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Abstract. Randomized algorithms based on sketching have become a workhorse tool in low-rank matrix
approximation. To use these algorithms safely in applications, they should be coupled with diagnostics to assess
the quality of approximation. To meet this need, this paper proposes a jackknife resampling method to estimate
the variability of the output of a randomized matrix computation. The variability estimate can recognize that a
computation requires additional data or that the computation is intrinsically unstable. As examples, the paper
studies jackknife estimates for two randomized low-rank matrix approximation algorithms. In each case, the
operation count for the jackknife estimate is independent of the dimensions of the target matrix. In numerical
experiments, the estimator accurately assesses variability and also provides an order-of-magnitude estimate of
the mean-square error.
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1. Introduction. In recent years, randomness has become an essential tool in the
design of matrix algorithms [6, 12, 18, 29], with randomized algorithms proving especially
effective for low-rank matrix approximation. To use the outputs of randomized algorithms
in applications, one should deploy them in conjunction with posterior error estimates or
other diagnostics that measure the quality of the computed output.

For certain problems, direct error estimates can be hard to obtain. Consider the prob-
lem of computing an approximation Π̃ to the othoprojectorΠ onto the leading eigenvector
of a symmetric matrix. Estimating the norm of the error Π̃−Π appears difficult since we do
not have access toΠ. Indeed, if we could efficiently computeΠ, there would be no reason
to use the randomized approximation Π̃!

In settings where it is difficult to obtain error estimates, the variance can serve as a
valuable alternative. High variability of a random approximation usually indicates that
more sampling data is needed to produce an accurate result. Variability may also signal
that the quantity being approximated is ill-posed or ill-conditioned. In either case, a highly
variable approximation should be treated with suspicion.

The variance can also serve as a computable lower bound on the mean-square error.
The Frobenius-norm error of a random approximation X to a matrix A admits the bias–
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2 E. N. EPPERLY AND J. A. TROPP

variance decomposition

(1.1) E∥A −X ∥2
F = ∥A −EX ∥2

F +E∥X −EX ∥2
F =: ∥A −EX ∥2

F +Var(X ).

This decomposition shows the variance Var(X ) gives a lower bound on the mean-square
error E∥A −X ∥2

F. If the squared bias is comparable with the variance, then the variance can
be appropriate as an order-of-magnitude estimate for the error, which is often sufficient
for applications.

The variance Var(X ) depends only on the approximation X itself, so we can estimate
the variance even when the underlying matrix A (or Π in our earlier example) is inacces-
sible. In this paper, we propose using a matrix extension of the Tukey jackknife variance
estimator [26] as an estimate for the variance. For many randomized low-rank approxi-
mation algorithms, this jackknife variance estimate is rapid to compute, and it requires
no information beyond that generated by the algorithm. In our experiments, the matrix
jackknife proves highly effective at assessing the quality of computed approximations.

1.1. The matrix jackknife idea. To motivate matrix jackknife variance estimation, let
us consider a typical algorithm framework. We seek a low-rank approximation to a matrix
A ∈Rd1×d2 . Proceed in two steps:

1. Collect data about the matrix A through matrix–vector products

Y = [
Aω1 · · · Aωs

]
whereω1, . . . ,ωs are independent and identically distributed random vectors.

2. Use this data to form an approximation to the matrix

X = F (Y ; A) ≈ A.

Several randomized low-rank approximation algorithms fit this template. For instance, the
basic randomized SVD algorithm of Halko, Martinsson, and Tropp [12] has this form with

F (Y ; A) =QQ∗A where Q = orth(Y ).

As usual, orth(Y ) returns a matrix with orthonormal columns that span the range of Y .
The matrix jackknife we propose seeks to answer the question:

What is the variance of the approximation X ?

One way we could estimate the variance of the algorithm is to simply run the algorithm
repeatedly, each time with a new set {ω1, . . . ,ωs } of random vectors, and then directly com-
pute the sample variance of the output. This approach is grossly inefficient.

The insight of jackknife methodology [7], particularized to our setting, is that we can
get a variance estimate by recomputing the estimate from subsamples of the matrix–vector
products Aω1, . . . , Aωk . Letting Y ( j ) denote the data matrix Y with its j th column deleted,
form jackknife replicates X ( j ) and their average X (·) via

X ( j ) := F
(
Y ( j ); A

)
for each j = 1, . . . , s and X (·) := 1

s

s∑
j=1

X ( j ).

We define the jackknife variance estimate

Jack2(X ) :=
s∑

j=1

∥∥∥X ( j ) −X (·)
∥∥∥2

F
.
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This quantity serves as a proxy for the variance Var(X ) := E∥X −EX ∥2
F. Guarantees for this

jackknife estimator are provided in Theorem 2.2.
In the context of randomized matrix computattions, the jackknife approach has sev-

eral desirable properties:
• Efficiency. The replicates X ( j ) = F (Y ( j ); A) are obtained by downdating the ap-

proximation X = F (Y ; A) after deleting a column from Y . This observation helps
us design efficient algorithms for computing the replicates. In sections 3 and 4, we
discuss two low-rank approximation algorithms where Jack(X ) can be obtained in
O (s3) operations, independent of both dimensions of the matrix A.

• Flexibility. The jackknife estimate can estimate the variance of general quantities
of the form X = F (Y ; A). In particular, the jackknife can be used to obtain vari-
ance estimates for randomized approximations to singular projectors or spectral
projectors. Direct error estimates for these objects can be hard to obtain by other
means.

1.2. Outline. Section 2 begins with our proposal for jackknife variance estimation for
matrix computations. Sections 3 and 4 then instantiate this propsal for two algorithms,
the randomized SVD and a single-view Nyström approximation. Both of these sections
include an algorithm for computing the variance estimate efficiently, with operation count
independent of both dimensions of the input matrix. Section 5 contains numerical results
demonstating that the jackknife variance estimate closely tracks the true variance of the
algorithmic output. Sections 6, 7, and 8 conclude with an extension to variance estimation
in other Schatten norms (p > 2), related work, and closing remarks.

1.3. Notation. Matrices are denoted by boldface capital letters, vectors by boldface
lowercase letters, and scalars by italic letters. We work over the field K = R or K = C. For
much of the text, A will be a d1 ×d2 input matrix while X is a random approximation to A.

The symbols ∗ and † denote the conjugate transpose and Moore–Penrose pseudoin-
verse. For a matrix B ∈Kd1×d2 with decreasingly ordered singular values σ j and with left
and right singular vectors u j and v j for 1 ≤ j ≤ min(d1,d2), we use the following notations.
The Frobenius norm ∥B∥F := (

∑
j σ

2
j )1/2. Construct an optimal rank-r approximation

�B�r :=
r∑

j=1
σ j u j v∗

j .

This approximation is unique if and only if σr ̸= σr+1, but the meaning will always be
unambiguous in context. When σ j−1 > σr > σ j+1, we can introduce the j th left and right
singular projectors

ΠL
j (B ) = u j u∗

j and ΠR
j (B ) = v j v∗

j .

If B is positive semidefinite, then the left and right singular projectors coincide, and they
both equal the j th spectral projector, which we writeΠ j (B ).

The expectation of a K-valued random variable X is denoted EX , and its variance
is defined as Var(X ) := E |X − EX |2. We adopt the convention that nonlinear operators
bind before the expectation; for example, EX 2 := E(X 2). Expectations extend entrywise
to vector- and matrix-valued quantities. The variance of a random matrix X is defined as

Var(X ) := E∥X −EX ∥2
F.

2. The matrix jackknife. This section outlines our proposal for a jackknife estimate
of the variance of a matrix approximation. Section 2.1 reviews jackknife variance estima-
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4 E. N. EPPERLY AND J. A. TROPP

tion for scalar quantities and the Efron–Stein–Steele inequality, which is used in its analy-
sis. We introduce the matrix jackknife variance estimator in section 2.2. Sections 2.3, 2.4,
and 2.5 discuss potential applications of the matrix jackknife and complementary topics.

2.1. Tukey’s jackknife variance estimator and the Efron–Stein–Steele inequality. To
motivate our matrix jackknife proposal, we begin by presenting Tukey’s jackknife estimator
[26] for the variance of a scalar statistic in section 2.1.1. In section 2.1.2, we discuss the
Efron–Stein–Steele inequality used in its analysis.

2.1.1. Tukey’s jackknife variance estimator. Consider the problem of estimating the
variance of a statistical estimator computed from s random samples. We assume it makes
sense to evaluate the estimator with fewer than s samples, as is the case for many classical
estimators like the sample mean and variance. This motivates the following setup:

• Letω1, . . . ,ωs be independent and identically distributed random elements taking
values in a measurable spaceΩ.

• Let f denote either one of two estimators, defined for either s or s −1 arguments:

f :Ωs →K or f :Ωs−1 →K.

• Assume that f is invariant to a reordering of its inputs:

f (ω1, . . . ,ωs ) = f (ωπ(1), . . . ,ωπ(s)) for any permutation π.

• Define estimates Es−1 := f (ω1, . . . ,ωs−1) and Es := f (ω1, . . . ,ωs ).
We think of Es as a statistic computed from a collection of samples ω1, . . . ,ωs . We can also
evaluate the statistic with only s −1 samples, resulting in Es−1.

Tukey’s jackknife variance estimator provides an estimate for the variance of Es−1,
which serves as a proxy for the variance of the s-sample estimator Es . Define jackknife
replicates

(2.1) E ( j ) := f (ω1, . . . ,ω j−1,ω j+1, . . . ,ωs ) for each j = 1,2, . . . , s.

The mean of the jackknife replicates is

(2.2) E (·) := 1

s

s∑
j=1

E ( j ).

The quantities E (1), . . . ,E (s) represent the statistic recomputed with each of the samples
ω1, . . . ,ωs left out in turn.

Tukey’s estimator for Var(Es−1) is given by

(2.3) V̂ar(Es−1) :=
s∑

j=1

∣∣∣E ( j ) −E (·)
∣∣∣2

.

Observe that Tukey’s estimator (2.3) is the sample variance of the jackknife replicates E ( j )

up to a normalizing constant. The form of Tukey’s estimator suggests that the distribution
of the jackknife replicates somehow approximates the distribution of the estimator. This
intuition can be formalized using the Efron–Stein–Steele inequality.

2.1.2. The Efron–Stein–Steele inequality. To analyze Tukey’s variance estimator, we
rely on a famous inequality of Efron and Stein [8], which was improved by Steele [23]:
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FACT 2.1 (Efron–Stein–Steele inequality). Let ω1, . . . ,ωs ∈Ω be independent elements
in a measurable space Ω, and let f : Ωs → K be measurable. Let (ω′

j : j = 1, . . . , s) be an

independent copy of (ω j : j = 1, . . . , s). Then

(2.4) Var
(

f
(
ω1, . . . ,ωs

))≤ 1

2

s∑
i=1

E
∣∣∣ f

(
ω1, . . . ,ωs

)− f
(
ω1, . . . ,ω j−1,ω′

j ,ω j+1, . . . ,ωs

)∣∣∣2
.

The complex-valued version of the inequality presented here follows from the more
standard version for real values by treating the real and imaginary parts separately.

In the setting of Tukey’s estimator (2.3), the samples ω1, . . . ,ωs−1 are identically dis-
tributed and the function f depends symmetrically on its arguments. Therefore, the last
sample ωs can be used to fill the role of each ω′

j in the right-hand side of (2.4). As a conse-

quence, the Efron–Stein–Steele inequality shows that

(2.5)

Var(Es−1) ≤ 1

2

s−1∑
i=1

E
(
E ( j ) −E (s)

)2 = 1

2k

s∑
i , j=1

E
(
E (i ) −E ( j )

)2

=
s∑

j=1
E
(
E ( j ) −E (·)

)2 = E V̂ar(Es−1).

That is, Tukey’s variance estimator (2.3) overestimates the true variance on average.

2.2. The matrix jackknife estimator of variance. Now, suppose we seek to approxi-
mate a matrix A ∈Kd1×d2 by a random matrix X ∈Kd1×d2 . Similar to the scalar setting, we
assume that X is a function of independent samples ω1, . . . ,ωs and that it makes sense to
evaluate X with fewer than s samples. The formal setup is as follows:

• Let ω1, . . . ,ωs be independent and identically distributed random elements in a
measurable spaceΩ.

• Let X denote one of two matrix estimators defined for s or s −1 inputs:

X :Ωs →Kd1×d2 or X :Ωs−1 →Kd1×d2 .

• Assume X is invariant to reordering of its inputs: X (ω1, . . . ,ωs ) = X (ωπ(1), . . . ,ωπ(s))
for any permutation π.

• Define estimates X s := X (ω1, . . . ,ωs ) and X s−1 := X (ω1, . . . ,ωs−1).
In the setting of a randomized low-rank approximation algorithm, the samples ω1, . . . ,ωs

might represent the columns of a sketching matrix.
We are interested in estimating the variance of X s−1 as a proxy for the variance of X s .

We expect that adding additional samples will refine the approximation and thus reduce
its variance. Define jackknife replicates X ( j ) and their average X (·)

X ( j ) = X (ω1, . . . ,ω j−1,ω j+1, . . . ,ωs ) for each j = 1, . . . , s and X (·) := 1

s

s∑
j=1

X ( j ).

These quantities are analogous to the replicates (2.1) and average (2.2) from the scalar
setting. We propose the matrix jackknife estimate

(2.6) Jack2 (
X s−1

)
:=

s∑
j=1

∥∥∥X ( j ) −X (·)
∥∥∥2

F

for the variance Var(X s−1). The estimator Jack(X s−1) can be efficiently computed for sev-
eral randomized low-rank approximation, as we shall demonstrate in sections 3 and 4.
Similar to the classic jackknife variance estimator, we can use the Efron–Stein–Steele in-
equality to show that this variance estimate is, in an appropriate sense, an overestimate.
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6 E. N. EPPERLY AND J. A. TROPP

THEOREM 2.2 (Matrix jackknife). With the prevailing notation,

(2.7) Var(X s−1) ≤ E Jack2 (
X s−1

)
.

Proof. Fix a pair of indices 1 ≤ m ≤ d1 and 1 ≤ n ≤ d2. Applying (2.5) to the (m,n)-
matrix entry (X s−1)mn , we observe

E|(X s−1)mn −E(X s−1)mn |2 ≤ E
s∑

j=1

∣∣∣X ( j )
mn −X (·)

mn

∣∣∣2

Summing this equation over all 1 ≤ m ≤ d1 and 1 ≤ n ≤ d2 yields the stated result.

When the jackknife variance estimate is small, Theorem 2.2 shows the variance of the
approximation is also small. Unfortunately, Theorem 2.2 does not show the converse: It
remains possible that Jack2(X s−1) is large while Var(X s−1) is small. Empirical evidence
(section 5) suggests that Var(X s−1) and E Jack2(X s−1) tend to be within an order of magni-
tude for the algorithms we considered.

2.3. Uses for the jackknife variance estimator. The matrix jackknife estimator is de-
signed to show whether the output of a matrix computation is highly variable. When the
variability is large as compared with the scale of the matrix being computed, it suggests
that one of two issues has arisen. Either more samples are needed to refine the approxima-
tion, or else the underlying approximation problem is badly conditioned. In either case,
the jackknife variance estimate can provide a warning that the computed output should
not be trusted.

In some settings, the jackknife variance estimate can also provide a reliable order-
of-magnitude estimate of the average Frobenius-norm error. We will illustrate this phe-
nomenon in our experiments with two randomized matrix approximation algorithms (sec-
tion 5), We anticipate that this type of error estimate could have several uses:

• In contrast to randomized norm estimates (section 7.1), the matrix jackknife does
not require additional matrix–vector products with the matrix A. This makes the
matrix jackknife useful in settings where acquiring or storing extra matrix–vector
products is computationally expensive.

• The jackknife can be combined with a more accurate and costly error estimate
to adaptively determine the number of samples needed to meet an error toler-
ance. One may use the jackknife as an inexpensive approximation to the error
and draw more samples if the jackknife fails to meet the tolerance; the expensive
error estimate only needs to be evaluated in marginal cases when the computed
approximation is near the threshold.

• The matrix jackknife provides a direct way to assess the accuracy of quantities
like singular projectors and spectral projectors or the truncated singular value
decomposition, which may be hard to approach by other means.

2.4. What about the bias?. If our ultimate goal is to estimate the error ∥A −X s∥F,
then the jackknife variance estimate accounts for the variance term in the bias–variance
decomposition (1.1). This naturally raises a question: What do we do about the bias?

Empirically, in the two algorithms we study, we often observe that the squared bias
is smaller than the variance (section 5). This evidence gives some justification for using a
modest multiple of the jackknife variance estimate as a proxy for the full error.

For particular matrix computations, it may be possible to prove that the bias and vari-
ance are always comparable. As a simple case where this relation can be explored, consider
the approximation of the identity matrix I by a uniformly random rank-s orthoprojector X .
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JACKKNIFE VARIABILITY ESTIMATION FOR RANDOMIZED MATRIX COMPUTATIONS 7

In this case, we have

Bias2(X ) = ∥I−EX ∥2
F = d − sp

d
and Var(X ) =

p
s(d − s)p

d
.

The ratio of squared bias to variance is roughly
p

d/s for small s, which is large if d ≫ s.
This example is likely represents something of a worst-case for the bias–variance split, as
most inputs A in applications possess a decaying spectrum. We leave further investigation
for future work.

One could also attempt to estimate the bias using a matrix version of the Quenouille
jackknife bias estimator [21]. The natural matrix analog of the Quenouille bias estimator
is

(2.8) �Bias(X s ) := (s −1)
(

X (·) −X s
)
.

If X (·) is a functional statistic [7, Ch. 2] and the bias X s −EX s can be expanded in recipro-
cal powers of s, then the classic analysis of the jackknife bias estimator [7, §2.1] shows that
the bias-corrected estimator X s +�Bias(X s ) has error O (s−2), reduced from O (s−1). Unfor-
tunately, X (·) is rarely a functional statistic in the context of matrix computations, making
it unclear what, if anything, �Bias(X s ) can tell us about the true bias.

2.5. Matrix jackknife versus scalar jackknife. Sometimes, we are only interested in
scalar outputs of a randomized matrix computation, such as eigenvalues, singular values,
or the trace. In these cases, it might be more efficient to directly apply Tukey’s variance
estimator (2.3) to assess their variance. The matrix jackknife may still be a useful tool be-
cause it gives simultaneous variance estimates over many scalar quantities. As examples,
the matrix jackknife estimates the maximum variance over all linear functionals:

E max
∥C∥F≤1

|tr(C X s−1)− tr(C EX s−1)|2 = E∥X s−1 −EX s−1∥2
F ≤ E Jack2(X s−1),

The matrix jackknife gives the following variance estimate for the singular values:

E
min(d1,d2)∑

j=1

∣∣σ j (X s−1)−σ j (EX s−1)
∣∣2 = E∥X s−1 −EX s−1∥2

F ≤ E Jack2(X s−1).

Thus, the matrix jackknife is appealing even in settings where one is interested in multiple
scalar-valued functions of the matrix approximation X s−1. In addition, efficient methods
for computing matrix jackknife estimates for randomized algorithms (sections 3.2 and 4.2)
may be useful for accelerating the computation of variance estimates for individual func-
tionals.

3. Case study: Randomized singular value decomposition. In this section, we con-
sider the application of the matrix jackknife to the randomized SVD of Halko, Martinsson,
and Tropp [12]. Section 3.1 introduces the randomized SVD with subspace iteration. Sec-
tion 3.2 shows how the randomized SVD can be interpreted in the framework of the matrix
jackknife, and it presents an efficient algorithm for computing the variance estimate. Sec-
tion 3.3 discusses extensions.

3.1. Randomized SVD with subspace iteration. Let A ∈Kd1×d2 be a matrix for which
we seek an approximate truncated singular value decomposition X = UΣV ∗, where U ∈
Kd1×s and V ∈ Kd2×s have orthonormal columns and Σ ∈ Rs×s is a nonnegative diagonal
matrix. One may interested in the factors Σ, U , and V as approximations to the singular
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8 E. N. EPPERLY AND J. A. TROPP

values and left and right singular vectors of A. Alternatively, one might use X as a low-rank
approximation to A.

The randomized SVD algorithm with q steps of subspace iteration operates as follows.
1. Draw a random sketching matrixΩ ∈Cd2×s with independent standard Gaussian

entries.
2. Compute the product Y = (A A∗)q AΩ.
3. Extract an orthonormal basis Q = orth(Y ) by economy QR factorization Y =QR .
4. Form the matrix C =Q∗A.
5. Compute an economy SVD C = ŨΣV ∗.
6. Set U =QŨ .
7. Report X =UΣV ∗.

Informative a priori bounds on the spectral-norm error E∥A −X ∥ for the randomized SVD
with subspace iteration are well-established; see [12, Thm. 9.3 and Cor. 10.10].

3.2. Matrix jackknife for the randomized SVD. To put the randomized SVD into the
framework of the matrix jackknife, we consider the randomized SVD as a function of the
columns of the sketching matrixΩ= [

ω1 · · · ωs
]
:

X = X (ω1, . . . ,ωs ).

Note that X depends symmetrically on the independent and identically distributed sam-
plesω1, . . . ,ωs ∈Kd2 , making the randomized SVD a candidate for the matrix jackknife. To
compute the jackknife, we must form the replicates

X ( j ) = X (ω1, . . . ,ω j−1,ω j+1, . . . ,ωs ) for each j = 1, . . . , s.

Throughout this section, we use a superscript ( j ) to denote a quantity computed without
the j th sample.

To facilitate efficient computation of the matrix jackknife, the core observation is that
range(U ) contains range(X ( j )) for all j . To see why this is the case, observe that the col-
umns of Y ( j ) are a subset of the columns of Y ; cf. step 2 in section 3.1. Thus,

range
(

X ( j )
)
= range

(
U ( j )

)
= range

(
Q ( j )

)
⊆ range(Q) = range(U ).

A similar statement holds for the right singular vectors. Indeed, since C ( j ) = (
Q ( j )

)∗
A,

range
((

X ( j )
)∗)

= range(V ( j )) = range
((

C ( j )
)∗)

⊆ range
(
C∗)= range(V ).

Because range
(

X ( j )
)⊆ range(U ) and range

((
X ( j )

)∗)
⊆ range(V ), each replicate X ( j ) can be

factorized as

(3.1) X ( j ) =U T j V ∗ for some core matrix T j ∈Ks×s .

This observation yields immense savings: rather than manipulating the d1×d2 matrix X ( j ),
we can work with the much smaller s × s matrix T j . With these preparations in place, we
arrive at a computationally efficient expression for the jackknife variance estimate:

(3.2) Jack2(X ) =
s∑

j=1

∥∥∥X ( j ) −X (·)
∥∥∥2

F
=

s∑
j=1

∥∥∥T j −T
∥∥∥2

F
where T := 1

s

s∑
j=1

T j .

We have used the unitary invariance of the Frobenius norm ∥·∥F.
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JACKKNIFE VARIABILITY ESTIMATION FOR RANDOMIZED MATRIX COMPUTATIONS 9

Algorithm 3.1 Randomized SVD with jackknife variance estimate

Input: A ∈Kd1×d2 to be approximated, approximation rank s, subspace iteration steps q
Output: Factors U ∈Kd1×s , Σ ∈ Rs×s , and V ∈Kd2×s defining a rank-s approximation X =
UΣV ∗, variance estimate Jack = Jack(X )

1: procedure SVDWITHJACKKNIFE(A, s, q)
2: Ω← randn(d2, s)
3: Y ← A(A∗A)qΩ ▷ Repeated matrix multiplication
4: (Q ,R) ← qr(Y ,’econ’) ▷ Economy QR Factorization
5: C ←Q∗A
6: (Ũ ,Σ,V ) ← svd(C ,’econ’)
7: U ←QŨ
8: for j = 1 to s do
9: R ′ ← R(:, [1 : ( j −1), ( j +1) : s]) ▷ R ′ is R without its j th column

10: (Q̃ , R̃) ← qr(R ′,’econ’)
11: T j ← Ũ

∗
Q̃Q̃

∗
ŨΣ

12: end for
13: T ← s−1 ∑s

j=1 T j

14: Jack ←
(∑s

j=1

∥∥T j −T
∥∥2

F

)1/2

15: return U , Σ, V , Jack
16: end procedure

Fortunately, the core matrices T j can also be computed efficiently. Algorithm 3.1 gives
an implementation that forms each T j in O (s3) operations. The jackknife variance esti-
mate Jack(X ) is obtained in O (s4) operations in total, independent of either of the dimen-
sions d1 and d2 of the original problem. In appendix A.1, we describe how to use downdat-
ing to reduce the total cost to O (s3) operations.

3.3. Extensions. We can also apply the matrix jackknife to quantities derived from
the randomized SVD computation. Indeed, Algorithm 3.1 provides a representation of
each of the replicates: X ( j ) =U T j V ∗. If we further extract an SVD of T j , say T j =U jΣ j V ∗

j ,

then we obtain an implicit representation of a truncated SVD of each jackknife replicate

X ( j ) = (
UU j

)
Σ j

(
V V j

)∗.

This formula allows us to obtain variance estimates for matrix- and scalar-valued quan-
tities that can be determined from the core matrix T j or its singular value decomposi-
tion. We focus on variance estimates for two examples: projectors onto leading singular
subspaces and entries of the output approximation. In a similar fashion, we can develop
variance estimates for other quantities such as projectors onto other singular subspaces,
truncations of the low-rank approximation to smaller rank, and entries of the eigenvectors.

3.3.1. Projectors onto leading singular subspaces. As an example, we consider how
to estimate the variance of the i th left singular projectorΠL

i (X ). Note the identity(
ΠL

i (X )
)( j ) =ΠL

i

(
X ( j )

)
=ΠL

i

(
U T j V ∗)=UΠL

i (T j )U∗.

In view of this fact, the jackknife variance estimate for ΠL
i (T j ) can be computed in O (s4)

operations by replacing T j withΠL
i (T j ) =U j (:, i )U∗

j (:, i ) in Algorithm 3.1.
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10 E. N. EPPERLY AND J. A. TROPP

3.3.2. Entries of the approximation. We can extract the (m,n)-entry E j := (
X ( j )

)
mn

is directly from the core matrix T j via the expression E j =U (m, :)T j V (n, :)∗. This formula
allows us to form Tukey’s variance estimator (2.3) to be computed for any given entry of
the matrix X in O (s3) time from the core matrices T 1, . . . ,T s .

4. Case study: Single-view Nyström approximation. In this section, we apply the
matrix jackknife variance estimate to another randomized low-rank approximation algo-
rithm, the single-view Nyström approximation [10, 24] of a positive-semidefinite matrix
A ∈Kd×d . We introduce the single-view Nyström in section 4.1 before discussing efficient
computation of the jackknife variance estimate in section 4.2. Extensions are briefly dis-
cussed in section 4.3.

4.1. Single-view Nyström approximation. Given an arbitrary test matrix Ω ∈ Kd×s ,
the Nyström approximation of a positive-semidefinite matrix A takes the form

(4.1) X = AΩ (ΩAΩ)† (AΩ)∗.

The Nyström approximation X is the best positive semidefinite approximation to A in the
span of the columns of the sketch AΩ.

Early machine learning applications of the Nyström method [5, 28] exclusively used
randomized column sampling; that is, the columns of Ω were required to be columns
of the identity matrix. The method is now used with more general random test matri-
ces [10, 24]. We shall restrict attention to the case when Ω is populated with statistically
independent standard Gaussian entries. A priori error bounds for the spectral norm error
E∥A −X ∥ in this setting are given by [9, Prop. 2.2].

An appealing feature of Nyström approximation is that it only accesses the matrix A
via the single matrix product AΩ. The product AΩ can be evaluated using only a single
pass over the matrix A. This observation means the Nyström approximation can be com-
puted in a streaming setting where A is presented as a sum of updates which must be
processed on the spot and discarded [24].

We can represent the Nyström approximation X using an economy eigenvalue de-
composition:

(4.2) X =VΛV ∗ with V ∈Kd×s and Λ ∈Rs×s .

Here, Λ is a diagonal matrix containing the nonzero eigenvalues of X . The matrix V con-
tains the associated eigenvectors. We construct the single-view Nyström approximation in
the following way to facilitate efficient computation of the jackknife variance estimate:

1. Draw a random sketching matrixΩ ∈Kn×s with independent standard Gaussian
entries.

2. Compute the product Y = AΩ.
3. Extract an orthonormal basis Q = orth(Y ) by economy QR factorization Y =QR .
4. Compute B =Ω∗Y and Cholesky factorize B =C∗C .
5. Obtain a singular value decomposition RT −1 =UΣZ ∗.
6. SetΛ :=Σ2 and V :=QU .

Algorithm 4.1 provides a numerically robust implementation of this template.

4.2. Matrix jackknife for the single-view Nyström approximation. The setup for the
single-value Nyström approximation is similar to the randomized SVD in section 3.2. We
regard the Nyström approximation X defined in (4.1) as a function

X = X (ω1, . . . ,ωs ) where Ω= [
ω1 · · · ωs

]
.
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Algorithm 4.1 Single-view Nyström approximation with jackknife variance estimate

Input: A ∈Kd×d to be approximated and approximation rank s
Output: Factors V ∈ Kd×s and Λ ∈ Rs×s defining a rank-s approximation X = VΛV ∗ and
variance estimate Jack = Jack(X )

1: procedure NYSTRÖMWITHJACKKNIFE(A, s) ▷ A ∈Kd×d positive semidefinite
2: Ω← randn(d , s)
3: Y ← AΩ
4: ν← ϵmach∥Y ∥ and Y ← Y +νΩ ▷ Shift for numerical stability
5: (Q ,R) ← qr(Y ,’econ’) ▷ Economy QR Factorization
6: B ←Ω∗Y
7: C ← chol((B +B∗)/2)
8: (U ,Σ,∼) ← svd(RC−1) ▷ Triangular solve
9: Λ← max(Σ2 −νI,0) ▷ Entrywise maximum, shift back for numerical stability

10: V ←QU
11: for j = 1 to s do
12: R j ← R(:, [1 : ( j −1), ( j +1) : s]) ▷ R ′ is R without its j th column
13: B j ← B ([1 : ( j −1), ( j +1) : s], [1 : ( j −1), ( j +1) : s])
14: T j ←U∗R j B−1

j R∗
j U

15: end for
16: T ← s−1 ∑s

j=1 T j

17: Jack ←
√∑s

j=1

∥∥∥T j −T
∥∥∥2

F
18: return V ,Λ, Jack
19: end procedure

Introduce jackknife replicates

X ( j ) = X (ω1, . . . ,ω j−1,ω j+1, . . . ,ωs ) for each j = 1,2, . . . , s.

As in section 4.3, the critical observation is that the range of each of the replicates is con-
tained in the range of the matrix V defining X in (4.2). Because of this, each of the repli-
cates takes the form

X ( j ) =V T j V ∗ where T j ∈Ks×s .

It follows that jackknife variance estimate simplifies to

Jack2(X ) =
s∑

j=1

∥∥∥X ( j ) −X (·)
∥∥∥2

F
=

s∑
j=1

∥∥∥T j −T
∥∥∥2

F
where T := 1

s

s∑
j=1

T j .

Algorithm 4.1 constructs the random Nyström approximation X in factored form (4.2)
along with the reduced jackknife variance estimate W . This algorithm uses several tricks,
drawn from [14], to improve its numerical stability. Just like Algorithm 3.1 for the random-
ized SVD, Algorithm 4.1 requires O (s4) operations to compute the variance estimate, inde-
pendent of the dimension d of the matrix A. Appendix A discusses how to use downdating
to reduce the total cost to O (s3) operations.

4.3. Extensions. One can easily extend Algorithm 4.1 to obtain variance estimates for
derived quantities. Examples of such derived quantities include truncations of the Nys-
tröm approximation to rank r < s, estimates of spectral projectors, and entries of the ap-
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12 E. N. EPPERLY AND J. A. TROPP

proximation. We omit the details because they are similar to the case of the randomized
SVD (section 3.3).

5. Numerical experiments. In this section, we showcase numerical examples that
demonstrate the effectiveness of the matrix jacknife variance estimate for the randomized
SVD and the single-view Nyström approximation. All numerical results will use real num-
bers (K=R).

5.1. Test matrices. To evaluate the performance of the jackknife for matrices with
different spectral characteristics, we consider the following synthetic test matrices from
[24, Sec. 5]:

A = diag(1, . . . ,1︸ ︷︷ ︸
R times

,0 . . . ,0)+ξd−1GG∗ ∈Rd×d .(NoisyLR)

A = diag(1, . . . ,1︸ ︷︷ ︸
R times

,10−s ,10−2s , . . . ,10−(d−R)s ) ∈Rd×d .(ExpDecay)

Here, ξ, s ∈ R are parameters, and G ∈ Rd×d is a standard Gaussian matrix. Our focus on
diagonal test matrices is justified by the observation that the randomized SVD, the single-
view Nyström approximation, and their jackknife variance estimates depend only on the
singular values. This statement relies on the fact that the Gaussian test matrix Ω is rota-
tionally invariant. We also consider matrices from application domains:

• Velocity. We consider a matrix A ∈ R25096×1000 whose columns are snapshots of
the streamwise and transverse velocity and pressure from simulations of a fluid
flow past a cylinder. We thank Beverley McKeon and Sean Symon for this data.

• Kernel matrix. We study an RBF kernel matrix A ∈ R1599×1599 assembled from
the red wine data in the wine quality dataset [2] from the UCI Machine Learning
Repository. The data is standardized, and the bandwidth is σ= 10.

5.2. Evaluation. We test the randomized SVD and the single-view Nyström approx-
imation with variety of sketching dimensions s ∈ {20,40, . . . ,140}. We use q = 2 steps of
subspace iteration for the randomized SVD.

We wish to compare the jackknife standard deviation estimate Jack(X ) with the bias
∥A −EX ∥F, standard deviation (Var(X ))1/2, and root-mean-square error (E∥A −X ∥2

F)1/2.
Since these quantities are not readily available, we estimate them by a Monte Carlo proce-
dure. Letting X [1], . . . , X [m] denote the outputs of m independent executions randomized
SVD or single-view Nyström approximation, we define estimates

Err(A, X ) := 1

∥A∥F

(
1

m

m∑
i=1

∥A −X [i ]∥2
F

)1/2

≈
(
E∥A −X ∥2

F

)
1/2

∥A∥F
,

Bias(A, X ) := 1

∥A∥F

∥∥∥∥∥A − 1

m

m∑
i=1

X [i ]

∥∥∥∥∥
F

≈ ∥A −EX ∥F

∥A∥F
,(5.1)

SD(A, X ) := 1

∥A∥F

(
1

m

m∑
i=1

∥∥∥∥∥X [i ]− 1

m

m∑
j=1

X [ j ]

∥∥∥∥∥
2

F

)1/2

≈ (Var(X ))1/2

∥A∥F
.

We use m = 1000 trials to compute these quantities.
We shall also use analogs of the the approximate root-mean-square error, standard

deviation, and bias (5.1) to evaluate the accuracy of spectral projectors. For example,
Err(Π j (A),Π j (X )) and Jack(Π j (X )) denotes the approximate root-mean-square error and
standard deviation estimate for the dominant left singular projectorΠ j (X ) as an approxi-
mation forΠ j (A).
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Randomized SVD

(a) NoisyLR(R = 5,ξ= 10−4) (b) ExpDecay(R = 5, s = 0.1) (c) Velocity

Single-view Nyström

(d) NoisyLR(R = 5,ξ= 10−4) (e) ExpDecay(R = 5, s = 0.1) (f) Kernel

Fig. 1: Jackknife for randomized SVD and single-view Nyström. These panels compare
the error metrics (5.1) to the jackknife standard deviation estimate Jack(X ) for the random-
ized SVD (top) and and single-view Nyström approximation (bottom). Error bars show
plus-or-minus one standard deviation. The jackknife standard deviation estimate closely
tracks the standard deviation estimate, and it lies within an order of magnitude of the error
estimate in all cases.

5.3. Summary of experiments. We ran several experiments to test the performance
of the matrix jackknife on different examples. These experiments are summarized in the
following figures:

• In Figure 1, we apply the jackknife standard deviation estimate, Jack(X ), to the
full approximation matrix returned by the randomized SVD and the single-view
Nyström approximation.

• In Figure 2, we apply the jackknife to study both a stable and unstable spectral
projector estimated via the single-view Nyström approximation.

In all figures, the error bars on the jackknife curves represent plus-or-minus one stan-
dard deviation. Additional numerical experiments are included in the supplementary ma-
terials (section ??).

As a final experiment, we apply the techniques described in section 3.3.2 to obtain
variance estimates for the absolute values of the entries of a singular vector computed by
the randomized SVD. (The absolute value is introduced to avoid sign ambiguities.) We
illustrate the results in Figure 3 on data from a singular vector computed from the fluid
velocity data. For this experiment alone, we use q = 0 steps of subspace iteration so that
the error is large enough to visualize.
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14 E. N. EPPERLY AND J. A. TROPP

Fig. 2: Jacknife for spectral projectors. Demonstration of the jackknife standard deviation
estimate as a measure of stability for spectral projectors computed using the single-view
Nyström approximation. For the matrix A = ExpDecay(R = 5, s = 0.25), the largest eigen-
value has multiplicity five, so the spectral projectorΠ5(A) is ill-defined while the spectral
projectorΠ6(A) is stable. The jackknife standard deviation estimator diagnoses this differ-
ence, with Jack(Π5(X )) remaining large while Jack(Π6(X )) and Err(Π6(A),Π6(X )) decrease
as the approximation is refined.

5.4. Discussion. The jackknife standard deviation estimate, Jack(X ), does a very good
job of tracking the true standard deviation SD(A, X ) for low-rank approximations pro-
duced by the randomized SVD and the single-view Nyström approximation (Figure 1). The
average jackknife standard deviation estimate, Jack(X ), lies within an order of magnitude
of the standard deviation SD(A, X ) in all of experiments. This suggests that, while the jack-
knife overestimates the true variance on average, the overestimate is consistently modest.

For the test matrices considered, we observe that the jackknife standard deviation es-
timate Jack(X ) is also a reasonably good proxy for the root-mean-square error, Err(A, X ).
For both the randomized SVD and the single-view Nyström approximation (Figure 1), the
bias, Bias(A, X ), and the root-mean-square error, Err(A, X ), sometimes exceed the jack-
knife standard deviation estimator Jack(X ), but never by more than an order of magnitude.
The results for spectral projectors computed by the single-view Nyström approximation
(Figure 2) and the singular projectors computed by the randomized SVD (Figure ??) were
even better; the jackknife standard deviation estimate always dominated the error in our
tests. This reinforces our assertion that the variance estimator could be used as an order-
of-magnitude error estimate. Certainly, our experiments demonstrate that if the standard
deviation estimate is higher than a user-specified error tolerance, then it is reasonable to
conclude the number of samples needs to be increased.

Figure 2 demonstrates the utility of the variance estimator as a more qualitative di-
agnostic. We consider the fifth and sixth spectral projectors of a matrix for which the
largest eigenvalue has multiplicity five. This degeneracy makes the fifth spectral projec-
tor ill-defined. The jackknife properly diagnoses this problem, with the variance estimate
Jack(Π5(X )) remaining high and the variance estimate Jack(Π6(X )) decreasing rapidly with
increasing sketch dimension.

Figure 3 shows the Tukey jackknife standard deviation estimate
(
V̂ar

)1/2
(where V̂ar is

as in (2.3)) for each of the absolute values of the entries of the fifth left singular vector of
the velocity matrix, as computed using the efficient algorithms developed in section 3. The
jackknife gave an estimate for the accuracy of the entries of the singular vector computed
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(a) Exact (b) Randomized SVD (s = 20, q = 0)

(c) Error (d) Jackknife Standard Deviation Estimate

Fig. 3: Jackknife for singular vector. These panels assess the entrywise errors in the ab-
solute the streamwise velocity from the fifth left singular vector of the velocity test matrix
computed. Panel (a) shows the exact answer, which is compared against the estimate pro-
duced by the randomized SVD in panel (b). Panels (c) and (d) display the error and the
the Tukey jacknife standard deviation estimate. The jackknife estimate modestly overesti-
mates the error, but correctly shows where the errors are localized.

by the randomized SVD which was accurate up to a small multiple. Visualizing the error
profile produces by the jackknife yields a descriptive picture of where the errors produced
by the algorithm are localized.

6. Extension: Variance estimates for higher Schatten norms. The variance estimate
Jack(X ) serves as an estimate for the Frobenius-norm variance

Jack2(X ) ≈ Var(X ) = E∥X −EX ∥2
F.

Often, it is more desirable to have error or variance estimates for Schatten norms |||·|||p with
p > 2. Here, the Schatten p-norm is

|||B |||p :=
(

min(d1,d2)∑
j=1

σ
p
j (B )

)1/p

.

One can also construct jackknife estimates for the variance in higher Schatten norms, al-
though the estimates take more intricate forms. For this section, fix an even number p ≥ 2
and assume the same setup as section 2.2 with the additional stipulation that the samples
ω1, . . . ,ωs take values in a Polish spaceΩ.

The jackknife variance estimate is defined as follows. Consider matrix-valued jack-
knife variance proxies:

V̂ar1(X s−1) := 1

2

s−1∑
j=1

∣∣∣X (s) −X ( j )
∣∣∣2

and V̂ar2(X s−1) := 1

2

s−1∑
j=1

∣∣∣X (s) −X ( j )
∣∣∣2

∗.
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16 E. N. EPPERLY AND J. A. TROPP

Define the Schatten p-norm variance estimate

Jackp (X s−1) := 2
− 1

p
√

2(p −1)
(∣∣∣∣∣∣V̂ar1

∣∣∣∣∣∣p/2
p/2 +

∣∣∣∣∣∣V̂ar2
∣∣∣∣∣∣p/2

p/2

) 1
p .

This quantity seeks to approximate

Jackp
p (X s−1) ≈ E |||X s−1 −EX s−1|||pp .

A matrix generalization of the Efron–Stein–Steele inequality [19, Thm. 4.2] shows this jack-
knife variance estimate overestimates the Schatten p-norm variance in the sense

E |||X s−1 −EX s−1|||pp ≤ E Jackp
p (X s−1).

The techniques we introduce in sections 3 and 4 can be extended in a natural way to com-
pute Jackp (X s−1) efficiently for the randomized SVD and the single-view Nyström approx-
imation.

7. Related work. We now compare the matrix jackknife to other posterior diagnostics
for randomized matrix computations in the literature.

7.1. Norm estimates. In some settings, the approximation error ∥A −X ∥ can be com-
puted in a similar operation count to the randomized matrix algorithm. For instance, this
is the case if A is a dense matrix stored in RAM, ∥·∥ = ∥·∥F is the Frobenius norm, and the
algorithm is the randomized SVD.

For settings where the approximation error is expensive to compute, several authors
have proposed using randomized norm estimates [18, §§4–5] as posterior error estimates
for randomized matrix computations. Rather than assess the error of an approximation
X to a matrix A on average, norm estimates seek to assess the norm of A − X for a specific
instantiation of X by computing matrix–vector products with A−X . Randomized norm es-
timators and the jackknife provide complementary perspectives on the output of a matrix
computation: Norm estimates bound the error for a specific instantiation of the random
approximation X , whereas the jackknife estimates the variance which can be a good proxy
for the mean-square error. There are several settings where the jackknife possesses a dis-
tinct advantage, such as when the fresh matrix–vector products with A are computation-
ally costly to obtain or for assessing the error of derived quantities like spectral projectors.

7.2. Bootstrap resampling. In recent work, Lopes and collaborators have applied
bootstrap resampling to randomized matrix algorithms [15, 16, 17]. The work [15] that
is closest to ours constructs bootstrap error estimates for a linear sketched SVD algorithm.
As presented in [15], this approach has several limitations:

1. The linearity of the algorithm is essential for the analysis of the bootsrap; it is
not obvious that the bootstrap can be extended to nonlinear algorithms such as
the randomized SVD and single-view Nyström approximation considered in our
work.

2. Each bootstrap iteration requires O (d2s2) operations for an s-column sketching
matrix. By contrast, the most efficient implementations of our algorithm require
time O (s2) per jackknife replicate, independent of either of the dimensions of A.
The techniques from our paper can be used to accelerate each bootstrap iteration
to O (s3) operations.

Modulo these two significant limitations, the bootstrap does give somewhat more
fine-grained information than the matrix jackknife. Indeed, the bootstrap provides quan-
tile estimates for the errors of all the singular values and vectors. These estimates con-
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verge in an appropriate asymptotic sense to the true quantiles as the number of samples
increases.

8. Conclusion. Jackknife resampling gives a flexible, data-driven methodology for es-
timating the variance of a randomized matrix approximation. The method has nonasymp-
totic guarantees (Theorem 2.2), and it can be efficiently computed for several widely used
algorithms. In the common situation where the variance makes up a large fraction of the
error in a bias–variance decomposition, the matrix jackknife provides a descriptive por-
trait of the error in the approximation.

We anticipate the matrix jackknife can be efficiently computed for other low-rank ap-
proximation algorithms. For some algorithms (e.g., the single-view SVD of [25]), this is
straightforward. For other procedures, like CUR factorizations [27], efficiently computing
the variance estimate may be more involved.

There also may be applications of this matrix jackknife approach to statistical prob-
lems such as low-rank matrix completion. In contrast to linear algebraic applications
where the randomness is algorithmically generated, randomness in statistical applications
usually comes from problem data that is assumed to be drawn from a distribution. While
leave-one-out techniques have been used in the analysis of matrix completion techniques
[4], we are unaware of work using jackknife resampling in an efficient way as a posterior
estimate for the variance of the recovered low-rank matrix. For different methods for low-
rank matrix completion (e.g., nuclear norm minimization [22], alternating minimization
[13], and projection-based methods [20]), it appears challenging to efficiently compute
(or descriptively bound) the difference between jackknife replicates without running the
algorithm many times.

Appendix A. Faster algorithms for the jackknife variance estimate. In this appendix,
we present improvements to the efficient jackknife procedures presented for the random-
ized SVD (section A.1) and single-view Nyström approximation (section A.2).

A.1. Randomized singular value decomposition. We begin with an improvement to
Algorithm 3.1 for computing Jack(X ) for the randomized SVD. The improved algorithm
from this section forms core matrix T 1, . . . ,T s in O (s2) operations each. The jackknife es-
timate Jack(X ) can then be determined in O (s3) operations by evaluating (3.2). After this,
we discuss how to factor each core matrix T j = U jΣ j V ∗

j by an SVD in O (s2) operations

each. This factorization accelerates the computation of variance estimates for singular
projectors (section 3.3.1) to O (s3) operations.

Instate the notation of Algorithm 3.1. The key insight shall be that each T j is a rank-
one update to Σ, i.e., T j = Σ+ x j y∗

j . To see this, let R ′ denote R without its j th column.

Suppose we compute a (full) QR factorization of R ′, which we conformally partition as

(A.1) R ′ = [
Q̃ q

][
R̃
0∗

]
.

Since the first factor is unitary, we have that Q̃Q̃
∗ = I− q q∗. Plugging this into line 11 of

Algorithm 3.1, we see that

(A.2) T j = Ũ
∗

Q̃Q̃
∗

ŨΣ= Ũ
∗

(I−q q∗)ŨΣ=Σ+ (−Ũ
∗

q
)(
ΣŨ

∗
q

)∗ =:Σ+x j y∗
j .

Each T j is a rank-one modification of Σ, as claimed.
We now describe how to form T j in O (s2) operations using this insight. First observe

that the matrix R ′ is upper Hessenberg, so its QR factorization can be computed as the
product of at most s Givens rotations. By multiplying these Givens rotations rotations into
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the standard basis vector es , we obtain the vector q . Finally, we form T j by evaluating
(A.2). Accounting for these steps, the total operation count is O (s2), as desired. By forming
each core matrix T j in O (s2) operations, the total operation count of computing Jack(X )
has been reduced to O (s3).

Finally, we comment on how to obtain variance estimators for derived quantities like
singular projectors in a reduced O (s3) operations. The essential step will be obtaining a
singular value decomposition of each T j matrix. Fortunately, the problem of computing
the SVD of a diagonal matrix modified by a rank-one matrix can be achieved in O (s2) op-
erations [11, Part I]. Thus, an SVD of each T j can be obtained by applying this procedure
in concert with the rank-one update formula (A.2).

A.2. Single-view Nyström Approximation. We now discuss an improvement to Algo-
rithm 4.1 which allows the variance estimate for the single-view Nyström approximation
to be computed in O (s3) operations. The first observation is that each T j can be written as

T j =U∗
(
R j B−1

j R∗
j

)
U =: U∗S j U

Since U and U∗ are unitary, left or right multiplication by them do not effect the Frobe-
nius or other Schatten norms. As such, it is sufficient to develop an efficient algorithm to
determine each S j matrix.

As in section A.1, we shall realize that each S j is a rank-one modification to a single
matrix: In this case,

(A.3) S j = RB−1R∗−x j x∗
j .

To show this, consider R j and B j as defined on lines 12 and 13. For notational conve-
nience, we focus on the last loop iteration when j = s. Conformally partitioning B as

B =
[

B s b
b∗ β

]
.

The inverse then has representation

B−1 =
[

B−1
s 0

0∗ 0

]
+ 1

β−b∗B−1
s b

[−B−1
s b
1

][−B−1
s b
1

]∗
.

From this, we obtain an update formula of the desired form (A.3):
(A.4)

S s = R s B−1
s R∗

s = RB−1R∗− 1

β−b∗B−1
s b

(
R

[−B−1
s b
1

])(
R

[−B−1
s b
1

]∗)
=: RB−1R∗−x s x∗

s .

Similar formulas hold for j < s.
Having realized each S j as a rank-one update to RB−1R∗, we describe how to form S j

in O (s2) operations. We again restrict attention to j = s. First, obtain a Cholesky factor-
ization of B s from that of B using O (s2) operations. This can be achieved by the approach
from [3, §3] to compute the Cholesky factorization of a matrix after row and column dele-
tion together with the Cholesky downdating algorithm of, e.g., [1]. Next, use this Cholesky
factorization to form S s by evaluating (A.4). By using the generalization of (A.4) for arbi-
trary j , this approach allows us to form each S j in O (s2) operations. The jackknife variance
estimate is then computable in O (s3) operations, as claimed.

Using an approach similar to the one outlined at the end of section A.1, this approach
can be modified to obtain jackknife variance estimates for derived quantities like spectral
projectors in O (s3) operations.
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