sum takes place over all multiedges e in S that are incident on the vertex u .
The star is the Laplacian of a multigraph; the clique is also the Laplacian of a

multigraph. By a direct calculation, the star and the clique satisfy the identity

clique(u ,S) − star(u ,S) = −
1

wS (u)
(Sδu)(Sδu)

∗. (6.4)

Therefore, the Schur complement S/u takes the form

S/u = S −
1

wS (u)
(Sδu)(Sδu)

∗

=
(
S − star(u ,S)

)
+ clique(u ,S).

As before, the Schur complement S/u is the Laplacian of a multigraph. This multigraph
has no edges incident on the vertex u . Moreover, if a vertex does not participate in S , it
does not participate in S/u .

To repeat, we compute the Schur complement of S with respect to a vertex u by
adding the clique induced by eliminating the vertex u from S and then removing the
star induced by the vertex u from S .

6.3 Cholesky decomposition: Graph view 67

6.3.4 Cholesky decomposition of a Laplacian
We are now prepared to summarize the process of computing the (pivoted) Cholesky
decomposition of the Laplacian L of the multigraph G.

Set S0 = L. For each iteration i = 1, 2, 3, . . . ,n, select a vertex ui . Extract the
associated normalized column of the Laplacian:

c i =
1√

(S i−1)ui ui

S i−1δui .

Compute the Schur complement with respect to the vertex ui :

S i = S i−1/ui =
(
S i−1 − star(ui ,S i−1)

)
+ clique(ui ,S i−1).

Let us emphasize that S i remains a Laplacian matrix, but it has no multiedges incident
on the vertices π(1), . . . , π(i). We have reduced the size of the problem, and the process
continues.

After n steps, construct the morally lower-triangular matrix

C =
[
c 1 . . . c n

]
∈ RV×V.

Then the initial Laplacian admits the factorization

L = CC ∗.

Last, we record the permutation π defined by π(i) = ui for i = 1, . . . ,n. This
permutation reflects the order in which the vertices were eliminated, and it is also
determines the substitution order for solving the linear system C x = f .

Let us remark that there is a standard approach to selecting vertices to eliminate
from a graph Laplacian. At each step, we choose the remaining vertex that has the
minimum degree.

6.3.5 An opportunity
Recall that the Cholesky decomposition is expensive because of the cost of computing
the Schur complement. For general psd matrices, we compute the Schur complement
by subtracting a rank-one matrix. It is not clear how to approximate this operation
accurately.

For graph Laplacians, however, we expressed the Schur complement as the com-
position of two simple graph operations. Removing the star induced by a vertex is
straightforward and inexpensive. The dominant cost arises from introducing the clique;
this operation is quadratic in the number of edges incident on the vertex we eliminate.

Nevertheless, the clique is expressed as a weighted sum of many elementary
Laplacians. As a consequence, we can try to approximate the clique by sampling. This
is the core idea behind the SparseCholesky algorithm, which we detail in the Lecture 8.

The SparseCholesky is an iterative algorithm that constructs a sequence of random
matrices. To analyze this kind of algorithm, we need more sophisticated matrix
concentration tools. The next lecture turns to the subject of matrix martingales, which
are the key to understanding the behavior of the algorithm.

“Spielbank Wiesbaden,” Wikimedia Commons

7. Matrix Martingales

Some of the text of this lecture is copied from my paper [Tro11a]. The treatment of
corrector processes has not appeared before.

We plan to analyze a randomized, sequential algorithm that operates on matrices.
For this purpose, we need to extend the theory of matrix concentration from independent
sums to martingales. The purpose of this lecture is to present the main elements of this
extension. In Lecture 8, we will require the full power of this approach.

7.1 Matrix-valued random processes
We begin with some basic definitions from the theory of random processes and their
matrix-valued cousins.

7.1.1 Martingales
Let (Ω,F ,P) be a probability space, and let F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ F be a filtration
of the master sigma algebra. We write Ek for the expectation conditioned on Fk . That
is, Ek averages over all random choices that take place after the instant k .

Amartingale is a (real-valued) random process {Yk : k = 0, 1, 2, . . . } that is adapted
to the filtration and that satisfies two properties:

Ek−1Yk = Yk−1 and E |Yk | < +∞ for k = 1, 2, 3,

For simplicity, we require the initial value of a martingale to be null: Y0 = 0. The
difference sequence is the random process defined by

Xk = Yk −Yk−1 for k = 1, 2, 3,

70 Lecture 7: Matrix Martingales

Roughly, the present value of a martingale depends only on the past values, and the
martingale has the status quo property: today, on average, is the same as yesterday.

A supermartingale is a (real-valued) random process {Sk : k ≥ 0} that is adapted
to the filtration and that satisfies

Ek−1 Sk ≤ Sk−1.

In other words, a supermartingale is a process with diminishing expectations.

7.1.2 Matrix martingales
Matrix martingales are defined in much the same manner as scalar martingales.
Consider a random process {Y k : k = 0, 1, 2, . . . } whose values are matrices of finite
dimension. We say that the process is a matrix martingale whenY 0 = 0 and

Ek−1Y k = Y k−1 and E ‖Y k ‖ < +∞ for k = 1, 2, 3,

We write ‖·‖ for the spectral norm of a matrix, which returns its largest singular value.
As before, we define the difference sequence {X k : k = 1, 2, 3, . . . } via the relation

X k = Y k −Y k−1 for k = 1, 2, 3,

A matrix-valued random process is a martingale if and only if we obtain a scalar
martingale when we track each fixed coordinate in time.

7.1.3 Adapted sequences
A sequence {X k } of random matrices is adapted to the filtration when each X k is
measurable with respect to Fk . That is, X k is completely determined by random
choices made up to and including instant k . We say that a sequence {V k } of random
matrices is predictable when eachV k is measurable with respect to Fk−1. In particular,
the sequence {Ek−1 X k } of conditional expectations of an adapted sequence {X k } is
predictable. A stopping time is a random variable K : Ω → N0 ∪ {∞} that satisfies
{K ≤ k } ⊂ Fk for k = 0, 1, 2, . . . ,∞.

7.1.4 Stopped processes
Suppose that {Sk : k ≥ 0} is an adapted random process, and let K be a stopping
time. The stopped process {Sk∧K : k ≥ 0} coincides with the original process up to the
stopping time K , after which it remains constant.

Fact 7.1 (Stopped processes). Let {Sk } be a (super)martingale, and let K be a stopping
time. The stopped process {Sk∧K } remains a (super)martingale. �

7.2 Tail bounds for matrix-valued processes
Now, let us develop a general methodology for establishing tail bounds for matrix-valued
random processes. The basic technique can be traced at least as far as Freedman’s
work [Fre75] on scalar random processes. In the next section, we introduce the extra
tools that are required to apply these results fruitfully in the matrix setting.

7.2 Tail bounds for matrix-valued processes 71

7.2.1 Corrector processes
We begin with the definition of a corrector process for a martingale. The corrector
process is an auxiliary random process that provides an evolving bound on the growth
of the martingale. This concept is rather abstract, but we will soon see how to make it
more concrete.

Definition 7.2 (Corrector process). Let g : [0,∞] → [0,∞] be a function. Consider
a martingale {Y k : k = 0, 1, 2, . . . } and a predictable random process {W k : k =
0, 1, 2, . . . } that consist of self-adjoint random matrices with dimension d . Define the
real-valued random processes

Sk (θ) = tr exp
(
θY k − g (θ)W k

)
for θ ≥ 0. (7.1)

We say that {g W k } is a corrector process for the martingale {Y k } if Sk (θ) is a positive
supermartingale for all θ ≥ 0.

Since we are assuming that the martingale has a null initial value (Y 0 = 0), it
is natural to require that the corrector process also has null initial value (W 0 = 0).
In this case, the initial value of the supermartingale satisfies S0(θ) = d for all θ ≥ 0.
Furthermore, the supermartingale only takes positive values.

7.2.2 Lower bounds for the supermartingale
Next, we present a simple inequality that bounds the supermartingale Sk below when
we have control on the eigenvalues of the two processes.

Lemma 7.3 Suppose that λmax(Y) ≥ t and that λmax(W) ≤ w . For each θ > 0,

tr exp(θY − g (θ)W) ≥ eθt−g (θ)w .

Proof. Recall that g (θ) ≥ 0. The bound results from a calculation:

tr eθY −g (θ)W ≥ tr eθY −g (θ)w I

≥ λmax

(
eθY −g (θ)w I

)
= eθλmax(Y)−g (θ)w ≥ eθt−g (θ)w .

The first inequality depends on the semidefinite relationW 4 w I and the monotonicity
of the trace exponential with respect to the semidefinite order (Fact 1.8). The second
inequality relies on the fact that the trace of a psd matrix is at least as large as its
maximum eigenvalue. The third identity follows from the spectral mapping theorem
and elementary properties of the maximum eigenvalue map. �

7.2.3 A tail bound for matrix martingales
Our key theorem provides a bound on the probability that the maximum eigenvalue of
a matrix martingale ever exceeds a threshold.

Theorem 7.4 (Master tail bound for matrix martingales). Consider a matrix martingale
{Y k } consisting of self-adjoint matrices with dimension d . For a function g :
[0,∞] → [0,∞], assume that {g W k } is a corrector process for the martingale.

72 Lecture 7: Matrix Martingales

Then, for all t ,w ∈ R,

P {∃k ≥ 0 : λmax(Y k) ≥ t and λmax(W k) ≤ w } ≤ d · inf
θ>0

e−θt+g (θ)w .

Proof. The overall proof strategy is the same as the stopping-time technique used by
Freedman [Fre75]. Fix a positive parameter θ, which we will optimize later. Introduce
the supermartingale Sk = Sk (θ), as in (7.1).

Define a stopping time K by finding the first time instant k when the maximum
eigenvalue of the martingale reaches the level t even though the corrector process has
maximum eigenvalue no larger than w . That is,

K := inf{k ≥ 0 : λmax(Y k) ≥ t and λmax(W k) ≤ w }.

When the infimum is empty, the stopping time K = ∞. Consider a system of exceptional
events:

Ek := {λmax(Y k) ≥ t and λmax(W k) ≤ w } for k = 0, 1, 2,

Construct the event E :=
⋃∞

k=0 Ek that one or more of these exceptional situations takes
place. The intuition behind this definition is that our control on the corrector process
{W k } prevents the martingale {Y k } from exhibiting a large value. As a result, the
event E is rather unlikely.

We are prepared to estimate the probability of the exceptional event. First, note
that K < ∞ on the event E. Therefore, Lemma 7.3 provides a conditional lower bound
for the supermartingale {Sk } at the stopping time K :

SK = tr exp
(
θY K − g (θ)W K

)
≥ eθt−g (θ)w on the event E.

The stopped process {Sk∧K } is also a positive supermartingale with initial value d , so

d ≥ lim inf
k→∞

E[Sk∧K] ≥ lim inf
k→∞

E[Sk∧K 1E] ≥ E[lim inf
k→∞

Sk∧K 1E] = E[SK 1E].

The indicator function decreases the expectation because the stopped process is positive.
Fatou’s lemma justifies the third inequality, and we have identified the limit using the
fact that K < ∞ on the event E. It follows that

d ≥ E[SK 1E] ≥ (PE) · infE SK ≥ (PE) · eθt−g (θ)w .

Rearrange the relation to obtain

PE ≤ d · e−θt+g (θ)w .

Minimize the right-hand side with respect to θ to complete the main part of the
argument. �

7.3 Building a corrector process
To convert Theorem 7.4 into a useful tool, we need a mechanism for constructing a
corrector process. Fortunately, as in the case of independent sums of random matrices,
Lieb’s theorem comes to our rescue. We will see that we can construct a corrector
process using matrix cgfs.

7.3 Building a corrector process 73

7.3.1 Correctors
Let us specialize the notion of a corrector to a single matrix. This will be the building
block for constructing a corrector process.

Definition 7.5 (Corrector). Let g : [0,∞] → [0,∞] be a function. Consider a random
self-adjoint matrix X and a fixed matrixV , each with dimension d . We say that g V is
a corrector for X when

E tr exp(M + θX − g (θ)V) ≤ tr exp(M) for θ > 0.

This bound must hold for every fixed matrix M ∈ Hd .

7.3.2 Lieb’s theorem and Tropp’s corollary
Our main tool for producing explicit correctors is Lieb’s theorem [Lie73, Thm. 6]. We
refer to [Tro15, Chap. 8] for a digestible proof of this result.

Theorem 7.6 (Lieb, 1973). Fix a self-adjoint matrix H . The function

A 7−→ tr exp(H + log A)

is concave on the pd cone.

Lieb’s theorem tells us that we can construct a corrector from a cumulant generating
function. This simple but powerful observation first appeared in [Tro11a].

Corollary 7.7 (Tropp, 2010). Let M be a fixed self-adjoint matrix, and let X be a random
self-adjoint matrix of the same dimension. For any θ ∈ R,

E tr exp
(
M + θX − logE eθX)

≤ E tr exp(M).

Proof. Define the random matrixY = eθX , and calculate that

E tr exp
(
M + θX − logE eθX)

= E tr exp
(
M + log(Y) − log(EY)

)
≤ tr exp

(
M + log(EY) − log(EY)

)
= tr exp(M).

The first identity follows because the logarithm of the pd matrixY can be defined as
the functional inverse of the matrix exponential. Theorem 7.6, with the fixed matrix
H = M − log(EY), establishes that the trace function is concave inY . Invoke Jensen’s
inequality to draw the expectation inside the logarithm. �

7.3.3 Example: The Bernstein corrector
Corollary 7.7 and Lemma 1.10 allow us to derive a corrector for a bounded, centered
random matrix.

Proposition 7.8 (Bernstein corrector). Let X be a random matrix that satisfies E X = 0
and ‖X ‖ ≤ 1. Then the matrix g (θ)(E X 2) is a corrector for X , where g (θ) =
(θ2/2)/(1 − |θ |/3).

74 Lecture 7: Matrix Martingales

Proof. We may calculate that

E tr exp
(
M + θX − g (θ)(E X 2)

)
≤ E tr exp

(
M + θX − logE eθX)

≤ tr exp(M).

The first inequality follows from the Bernstein cgf bound, Lemma 1.10, because the
trace exponential is monotone with respect to the semidefinite order (Fact 1.8). The
second inequality is Corollary 7.7. �

7.3.4 Example: The Chernoff corrector
Corollary 7.7 and Lemma 1.12 allow us to derive a corrector for a bounded, psd random
matrix.

Proposition 7.9 (Chernoff corrector). Let X be a random matrix that satisfies the bounds
0 4 X 4 I. Then the matrix g (θ)(E X) is a corrector for X , where g (θ) = eθ − 1.

We omit the repetitive proof.

7.3.5 From correctors to corrector processes
There is a straightforward connection between the corrector of a single random and
the corrector process of a martingale.

Proposition 7.10 (Corrector processes). Fix a function g : [0,∞] → [0,∞]. Let {Y k }

be a self-adjoint matrix martingale with difference sequence {X k }. Let {V k } be a
predictable sequence of self-adjoint matrices. For each k , suppose that g V k is a
corrector for X k , conditional on Fk−1. Then the predictable process

W k =
∑k

i=1
V i

generates a corrector {g W k } for the martingale {Y k }.

Proof. As above, define

Sk (θ) = tr exp(θY k − g (θ)W k).

To prove that the process is a supermartingale, we follow a short chain of inequalities.
Split off the last term fromY k andW k to see that

Ek−1 Sk (θ) = Ek−1 tr exp
(
θY k−1 − g (θ)W k−1 + θX k − g (θ)V k

)
≤ tr exp

(
θY k−1 − g (θ)W k−1

)
= Sk−1(θ).

This inequality follows immediately from the assumption that g V k is a corrector for
X k , conditional on Fk−1. We can apply this hypothesis becauseY k−1 andW k−1 both
are measurable with respect to Fk−1. �

7.3.6 Correctors tensorize
Let us continue with some general methods for constructing correctors of more
complicated matrices. First, correctors tensorize over independent random matrices.

7.4 Example: The matrix Freedman inequality 75

Proposition 7.11 (Correctors tensorize). Let g : [0,∞] → [0,∞]. Consider an independent
family {X k : k = 1, . . . ,n} of self-adjoint random matrices, and a nonrandom family
{V k : k = 1, . . . ,n} of self-adjoint matrices. Suppose that g V k is a corrector for X k

for each k . Then g
∑

k V k is a corrector for
∑

k X k .

Proof. This result follows by iteration of Definition 7.5. Let M be a fixed matrix.

EEn tr exp
(
M + θ

∑n

k=1
X k − g (θ)

∑n

k=1
V k

)
≤ EEn−1 tr exp

(
M + θ

∑n−1

k=1
X k − g (θ)

∑n−1

k=1
V k

)
≤ · · · ≤ tr exp(M).

This is what we needed to show. �

7.3.7 The composition rule
Next, let us present a composition rule that allows us to derive a corrector for a random
matrix that is constructed in multiple steps.

Proposition 7.12 (Composition rule). Consider sigma fields F0 ⊂ F1 ⊂ F2. Let X be a
random matrix that is measurable with respect to F2. For θ ≥ 0, suppose that

E
[
tr exp

(
M 1 + θX − g (θ)V 1

)
|F1

]
≤ tr exp

(
M 1)

E tr exp
(
M 0 + θV 1 − h(θ)V 0

)
≤ tr exp

(
M 0).

In this expression,V 1 and M 1 are measurable with respect to F1, whileV 0 and M 0
are measurable with respect to F0. Then (h ◦ g)V 0 is a corrector for X .

Proof. Let M be measurable with respect to F0. Calculate that

E tr exp
(
M + θX − (h ◦ g)(θ)V 0

)
= EE

[
tr exp

(
M + θX − g (θ)V 1 + g (θ)V 1 − (h ◦ g)(θ)V 0

) ��F1
]

≤ E tr exp
(
M + g (θ)V 1 − h(g (θ))V 0

)
≤ tr exp(M).

This is the definition of a corrector. �

7.4 Example: The matrix Freedman inequality
As an example, let us use Theorem 7.4 to prove the matrix version of a classic martingale
inequality due to Freedman.

Theorem 7.13 (Matrix Freedman). Consider a matrix martingale {Y k } consisting of
self-adjoint matrices with dimension d . Assume that the difference sequence {X k }

satisfies
‖X k ‖ ≤ B for k = 1, 2, 3,

76 Lecture 7: Matrix Martingales

Define the cumulative predictable quadratic variation process:

W 0 = 0 and W k =
∑k

i=1
Ei−1 X 2

i for k = 1, 2, 3,

Then, for all t ≥ 0 and σ2 ≥ 0,

P
{
∃k ≥ 0 : λmax(Y k) ≥ t and λmax(W k) ≤ σ

2} ≤ d · exp
(
−t 2/2

σ2 + Bt /3

)
.

Proof. We assume that B = 1; the general result follows by re-scaling since Y k is
1-homogeneous andW k is 2-homogeneous.

Invoke Proposition 7.8 conditionally to obtain a corrector process for {X k }. Indeed,
we can choose

V k = Ek−1 X 2
k and g (θ) =

θ2/2
1 − |θ |/3

.

Theorem 7.4 now implies that

P
{
∃k ≥ 0 : λmax(Y k) ≥ t and λmax(W k) ≤ σ

2} ≤ d · inf
θ>0

e−θt+g (θ)σ2
.

Make the inspired choice θ = t /(σ2 + t /3) to complete the argument. �

Exercise 7.1 Extend the matrix Freedman inequality to a martingale sequence consisting
of rectangular matrices.

©COMSOL Multiphysics

8. Sparse Cholesky

This lecture is adapted from Rasmus Kyng’s thesis [Kyn17]. The application of matrix
martingales has been streamlined by using the notion of a corrector process.

In this lecture, we introduce a practical algorithm for solving Laplacian linear
systems in near-linear time. The algorithm is remarkable in its simplicity, but the
analysis relies on many of the sophisticated ideas that we have encountered in the
previous lectures.

This approach, called the SparseCholesky algorithm, was developed by Rasmus Kyng
and Sushant Sachdeva [KS16]. It was further refined in Kyng’s dissertation [Kyn17]. It
is closely related to an earlier algorithm for connection Laplacians, developed by Dan
Spielman’s group [Kyn+16]. Altogether, these methods hold real promise for solving
large graph Laplacian systems in practice.

8.1 Approximate solutions of Laplacian systems

We begin with a high-level approach for computing an approximation solution of a
Laplacian system via preconditioning.

8.1.1 Approximate solutions

Let L be the Laplacian matrix of a connected multigraph. Suppose that we wish to find
the unique solution x? to the linear system

Lx = f where 1∗f = 0 and 1∗x = 0.

78 Lecture 8: Sparse Cholesky

For a parameter ε > 0, we can relax our requirement by asking for an approximate
solution x ε that satisfies the relative error bound

‖x ε − x?‖L ≤ ε · ‖x?‖L

Here, ‖·‖L is the norm associated with the quadratic form (i.e., the Dirichlet form)
determined by L. That is, ‖x ‖L = (x ∗Lx)1/2.

8.1.2 Approximate Cholesky decomposition
Suppose that we are able to construct a sparse, approximate Cholesky decomposition
of the Laplacian matrix:

0.5L 4 CC ∗ 4 1.5L where nnz(C) = O (m logn). (8.1)

The symbol 4 refers to the semidefinite order. The matrixC is morally lower-triangular;
in other words, there is a permutation of coordinates that brings the matrix into
lower-triangular form. The function nnz returns the number of nonzero entries in a
matrix.

8.1.3 Preconditioning
Given the sparse, approximate factor C , we can precondition the linear system (6.1):

(C †LC ∗†)(C ∗x) = (C †f).

Owing to (8.1), the preconditioned linear system has condition number κ ≤ 3. Of
course, in practice, we treat the matrix as an operator acting on vectors. Each time we
apply the operator, we use forward and back substitution to invoke C † and C ∗†. The
total cost of each application of the matrix is Θ(m logn) arithmetic operations, because
the substitution method for solving a morally triangular system exploits sparsity.

We can solve the preconditioned system using the conjugate gradient algorithm. If
the initial iterate x0 = 0, then, after j iterations, we attain the error bound

‖x j − x?‖L ≤ 2
[√
κ − 1
√
κ + 1

] j

‖x?‖L ≤ 31−j ‖x?‖L .

In particular, we can achieve a relative error of ε in the Dirichlet energy norm after
O (log(1/ε)) iterations.

8.1.4 Summary
In summary, once we have constructed an approximate Cholesky decomposition that sat-
isfies (8.1), we can solve the linear system to relative error ε usingO (m log(n) log(1/ε))
arithmetic operations. This computation takes place in time that is nearly linear in the
number of degrees of freedom in the graph.

Easy! We just have to achieve (8.1). In the rest of this lecture, we will explain how
to perform this feat.

8.2 Overview of the algorithm 79

8.2 Overview of the algorithm
Let us begin with an overview of the SparseCholesky algorithm for computing a sparse,
approximate Cholesky decomposition that satisfies (8.1). We will fill in the details and
perform the analysis over the balance of the lecture.

8.2.1 Setup
Fix the ground set V = {1, . . . ,n} of vertices. Let G be a connected multigraph on V
composed of m weighted multiedges. As usual, we will interact with the multigraph G
via its Laplacian matrix L. The Laplacian will be represented as a sum over multiedges:

L =
∑

e ∈L
wL(e)∆e ∈ HV.

The indexing for the sum and the notation for the weight function are intended to be
mnemonic, if not overly formal.

8.2.2 The SparseCholesky procedure
The SparseCholesky algorithm is based on the same template as the ordinary Cholesky
decomposition, but it judiciously injects randomness to minimize the computational
burden. The basic idea is to randomly sample the cliques that arise as we eliminate
vertices from the multigraph:

Summary of SparseCholesky:

For each iteration i = 1, . . . ,n:

1. Select a random vertex ui to eliminate.
2. Add a random approximation of the clique induced by ui .
3. Remove the star induced by ui .

We continue with a more detailed presentation of the steps in the procedure.

Preprocessing
Before we begin, we split each multiedge into a fixed number of pieces to reduce the
leverage of each multiedge below a threshold.

As the algorithm constructs new multiedges, we will ensure that the leverages never
increase beyond the initial threshold. This property helps control the variance of the
random clique approximations.

Initialization
Let S0 = L. Let F0 = V of vertices that have not been eliminated.

We will maintain the invariant that the iterate S i is supported on the vertices listed
in Fi . The number of vertices remaining at each step will satisfy |Fi | = n − i .

Selecting a vertex to eliminate
At each iteration i = 1, 2, 3, . . . ,n, select a vertex ui uniformly at random from Fi−1.
Update Fi = Fi−1 \ {ui }.

80 Lecture 8: Sparse Cholesky

Selecting a random vertex ui renders it unlikely that there are many multiedges
incident on ui . Furthermore, it is unlikely that the clique induced by ui involves
multiedges whose total leverage is large. These facts are critical for controlling the
runtime of the algorithm and ensuring that it produces an accurate approximation.

Collecting information
Extract data from the current iterate S i−1:

c i =
1√

(S i−1)ui ui

S i−1δui .

If (S i−1)ui ui = 0, then we set c i = 0. Since the matrix S i−1 is supported on the
coordinates listed in Fi−1, the support of c i is also contained in Fi−1.

Sampling the clique
To proceed, we will approximate the Schur complement S i−1/ui . To do so, we first
construct a random sparse Laplacian matrix K i that approximates the clique induced by
eliminating ui . We will explain how to perform this approximation later, in Section 8.4.
The basic requirement on that K i is that

Ei−1[K i |ui] = clique(ui ,S i−1).

The expectation Ei−1 conditions on all of the randomness in the first i − 1 iterations.
We also condition separately on the random vertex ui drawn at step i .

The number of multiedges in the clique approximation K i will not exceed the
total number of multiedges incident on the vertex ui , so the number of multiedges
remaining in the multigraph does not increase as the iteration advances. This property
also ensures that the cost of computing the clique approximation is under control.

Moreover, we will ensure that the clique approximation K i has no multiedges
incident on u1, . . . ,ui . That is, K i is supported on the coordinates listed in Fi .

Approximating the Schur complement
Now, form the approximate Schur complement:

S i =
(
S i−1 − star(ui ,S i−1)

)
+ K i . (8.2)

In the last step, we set S n = 0.
For reference, the star (6.2) and clique (6.3) induced by a vertex were defined

before. This construction ensures that S i is supported on the coordinates listed in Fi .
Therefore, we continue to reduce the size of the problem.

Forming the decomposition
As usual, we conclude by compiling the matrix

C =
[
c 1 . . . c n

]
∈ RV×V.

By construction of the vectors c i , the matrix C is morally lower-triangular. The
elimination order is associated with the permutation π defined by π(i) = ui for
i = 1, . . . ,n.

8.3 Preliminaries for the analysis 81

8.2.3 Laplacian approximations
How do we make sense of this approach? Note that the SparseCholesky iteration
induces a sequence of approximations to the Laplacian matrix:

Li = S i +
∑i

k=1
c k c ∗k for i = 0, 1, 2, . . . ,n.

In particular, the initial value of the sequence is the original Laplacian, while the final
value is our approximate Cholesky decomposition:

L0 = L and Ln =
∑n

i=1
c i c ∗i = CC ∗.

The difference sequence of the random process {Li } satisfies

Li − Li−1 = S i − S i−1 + c i c ∗i
= K i − star(ui ,S i−1) + c i c ∗i
= K i − clique(ui ,S i−1)

= K i − E[K i |ui].

The second relation follows from the definition (8.2) of the approximate Schur comple-
ment S i . We have used an identity from the last lecture:

clique(ui ,S i−1) = star(ui ,S i−1) − c i c ∗i . (8.3)

It is now evident that each increment is conditionally zero mean:

Ei−1[Li − Li−1] = Ei−1 Ei−1[Li − Li−1 |ui] = 0.

In particular,
ELi = L for each i = 1, 2, 3, . . . ,n.

We discover that {Li − L0} is a matrix martingale with null initial value. The final
value of this martingale is the error in the approximate Cholesky decomposition:

CC ∗ − L = Ln − L0 =
∑n

i=1
(Li − Li−1).

Therefore, we can use the theory of matrix martingales to understand the behavior of
the algorithm.

8.3 Preliminaries for the analysis
Let us begin the argument with some preliminary notation and simplifications.

8.3.1 The normalizing map
We define the normalizing map Φ associated with the Laplacian L of the initial
multigraph G:

Φ(M) = (L†)1/2M (L†)1/2 for M ∈ HV.

82 Lecture 8: Sparse Cholesky

This map has two properties that will play a role in the argument. Since G is connected,
Φ(L) = P , where P is the orthogonal projector onto lin{1}⊥. Second, Φ is a positive
map. That is,

M < 0 implies Φ(M) < 0.

Let us emphasize that Φ is always constructed from the Laplacian L of the initial
multigraph.

8.3.2 The approximation requirement
Recall that the random process {Li } has the terminal value Ln = CC ∗. We can express
the approximation requirement (8.1) as

−0.5L 4 Ln − L 4 +0.5L .

Since Ln is a Laplacian, its range is contained in the range of the Laplacian L. Therefore,
we can apply the normalizing map to obtain an equivalent condition:

−0.5P 4 Φ(Ln − L) 4 +0.5P .

Using the relation L0 = L and taking care with the ranges of the matrices that appear,
we can write the latter expression as a pair of eigenvalue bounds:

λmax(Φ(Ln − L0)) ≤ +0.5;
λmin(Φ(Ln − L0)) ≥ −0.5.

In other words, we must control the discrepancy between the terminal value Ln and the
initial value L0 of the random process. Matrix martingale inequalities are tailor-made
for this purpose.

To see how this will work, we decompose the martingale into its difference sequence:

Φ(Ln − L0) =
∑n

i=0
Φ(Li − Li−1)

=
∑n

i=0
Φ(K i − clique(ui ,S i−1))

=
∑n

i=0
Φ(K i − Ei−1[K i |ui]).

The next step is to construct and analyze the randomized clique estimators K i . As a
result, we will obtain a corrector process for the martingale {Li }, which will lead to
the required tail bounds.

8.3.3 Splitting the edges
Recall that many matrix concentration bounds, such as the matrix Bernstein and
matrix Freedman inequalities, require some type of uniform control over the random
contributions. To obtain this control, we will preprocess the multigraph by splitting
each multiedge into pieces.

Let R ≥ 1 be a parameter that we will fix later. (To be concrete, we will set
R = Θ(logn).) We construct a new multigraph, with Laplacian L ′, by splitting each

8.4 Sampling from a clique 83

edge in the Laplacian L into R equal pieces. This action has the effect of multiplying
each leverage by a factor of 1/R .

More precisely, we iterate over each multiedge e = uv in L; its weight is denoted
as wL(e). We augment the new Laplacian L ′ with R edges:

e j = uv with wL′(e j) =
1
R

wL(e) for each j = 1, 2, 3, . . . ,R .

As matrices, the Laplacians are equal: L ′ = L. Regarded as multigraphs, L ′ now has
M = Rm multiedges, whereas L only has m multiedges.

The leverage of each multiedge with respect to the new multigraph satisfies

wL′(e j) %L′(u ,v) =
1
R

wL(e) %L(u ,v) ≤
1
R
.

Indeed, since the Laplacians are equal, the effective resistance of each pair of vertices
is the same in both graphs. The last identity holds because of Proposition 5.6. Every
multiedge that we construct during the algorithm will satisfy this same bound.

To avoid an extra notational burden, we will simply assume that the input Laplacian
L consists of M = mR multiedges, each with leverage score bounded by 1/R . Effective
resistances % will always be computed with respect to this Laplacian L.

8.4 Sampling from a clique
The main challenge in the SparseCholesky algorithm is to avoid the cost of constructing
the full clique when eliminating a vertex. As noted, we plan to accomplish this goal
using randomized sampling. This section explains how to perform this task.

8.4.1 Setup
Let S be the Laplacian of a weighted multigraph over the set V of vertices. Let F be the
support of S ; that is, the subset of vertices where S has an incident edge.

We will make two strong assumptions. First, we will assume that each multiedge in
S has bounded leverage with respect to the original Laplacian:

For e = uv ∈ S , wS (e) %(u ,v) ≤
1
R
. (8.4)

We will often subscript the Laplacian S to specify the multigraph. Second, we will
assume that

‖Φ(S)‖ ≤ 2. (8.5)

In other words, the entire multigraph specified by S has bounded leverage with respect
to the target Laplacian L.

The Laplacian S evolves as the SparseCholesky algorithm progresses. We will
ensure that these two properties hold, by force if necessary.

84 Lecture 8: Sparse Cholesky

8.4.2 Eliminating a vertex
Fix a vertex u to eliminate from the Laplacian S . To do so, we first construct the star
induced by the vertex:

star(u ,S) =
∑

e=uv ∈S
wS (e)∆e .

That is, the star contains all of the multiedges in S that are incident on u . Recall that
deg(u ,S) is the number of multiedges incident on u in S , i.e., the cardinality of the
star. The total weight of the vertex is

wS (u) =
∑

e ∈star(u ,S)
wS (e).

The clique induced by u has the Laplacian matrix

clique(u ,S) =
∑

e1=uv1∈star(u ,S)
e2=uv2∈star(u ,S)

wS (e1)wS (e2)

2wS (u)
∆v1v2 .

Recall that each multiedge e in the star appears once in each sum, so the total number
of multiedges in the clique is degS (u)

2.
Our project is to construct a Laplacian matrix K that serves as an unbiased estimator

for the clique:
E[K |u] = clique(u ,S).

We will insist that each multiedge in the approximation K has the form v1v2 where
the multiedges e1 = uv1 and e2 = uv2 both appear in star(u ,S). Moreover, the total
number of multiedges in K will not exceed degS (u), the number of multiedges in the
star that we remove. This is a quadratic reduction in complexity!

8.4.3 The sampling procedure
We are now prepared to detail the method for constructing a sparse, unbiased estimator
of the clique.

Summary of CliqueSample:

1. Construct a probability mass on the multiedges in the star:

p(e) =
wS (e)

wS (u)
for each e ∈ star(u ,S).

2. Draw a random multiedge e1 = uv1 from the multiedges in star(u ,S)
according to the probability mass p .

3. Draw a second random multiedge e2 = uv2 from the multiedges in star(u ,S)
according to the uniform distribution.

8.4 Sampling from a clique 85

4. Form the random Laplacian matrix of a new multiedge:

X =
wS (e1)wS (e2)

wS (e1) +wS (e2)
∆v1v2 . (8.6)

This construction has several important features that we will explore in the next
paragraphs.

For now, we remark that this sampling procedure is analogous to the other matrix
sampling approximations that we have discussed throughout the course. The closest
parallel, naturally, is with the sparse graph approximation in Lecture 5. In that context,
we sampled edges in proportion to their leverages. In the present context, we do not
know the leverage scores. Instead, we exploit the fact that the effective resistances
satisfy a triangle inequality to obtain adequate sampling probabilities.

8.4.4 Expectation of the random multiedge
First, let us compute the expectation of the Laplacian X of a random multiedge. We
will see that the random multiedge is an unbiased estimator of the clique, up to a fixed
scale factor.

Proposition 8.1 (Expectation of random Laplacian). The Laplacian X of the random multi-
edge (8.6) satisfies

E X =
1

degS (u)
· clique(u ,S).

Proof. This result follows by direct calculation. Below, each of the sums iterates over
the multiedges in star(u ,S), which we omit from the notation.

E X =
∑

e1=uv1

wS (e1)

wS (u)

∑
e2=uv2

1
degS (u ,S)

·
wS (e1)wS (e2)

wS (e1) +wS (e2)
∆v1v2

=
1

degS (u)

∑
e1=uv1
e2=uv2

wS (e1)wS (e2)

wS (u)
·

wS (e1)

wS (e1) +wS (e2)
∆v1v2

=
1

degS (u)

∑
e1=uv1
e2=uv2

wS (e1)wS (e2)

2wS (u)
∆v1v2 =

clique(u ,S)

degS (u)
.

The passage to the last line follows from the symmetry of the summands with respect
to v1 and v2. �

8.4.5 Each multiedge has bounded leverage
Next, let us verify that the multiedge X constructed in (8.6) still has bounded leverage.

Proposition 8.2 (Bounded leverage). The random Laplacian matrix X defined in (8.6)
satisfies the uniform bound

‖Φ(X)‖ ≤
1
R
.

86 Lecture 8: Sparse Cholesky

Equivalently, given multiedges e1 = uv1 and e2 = uv2, the multiedge e = v1v2 with
weight

we =
wS (e1)wS (e2)

wS (e1) +wS (e2)

has leverage score

we %(v1,v2) ≤
1
R
.

Proof. This result is a consequence of the triangle inequality for effective resistances,
Theorem 5.2. Indeed,

wS (e1)wS (e2) · %(v1,v2)

≤ wS (e2) ·wS (e1) %(u ,v1) +wS (e1) ·wS (e2) %(u ,v2)

≤
1
R

[
wS (e1) +wS (e2)

]
.

The last inequality holds because the weighted multiedges in S satisfy the uniform
bound (8.4). Divide through by the bracket and identify the multiedge e = v1v2 with
weight we to arrive at the stated result. �

8.4.6 Corrector for the random multiedge
We are now prepared to bound the corrector for the Laplacian X of the random
multiedge (8.6). First, we center and normalize the random matrix. The result is then
an immediate application of the Bernstein corrector construction, Proposition 7.8.

Proposition 8.3 (Corrector of random multiedge). Fix a vertex u . The random matrix
Φ(X − E X) admits the corrector

g (θ) ·
Φ(clique(u ,S))

degS (u)
where g (θ) =

θ2/(2R)

1 − |θ |/(3R)
.

The random matrix X is defined in (8.6). Let us emphasize that the vertex u is not
random at this stage.

Proof. Proposition 8.1 implies that the random matrix Φ(X − E X) has mean zero. We
have the uniform norm bound

‖Φ(X − E X)‖ = ‖Φ(X) −Φ(E X)‖

= max{‖Φ(X)‖, ‖Φ(E X)‖} ≤ ‖Φ(X)‖ ≤
1
R
.

Since X is psd, so are Φ(X) and Φ(E X). This justifies the norm identity. The first
inequality is Jensen’s. The second inequality is Proposition 8.2.

Let us compute the variance:

EΦ(X − E X)2 = EΦ(X)2 −Φ(E X)2 4 EΦ(X)2

4 E
[
‖Φ(X)‖ ·Φ(X)

]
4

1
R
Φ(E X)

=
Φ(clique(u ,S))

R degS (u)
.

8.4 Sampling from a clique 87

We have repeatedly used the fact that Φ is a positive linear map. The last identity is
Proposition 8.1.

We now arrive at the result as a consequence of the Bernstein corrector bound,
Proposition 7.8, and a scaling argument. �

8.4.7 An unbiased estimator for the clique
Next, we construct an estimator for the clique induced by eliminating the fixed vertex
u from the Laplacian S . To do so, add up degS (u) independent copies of the random
Laplacian X defined in (8.6):

K =
∑degS (u)

j=1
X j where X j ∼ X iid. (8.7)

Since Laplacians form a convex cone, K is also the Laplacian of a multigraph. Let us
verify that K is an unbiased estimator of the clique and compute its corrector.

Proposition 8.4 (Corrector of clique estimator: Fixed vertex). Fix a vertex u . The random
matrix K defined in (8.7) is an unbiased estimator of the clique induced by eliminating
u from S :

EK = clique(u ,S).

The centered random matrix Φ(K − EK) has corrector

g (θ) ·Φ(clique(u ,S)) with g (θ) =
θ2/(2R)

1 − |θ |/(3R)
.

As before, we treat the vertex u as nonrandom.

Proof. The centered clique estimator decomposes as an independent sum:

K − EK =
∑degS (u)

i=1
(X i − E X i).

Proposition 7.11 states that the corrector tensorizes (over an independent sum). The
result follows from Proposition 8.3. �

8.4.8 The clique induced by a random vertex
To complete our analysis of clique sampling, we consider what happens when we draw
the vertex u at random.

First, let us develop several properties of the clique induced by an arbitrary vertex
u . Recall from (8.3) that clique(u ,S) is a Laplacian matrix obtained by subtracting
a psd matrix from star(u ,S). Moreover, star(u ,S) is the Laplacian of a subset of
multiedges in S . Therefore,

0 4 clique(u ,S) 4 star(u ,S) 4 S .

Using the assumption (8.5), we obtain the bound

‖Φ(clique(u ,S))‖ ≤ ‖Φ(S)‖ ≤ 2.

88 Lecture 8: Sparse Cholesky

In other words, the whole clique has bounded leverage.
Second, we compute the average of the clique with respect to a vertex u drawn

uniformly from the support F of the Laplacian S . Note that

Eu clique(u ,S) 4 Eu star(u ,S) =
1
|F|
·
∑

u ∈F

∑
e ∈star(u ,S)

wS (e)∆e

=
2
|F|

∑
e ∈S

wS (e)∆e =
2
|F|
· S .

Indeed, every multiedge in S appears twice in the sum because we touch each of its two
endpoints as we loop over the vertices in the support F of S . Applying the normalizing
map,

Eu Φ(clique(u ,S)) 4
2
|F|
·Φ(S) 4

4
|F|
· I.

The last inequality requires the assumption (8.5).

8.4.9 Corrector for the clique estimator
With these results at hand, we can find a corrector for the clique estimator K for a
randomly chosen vertex u .

Theorem 8.5 (Corrector for clique estimator). Let S be a multigraph supported on the
vertex set F. Assume that the properties (8.4) and (8.5) hold. Draw u uniformly at
random from F, and let K be the random estimator (8.7) for the clique induced by
u . Then the random matrix Φ(K − E[K |u]) has corrector

2 f (θ)

|F|
· I where f (θ) = exp

(
θ2/R

1 − |θ |/(3R)

)
− 1.

The corrector is computed with respect to the randomness in the summands X i

and in the vertex u .

Proof. Proposition 8.4 gives a corrector of Φ(K − E[K |u]) with respect to the random-
ness in the summands X i . This corrector is

g (θ)Φ(clique(v ,S)) where g (θ) =
θ2/(2R)

1 − |θ |/(3R)
.

We have shown that

Eu Φ(clique(u ,S)) 4
4
|F|
· I and ‖Φ(clique(u ,S))‖ ≤ 2.

Therefore, with respect to the random choice of the vertex u , the random matrix
Φ(clique(u ,S)) admits the corrector

4h(θ)

|F|
· I where h(θ) =

e2θ − 1
2

.

This is just the Chernoff corrector bound, Proposition 7.9. The result follows from the
composition rule, Proposition 7.12, since f = 2 (h ◦ g). �

8.5 Analysis of SparseCholesky 89

8.5 Analysis of SparseCholesky
We are finally prepared to establish that the SparseCholesky algorithm succeeds when
we use the clique sampling procedure developed in Section 8.4. Fix a parameter
ε ∈ (0, 1). Our first goal is to prove that, with high probability,

‖Φ(Ln − L0)‖ ≤ ε.

Afterward, we must argue that the runtime of the algorithm is controlled.

8.5.1 A stopping time
It is sufficient to show that, with high probability,

max
i=0,...,n

‖Φ(Li − L0)‖ ≤ ε.

Let us define the stopping time

T = min{0 ≤ i ≤ n : ‖Φ(Li − L0)‖ > ε}.

If this event never occurs, thenT = +∞. For each i < T , observe that ‖Φ(Li)‖ ≤ 1+ ε
because ‖Φ(L0)‖ = 1.

We will consider the stopped martingale

Y i = Φ(Li∧T − L0).

Clearly, it suffices to obtain a probability bound for the event that the stopped martingale
exhibits a large deviation:

max
0≤i ≤n

‖Y i ‖ > ε.

We will treat the maximum and minimum eigenvalue parts of this spectral norm bound
separately, but the arguments are symmetrical.

8.5.2 The approximate Schur complements
The purpose of introducing the stopped martingale is to guarantee that the approximate
Schur complements are uniformly bounded. Indeed, since 0 4 S i 4 Li for each i , we
have the consequence that

max
i ≤T
‖Φ(S i−1)‖ ≤ max

i<T
‖Φ(Li)‖ ≤ 2.

This condition delivers the uniform bound (8.5), irrespective of the choice of ε.
Moreover, the initial LaplacianS0 consists of multiedges with leverage score bounded

by 1/R . At each step of the iteration, we remove some multiedges from S i−1 and
then add back a random clique estimator. Proposition 8.2 ensures that each multiedge
in the clique estimator also has leverage score bounded by 1/R . By induction, the
assumption (8.4) holds in every iteration.

90 Lecture 8: Sparse Cholesky

8.5.3 The corrector process
For i ≥ 1, the difference sequence of the martingaleY i is

Y i −Y i−1 =

{
Φ(K i − Ei−1[K i |ui]), i ≤ T

0, i > T .

For i ≤ T , the matrix S i−1 satisfies the conditions required to invoke Theorem 8.5. The
support of S i−1 has cardinality |Fi−1 | = n − i + 1. Therefore, the incrementY i −Y i−1
has the corrector

2g (θ)

n − i + 1
· I where g (θ) = exp

(
θ2/R

1 − |θ |/(3R)

)
− 1.

(This is computed conditional on all of the random choices up to step i − 1.) For i > T ,
we can take the corrector to be the zero matrix.

Therefore, owing to Proposition 7.10, themartingale admits the nonrandom corrector
process

g W i = 2g

[∑i∧T

j=1

1
n − j + 1

]
· I 4 2g log(en) · I.

To obtain the bound, we have summed the harmonic series up to j = n.
The same corrector is valid for the negation {−Y i } of the martingale, so we can

obtain matching bounds for the maximum and minimum eigenvalues.

8.5.4 The martingale tail bound
Finally, we can bound the probability that the Laplacian martingale exhibits a large
deviation. Set σ2 = 2 log(en).

P {‖Φ(Ln − L0)‖ > ε} ≤ P {∃i : ‖Φ(Li − L0)‖ > ε}

= P {∃i : ‖Y i ‖ > ε}

≤ P {∃i : λmax(Y i) ≥ ε} + P {∃i : λmax(−Y i) ≥ ε} .

Indeed, the stopping time is triggered by the failure event, so we can pass to the
stopped martingale. Then we split the spectral norm into eigenvalues so we can apply
the master tail bound for matrix martingales.

We are in a good position to bound the last two probabilities.

P {∃i : λmax(Y i) ≥ ε} = P
{
∃i : λmax(Y i) ≥ ε and λmax(W i) ≤ σ

2}
≤ n · inf

θ>0
exp

(
− εθ + g (θ)σ2) .

We have used the fact that λmax(W i) ≤ σ2 always. The last inequality is a direct
application of Theorem 7.4, the master tail bound for matrix martingales. Likewise,

P {∃i : λmax(−Y i) ≥ ε} ≤ n · inf
θ>0

exp
(
− εθ + g (θ)σ2) .

This bound also follows from Theorem 7.4.

8.5 Analysis of SparseCholesky 91

Altogether, we determine that

P {‖Φ(Ln − L0)‖ > ε} ≤ 2n · inf
θ>0

exp
(
− εθ + 2g (θ) log(en)

)
.

We may select the parameters

θ = 2ε−1 log(en) and R = d4θ2e = d16ε−2 log2(en)e.

In this case, g (θ) ≤ 0.3 for any n ≥ 1 and ε < 1. We have the overall bound

P {‖Φ(Ln − L0)‖ > ε} ≤ (en)−0.4.

The probability bound can, of course, be improved by increasing the value of θ. To
do so, however, we must also increase the value of R , which means that we split the
multiedges in the initial graph into more pieces.

8.5.5 The running time
Last, we must assess the running time of the SparseCholesky algorithm. The first step
is to split the edges in the multigraph into R pieces to obtain a total of M = Rm
multiedges. This step costs O (M) time and memory accesses.

At the outset, there are M = Rm multiedges in the graph. At each iteration, we
eliminate a vertex by removing all the multiedges incident on that vertex and adding
a clique with (at most) the same number of multiedges. As a result, the number of
multiedges in the graph never increases above M at any iteration.

Now, in iteration i , we select a vertex ui at random from the n − i + 1 remaining
vertices. In expectation, the number ti of multiedges incident on ui satisfies ti ≤

M /(n − i + 1).
To sample the clique induced by ui , we need to draw ti samples from a probability

mass on ti points. This task can be accomplished in O (ti) time overall [BP17]. The
rest of the computation of the clique estimator and its introduction into the current
Laplacian involve O (ti) arithmetic and memory accesses.

Afterward, we remove the star induced by ui , which also contains ti multiedges.
This operation involves O (ti) arithmetic and memory accesses.

In summary, the expected running time of the algorithm is on the order of

M +
∑n

i=1
ti � Rm

∑n

i=1

1
n − i + 1

� Rm logn.

To obtain an error of ε = 0.5, we can take R = Θ(log2 n). Therefore, the overall
runtime is O (m log3(n)), in expectation.

8.5.6 The grand finale
To summarize, we have established the following result.

Theorem 8.6 (Sparse Cholesky). Let L ∈ HV be the Laplacian matrix of a connected
graph G on a set V of n vertices and with m weighted edges. The SparseCholesky
algorithm produces a a morally lower-triangular matrix C ∈ RV×V that satisfies

0.5L 4 CC ∗ 4 1.5L .

92 Lecture 8: Sparse Cholesky

The matrix C has O (m log2 n) nonzero entries. The expected running time is
O (m log3(n)).

In view of our discussion of preconditioned conjugate gradient, we arrive at an
algorithmic approach for solving Laplacian linear systems.

Corollary 8.7 (Laplacian systems). Given the preconditioner L computed by the Sparse-
Cholesky algorithm, we can solve every consistent linear system in a graph Laplacian
to relative error ε in the Dirichlet energy norm in time O (m log2(n) log(1/ε)).

This is what we promised to prove. �

Gutenberg Bible, British Library, public domain

Further Reading

Here is an incomplete collection of sources where you can learn more about contempo-
rary random matrix theory and its applications.

Matrix concentration inequalities
The papers below develop results on how much a random matrix deviates from its
mean in spectral norm. An important characteristic of these results is that they apply
to a wide range of different types of random matrices, the constants are explicit (and
reasonable), and the bounds are nonasymptotic.

• [Tro12] Joel A. Tropp, “User-friendly tail bounds for sums of random matrices.”
This is a foundational paper that develops the modern approach to matrix
concentration via the subadditivity of matrix cumulants. It contains a complete
catalog of exponential inequalities for an independent sum of random matrices.

• [Tro11a] Joel A. Tropp, “Freedman’s inequality for matrix martingales.”
This foundational paper is a follow-up to [Tro12] that develops the approach to
matrix martingales using corrector processes. It was inspired by Roberto Oliveira’s
paper [Oli10], which established a weaker version of the matrix Freedman
inequality.

• [Tro15] Joel A. Tropp, “An introduction to matrix concentration inequalities.”
My monograph gives a thorough introduction to matrix concentration for inde-
pendent sums, including many applications, a complete proof of Lieb’s theorem,
and an annotated bibliography of works on matrix concentration.

• [Tro16] Joel A. Tropp, “The expected norm of a sum of independent random
matrices: An elementary approach.”

94 Lecture 8: Sparse Cholesky

The matrix Rosenthal inequalities are moment inequalities for a sum of indepen-
dent random matrices that strengthen the matrix Bernstein inequality. This paper
proves the matrix Rosenthal inequalities using elementary arguments.

• [Mac+14] Lester Mackey et al., “Matrix concentration inequalities via the method
of exchangeable pairs.”
This paper develops another approach to matrix concentration using Stein’s
method. This approach is also more elementary than the approach using Lieb’s
theorem, and it applies to some types of random matrices that are more general
than independent sums or martingales.

• [PMT16] Daniel Paulin et al., “Efron–Stein inequalities for random matrices.”
This paper shows how to use Stein’s method to prove concentration inequalities
for a matrix-valued function of independent random variables. This is potentially
a very powerful result, but it has seen relatively few applications so far.

• [BH16] Afonso Bandeira and Ramon van Handel, “Sharp nonasymptotic bounds
on the norm of random matrices with independent entries.”
This paper gives sharp bounds on the norm of a random matrix with independent
entries, which is one of the most important random matrix models.

Lower tail inequalities
The minimum eigenvalue of a sum of psd random matrices exhibits a totally different
kind of behavior from the maximum eigenvalue. The following papers tackle this
important problem.

• [KM15] Vladimir Koltchinskii and Shahar Mendelson, “Bounding the smallest
singular value of a random matrix without concentration.”
This paper explains how to use the small-ball method to bound the smallest
singular value of a random matrix with independent rows.

• [Tro16] Joel A. Tropp, “Convex recovery of a structured signal from independent
random measurements.”
This expository work gives a simplified account of the small-ball method for con-
trolling the minimum (conic) singular value of a randommatrix with independent
rows.

• [Oli16] Roberto Oliveira, “The lower tail of random quadratic forms with applica-
tions to ordinary least squares.”
This paper proves a lower tail inequality for a sum of independent, random
psd matrices. The method is fascinating and strikingly different from other
approaches.

High-dimensional probability
Here are some surveys that I have found useful. They cover various aspects of
high-dimensional probability with applications to modern random matrix theory.

• [FR13] Simon Foucart and Holger Rauhut, A Mathematical Introduction to
Compressive Sensing.

8.5 Analysis of SparseCholesky 95

This book develops a collection of methods for studying structured random
matrices, and it proceeds from first principles.

• [Han16] Ramon van Handel, Probability in High Dimensions, 2016.
These lecture notes contain a sophisticated mathematical treatment of high-
dimensional probability, including some applications to random matrix theory.

• [Han17] Ramon van Handel, “Structured random matrices.”
This accessible survey covers some very recent results about structured random
matrices.

• [Ver18] Roman Vershynin, High-Dimensional Probability.
This textbook gives an elementary introduction to themethods of high-dimensional
probability, including some random matrix theory and many applications in data
science.

Classical random matrix theory
Last, we mention a few resources for learning about the more established parts of
random matrix theory.

• [Tao12] Terence Tao, Topics in Random Matrix Theory.
This textbook gives an accessible introduction to the classical theory of random
matrices.

• [Kem13] Todd Kemp, Introduction to Random Matrix Theory.
These lecture notes provide another readable treatment of classical randommatrix
theory.

• [NS06] Alexandru Nica and Roland Speicher, Lectures on the Combinatorics of
Free Probability.
This monograph introduces the theory of free probability from a combinatorial
point of view.

“Steacie Library,” Wikimedia Commons

Bibliography

[AW02] Rudolf Ahlswede and Andreas Winter. “Strong converse for identifica-
tion via quantum channels”. In: IEEE Trans. Inform. Theory 48.3 (2002),
pages 569–579. doi: 10.1109/18.985947.

[Axl15] Sheldon Axler. Linear algebra done right. Third. Undergraduate Texts in
Mathematics. Springer, Cham, 2015, pages xviii+340. doi: 10.1007/978-
3-319-11080-6.

[BH16] Afonso S. Bandeira and Ramon van Handel. “Sharp nonasymptotic bounds
on the norm of random matrices with independent entries”. In: Ann.
Probab. 44.4 (2016), pages 2479–2506. doi: 10.1214/15-AOP1025.

[BG13] Richard F. Bass and Karlheinz Gröchenig. “Relevant sampling of band-
limited functions”. In: Illinois J. Math. 57.1 (2013), pages 43–58. url:
http://projecteuclid.org/euclid.ijm/1403534485.

[BSS14] Joshua Batson, Daniel A. Spielman, andNikhil Srivastava. “Twice-Ramanujan
sparsifiers”. In: SIAM Rev. 56.2 (2014), pages 315–334. doi: 10.1137/
130949117.

[Bha97] Rajendra Bhatia.Matrix analysis. Volume 169. Graduate Texts in Mathemat-
ics. Springer-Verlag, New York, 1997, pages xii+347. doi: 10.1007/978-
1-4612-0653-8. url: http://dx.doi.org/10.1007/978-1-4612-
0653-8.

[Bha07] Rajendra Bhatia. Positive definite matrices. Princeton Series in Applied
Mathematics. Princeton University Press, Princeton, NJ, 2007, pages x+254.

https://doi.org/10.1109/18.985947
https://doi.org/10.1007/978-3-319-11080-6
https://doi.org/10.1007/978-3-319-11080-6
https://doi.org/10.1214/15-AOP1025
http://projecteuclid.org/euclid.ijm/1403534485
https://doi.org/10.1137/130949117
https://doi.org/10.1137/130949117
https://doi.org/10.1007/978-1-4612-0653-8
https://doi.org/10.1007/978-1-4612-0653-8
http://dx.doi.org/10.1007/978-1-4612-0653-8
http://dx.doi.org/10.1007/978-1-4612-0653-8

98 Lecture 8: Sparse Cholesky

[BLM13] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration
inequalities. A nonasymptotic theory of independence, With a foreword
by Michel Ledoux. Oxford University Press, Oxford, 2013, pages x+481.
doi: 10.1093/acprof:oso/9780199535255.001.0001. url: http:
//dx.doi.org/10.1093/acprof:oso/9780199535255.001.0001.

[BP17] Karl Bringmann and Konstantinos Panagiotou. “Efficient sampling methods
for discrete distributions”. In: Algorithmica 79.2 (2017), pages 484–508.
doi: 10.1007/s00453-016-0205-0.

[Buc01] Artur Buchholz. “Operator Khintchine inequality in non-commutative
probability”. In: Math. Ann. 319.1 (2001), pages 1–16. doi: 10.1007/
PL00004425. url: http://dx.doi.org/10.1007/PL00004425.

[CC13] Xiaohong Chen and Timothy M. Christensen. “Optimal uniform conver-
gence rates for sieve nonparametric instrumental variables regression”.
Available at http://arXiv.org/abs/1311.0412. Nov. 2013.

[Che+14] Yudong Chen et al. “Coherent matrix completion”. In: Proc. 31st Intl. Conf.
Machine Learning. Beijing, 2014.

[CSW12] Sin-Shuen Cheung, Anthony Man-Cho So, and Kuncheng Wang. “Linear
matrix inequalities with stochastically dependent perturbations and ap-
plications to chance-constrained semidefinite optimization”. In: SIAM J.
Optim. 22.4 (2012), pages 1394–1430. doi: 10.1137/110822906. url:
http://dx.doi.org/10.1137/110822906.

[CDL13] Albert Cohen, Mark A. Davenport, and Dany Leviatan. “On the stability
and accuracy of least squares approximations”. In: Found. Comput. Math.
13.5 (2013), pages 819–834. doi: 10.1007/s10208-013-9142-3. url:
http://dx.doi.org/10.1007/s10208-013-9142-3.

[CG14] Paul Constantine and David Gleich. “Computing active subspaces”. Avail-
able at http://arXiv.org/abs/1408.0545. Aug. 2014.

[DKC13] Josip Djolonga, Andreas Krause, and Volkan Cevher. “High-Dimensional
Gaussian Process Bandits”. In: Advances in Neural Information Processing
Systems 26. Edited by C.J.C. Burges et al. Curran Associates, Inc., 2013,
pages 1025–1033. url: http://papers.nips.cc/paper/5152-high-
dimensional-gaussian-process-bandits.pdf.

[FSV12] Massimo Fornasier, Karin Schnass, and Jan Vybiral. “Learning functions of
few arbitrary linear parameters in high dimensions”. In: Found. Comput.
Math. 12.2 (2012), pages 229–262. doi: 10.1007/s10208-012-9115-y.
url: http://dx.doi.org/10.1007/s10208-012-9115-y.

[FR13] Simon Foucart and Holger Rauhut. A mathematical introduction to compres-
sive sensing. Applied andNumerical Harmonic Analysis. Birkhäuser/Springer,
New York, 2013, pages xviii+625. doi: 10.1007/978-0-8176-4948-7.

[Fre75] David A. Freedman. “On tail probabilities for martingales”. In: Ann. Proba-
bility 3 (1975), pages 100–118. doi: 10.1214/aop/1176996452.

https://doi.org/10.1093/acprof:oso/9780199535255.001.0001
http://dx.doi.org/10.1093/acprof:oso/9780199535255.001.0001
http://dx.doi.org/10.1093/acprof:oso/9780199535255.001.0001
https://doi.org/10.1007/s00453-016-0205-0
https://doi.org/10.1007/PL00004425
https://doi.org/10.1007/PL00004425
http://dx.doi.org/10.1007/PL00004425
http://arXiv.org/abs/1311.0412
https://doi.org/10.1137/110822906
http://dx.doi.org/10.1137/110822906
https://doi.org/10.1007/s10208-013-9142-3
http://dx.doi.org/10.1007/s10208-013-9142-3
http://arXiv.org/abs/1408.0545
http://papers.nips.cc/paper/5152-high-dimensional-gaussian-process-bandits.pdf
http://papers.nips.cc/paper/5152-high-dimensional-gaussian-process-bandits.pdf
https://doi.org/10.1007/s10208-012-9115-y
http://dx.doi.org/10.1007/s10208-012-9115-y
https://doi.org/10.1007/978-0-8176-4948-7
https://doi.org/10.1214/aop/1176996452

8.5 Analysis of SparseCholesky 99

[GN51] Herman H. Goldstine and John von Neumann. “Numerical inverting of
matrices of high order. II”. In: Proc. Amer. Math. Soc. 2 (1951), pages 188–
202. doi: 10.2307/2032484.

[Grc11] Joseph F. Grcar. “John von Neumann’s analysis of Gaussian elimination
and the origins of modern numerical analysis”. In: SIAM Rev. 53.4 (2011),
pages 607–682. doi: 10.1137/080734716.

[Guh+18] Madeline Guha et al. “Fast state tomography with optimal error bounds”.
Available at http://arXiv.org/abs/1809.11162. Sept. 2018.

[Haa+17] Jidong Haah et al. “Sample-Optimal Tomography of Quantum States”. In:
IEEE Transactions on Information Theory 63.9 (Sept. 2017), pages 5628–
5641. doi: 10.1109/TIT.2017.2719044.

[Han16] Ramon van Handel. “Probability in High Dimensions”. APC 550 Lecture
Notes, Princeton University. Available at https://web.math.princeton.
edu/~rvan/APC550.pdf. Dec. 2016.

[Han17] Ramon van Handel. “Structured random matrices”. In: Convexity and
concentration. Volume 161. IMA Vol. Math. Appl. Springer, New York, 2017,
pages 107–156.

[HO14] Nicholas J. A. Harvey and Neil Olver. “Pipage Rounding, Pessimistic
Estimators and Matrix Concentration”. In: Proceedings of the Twenty-
Fifth Annual ACM-SIAM Symposium on Discrete Algorithms. SODA ’14.
Portland, Oregon: SIAM, 2014, pages 926–945. url: http://dl.acm.
org/citation.cfm?id=2634074.2634143.

[Hig02] Nicholas J. Higham. Accuracy and stability of numerical algorithms. Second.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
2002, pages xxx+680. doi: 10.1137/1.9780898718027.

[Hol12] Alexander S. Holevo. Quantum systems, channels, information. Volume 16.
De Gruyter Studies in Mathematical Physics. A mathematical introduction.
De Gruyter, Berlin, 2012, pages xiv+349. doi: 10.1515/9783110273403.
url: http://dx.doi.org/10.1515/9783110273403.

[HCG14] Qixing Huang, Yuxin Chen, and Leonidas Guibas. “Near-optimal joint
object matching via convex relaxation”. In: Proc. 31st Intl. Conf. Machine
Learning. Beijing, 2014.

[KK12] Purushottam Kar and Harish Karnick. “Random Feature Maps for Dot
Product Kernels”. In: Proceedings of the Fifteenth International Conference
on Artificial Intelligence and Statistics. Edited by Neil D. Lawrence and
Mark Girolami. Volume 22. Proceedings of Machine Learning Research.
La Palma, Canary Islands: PMLR, 21–23 Apr 2012, pages 583–591. url:
http://proceedings.mlr.press/v22/kar12.html.

[Kem13] Todd Kemp. “Math 247A: Introduction to random matrix theory”. Available
at http://www.math.ucsd.edu/~tkemp/247A/247A.Notes.pdf.
2013.

https://doi.org/10.2307/2032484
https://doi.org/10.1137/080734716
http://arXiv.org/abs/1809.11162
https://doi.org/10.1109/TIT.2017.2719044
https://web.math.princeton.edu/~rvan/APC550.pdf
https://web.math.princeton.edu/~rvan/APC550.pdf
http://dl.acm.org/citation.cfm?id=2634074.2634143
http://dl.acm.org/citation.cfm?id=2634074.2634143
https://doi.org/10.1137/1.9780898718027
https://doi.org/10.1515/9783110273403
http://dx.doi.org/10.1515/9783110273403
http://proceedings.mlr.press/v22/kar12.html
http://www.math.ucsd.edu/~tkemp/247A/247A.Notes.pdf

100 Lecture 8: Sparse Cholesky

[Kol11] Vladimir Koltchinskii. Oracle inequalities in empirical risk minimization
and sparse recovery problems. Volume 2033. Lecture Notes in Mathematics.
Lectures from the 38th Probability Summer School held in Saint-Flour,
2008, École d’Été de Probabilités de Saint-Flour. [Saint-Flour Probability
Summer School]. Springer, Heidelberg, 2011, pages x+254. doi: 10.1007/
978-3-642-22147-7. url: http://dx.doi.org/10.1007/978-3-
642-22147-7.

[KM15] Vladimir Koltchinskii and Shahar Mendelson. “Bounding the smallest
singular value of a randommatrix without concentration”. In: Int. Math. Res.
Not. IMRN 23 (2015), pages 12991–13008. doi: 10.1093/imrn/rnv096.

[Kyn17] Rasmus Kyng. “Approximate Gaussian elimination”. PhD thesis. Yale Uni-
versity, 2017, page 120.

[KS16] Rasmus Kyng and Sushant Sachdeva. “Approximate Gaussian elimination
for Laplacians—fast, sparse, and simple”. In: 57th Annual IEEE Symposium
on Foundations of Computer Science—FOCS 2016. IEEE Computer Soc., Los
Alamitos, CA, 2016, pages 573–582.

[Kyn+16] Rasmus Kyng et al. “Sparsified Cholesky and multigrid solvers for connec-
tion Laplacians”. In: STOC’16—Proceedings of the 48th Annual ACM SIGACT
Symposium on Theory of Computing. ACM, New York, 2016, pages 842–850.

[Lie73] Elliott H. Lieb. “Convex trace functions and the Wigner-Yanase-Dyson
conjecture”. In: Advances in Math. 11 (1973), pages 267–288. doi: 10.
1016/0001-8708(73)90011-X.

[Lop+14] David Lopez-Paz et al. “Randomized nonlinear component analysis”. In:
Proc. 31st Intl. Conf. Machine Learning. Beijing, July 2014.

[Lus86] Françoise Lust-Piquard. “Inégalités de Khintchine dans Cp (1 < p < ∞)”.
In: C. R. Acad. Sci. Paris Sér. I Math. 303.7 (1986), pages 289–292.

[LP91] Françoise Lust-Piquard and Gilles Pisier. “Noncommutative Khintchine
and Paley inequalities”. In: Ark. Mat. 29.2 (1991), pages 241–260. doi:
10.1007/BF02384340.

[Mac+14] Lester Mackey et al. “Matrix concentration inequalities via the method of
exchangeable pairs”. In: Ann. Probab. 42.3 (2014), pages 906–945. doi:
10.1214/13- AOP892. url: http://dx.doi.org/10.1214/13-
AOP892.

[MB17] William B. March and George Biros. “Far-Field Compression for Fast Kernel
Summation Methods in High Dimensions”. In: Appl. Comput. Harmon. Anal.
43.1 (July 2017), pages 39–75. doi: 10.1016/j.acha.2015.09.007.

[MKR12] Emilie Morvant, Sokol Koço, and Liva Ralaivola. “PAC-Bayesian General-
ization Bound on Confusion Matrix for Multi-Class Classification”. In: Proc.
29th Intl. Conf. Machine Learning. Edinburgh, 2012.

https://doi.org/10.1007/978-3-642-22147-7
https://doi.org/10.1007/978-3-642-22147-7
http://dx.doi.org/10.1007/978-3-642-22147-7
http://dx.doi.org/10.1007/978-3-642-22147-7
https://doi.org/10.1093/imrn/rnv096
https://doi.org/10.1016/0001-8708(73)90011-X
https://doi.org/10.1016/0001-8708(73)90011-X
https://doi.org/10.1007/BF02384340
https://doi.org/10.1214/13-AOP892
http://dx.doi.org/10.1214/13-AOP892
http://dx.doi.org/10.1214/13-AOP892
https://doi.org/10.1016/j.acha.2015.09.007

8.5 Analysis of SparseCholesky 101

[NG47] John von Neumann and Herman H. Goldstine. “Numerical inverting of
matrices of high order”. In: Bull. Amer. Math. Soc. 53 (1947), pages 1021–
1099. doi: 10.1090/S0002-9904-1947-08909-6.

[NS06] Alexandru Nica and Roland Speicher. Lectures on the combinatorics of
free probability. Volume 335. London Mathematical Society Lecture Note
Series. Cambridge University Press, Cambridge, 2006, pages xvi+417. doi:
10.1017/CBO9780511735127.

[Oli10] Roberto Imbuzeiro Oliveira. “The spectrum of random k -lifts of large
graphs (with possibly large k)”. In: J. Comb. 1.3-4 (2010), pages 285–306.
doi: 10.4310/JOC.2010.v1.n3.a2. url: http://dx.doi.org/10.
4310/JOC.2010.v1.n3.a2.

[Oli16] Roberto Imbuzeiro Oliveira. “The lower tail of random quadratic forms with
applications to ordinary least squares”. In: Probab. Theory Related Fields
166.3-4 (2016), pages 1175–1194. doi: 10.1007/s00440-016-0738-9.

[PMT16] Daniel Paulin, Lester Mackey, and Joel A. Tropp. “Efron-Stein inequalities
for random matrices”. In: Ann. Probab. 44.5 (2016), pages 3431–3473. doi:
10.1214/15-AOP1054. url: https://doi-org.clsproxy.library.
caltech.edu/10.1214/15-AOP1054.

[PX97] Gilles Pisier and Quanhua Xu. “Non-commutative martingale inequalities”.
In: Comm. Math. Phys. 189.3 (1997), pages 667–698. doi: 10.1007/
s002200050224.

[RR07] Ali Rahimi and Benjamin Recht. “Random features for large-scale kernel
machines”. In: Adv. Neural Information Processing Systems. Vancouver,
2007.

[Rud99] Mark Rudelson. “Random vectors in the isotropic position”. In: J. Funct.
Anal. 164.1 (1999), pages 60–72. doi: 10.1006/jfan.1998.3384. url:
http://dx.doi.org/10.1006/jfan.1998.3384.

[SS01] Bernhard Schölkopf and Alex Smola. Learning with kernels. Adaptive
Computation and Machine Learning series. MIT Press, 2001.

[Spi12] Daniel A. Spielman. “Spectral graph theory”. In: Combinatorial scientific
computing. Chapman & Hall/CRC Comput. Sci. Ser. CRC Press, Boca Raton,
FL, 2012, pages 495–524. doi: 10.1201/b11644-19.

[Spi] Daniel A. Spielman. CPSC 662 / AMTH 561: Spectral Graph Theory. url:
http://www.cs.yale.edu/homes/spielman/561/syllabus.html
(visited on 06/29/2019).

[SS11] Daniel A. Spielman and Nikhil Srivastava. “Graph sparsification by effective
resistances”. In: SIAM J. Comput. 40.6 (2011), pages 1913–1926. doi:
10.1137/080734029.

[Tao12] Terence Tao. Topics in random matrix theory. Volume 132. Graduate Studies
in Mathematics. American Mathematical Society, Providence, RI, 2012,
pages x+282.

https://doi.org/10.1090/S0002-9904-1947-08909-6
https://doi.org/10.1017/CBO9780511735127
https://doi.org/10.4310/JOC.2010.v1.n3.a2
http://dx.doi.org/10.4310/JOC.2010.v1.n3.a2
http://dx.doi.org/10.4310/JOC.2010.v1.n3.a2
https://doi.org/10.1007/s00440-016-0738-9
https://doi.org/10.1214/15-AOP1054
https://doi-org.clsproxy.library.caltech.edu/10.1214/15-AOP1054
https://doi-org.clsproxy.library.caltech.edu/10.1214/15-AOP1054
https://doi.org/10.1007/s002200050224
https://doi.org/10.1007/s002200050224
https://doi.org/10.1006/jfan.1998.3384
http://dx.doi.org/10.1006/jfan.1998.3384
https://doi.org/10.1201/b11644-19
http://www.cs.yale.edu/homes/spielman/561/syllabus.html
https://doi.org/10.1137/080734029

102 Lecture 8: Sparse Cholesky

[Tom74] Nicole Tomczak-Jaegermann. “The moduli of smoothness and convexity
and the Rademacher averages of trace classes Sp(1 ≤ p < ∞)”. In: Studia
Math. 50 (1974), pages 163–182.

[TB97] Lloyd N. Trefethen and David Bau III. Numerical linear algebra. Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997,
pages xii+361. doi: 10.1137/1.9780898719574.

[Tro11a] Joel A. Tropp. “Freedman’s inequality for matrix martingales”. In: Electron.
Commun. Probab. 16 (2011), pages 262–270. doi: 10.1214/ECP.v16-1624.

[Tro11b] Joel A. Tropp. “Improved analysis of the subsampled randomizedHadamard
transform”. In: Adv. Adapt. Data Anal. 3.1-2 (2011), pages 115–126. doi:
10.1142/S1793536911000787. url: http://dx.doi.org/10.1142/
S1793536911000787.

[Tro12] Joel A. Tropp. “User-friendly tail bounds for sums of random matrices”. In:
Found. Comput. Math. 12.4 (2012), pages 389–434. doi: 10.1007/s10208-
011-9099-z.

[Tro15] Joel A. Tropp. “An introduction to matrix concentration inequalities”. In:
Foundations and Trends in Machine Learning 8.1–2 (May 2015), pages 1–230.

[Tro16] Joel A. Tropp. “The expected norm of a sum of independent random
matrices: an elementary approach”. In: High dimensional probability VII.
Volume 71. Progr. Probab. Springer, [Cham], 2016, pages 173–202. doi:
10.1007/978-3-319-40519-3_8.

[Ver18] Roman Vershynin. High-dimensional probability. Volume 47. Cambridge
Series in Statistical and Probabilistic Mathematics. An introduction with
applications in data science, With a foreword by Sara van de Geer. Cam-
bridge University Press, Cambridge, 2018, pages xiv+284. doi: 10.1017/
9781108231596.

[Wig] Yuval Wigderson. Harmonic functions on graphs. url: http://web.
stanford.edu/~yuvalwig/math/teaching/HarmonicNotes.pdf
(visited on 06/29/2019).

[Wil91] David Williams. Probability with martingales. Cambridge Mathematical
Textbooks. Cambridge University Press, Cambridge, 1991, pages xvi+251.
doi: 10.1017/CBO9780511813658.

https://doi.org/10.1137/1.9780898719574
https://doi.org/10.1214/ECP.v16-1624
https://doi.org/10.1142/S1793536911000787
http://dx.doi.org/10.1142/S1793536911000787
http://dx.doi.org/10.1142/S1793536911000787
https://doi.org/10.1007/s10208-011-9099-z
https://doi.org/10.1007/s10208-011-9099-z
https://doi.org/10.1007/978-3-319-40519-3_8
https://doi.org/10.1017/9781108231596
https://doi.org/10.1017/9781108231596
http://web.stanford.edu/~yuvalwig/math/teaching/HarmonicNotes.pdf
http://web.stanford.edu/~yuvalwig/math/teaching/HarmonicNotes.pdf
https://doi.org/10.1017/CBO9780511813658

	Preface
	Notation
	1 Matrix Concentration
	1.1 The matrix Laplace transform method
	1.1.1 Tail bounds
	1.1.2 Expectation bounds

	1.2 Matrix moments and cumulants
	1.2.1 The matrix mgf and cgf
	1.2.2 The failure of the matrix mgf
	1.2.3 A theorem of Lieb
	1.2.4 Subadditivity of the matrix cgf

	1.3 Master bounds for sums of independent random matrices
	1.3.1 The master inequalities
	1.3.2 Additional tools

	1.4 Example: Matrix Bernstein
	1.4.1 Bernstein cgf bound
	1.4.2 The matrix Bernstein inequality

	1.5 Example: Matrix Chernoff
	1.5.1 Chernoff cgf bound
	1.5.2 Matrix Chernoff inequalities

	1.6 The rectangular case
	1.6.1 The self-adjoint dilation
	1.6.2 Rectangular matrix Bernstein

	2 Matrix Approximation by Sampling
	2.1 Matrix sampling estimators
	2.1.1 An error estimate
	2.1.2 Discussion

	2.2 Application: Random features
	2.2.1 Kernel matrices
	2.2.2 Random features and low-rank approximation of the kernel matrix
	2.2.3 Examples of random feature maps
	2.2.4 Error bound for the random feature approximation
	2.2.5 Analysis of the random feature approximation

	3 Quantum State Tomography
	3.1 Postulates of quantum mechanics
	3.1.1 Recapitulation: Discrete probability theory
	3.1.2 Noncommutative probability theory
	3.1.3 Aside: Geometric intuition and the Bloch ball

	3.2 Quantum state tomography
	3.2.1 Geometric aspects and measurement design
	3.2.2 Statistical aspects and convergence

	3.3 Quantum state tomography via matrix sampling
	3.3.1 Estimating the bias of a coin
	3.3.2 The matrix sampling estimator
	3.3.3 Sample complexity of the sample average
	3.3.4 Projection onto the set of quantum states
	3.3.5 Generalization: Projected least squares

	4 Graph Laplacians
	4.1 Multigraph basics
	4.1.1 Undirected multigraphs
	4.1.2 Connected components
	4.1.3 Multidegree and total weight
	4.1.4 Interpretation: Plumbing
	4.1.5 Interpretation: Resistor networks
	4.1.6 Example: A random walk

	4.2 Laplacian basics
	4.2.1 The Laplacian of a multigraph
	4.2.2 Correspondence between multigraphs and Laplacians
	4.2.3 Projectors and pseudoinverses
	4.2.4 The Dirichlet form
	4.2.5 Example: Laplacians and cuts

	4.3 Harmonic analysis on multigraphs
	4.3.1 Harmonic functions
	4.3.2 Example: Hitting probabilities
	4.3.3 The maximum principle
	4.3.4 Poles
	4.3.5 Harmonic extensions
	4.3.6 Interpretation: Plumbing
	4.3.7 Interpretation: Resistor networks

	5 Effective Resistance
	5.1 Resistance distance
	5.1.1 Effective resistance
	5.1.2 Effective resistance is a metric
	5.1.3 An alternative representation
	5.1.4 Leverage of a multiedge

	5.2 Approximating a Laplacian by sampling
	5.2.1 Spectral approximation
	5.2.2 The sampling model
	5.2.3 The sampling probabilities
	5.2.4 The analysis
	5.2.5 Computational aspects
	5.2.6 Conclusion

	6 Solving Laplacian Systems
	6.1 Cholesky meets Laplace
	6.1.1 Setup
	6.1.2 Laplacian systems
	6.1.3 Solution via Cholesky decomposition

	6.2 Cholesky decomposition: Matrix view
	6.2.1 Setup
	6.2.2 First step of the Cholesky decomposition
	6.2.3 Cholesky decomposition, without pivoting
	6.2.4 Cholesky decomposition, with pivoting
	6.2.5 Computational cost

	6.3 Cholesky decomposition: Graph view
	6.3.1 Setup
	6.3.2 First step of the Cholesky decomposition
	6.3.3 Stars and cliques
	6.3.4 Cholesky decomposition of a Laplacian
	6.3.5 An opportunity

	7 Matrix Martingales
	7.1 Matrix-valued random processes
	7.1.1 Martingales
	7.1.2 Matrix martingales
	7.1.3 Adapted sequences
	7.1.4 Stopped processes

	7.2 Tail bounds for matrix-valued processes
	7.2.1 Corrector processes
	7.2.2 Lower bounds for the supermartingale
	7.2.3 A tail bound for matrix martingales

	7.3 Building a corrector process
	7.3.1 Correctors
	7.3.2 Lieb's theorem and Tropp's corollary
	7.3.3 Example: The Bernstein corrector
	7.3.4 Example: The Chernoff corrector
	7.3.5 From correctors to corrector processes
	7.3.6 Correctors tensorize
	7.3.7 The composition rule

	7.4 Example: The matrix Freedman inequality

	8 Sparse Cholesky
	8.1 Approximate solutions of Laplacian systems
	8.1.1 Approximate solutions
	8.1.2 Approximate Cholesky decomposition
	8.1.3 Preconditioning
	8.1.4 Summary

	8.2 Overview of the algorithm
	8.2.1 Setup
	8.2.2 The SparseCholesky procedure
	8.2.3 Laplacian approximations

	8.3 Preliminaries for the analysis
	8.3.1 The normalizing map
	8.3.2 The approximation requirement
	8.3.3 Splitting the edges

	8.4 Sampling from a clique
	8.4.1 Setup
	8.4.2 Eliminating a vertex
	8.4.3 The sampling procedure
	8.4.4 Expectation of the random multiedge
	8.4.5 Each multiedge has bounded leverage
	8.4.6 Corrector for the random multiedge
	8.4.7 An unbiased estimator for the clique
	8.4.8 The clique induced by a random vertex
	8.4.9 Corrector for the clique estimator

	8.5 Analysis of SparseCholesky
	8.5.1 A stopping time
	8.5.2 The approximate Schur complements
	8.5.3 The corrector process
	8.5.4 The martingale tail bound
	8.5.5 The running time
	8.5.6 The grand finale

	Further Reading
	Bibliography

