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Abstract. Kernel analog forecasting (KAF) is a powerful methodology for data-driven, non-parametric fore-
casting of dynamically generated time series data. This approach has a rigorous foundation in
Koopman operator theory and it produces good forecasts in practice, but it suffers from the heavy
computational costs common to kernel methods. This paper proposes a streaming algorithm for
KAF that only requires a single pass over the training data. This algorithm dramatically reduces
the costs of training and prediction without sacrificing forecasting skill. Computational experiments
demonstrate that the streaming KAF method can successfully forecast several classes of dynami-
cal systems (periodic, quasi-periodic, and chaotic) in both data-scarce and data-rich regimes. The
overall methodology may have wider interest as a new template for streaming kernel regression.
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1. Introduction. Forecasting problems are ubiquitous in physical science and engineering
applications, including climate prediction [64], navigation [68], and medicine [43]. In these
settings, we do not possess complete information about the state of the system, and we may
not have full knowledge of the equations of motion. Owing to our lack of omniscience, it is
not possible to make predictions by integrating the current state forward in time. Instead,
we may acquire training data by observing some aspect of the system’s evolution. The goal
is to build a compact model of the dynamics of this observable. Given a new observation, the
model should allow us to forecast the future trajectory from the initial condition.

Kernel analog forecasting (KAF) [1] offers a promising approach to this problem. KAF
is a data-driven, non-parametric forecasting technique that is best understood as a type of
regularized kernel regression (section 2). KAF emerged from recent efforts [9] to translate
Koopman operator theory into effective computational methodologies for forecasting (sub-
section 2.7). The approach belongs to a rapidly expanding literature [59, 24, 12, 53, 47] on
operator-theoretic techniques for low-order modeling of dynamical systems, including meth-
ods [8, 84, 45, 38] based on kernels.

KAF is mathematically rigorous, and it provides good-quality predictions for benchmark
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examples [1]. Nevertheless, the straightforward implementation (“näıve KAF”) has several
weaknesses. First, näıve KAF requires multiple views of the training data, so it cannot operate
in the “streaming” setting where we only see the training data once (subsection 3.1). Second,
the process of constructing the model is computationally expensive: to form the kernel matrix,
the costs of arithmetic and storage are both quadratic in the length of the training data. Third,
the basic method must store all of the training data to make predictions, so the forecasting
model is quite large. Fourth, the arithmetic cost of a single forecast is linear in the amount
of training data. These issues have limited the applicability of the KAF methodology.

In response to this challenge, we propose a novel streaming KAF algorithm (section 3).
Our approach depends on two prominent techniques from the field of randomized matrix
computation [57]: random Fourier features [69] for kernel approximation and the randomized
Nyström method [36, 31, 52, 78, 57] for streaming PCA. Overall, the streaming KAF method
builds a model using time and storage linear in the amount of training data, and it can make
forecasts with time and storage that are independent of the amount of training data.

Computational experiments (section 4) demonstrate that streaming KAF is a practical
method for making predictions of two benchmark dynamical systems: Lorenz ’63 (L63) [55]
and two-level Lorenz ’96 (L96) [22]. In particular, streaming KAF exhibits forecasting skill
similar to näıve KAF in a range of situations, including systems that are periodic, quasi-
periodic, and chaotic. At the same time, streaming KAF can operate in settings where näıve
KAF is prohibitively expensive, including cases where the observables are high-dimensional or
the amount of training data is enormous. In the data-rich setting, after just a few minutes of
training time, streaming KAF can drive the forecasting error toward zero. As a consequence,
we believe that the streaming KAF algorithm has the potential to unlock the full potential of
KAF as a forecasting methodology.

Remark 1.1 (Prior work). Although developed independently, our methodology is related
to recent papers that apply random features to perform streaming kernel principal component
analysis [27, 81] and kernel ridge regression [5, 71]. The details of our algorithm are somewhat
different from these works, and we believe that our work yields a novel approach for streaming
kernel regression. We have also studied a streaming KAF algorithm based on AdaOja [41],
an adaptive variant of Oja’s algorithm, which is a competitive alternative to the Nyström
method [40]. See section 5 for more discussion of related work.

1.1. Outline. Section 2 motivates the existing KAF procedure as a form of regularized
kernel regression that is specifically designed for dynamical systems. Section 3 describes how
to develop a streaming implementation of KAF. In particular, we discuss kernel approxima-
tion via random Fourier features and the randomized Nyström method. Finally, section 4
presents computational experiments which demonstrate that our methodology is effective for
two classical dynamical systems.

1.2. Notation. Throughout, we work in a real Euclidean space Rd equipped with the `2
norm ‖·‖ and inner product 〈·, ·〉. The methodology and results should extend to the complex
field C. Matrices (such as M ∈ Rd×n) are written as bold capitals, vectors (v ∈ Rd) are
written as bold lowercase, and scalars (x ∈ R) are written in plain lowercase.

Every matrix M ∈ Rd×n admits a compact singular value decomposition (SVD), a matrix
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factorization M = UΣV > with the following properties. For r := rank(M) ≤ min{d, n},
the left and right singular vector matrices U ∈ Rd×r and V ∈ Rr×n have orthonormal
columns. The matrix Σ = diag(σ1, σ2, . . . , σr) ∈ Rr×r is positive and diagonal, with its
diagonal elements (the singular values) arranged in decreasing order: σ1 ≥ σ2 ≥ · · · ≥ σr >
σr+1 := 0. Singular values are uniquely determined, but singular vectors are not.

Given an SVD of the rank-r matrix M , we can define the Moore–Penrose pseudoinverse
M † := V Σ−1U> where Σ−1 := diag(σ−11 , . . . , σ−1r ) ∈ Rr×r. The pseudoinverse coincides
with the matrix inverse for a full-rank, square matrix.

The operator norm ‖M‖ := σ1 equals the largest singular value σ1. The Frobenius norm
‖M‖F := (

∑r
i=1 σ

2
i )

1/2 is the `2 norm of the singular values.
For any rank parameter ` ≤ r, we can construct an `-truncated SVD JMK` := UΣ`V

>

where Σ` := diag(σ1, σ2, . . . , σ`, 0, . . . , 0) ∈ Rr×r retains only the leading ` singular values.
The matrix JMK` is a best rank-r approximation of M with respect to both the operator
norm and the Frobenius norm. In the case σ` = σ`+1, the truncated SVD JMK` depends on
the underlying choice of SVD, so this notation should be interpreted with care.

2. Introduction to KAF. Suppose we have access to snapshots of a discrete dynamical
system as it evolves in time, and we would like to forecast its future values. Let us begin with
the most basic setting; we will discuss more general observation models in subsection 2.6.

To formalize the problem, let M ⊆ Rd be a closed subset of a Euclidean space. We call
M the state space. Let F : M → M be a mapping, called the flow map. Suppose that we
observe an initial condition x0 ∈ M as well as the (partial) trajectory x1,x2, . . . ,xn−1 ∈ M
obtained by iterating the flow map:

(2.1) xj = F (xj−1) = F j(x0) for j = 1, 2, . . . , n− 1.

In most settings, we do not actually know the flow map F . Rather, the goal is to use infor-
mation latent in the measured trajectory (x0, . . . ,xn−1) to infer the dynamics. Afterward, we
are given a new initial condition y ∈M, and we are asked to forecast the future state F q(y)
of the system after q time steps.

2.1. Linear forecasting. To motivate the KAF method, we first describe an earlier ap-
proach to the forecasting problem, based on linear inverse models (LIMs) [66] and the closely
related dynamic mode decomposition (DMD) [70, 73, 79, 47]. Fix a forecasting horizon q ∈ N.
We can arrange the observed trajectory x0,x1, . . . ,xn−1,xn, . . . ,xn+q−1 ∈ Rd into a training
data set that consists of input–response pairs: {(xj ,xj+q)}n−1j=0 . Equivalently, consider the
pair of matrices

X :=
[
x0 x1 . . . xn−1

]
∈ Rd×n;(2.2)

X[+q] :=
[
xq xq+1 . . . xn+q−1

]
∈ Rd×n.(2.3)

We can attempt to find the best linear model A : Rd → Rd for the dynamics by means of a
least-squares fit:

(2.4) A ∈ arg min
M∈Rd×d

n−1∑
j=0

‖Mxj − xj+q‖2 = arg min
M∈Rd×d

∥∥MX −X[+q]

∥∥2
F
.
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An optimal solution to this problem is the matrix

(2.5) A = X[+q]X
† ∈ Rd×d.

Suppose we are given a state y ∈ Rd that serves as a new initial condition. We can forecast
the state y[+q] := F q(y) after q time steps via the estimate y[+q] ≈ Ay. In other words, A
serves as a linear approximation to the iterated flow map F q.

Let us manipulate the linear model for the dynamics so that it takes a more suggestive
form. Recall that the pseudoinverse satisfies X† = (X>X)†X>. Therefore,

A = X[+q](X
>X)†X>.

Given a new initial condition y ∈ Rd, we obtain the linear forecast

(2.6) ỹ[+q] := Ay = X[+q](X
>X)†(X>y) ∈ Rd.

Observe that this computation can be formulated in terms of inner products between states.

2.2. The kernel trick. Of course, dynamical systems of practical interest are highly non-
linear, so linear approximations are only valid over a short time horizon. When one needs
to process data with nonlinear structure, a general principle is to “lift and linearize”. That
is, we apply a nonlinear map to transport the data to a high-dimensional space where it
may have linear structure; we implement a linear fitting algorithm on the high-dimensional
space; and then we project back down to the original domain to obtain a (nonlinear) low-
dimensional model for the data. This approach gives rise to KAF, discussed below, as well as
other data-driven analysis and forecasting techniques [84, 45, 48, 38].

Remarkably, this lifting technique can often be implemented without applying the non-
linear map explicitly. Consider a method, such as (2.6), that processes Euclidean data using
the inner product as a measure of the similarity between data points. The kernel trick allows
us to develop a nonlinear extension simply by replacing each inner product x>y in the data
space with a more general function κ(x,y), called a kernel.

The kernel trick is justified by the Moore–Aronszajn theorem [4, section 2(4)]. Let κ :
Rd ×Rd → R be a symmetric, positive-definite function. That is,[

κ(vi,vj)
]n
i,j=1

is positive definite for every n ∈ N and v1, . . . ,vn ∈ Rd.

Then, the kernel function κ coincides with the inner product on a Hilbert space H. More
precisely, there is a nonlinear feature map ϕ : Rd → H with the property that κ(x,y) =
〈ϕ(x), ϕ(y)〉H for all x,y ∈ Rd. Implicitly, the feature map summarizes each data point x
by a long list ϕ(x) ∈ H of features, and the kernel computes the inner product between the
feature vectors.

One of the most popular kernel functions is the Gaussian radial basis function (RBF)
kernel. For an inverse bandwidth parameter γ > 0, this kernel takes the form

(2.7) κ(x,y) := e−γ‖x−y‖
2

for x,y ∈ Rd.

Under this kernel, two points are “similar” precisely when they are close enough together in
Euclidean distance, where the scale depends on the choice of γ. For clarity of presentation,
we will work exclusively with the Gaussian RBF kernel in this paper.
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2.3. Nonlinear kernel forecasting. We can apply the kernel trick to the linear forecasting
model (2.6). Indeed, we may replace the inner-products in the forms X>X and X>y by their
kernel equivalents:

Kx,x :=
[
κ(xi,xj)

]
i,j
∈ Rn×n and Kx,y :=

[
κ(xi,y)

]
i
∈ Rn.

This step leads to the kernel analog forecast

(2.8) fq(y) := X[+q](Kx,x)†Kx,y ∈ Rd.

The forecast (2.8) provides a natural nonlinear generalization of the linear forecast (2.6).

2.4. Regularization. It is dangerous to implement the formula (2.8) as written because
kernel matrices, such as Kx,x, are notoriously ill-conditioned; for example, see [7]. As a
consequence, the method (2.8) can be sensitive to small changes in the observed data.

The paper [1] proposes a mechanism for stabilizing the nonlinear forecast (2.8) by replacing
the kernel matrix Kx,x with its best rank-` approximation JKx,xK`, where ` ∈ N is a parameter.
In practice, we must also shift the kernel matrix by µI by a small parameter µ to avoid
numerical problems. These modifications leads to the stabilized kernel analog forecast

(2.9) fq,`(Y ) := X[+q](JKx,x + µIK`)†Kx,y.

The dimension ` of the regression model is usually modest (say, 100s or 1000s); it increases
slowly with the required accuracy of the forecasts. The shift parameter µ is taken to be a
small fixed value, such as 10−6 ‖Kx,x‖.

The forecasting method (2.9) is rigorously justified in [1]. We can view the approach as a
form of regularized least-squares [39, 82, 10] on the feature space induced by the kernel. It is
closely related to kernel ridge regression [74].

2.5. Resource usage. The KAF method (2.9) involves two phases. In the training step,
we use the trajectory data X to compute a matrix of prediction weights. In the forecasting
step, we use the trajectory data and the test state y to make the forecast. Let us summarize
the resource usage of an uninspired implementation of the KAF procedure (“näıve KAF”).
See Table 1 for a summary of this discussion.

In the training phase, we first construct the n× n kernel matrix Kx,x. This step involves
O(dn2) arithmetic and O(n2) storage. The quadratic dependency on the number n of training
samples is a severe bottleneck that prevents us from performing KAF at scale.

Next, we must compute the `-truncated eigenvalue decomposition of the kernel matrix
Kx,x. Classical algorithms can succeed with O(`2n) arithmetic operations and O(`n) storage.
Nevertheless, dense methods require random access to the kernel matrix, while Krylov methods
require a long sequence of matrix–vector multiplies with the kernel matrix [32]. Moreover,
these algorithms are not fully reliable [52].

Third, we form the matrix W := X[+q](JKx,x+µIK`)† ∈ Rd×n of prediction weights. Using
the factorized form of the eigenvalue decomposition, this product costs O(d`n) operations. The
weight matrix requires storage O(dn), which is comparable to the cost of storing the original
trajectory data.
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6 D. GIANNAKIS, A. HENRIKSEN, J. A. TROPP, R. WARD

To make a forecast from a single initial condition y ∈ Rd, we need to perform the kernel
computation Kx,y ∈ Rn. The cost is O(dn) operations and O(n) storage. To complete the
forecast, we form the matrix–vector product WKx,y, at a cost of O(dn) operations. The linear
dependency on the number n of training points means that forecasting is very expensive.

2.6. Other observables. The KAF methodology extends to a wider setting. Section 3
provides full details for a streaming KAF algorithm at this level of generality. For now, we
just sketch the idea.

Suppose that we observe the value of a function u :M→ N of the state, which is called
a covariate. For simplicity, we will always take N = Rd

′
. Given an observed covariate u(x),

we would like to predict a function g : M → Rr of the state x, which is called a response
variable. Functions of the state, such as g and u, are called observables.1

We can build a kernel analog forecast for future values of the response by introducing
a kernel κ̃ : Rd

′ × Rd′ on the covariate space. Roughly speaking, we replace the matrix
X of training state data by observed covariate values [u(x0), ..., u(xn−1)] ∈ Rd

′×n. Replace
the matrix X[q] of lagged state data by the lagged matrix [g(xq), ..., g(xn+q−1)] ∈ Rr×n of
observed response variables. Repeat the derivation above to obtain a KAF function g`,q for
predicting the observable g from the covariate u.

The computational costs are similar to the costs of the basic KAF method, but the state
dimension d is replaced by either the covariate dimension d′ or the response variable dimension
r, depending on the role of the state in the computation. See Table 2 for an accounting.

2.7. Connection with Koopman operator theory. The linear approach (2.6) to forecast-
ing was originally proposed in the paper [66], and the nonlinear kernel forecast (2.8) was
presented in [85]. The paper [79] clarifies the connection between the nonlinear forecast and
Koopman operator theory [21]. The paper [1] shows that KAF approximates the expecta-
tion of the response variable under the action of the Koopman operator, conditioned on the
covariate data observed at forecast initialization. Here is an informal summary of these ideas.

In plain language, the classical work of Koopman and von Neumann [49, 50] characterizes
a dynamical system through its induced action on a linear space of observables. As a basic ex-
ample, a real-valued function g :M→ R on the state space is an observable of the dynamical
system. The Koopman operator K is a linear operator on the space of observables that acts by
composition with the flow map of the dynamics: (Kg)(x) := (g◦F )(x) = g(F (x)). Regardless
of the complexity of the dynamical system, we can understand its behavior by spectral analy-
sis of the linear operator K on an appropriately chosen Banach space of observables [6, 21]. In
particular, since our state spaceM is a subset of Rd, we can represent every state x ∈M by
the “identity” observable, ι :M→ Rd with ι(x) = x. Thus, the dynamical system becomes
linear when lifted to a sufficiently high-dimensional space of observables: F (x) = (Kι)(x).
Using similar ideas, we can also represent dynamical systems with infinite-dimensional state
spaces by means of linear Koopman operators.

Building on previous work [86, 2, 17], the recent paper [1] established that the stabilized
forecast (2.9) is a rigorous approximation of the Koopman dynamics of observables in the

1It is important the the response variable g takes values in a linear space. In principle, the covariates u
could take values in a nonlinear manifold N , but we will not consider this extension.
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STREAMING KERNEL ANALOG FORECASTING 7

limit of large data. Consider a measure-preserving and ergodic dynamical system F , and let
[x0, . . . ,xn−1] be a state trajectory as in (2.1). Suppose we acquire training data in the form of
covariate–response pairs (u0, gq), . . . , (un−1, gq+n−1), where ui = u(xi) ∈ N and gi = g(xi) ∈
Rr. We may construct the KAF function g`,q as summarized in subsection 2.6. Let y ∈ M
be an initial condition with an observed covariate u(y). Then the kernel analog forecast
converges2 to the conditional expectation of the response under the Koopman operator, given
the covariate data at forecast initialization:

gq,`(v)→ E[(Kqg)(y) |u(y) = v] in L2 as `, n→∞.

The conditional expectation is the optimal L2 approximation to the Koopman evolution
(Kqg)(y), given only the measured covariate v. In the specific case where the observables
g = u = ι reproduce the full state vector, we deduce that the forecast fq,`(y) presented
in (2.9) converges to the true q-step dynamical evolution, F q(y).

3. Streaming KAF. While KAF is rigorously justified in the limit of large data, it also
becomes prohibitively expensive to implement because of its storage and arithmetic costs
(subsection 2.5). Indeed, the time required to construct the kernel matrix is quadratic in
the length n of training data. The time required to make a single forecast is linear in n.
Furthermore, we need multiple views of the training data to build the model and another
view to make a forecast, so the algorithm cannot operate in the streaming setting.

In this section, we will develop a streaming KAF method that resolves each of these issues.
Our algorithm processes the trajectory data in a single pass. It reduces the arithmetic cost
of training to be linear in the number n of training points, and the cost of each forecast
becomes independent of the amount of training data. It also limits the storage needed for the
computations and for the forecasting model. Experiments (section 4) show that the streaming
KAF method is competitive with the original KAF method in forecasting skill on problem sizes
where the original KAF method is tractable. But streaming KAF can achieve significantly
better forecasts than näıve KAF because the streaming method can ingest large amounts of
training data and resolve the dynamics more accurately.

3.1. Streaming data. Streaming data models have become popular for working with time
series that have many elements, especially in high dimensions or in cases where the data arrives
at high velocity [60]. The key features of a streaming data model3 are that (1) the elements of
the time series are presented in sequential order; (2) we must process each datum at the time
it arrives; and (3) we do not have sufficient storage to maintain the entire time series. The goal
is to extract enough information to answer a particular set of questions about the observed
data. These constraints necessitate algorithms that can handle each element individually and
that build a compact representation of the time series to support subsequent queries.

Streaming models are well suited to dynamical systems data that has an explicit temporal
order. It would be appealing to scan linearly through the trajectory data (x0,x1, . . . ,xn−1) a
single time, discarding each state after we have processed it. Our aim is to build a forecasting

2Convergence takes place in the L2 norm of the invariant measure in the iterated limit of ` → ∞ after
n→∞, and almost surely with respect to the initial condition x0 in the training data.

3More general streaming models describe a sequence of update operations to a data domain.
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8 D. GIANNAKIS, A. HENRIKSEN, J. A. TROPP, R. WARD

model that can take a query state and predict the subsequent trajectory of the system. Ideally,
the forecasting model should be much smaller than the original training data. Yet the basic
KAF method fails this desideratum. We will show how to accomplish this task.

3.2. Overview. Our streaming KAF method is based on two techniques from the field
of randomized matrix computations [57]. First, we use random Fourier features (RFF) to
build a structured approximation of the original kernel function. This approximation allows
us to rewrite the KAF target function (2.8), replacing the n × n kernel matrix Kx,x by a
much smaller matrix that is easier to compute and captures the same information. This
reformulation also allows us to avoid the kernel computation Kx,y, which couples the training
and test data. As a consequence, we can build a more compact forecasting model.

When we restructure the KAF target function, the low-rank approximation of the kernel
matrix converts into a low-rank approximation of the covariance matrix of the features of the
training data. The latter approximation may be interpreted as a streaming PCA problem.
Here, we employ the randomized Nyström method devised by Halko et al. [36, 31, 52] and
extended to the streaming setting in [78, 57]. This algorithm requires minimal storage and
arithmetic, and it reliably produces a more accurate solution than competing methods.

The rest of this section introduces the random features construction. It shows how to
integrate random features into KAF to obtain a streaming algorithm, and it highlights the
role of the Nyström method. Last, we compare the resource usage of streaming KAF with
the direct implementation of KAF. See section 5 for related work.

3.3. Kernel approximation by random features. Random Fourier features (RFF) [69]
offer a simple and effective way to approximate certain types of kernels, including the Gaussian
RBF kernel. This section summarizes the RFF construction, and the next section explains
how we can use RFF to forecast a dynamical system.

Bochner’s theorem [11] provides the mathematical foundation for RFF. Let us consider a
bounded, continuous, positive-definite kernel κ : Rd×Rd → R on a Euclidean space. Assume
that the kernel is also translation invariant: κ(x,y) := h(x−y). The theorem asserts that the
kernel is the Fourier transform of a bounded positive measure. More precisely, there exists a
unique probability measure ν on Rd and a positive constant c := h(0) for which

κ(x,y) =

∫
Rd

cdν(z) eiz
>(x−y) =

∫
Rd

cdν(z) (eiz
>x)(eiz

>y)∗,

where ∗ denotes the complex conjugate. Since we are working in the real setting, we can
rewrite the last expression to avoid complex-valued functions:

κ(x,y) =

∫
Rd

2cdν(z)

∫ 2π

0

dθ

2π
cos(θ + z>x) cos(θ + z>y).

This statement follows by direct calculation using trigonometric identities. The key property
of these formulas is that the integrand is a separable function of the variables x and y.

The simple idea behind RFF is to approximate the kernel using a Monte Carlo estimate of
the integral. Let the parameter s ∈ N designate the number of random features. Once and for
all, draw and fix independent random vectors z1, . . . ,zs ∈ Rd that are distributed according
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STREAMING KERNEL ANALOG FORECASTING 9

to the probability measure ν. Draw and fix independent random scalars θ1, . . . , θs ∈ R with
the uniform[0, 2π) distribution. Then we can construct a separable, rank-s approximation
κ̂ : Rd ×Rd → R of the original kernel:

κ̂(x,y) :=
2c

s

s∑
i=1

cos(θi + z>i x) cos(θi + z>i y).

It is not hard to see that κ̂(x,y) ≈ κ(x,y) with high probability for a fixed pair (x,y).
Equivalently, we may define a feature map ϕ : Rd → Rs by the formula

ϕ(x) :=

√
2c

s
·
[

cos(θi + z>i x)
]s
i=1
.

Then we can compute the approximate kernel κ̂ as the inner product between two feature
vectors:

κ̂(x,y) = ϕ(x)>ϕ(y).

In other words, the approximate kernel is a bilinear function of nonlinear features.
In computational settings, we are usually interested in approximating the kernel matrix

Kx,x associated with a family {x0, . . . ,xn−1} ⊂ Rd of data points. That is,

Kx,x :=
[
κ(xi,xj)

]
i,j

≈
[
κ̂(xi,xj)

]
i,j

=: K̂x,x.

To this end, we collect the data points as the columns of a matrix X ∈ Rd×n. Extend
the feature map ϕ to matrices by applying the vector feature map to each column. Thus,
ϕ : Rd×n → Rs×n. With this notation, we find that

K̂x,x = ϕ(X)>ϕ(X).

The kernel matrix approximation is the Gram matrix of the nonlinear features.
Finally, we must discuss the number s of random features that we need to ensure that the

kernel matrix approximation K̂x,x serves in place of the true kernel matrix Kx,x for machine
learning tasks. When we have n training points, it has been shown [76, 71, 81, 77] that it
suffices to use

(3.1) s = O(
√
n log(n)) random features

for kernel principal component analysis (KPCA) or for kernel ridge regression (KRR). The
justification involves statistical assumptions on the training and test data. Our empirical
study indicates that, in our application, we may extract even fewer features without much
loss in forecasting performance.

As a particular example of the RFF construction, consider the Gaussian RBF kernel (2.7)
on Rd with inverse bandwidth γ > 0. The normalization constant c = 1, and the associated
spectral measure ν satisfies

dν(z) = (4πγ)−d/2e−‖z‖
2/(4γ) dz.
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10 D. GIANNAKIS, A. HENRIKSEN, J. A. TROPP, R. WARD

That is, the random feature descriptor z is a centered normal vector with covariance (2γ)I.
Algorithm 3.1 contains basic pseudocode for implementing Gaussian RBF random fea-

tures. In this version, the feature descriptors require O(ds) storage, and it costs O(ds) opera-
tions to compute the features for a single input vector. The pseudocode also includes several
methods for streaming computation of matrix–matrix products with featurized data ϕ(X).

Remark 3.1 (More efficient Gaussian feature maps). We can accurately approximate the
RFF map for the Gaussian RBF kernel using randomized trigonometric transforms [51, 14].
This construction reduces the storage cost for the random feature descriptors to O(s), and
it costs O(s log d) operations to compute the features of a single input vector. For high-
dimensional state spaces (or covariates), we can obtain significant gains, but the basic con-
struction is superior in low-dimensional settings.

Remark 3.2 (Kernels that admit random feature maps). It is also possible to construct
random features for other kinds of kernel functions, including kernels that are not translation
invariant. See [57, Sec. 19] for some discussion and references.

3.4. KAF with random features. We can use RFF to approximate the kernel matrices
that appear in the regularized KAF target function (2.9). Recall that the matrix X ∈ Rd×n
contains the training data, while y ∈ Rd is a piece of test data. Draw and fix a random
feature map ϕ : Rd → Rs with s random features. Then we can approximate the KAF as

(3.2)

fq,`(y) ≈ f̂q,`(y) := X[+q](JK̂x,x + µIK`)†K̂x,y

= X[+q](Jϕ(X)>ϕ(X) + µIK`)†ϕ(X)>ϕ(y)

=: Wq,` · ϕ(y).

The forecasting model consists of the matrix Wq,` ∈ Rd×s of prediction weights, along with
the description of the feature map ϕ : Rd → Rs. A key benefit of the reformulation (3.2) is
the complete decoupling of the test data y from the forecasting model.

Direct substitution of random features does not lead immediately to a streaming algorithm.
Indeed, the formula (3.2) involves the rank truncation of the n×n approximate kernel matrix
ϕ(X)>ϕ(X). We cannot form this matrix without multiple views of the columns of X, and
the matrix imposes unacceptable storage and arithmetic costs.

3.5. Streaming KAF. To develop a streaming algorithm, we first recast the expres-
sion (3.2) in terms of a much smaller s× s matrix. Recall the linear-algebraic identity

(JM>M + µIK`)†M> = M>(JMM> + µIK`)†.

Using this formula, we can write the prediction weights as

(3.3) Wq,` = (X[+q] ϕ(X)>)(Jϕ(X)ϕ(X)> + µIK`)†.

The matrices in parentheses have the dimensions d× s and s× s, respectively. Moreover, this
representation now supports a streaming algorithm.

In sequence, we pass over the columns xi of the training states, generating random features
ϕ(xi) on the fly. Simultaneously, we update the covariance of the features and the covariance
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Algorithm 3.1 Random Fourier Features for Gaussian RBF Kernel. See subsection 3.3.

The constructor (RFF) generates a random feature map ϕ for the Gaussian RBF kernel on
Rd with inverse bandwidth γ > 0 with s random features. The Featurize method of ϕ
applies the random feature map to the columns of the input matrix X ∈ Rd×B to obtain
ϕ(X) ∈ Rs×B. The other methods featurize an input matrix X ∈ Rd×B and compute various
matrix products between ϕ(X) and another input M by streaming columns of X.

1 local variables γ ∈ R++ and d, s ∈ N . RFF parameters
2 local variables z1, . . . ,zs ∈ Rd and θ1, . . . , θs ∈ R . Feature descriptors

3 function RFF(γ ∈ R++, d ∈ N; s ∈ N) . Initialization
4 Store RFF parameters γ, d; s
5 for i = 1, . . . , s do
6 zi ←

√
2γ · randn(d, 1) . Draw Gaussian vector

7 θi ← 2π · rand(1, 1) . Draw uniform scalar

8 return self . Return feature map

9 function Featurize(X ∈ Rd×B) . Compute features of X
10 for j = 1, . . . , B do
11 for i = 1, . . . , s do
12 [ϕ(X)]ij ←

√
2/s · cos(θi + z>i X(:, j))

13 return ϕ(X) ∈ Rs×B

14 function MultCov(X ∈ Rd×B,M ∈ Rs×`) . Form product ϕ(X)ϕ(X)>M
15 T ← zeros(s, `)
16 for j = 1, . . . , B do . Block for efficiency
17 v ← Featurize(X(:, j)) . Compute features
18 T ← T + v (v>M)

19 return T ∈ Rs×`

20 function RMultAdj(X ∈ Rd×B,M ∈ Rr×B) . Form product M ϕ(X)>

21 T ← zeros(r, s)
22 for j = 1, . . . , B do . Block for efficiency
23 T ← T + M(:, j) Featurize(X(:, j))>

24 return T ∈ RR×s

25 function RMult(X ∈ Rd×B,M ∈ Rr×s) . Form product M ϕ(X)
26 T ← zeros(r,B)
27 for j = 1, . . . , B do . Block for efficiency
28 T (:, j)←M · Featurize(X(:, j))

29 return T ∈ Rr×B
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between the features and the lagged data. Beginning with Cxx = 0s×s and Cgx = 0d×s,
iterate

(3.4) Cxx ← Cxx + ϕ(xi)ϕ(xi)
> and Cgx ← Cgx + xi+qϕ(xi)

>.

[Because of the lag, to form the matrix Cgx, the algorithm must buffer the input states at a
cost of O(qd).] Once we have streamed all of the training data, we may construct the matrix
of prediction weights as

(3.5) Wq,` = Cgx · (JCxx + µIK`)†.

Since the expressions for the weights in (3.2), (3.3), and (3.5) are algebraically equivalent, we
have arrived at a streaming implementation of KAF with random features.

The general recommendation (3.1) for the number s of random features may not be ap-
propriate for the streaming setting because s depends on the number n of training samples.
Our empirical work supports a more aggressive choice:

(3.6) s = Const · `.

In other words, the number s of features can be proportional to the dimension ` of the
regression model, which is chosen in advance.

3.6. Streaming PCA. To complete the description of our streaming KAF algorithm, we
must provide an efficient method for computing a low-rank approximation of the feature
covariance matrix Cxx appearing in (3.4).

Evidently, Cxx is the covariance of vectors that are presented to us sequentially. There-
fore, the low-rank approximation JCxx + µIK` amounts to a streaming PCA problem. We
will perform this computation using the randomized Nyström method [36, 31, 52, 78, 57];
see section 5 for a short discussion of alternatives.

The Nyström approximation of a positive-semidefinite (psd) matrix C ∈ Rs×s with re-
spect to a test matrix Ω ∈ Rs×k is the best psd approximation with the same range as CΩ.
The construction dates back to the early literature on integral equations [61]; it is intimately
connected to Schur complements and Cholesky factorization. The randomized Nyström ap-
proximation involves a test matrix Ω chosen at random.

We can implement randomized Nyström approximation in the streaming setting [78]. Draw
and fix a random matrix Ω ∈ Rs×2` from the standard normal distribution.4 Instead of
forming Cxx as in (3.4), we compute the product B = CxxΩ ∈ Rs×` via the iteration

B = 0s×` and B ← B + ϕ(xi)(ϕ(xi)
>Ω).

After we have streamed all of the data, we carefully5 form a Nyström approximation of the
covariance and extract its eigenvalue decomposition:

(3.7) Čxx := B(Ω∗B)†B∗ = QΛQ>.

4It is important that the random matrix Ω has 2` columns, not merely `.
5Do not use the formula (3.7) as written! See Algorithm 3.2.
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Algorithm 3.2 Randomized Nyström for featurized data [57, Sec. 19.4.3]. See subsection 3.6.

Given a random feature map feat and a data matrix X ∈ Rd×n, this procedure computes
an `-truncated eigenvalue decomposition QΛQ> of the covariance Cxx = ϕ(X)ϕ(X)> of the
featurized data using the randomized Nyström method with 2× oversampling.

1 function FeatNyström(RFF feat, X ∈ Rd×n, ` ∈ N))
2 Q← orth(randn(s, 2`)) . Random subspace, oversampling `→ 2`
3 Z ← feat.MultCov(X,Q) . Stream the product ϕ(X)ϕ(X)>Q
4 ν ← eps(‖Z‖F) . Compute shift
5 Z ← Z + νQ . Shift for stability
6 T ← chol(Q>Z) . Upper-triangular Cholesky factorization
7 S ← Z/T . Solve triangular systems
8 (Q,Σ,∼)← svd(S) . Compact SVD
9 Λ← max{0,Σ2 − νI} . Remove shift to get eigenvalues

10 Q← Q(:, 1 : `) and Λ← Λ(1 : `, 1 : `) . Truncate to rank `
11 return (Q ∈ Rs×`,Λ ∈ R`×`)

The randomized Nyström approximation Čxx provides a good low-rank approximation of the
covariance Cxx; see [78, Thms. 4.1–4.2]. Our ultimate formula for the weight matrix becomes

(3.8) W̌q,` = Cgx · (JČxx + µIK`)†.

We can easily complete this computation because we have the eigenvalue decomposition of
the approximation Čxx at hand. The final target function becomes f̌q,`(y) := W̌q,` · ϕ(y).

Algorithm 3.2 provides numerically stable pseudocode for the randomized Nyström method
applied to a sequence of random features. This method is based on [52, 78].

Using ordinary Gaussian random features, the arithmetic cost of forming the matrix B is
O((`+ d)sn). The algorithm uses auxiliary arithmetic O(`2s), and the storage requirement is
just O(`s).

Remark 3.3 (Powering). The randomized Nyström method always underestimates the
eigenvalues of the covariance matrix. If necessary, we can reduce this effect by incorporating
powering or Krylov subspace techniques [52, 57]. In the streaming setting, these modifications
require us to construct and store the full covariance matrix Cxx. In our numerical work, these
refinements did not improve the quality of forecasting, but they may merit further study.

3.7. Other observables. We can easily extend streaming KAF to the more general setting
outlined in subsection 2.6. Suppose we wish to use a general covariate u :M→ Rd′ to predict
a general response variable g : M → Rr after q time steps. Let κ̃ : Rd

′×d′ → R+ be a
positive-definite kernel on the covariate space, with associated feature map ϕ̃ : Rd

′ → R.
To train, we acquire data in the form of measured values of the covariate paired with

measured values of the lagged response: (ui, gq+i) where ui = u(xi) and gi = g(xi) for
i = 0, . . . , n − 1. In this setting, the underlying state trajectory (x0, . . . ,xn−1) is unknown.
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By streaming the observable data, we compute the matrices

Cuu ← Cuu + ϕ(ui)ϕ(ui)
> and Cgu ← Cgu + gi+qϕ(ui)

>.

Finally, we determine the weights:

Wq,` := Cgu · (JCuu + µIK`)†.

As before, the randomized Nyström method serves for the streaming PCA computation.
Now, suppose that we observe a covariate v ∈ Rd′ , where v = u(y) for an unknown state

y ∈M. We forecast the lagged response g(F q(y)) as

(3.9) ĝq,`(v) := Wq,` · ϕ̃(v).

Our approach gives a principled approximation of the optimal forecast of the response given
the observed covariate, as described in subsection 2.7.

3.8. Resource usage. Algorithm 3.3 lists pseudocode for the general streaming KAF
method outlined in subsection 3.7. Table 1 compares the costs against a näıve implementation
of KAF. We also list the costs of streaming KAF with fast random features (Fast Streaming
KAF; see Remark 3.1), omitting an exposition.

First, we discuss the costs of the training step of streaming KAF with covariate data
X ∈ Rd′×n and (lagged) observable data G ∈ Rr×n. Assume that the truncation rank ` ≤ s,
where s is the number of random features.

To construct random feature descriptors, we draw and store O(d′s) normal random vari-
ables. The Nyström approximation of the featurized covariance matrix involves O((d′+ `)sn)
arithmetic and local storage O(`s). The covariate–response matrix requires O((d′ + r)sn)
arithmetic and storage O(rs). To form the prediction weights, we expend O(`rs) arithmetic
and O(rs) storage. In practice, the Nyström approximation is the most expensive step.

The total storage required for the forecasting model consists of the O(d′s) storage for the
random feature descriptors and the O(rs) storage for the prediction weights.

In the forecasting step, we simply featurize the test data and form a matrix–matrix prod-
uct. This step uses O((d′+r)s) arithmetic per initial condition (IC), but no additional storage.

Let us summarize. In comparison with näıve KAF, the streaming KAF method is sig-
nificantly faster because it is a streaming method. The precise improvements to storage and
arithmetic costs depend on several parameters. Loosely, the streaming method reduces train-
ing arithmetic by a factor of about n/s and reduces training storage by a factor of about n2/s.
For forecasting, the arithmetic and storage both decrease by a factor of n/s.

Remark 3.4 (Implementation). For reasons of modularity, the pseudocode and our proto-
type implementation take two passes over the data, but they are mathematically equivalent
to the streaming KAF algorithm.

4. Experiments. This section showcases experiments that demonstrate the practical per-
formance of streaming KAF. We study forecasting skill for several benchmark dynamical
systems, we investigate sensitivity to algorithm parameters, and we make comparisons with
the näıve implementation of KAF. The code for reproducing the experiments is available as
a supplement to this paper.
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Algorithm 3.3 Scalable Kernel Analog Forecasting. Implements subsection 3.7.

The method Train takes covariate data X ∈ Rd×n and (lagged) response data G ∈ Rr×n as
input. It constructs a random feature map with parameters (γ, d; s) and builds a forecasting
model for the response data G using truncation rank ` ∈ N. The method Forecast uses the
model to make estimates of the response from the covariates listed as columns of Y ∈ Rd×m.

1 local variables RFF feat . Random feature map ϕ : Rd → Rs
2 local variables W ∈ Rr×s . Prediction weights

3 function Train(X ∈ Rd′×n, G ∈ Rr×n)
4 feat← RFF(γ, d; s) . Initialize random feature map
5 (Q,Λ)← FeatNyström(feat,X; `) . Factor Jϕ(X)ϕ(X)>K`; see subsection 3.6
6 Λ← Λ + µmax(Λ) · I . Filter eigenvalues; µ = 10−6

7 C ← feat.RMultAdj(X,G) . Form product Gϕ(X)> ∈ Rr×s
8 W ← ((CQ)/Λ)Q> . Compute prediction weights

9 function Forecast(Y ∈ Rd×m)
10 F̂ ← feat.RMult(Y ,W ) . Form W ϕ(Y )
11 return F̂ ∈ Rd×m . Forecasts for columns of Y

Table 1
Resource usage for training and for a single forecast: Covariate dimension d′, response dimension r,

with n training samples, s random features, truncation rank `. Assumes ` ≤ s ≤ n. Constants are suppressed.
The fast streaming method uses a more efficient random feature construction. See subsections 2.5 and 3.8.

Näıve KAF Streaming Fast Streaming

Training

Streaming × X X

Arithmetic d′n2 (`+ d′)sn+ r`s (`+ log d′)sn+ r`s

Local storage n2 (`+ r + d′)s (`+ r)s

Forecast
Storage for model (r + d′)n (d′ + r)s rs

Arithmetic (per IC) rn (r + d′)s (r + log d′)s

4.1. The Lorenz models. Our experiments focus on the Lorenz ’63 model, a classical
three-dimensional dynamical system known to exhibit chaotic behavior. We also test the
method on the two-phase Lorenz ’96 model, a higher-dimensional system that has periodic,
quasi-periodic, and chaotic regimes. This subsection summarizes the models and the param-
eters that give rise to different types of dynamics.

4.1.1. Lorenz ’63. The Lorenz ’63 (L63) model was introduced by Edward Lorenz in
1963 as a crude model of atmospheric convection [55]. Although this example is simple, its
properties have been studied extensively, and it is known to exhibit many of the features that
make forecasting challenging in more complex systems, including fractal attractors [80] and
mixing dynamics [56].
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The L63 model is defined via the following system of differential equations. For a state
x = (x1, x2, x3) ∈ R3,

(4.1)
ẋ(t) = V (x(t)) with initial condition x(0) = xinit;

V1(x) = σ(x2 − x1); V2(x) = x1(µ− x3); V3(x) = x1x2 − βx3.

The classical parameters for the L63 system that generate chaotic dynamics are (σ, µ, β) =
(10, 28, 8/3). This choice leads to the famous “butterfly attractor,” a compact set in R3 with
fractal dimension ≈ 2.06 that supports an ergodic invariant measure with Lyapunov exponent
λ ≈ 0.91; see [75]. Figure 1 presents an illustration.

4.1.2. Lorenz ’96. We also consider the two-phase Lorenz ’96 system (L96), as intro-
duced in [54, 23]. This model has dynamics that occur on two distinct timescales, a set of
“slow variables” x = {x(k)}k∈[K] and a set of “fast variables” z = {z(j, k)}j∈[J ],k∈[K]. These
variables evolve according to the following system of equations [23]. The boundary conditions
x(k +K) = xk and z(j, k +K) = z(j, k) for k ∈ [K] and z(j + J, k) = z(j, k + 1) for j ∈ [J ];
the dynamics are

(4.2)
ẋ(k) = −x(k − 1) (x(k − 2)− x(k + 1))− x(k) + F +

hx
J

∑J

j=1
z(j, k)

ż(j, k) =
1

ε
(−z(j + 1, k) (z(j + 2, k)− z(j − 1, k))− z(j, k) + hy · x(k)) .

As in [23], we set the parameters (hx, hy,K, J, ε) = (−0.8, 1, 9, 8, 1/128). Depending on the
value of the forcing constant F , three distinct regimes of behavior emerge.

• F = 5 yields a periodic system;
• F = 6.9 yields a quasi-periodic system; and
• F = 10 yields a fully chaotic system.

See Figure 1 for typical trajectories.
In our experiments, we seek to forecast the future values of the slow variables x(1), . . . , x(9)

of the coupled system using only the slow variables as input data. This setup is motivated by
the experiments of [13], which studied KAF for multi-scale systems but did not investigate
the scalability as a function of the amount of training data.

4.2. Experimental setup. All of our experiments are performed using data obtained by
integrating the governing equations of the L63 and L96 systems. Here are the details about
how we apply streaming KAF to make forecasts and evaluate the results.

• For L63, the training data consists of states x1,x2, . . . ,xn ∈ Rd generated by iterating
the dynamics:

xj := F (xj−1), j = 1, 2, . . . , n− 1,

where F is the flow map obtained by discretizing (4.1) with time step dt = .01.
• For L96, we first generate the full 81-dimensional system of slow and fast variables:

[xj , zj ] := F ([xj−1, zj−1]), j = 1, 2, . . . , n− 1,

where F is the flow map obtained by discretizing (4.2) with time step dt = .01. We
then form the training matrix X = [x1, . . . ,xn] ∈ R9×n using only the slow variables.
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Figure 1. Lorenz models. [top left] The L63 system in the chaotic regime. [Other panels] Five slow
dimensions of the L96 system. The fourth dimension is plotted in color, and the fifth dimension is plotted as
linewidth. [top right] Periodic regime (F = 5). [bottom left] Quasi-periodic regime (F = 6.9). [bottom right]
Chaotic regime (F = 10). See subsection 4.1 for details.

• To evaluate the performance, we use the normalized root mean square error (RMSE)
metric for the forecast error. For a single response variable i∗, consider the test set
Yi∗ and the true trajectory Yq,i∗ :

Yi∗ = [y0(i
∗),y1(i

∗), . . . ,ym−1(i
∗)] ∈ R1×m

Yq,i∗ = [yq(i
∗),yq+1(i

∗), . . . ,yq+m−1(i
∗)] ∈ R1×m.

For the forecast fq,`,i∗ of the response variable, applied columnwise, we define the error

(4.3) RMSE(fq,`,i∗(Y )) =
‖f`,q,i∗ − Yq,i∗‖2√
m · std(Yq,i∗)
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where std(z) denotes the standard deviation of the vector z.
• For each system and each set of parameter specifications, we consider 5 sets of tests
Y1, . . . ,Y5, each with m = 10, 000 data points (columns) of the same form as the
training data. The first test data set Y1 is obtained by evolving the system from the
final point xn in the training data. For the remaining test sets, the initial condition is
the final point in the previous set. In all figures, the line series represents the average
of the errors resulting from each of the 5 tests, and the shaded region around the error
lines represents one standard deviation of uncertainty around the average.
• In each of the plots presented in sections 4.4 and 4.5, the kernel inverse bandwidth γ

and dimension of regression model ` are fixed as the size of the training data n increases.
For any particular plot in these sections, the values of γ and ` were chosen based on
a minimal amount of manual tuning at fixed training sample size n = 10, 000. As
such, the corresponding error curves level off as n is increased from 10, 000 to 50, 000.
Principled approaches to setting the inverse bandwidth parameter γ and dimension of
regression model ` are discussed in sections 4.6.1 and 4.6.2, respectively.

• Table 2 illustrates that gently increasing the inverse bandwidth γ and regression model
dimension ` together as the size of the training data n increases serves as a good rule of
thumb for improving the streaming KAF accuracy with increasing n. Table 3 indicates
that the number of random features s can be taken to be proportional to `, resulting
in faster forecasting and incurring only a small loss in accuracy.
• As presented in Algorithm 3.3, streaming KAF is implemented with two passes over

the training data, but it is algebraically equivalent to a true streaming method. We
use ordinary Gaussian random features (rather than the “fast” variant). All the loops
in Algorithm 3.1 are vectorized with blocks of 1, 000 vectors. We employ the random-
ized Nyström method described in Algorithm 3.2.

• The algorithms were implemented using the MATLAB programming language. All
data was collected on a MacBook Pro with 16 GB of RAM and with an 8-Core Intel
Core i9 Processor, clocked at 2.3 GHz.

4.3. Interpreting the results. The normalized RMSE (4.3) provides a measure of the
quality of the forecast. When the normalized RMSE reaches 1, the expected square error
is equal to the standard deviation of the response observable with respect to the invariant
measure, and the forecast is no longer providing useful information.

In dynamical systems, the maximal Lyapunov exponent of a system is commonly used to
summarize the level of “unpredictability.” The paper [83] describes the intuitive meaning of
this exponent: “For a chaotic trajectory, an infinitesimal perturbation in the evolution gives
rise to exponential divergence—the Lyapunov exponent expresses the rate of divergence.”
Hence, Lyapunov time is frequently used as a horizon for forecasting. Typically, a forecast
is classified as “good” if the normalized RMSE only approaches 1 after several Lyapunov
timescales.

For the L63 system, the Lyapunov exponent λ ≈ 0.91 [75]. Thus, we can expect to make
nontrivial forecasts of the state vector for several time units. On all L63 plots, we mark
the Lyapunov time scale as a yardstick. Note that there are other observables that remain
predictable for much longer than the coordinates of the state vector [29].
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Figure 2. Lorenz ’63: Forecast error versus amount of training data. Average normalized RMSE
for forecasting the first state variable of L63 via näıve KAF [left] and streaming KAF [right] as a function of the
number n of training points. The regression model has dimension ` = 400, the kernel inverse bandwidth γ = .05,
and the number of features s =

√
n log(n). For n = 50, 000, näıve KAF fails because of its computational cost.

See subsection 4.4.

Figure 3. Lorenz ’63: Forecasting all three state variables. Average normalized RMSE for forecasting
all three state coordinates (x1, x2, x3) = (blue, orange, green) via näıve KAF [left] and streaming KAF [right]
with n = 10, 000 training points. The regression model has dimension ` = 400, the kernel inverse bandwidth
γ = .05, and the number of features s =

√
n log(n). See subsection 4.4.

4.4. Case study: L63. Our first experiment compares the forecasting skill of näıve KAF
and scalable KAF for the L63 system. Figure 2 explores how forecasts of the first state
coordinate i∗ = 1 improve as the number n of training samples increases. With n = 10, 000,
both methods provide good predictions, with streaming KAF slightly better than näıve KAF.
In particular, both algorithms can make informative forecasts over several Lyapunov time
intervals. As we will discuss in subsection 4.7, the streaming method is far more efficient, and
the näıve method was unable to construct a forecasting model when n = 50, 000.

The KAF methodology has similar success at forecasting all three state variables. For
each of the three variables and with n = 10, 000 training samples, Figure 3 compares the
forecasting error attained by the näıve and streaming methods.

4.5. Case Study: L96. In our second set of experiments, we explore the performance of
scalable KAF for the L96 system in the periodic, quasi-periodic, and chaotic regimes docu-
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mented in [13]. An increase in the forcing constant F generates more chaotic behavior and,
unsurprisingly, reduces the time horizon for which KAF can make informative forecasts.

For the periodic regime (F = 5), forecasting is quite easy. Figure 4 illustrates the per-
formance of streaming KAF as a function of the number n of training samples. The success
of the method hardly varies as we increase n from 5, 000 to 20, 000, and the RMSE remains
quite small over long time scales.

For the quasi-periodic regime (F = 6.9), the forecasting problem becomes more challeng-
ing. For n = 10, 000 training samples, Figure 5 shows that the näıve and streaming methods
have similar forecasting performance for the first three slow variables. As we anticipate, the
RMSE increases gradually with time. Figure 4 displays the performance of streaming KAF
as a function of the number n of training samples. In this case, an increase in the number of
samples from n = 10, 000 to n = 50, 000 improves the performance moderately. Note that the
näıve approach cannot benefit from the larger training set because it does not scale to input
of this size.

Last, we consider the chaotic regime (F = 10), where the forecasting problem is hard.
Figure 6 indicates the näıve and streaming methods produce comparable forecasting results.
In both cases, the RMSE increases quite quickly. Figure 4 shows that streaming KAF can
build models from an increasing number n of training samples, and it can attain an advantage
from the larger training set.

We conclude that streaming KAF and näıve KAF have similar forecasting skill in all three
regimes, even though the streaming method makes several approximations. At the same time,
streaming KAF is far more economical, so it can exploit larger sets of training data and
thereby construct more accurate models.

4.6. Hyperparameter specifications and sensitivity. The streaming KAF method in-
volves several hyperparameters: the kernel inverse bandwidth γ, the dimension ` of the
regression model, and the number s of random features. We performed a collection of ex-
periments with the L63 and L96 data to gauge how much the hyperparameters affect the
quality of forecasts.

4.6.1. Kernel bandwidth. The inverse bandwidth parameter γ of the Gaussian RBF ker-
nel is a notorious hyperparameter that can have a significant impact on the performance of
kernel methods. One basic methodology for selecting the bandwidth is the median rule [25],
which sets γ−1/2 to be the median pairwise distance among elements of a subsample from the
dataset. Other quantiles of the pairwise distance, such as the 0.1 and 0.9 quantiles, are some-
times employed. A different approach for bandwidth tuning [16] leverages scaling relationships
between the element sum of the n× n kernel matrix Kx,x and γ.

In our experience, the KAF methodology is robust to the choice of inverse bandwidth
parameter in all problem regimes. Indeed, the forecasting performance is similar over several
orders of magnitude, but tuning can have a modest effect. See Figure 7 for an illustration.
To obtain better models from large training data, we invoke scaling laws for the bandwidth.

4.6.2. Dimension of regression model. To implement streaming KAF, we must choose
the dimension, or rank, ` of the regression model. When ` is too small, the model does not
capture all of the dynamics. Meanwhile, when ` is too large, we can introduce noise dimensions
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Figure 4. Lorenz ’96: Forecasting error versus amount of training data. Via streaming KAF, the
average normalized RMSE for forecasting the first slow variable of periodic L96 [top], quasi-periodic L96 [bottom
left], and chaotic L96 [bottom right] as a function of the number n of training points. The regression model has
dimension ` = 400, and the number of features s =

√
n log(n). The kernel inverse bandwidth γ = 0.0001 in the

periodic and chaotic cases, while γ = 0.01 in the quasi-periodic case. See subsection 4.5.

or encounter numerical problems. In this section, we outline some strategies for this task, and
we will show that the forecasting methodology is robust to the choice of this parameter.

One principled approach is to form the full covariance matrix Cxx ∈ Rs×s or Cuu ∈ Rs×s
of the covariate data. In this case, we can explicitly compute the eigenvalues (λ1, λ2, . . . , λs)
of the matrix. Then, we choose the truncation level ` so that we capture, say, 99.9% of the
spectral content:

(4.4) ` = min

{
k ∈ N :

∑k

i=1
λi ≥ 0.999 ·

∑s

i=1
λi

}
.

This method is effective for a range of problems. At the same time, it imposes additional
computational costs, and it is not compatible with the streaming algorithm.

Instead, we typically prescribe the dimension ` of the regression model in advance using
prior knowledge about the problem or to work within our computational budget. For example,
in our medium-scale experiments, we make the choice ` = 400, which captures over 99.9% of
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Figure 5. Quasi-periodic Lorenz ’96: Forecasting three slow variables. Average normalized RMSE
for forecasting three slow coordinates (x1, x2, x3) = (blue, orange, green) of quasi-periodic L96 via näıve KAF
[left] and streaming KAF [right] with n = 10, 000 training points. The regression model has dimension ` = 400,
the kernel inverse bandwidth γ = .0001, and the number of features s =

√
n log(n). See subsection 4.5.

Figure 6. Chaotic Lorenz ’96: Forecasting three slow variables. Average normalized RMSE for
forecasting three slow variables (x1, x2, x3) = (blue, orange, green) of chaotic L96 via näıve KAF [left] and
streaming KAF [right] with n = 10, 000 training points. The regression model has dimension ` = 400, the
kernel inverse bandwidth γ = 0.0001, and the number of features s =

√
n log(n). See subsection 4.5.

the spectral content of the computed covariance matrices. Since we have included the ridge
regularization µI in the forecasting function, we can insulate the algorithm from the negative
impact of outsize `.

Given a conservative (i.e., large) initial value of `, randomized Nyström produces an
estimate for the first ` eigenvalues of the covariance matrix. Using this estimate, we can apply
the rule (4.4) a posteriori to further reduce the dimension of the regression model. This is
often a good compromise, but further research on principled methods would be valuable.

Regardless, our numerical experiments indicate that streaming KAF forecast is somewhat
insensitive to the dimension ` of the regression model. See Figure 8 for some evidence. For
large training data sets, we scale up the dimension ` to obtain more accurate forecasts.

4.6.3. Number of random features. The last parameter in the streaming KAF algo-
rithm is the number s of random features that we use to approximate the kernel function.
As discussed in subsection 3.3, the choice s =

√
n log(n) is theoretically justified for kernel
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Figure 7. Robustness to inverse bandwidth parameter: For the L96 system in the periodic regime
[left] and the quasi-periodic regime [right], the quality of the forecast is robust to the choice of γ. In each case,
we use n = 10, 000 training samples, and the regression model has dimension ` = 400. See subsection 4.6.1.

Figure 8. Robustness to dimension of regression model and number of random features. For
the L96 system in the chaotic regime, the quality of the forecast is robust to the dimension ` of the regression
model [left] and to the number s of random features [right]. In the left panel, s = 100. In the right panel,
` = 100. In each case, we use n = 10, 000 training samples, and the kernel inverse bandwidth γ = 0.0001.
See subsections 4.6.2 and 4.6.3.

regression in a statistical setting. In the majority of our experiments, we adopt the value
s =

√
n log(n), and we have found that the streaming KAF method always performs well.

Furthermore, taking a larger number of random features does not seem to offer any further
benefit, and taking fewer random features is not detrimental. See Figure 8 for evidence.

In the streaming setting, we may not know the number n of training points in advance
and we do not want the model size to depend on the amount of input data, so the prescription
s =
√
n log(n) might be unappealing. Our computational work supports the recommendation

that the number s of random features may be a small integer multiple of the dimension ` of
the regression model. It would be interesting to understand this phenomenon better from both
an empirical and a theoretical point of view.

4.7. Timing comparisons. We have demonstrated that streaming KAF constructs accu-
rate forecasting models in a range of scenarios. Therefore, we may turn our attention to the
computational costs of training and forecasting. Table 2 compares the runtimes of näıve KAF
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Table 2
L63: Timing costs and error in forecasting. This table reports the time cost (in seconds) required to

construct and evaluate a forecasting model using Streaming and Näıve KAF algorithms, along with the
average normalized RMSE of the resulting models. The covariate is the 3-dimensional state of the L63 system,
and the response is the first state variable after 0.5 time units. The number n of training samples varies, and
the number of random features s =

√
n log(n). Reported test time is for making all m = 10, 000 forecasts.

See subsection 4.7 for more details.

Method

(n, `, γ) =
(1e4, 4e2, .09) (5e4, 8e2, .18) (1e5, 12e2, .27) (5e5, 16e2, .36) (1e6, 24e2, .54) (5e6, 32e2, .72)

Train
Streaming .565 6.739 29.025 387.265 1588.570 26390.902

Näıve 58.684 — — — — —

Test
Streaming .047 .163 .267 .723 .936 2.703

Näıve 15.311 — — — — —

RMSE
Streaming .262 .177 .170 .107 .065 .047

Näıve .228 — — — — —

Table 3
L63: Timing costs and error in forecasting using fewer random features. This table reports the

time cost (in seconds) required to construct and evaluate a forecasting model using Streaming KAF. The
setup is the same as in Table 2, but with model parameters (s, `, γ) = (3200, 3200, .72) fixed for all experiments.
See subsection 4.7 for more details.

n = 1e4 5e4 1e5 5e5 1e6 5e6

Train 35.101 43.051 55.079 138.083 253.435 1061.187

Test .230 .220 .245 .229 .221 .219

RMSE .408 .125 .119 .086 .075 .089

and streaming KAF, and it charts the average normalized RMSE of the resulting models.
These experiments are based on the L63 data. We forecast the first state variable from the

full set of three state variables. The forecast horizon is fixed at q = 0.5 time units. The number
n of training samples varies, while the number of test samples remains fixed at m = 10, 000.
The kernel inverse bandwidth γ = 0.09, and the dimension of the regression model grows from
` = 400 to ` = 3200 in rough proportion to log n. For the streaming method, the number of
random features s =

√
n log(n) also increases with the size of the training data. We report

the average RMSE over five test runs.
To be clear, the training time includes the full cost of computing the weight matrix W̌q,`

for a single real-valued response at a single forecast horizon q. This cost includes the evaluation
of random features, formation of the covariance matrices, the streaming PCA computation,
and the matrix product. For making a forecast, the timing reflects the full cost of computing
m = 10, 000 real-valued responses for the fixed time horizon q, including the evaluation of
random features and the matrix product.

For small problems, we see that the training time for streaming KAF is 100–200× faster
than näıve KAF. The test time for streaming KAF is 300–400× faster, and the models achieve
similar RMSE. For large problems, näıve KAF is unable to produce a forecasting model.
Meanwhile, streaming KAF can build a forecasting model from n = 5 ·106 training samples in
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less than two hours on a laptop, and this model can produce a single real-valued forecast in
about 0.0003s. As the amount of training data increases, the RMSE of the forecasting models
continues to improve, which underscores how important it is to develop a scalable algorithm.

Out of a sense of fair play, we used the theoretically supported number s =
√
n log(n)

of random features. If we adopt our empirical recommendation s = Const · `, the timings
improve markedly without sacrificing much accuracy. Table 3 displays the runtimes and
average normalized RMSE for streaming KAF under the same experimental set-up as in
Table 2, but with the regression dimension and number of random features fixed at (`, s) =
(3200, 3200). The user may judge whether the speedup warrants the modest loss in RMSE.

5. Comparison with related work. Several other techniques for data-driven prediction
have been proposed and studied recently. Here, we comment on the mathematical and com-
putational characteristics of these approaches in relation to streaming KAF, focusing on meth-
ods that employ aspects of linear operator theory or randomized linear algebra. Within this
context, forecasting techniques can be broadly classified as reduced modeling approaches (i.e.,
methods that construct a surrogate dynamical system from observed data) and regression ap-
proaches (i.e., supervised learning techniques for estimating covariate–response relationships).

5.1. Forecasting methodologies. Examples of reduced modeling techniques are linear in-
verse models [66], (extended) DMD [70, 73, 84], and methods for approximating the Koopman
generator [28, 19, 46]. These methods formally assume that the training data have a (deter-
ministic) Markovian evolution. That assumption is clearly satisfied under the autonomous
dynamics in (2.1) if the training data are snapshots x0,x1, . . . of the full system state in Rd.
On the other hand, if we have access to samples u(x0), u(x1), . . . of a covariate u : Rd → Rd′

with d′ < d, then training data are generally non-Markovian (unless u happens to lie in a
Koopman-invariant subspace). Approaches for overcoming non-Markovianity include dimen-
sion augmentation through delay-coordinate maps [72, 12, 30] and incorporation of memory
terms using the Mori-Zwanzig formalism [33, 35].

Other approaches model the observed data as realizations of a stochastic process. For
example, techniques based on Ulam’s method [20, 44] estimate the transfer operator of a dy-
namical system (which is a dual operator to the Koopman operator, acting on probability
measures) in a basis of indicator functions associated with a partition of state space. The
diffusion forecasting technique [8] estimates the evolution semigroup associated with a sto-
chastic differential equation (SDE) on a manifold in a smooth data-driven basis of kernel
eigenfunctions learned through the diffusion maps algorithm [15]. Extensions of DMD to
random dynamical systems [18] and SDEs [3] have also been proposed recently.

A common aspect of reduced modeling techniques is that they learn a surrogate model of
the dynamics from time series data. Often, in order to make a forecast to a horizon of q time
units, these models are trained on a shorter timestep q′ < q and iteratively applied q/q′ times
to reach the desired horizon. This approach is attractive because it allows simulation of the
long-term statistical behavior of the system (assuming that the training phase was successful).

In contrast, regression-based methodologies usually operate by constructing a forecast
function at a fixed lead time (or a family of independent forecast functions up to a desired
lead time), and they evaluate the forecast once on the initial data to yield a prediction. This
approach offers greater generality than reduced modeling approaches, since Markovianity of
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the covariate–response observables is not required, nor is it required that the covariate and
response lie in a Koopman-invariant subspace [30]. Indeed, as discussed in subsection 2.7, KAF
yields asymptotically optimal predictions (in the L2 or RMSE sense) in the large-data limit in
the form of the conditional expectation of the Koopman-evolved response conditioned on the
covariate. Yet, at the same time, the conditional expectation may not be a good approximation
for actual dynamical trajectories, which makes direct regression approaches unsuitable for
simulating the statistical behavior of the system (despite yielding RMSE-optimal forecasts).
For further details, see the paper [13], which studies applications of KAF to multiscale systems
with averaging and homogenization limits. A recent paper [38] has explored applications of
kernel learning [63] to forecasting with kernel regression.

All of the above approaches are purely data-driven, in the sense that they only use time-
ordered data snapshots as inputs, without requiring knowledge of the equations of motion.
Yet, in many applications, full or partial knowledge of the equations of motion is available,
and it is natural to design methods that take advantage of that knowledge [37]. An example
is the “lift and learn” framework [67] which employs a mapping to transport the data to a
higher-dimensional space where the system is quadratic. Unlike the Koopman operator, the
existence of a finite-dimensional quadratic representation of the system dynamics is not uni-
versally guaranteed, but can be constructed for many systems encountered in physical and
engineering applications [34] if the equations of motion are known. The approach of [67] lever-
ages the quadratic structure of the system in the lifted space by employing a projection that is
compatible with quadratic nonlinearities (see also [65]). In this manner, the reduced model is
compatible with the “physics” of the lifted model. In [67], the projection is obtained from the
proper orthogonal decomposition (POD) [42], which computes a low-rank approximation to
the autocorrelation matrix XX> ∈ Rd×d rather than the covariance matrix X>X ∈ Rn×n.
The randomized singular value decomposition is also used within this forecasting framework
to build a scalable implementation [58].

Note that the eigenvectors of XX> are spatial vectors in Rd. In DMD, the analogous
objects are the eigenvectors of the matrix A in (2.5), called Koopman modes [70], which can
also be employed for model reduction. The KAF approach can be thought of as being “dual”
to these methods in that it employs n×n kernel matrices which are discretizations of operators
acting on spaces of observables of the system (rather than spatial patterns in Rd).

5.2. Streaming algorithms for kernel computation. The machine learning literature con-
tains a substantial body of work on kernel methods, techniques for combining kernels with
random features, and methods for implementing these algorithms in a streaming setting. This
space is not adequate for a comprehensive summary of this vast field. We recommend the
book [74] as a foundational reference on kernel methods in machine learning.

The RFF technique [69] was developed to accelerate kernel computations. There are a
substantial number of papers that use RFF for KRR, such as [5, 71], but we are not aware of
a paper that uses random features for streaming kernel regression.

There are also several papers that combine RFF with streaming PCA algorithms to obtain
streaming KPCA algorithms. In particular, Ghashami et al. [27] apply the frequent directions
method [26], while Ullah et al. [81] use Oja’s algorithm [62]. Henriksen & Ward [41] have
developed an adaptive extension of Oja’s algorithm that is significantly more robust. Tropp
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and coauthors have proposed to use the randomized Nyström method for streaming PCA [78],
perhaps in combination with random features [57, Sec. 19.3.5]. Our numerical work suggests
that the Nyström method is more accurate and more reliable than the alternatives in the
context of streaming KAF.

We have also investigated the performance of streaming KAF using AdaOja [41] for the
streaming PCA computation. In our experience, this approach can be competitive, especially
in cases where the spectrum of the covariance matrix decays slowly. See [40] for a detailed
report.

6. Conclusions. Kernel analog forecasting is a regression-based approach to forecasting
dynamical systems that offers a theoretical guarantee of asymptotically optimal predictions (in
the L2 or RMSE sense) in the large-data limit. By incorporating two randomized approxima-
tion techniques from numerical linear algebra—random Fourier features and the randomized
Nyström method—we developed a streaming implementation of kernel analog forecasting.
This approach makes it possible to build forecasting models from large data sets where the
KAF methodology is theoretically justified. Our experiments indicate that streaming KAF
has the potential to unlock the promise of KAF as a general data-driven, non-parametric tool
for making predictions of dynamical systems.
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