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Abstract

Given a fixed matrix, the problem of column subset selec-

tion requests a column submatrix that has favorable spec-

tral properties. Most research from the algorithms and

numerical linear algebra communities focuses on a variant

called rank-revealing QR, which seeks a well-conditioned

collection of columns that spans the (numerical) range of

the matrix. The functional analysis literature contains

another strand of work on column selection whose algo-

rithmic implications have not been explored. In particu-

lar, a celebrated result of Bourgain and Tzafriri demon-

strates that each matrix with normalized columns con-

tains a large column submatrix that is exceptionally well

conditioned. Unfortunately, standard proofs of this result

cannot be regarded as algorithmic. This paper presents

a randomized, polynomial-time algorithm that produces

the submatrix promised by Bourgain and Tzafriri. The

method involves random sampling of columns, followed by

a matrix factorization that exposes the well-conditioned

subset of columns. This factorization, which is due to

Grothendieck, is regarded as a central tool in modern

functional analysis. The primary novelty in this work

is an algorithm, based on eigenvalue minimization, for

constructing the Grothendieck factorization. These ideas

also result in an approximation algorithm for the (∞, 1)

norm of a matrix, which is generally NP-hard to compute

exactly. As an added bonus, this work reveals a surprising

connection between matrix factorization and the famous

maxcut semidefinite program.

1 Introduction.

Column subset selection refers to the challenge of
extracting from a matrix a column submatrix that
has some distinguished property. These properties
commonly involve conditions on the spectrum of the
submatrix. The most familiar example is probably
rank-revealing QR, which seeks a well-conditioned
collection of columns that spans the (numerical)
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range of the matrix [GE96].
The literature on geometric functional analysis

contains several fundamental theorems on column
subset selection that have not been discussed by the
algorithms community or the numerical linear algebra
community. These results are phrased in terms of the
stable rank of a matrix:

st. rank(A) =
‖A‖2F
‖A‖2

where ‖·‖F is the Frobenius norm and ‖·‖ is the
spectral norm. The stable rank can be viewed as
an analytic surrogate for the algebraic rank. Indeed,
we may express the two norms in terms of singular
values to obtain the relation

st. rank(A) ≤ rank(A).

In this bound, equality occurs (for example) when
the columns of A are identical or when the columns
of A are orthonormal. As we will see, the stable rank
is tightly connected with the number of (strongly)
linearly independent columns we can extract from a
matrix.

Before we continue, let us instate some regula-
tions. For simplicity we work with real matrices;
the complex case requires only minor changes. We
say that a matrix is standardized when its columns
have unit `2 norm. The jth column of a matrix A
is denoted by aj . For a subset τ of column indices,
we write Aτ for the column submatrix indexed by
τ . Likewise, given a square matrix H, the notation
Hτ×τ refers to the principal submatrix whose rows
and columns are listed in τ . The pseudoinverse D†

of a diagonal matrix D is formed by reciprocating
the nonzero entries. As usual, we write ‖·‖p for the
`p vector norm. The condition number of a matrix is
the quantity

κ(A) = max
{
‖Ax‖2
‖Ay‖2

: ‖x‖2 = ‖y‖2 = 1
}
.

Finally, upright letters (c,C,K, . . . ) refer to positive,
universal constants that may change from appearance
to appearance.
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The first theorem, due to Kashin and Tzafriri,
shows that each matrix with standardized columns
contains a large column submatrix that has small
spectral norm [Ver01, Thm. 2.5].

Theorem 1.1. (Kashin–Tzafriri) Suppose A is
standardized. Then there is a set τ of column indices
for which

|τ | ≥ st. rank(A) and ‖Aτ‖ ≤ C.

In fact, much more is true. Combining Theo-
rem 1.1 with the celebrated restricted invertibility re-
sult of Bourgain and Tzafriri [BT87, Thm. 1.2], we
find that every standardized matrix contains a large
column submatrix whose condition number is small.

Theorem 1.2. (Bougain–Tzafriri) Suppose A is
standardized. Then there is a set τ of column indices
for which

|τ | ≥ c · st. rank(A) and κ(Aτ ) ≤
√

3.

Theorem 1.2 yields the best general result [BT91,
Thm. 1.1] on the Kadison–Singer conjecture, a major
open question in operator theory. To display its
strength, let us consider two extreme examples.

1. When A has identical columns, every collec-
tion of two or more columns is singular. Theo-
rem 1.2 guarantees a well-conditioned submatrix
Aτ with |τ | = 1, which is optimal.

2. When A has n orthonormal columns, the full
matrix is perfectly conditioned. Theorem 1.2
guarantees a well-conditioned submatrix Aτ

with |τ | ≥ cn, which lies within a constant factor
of optimal.

Theorem 1.2 uses the stable rank to interpolate
between the two extremes. Subsequent research has
established that the stable rank is intrinsic to the
problem of finding well-conditioned submatrices. We
postpone a more detailed discussion of this point until
Section 6.

1.1 Contributions. Although Theorems 1.1
and 1.2 would be very useful in computational
applications, we cannot regard current proofs as
constructive. The goal of this paper is to establish
the following novel algorithmic claim.

Theorem 1.3. There are randomized, polynomial-
time algorithms for producing the sets guaranteed by
Theorem 1.1 and by Theorem 1.2.

This result is significant because no known algo-
rithm for column subset selection is guaranteed to
produce a submatrix whose condition number has
constant order. See [BDM08] for a recent overview
of that literature. The present work has other rami-
fications with independent interest.

• We develop algorithms for computing the ma-
trix factorizations of Pietsch and Grothendieck,
which are regarded as basic instruments in mod-
ern functional analysis [Pis86].

• The methods for computing these factorizations
lead to approximation algorithms for two NP-
hard matrix norms. (See Remarks 3.1 and 5.1.)

• We identify an intriguing connection between
Pietsch factorization and the maxcut semidefi-
nite program [GW95].

1.2 Overview. We focus on the algorithmic ver-
sion of the Kashin–Tzafriri theorem because it high-
lights all the essential concepts while minimizing ir-
relevant details. Section 2 outlines a proof of this
result, emphasizing where new algorithmic machin-
ery is required. The missing link turns out to be a
computational method for producing a certain matrix
factorization. Section 3 reformulates the factorization
problem as an eigenvalue minimization, which can be
completed with standard techniques. In Section 4,
we exhibit a randomized algorithm that delivers the
submatrix promised by Kashin–Tzafriri. In Section 5,
we traverse a similar route to develop an algorithmic
version of Bourgain–Tzafriri. Section 6 provides more
details about the stable rank and describes directions
for future work.

2 The Kashin–Tzafriri Theorem.

The proof of the Kashin–Tzafriri theorem proceeds in
two steps. First, we select a random set of columns
with appropriate cardinality. Second, we use a ma-
trix factorization to identify and remove redundant
columns that inflate the spectral norm. The proof
gives strong hints about how a computational proce-
dure might work, even though it is not constructive.

2.1 Intuitions. We would like to think that a
random submatrix inherits its share of the norm of
the entire matrix. In other words, if we were to select
a tenth of the columns, we might hope to reduce the
norm by a factor of ten. Unfortunately, this intuition
is meretricious.

Indeed, random selection does not necessarily
reduce the spectral norm at all. The essential reason
emerges when we consider the “double identity,” the
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m × 2m matrix A =
[
I | I

]
. Suppose we draw s

random columns from A without replacement. The
probability that all s columns are distinct is

2m− 2
2m− 1

×2m− 4
2m− 2

× · · · × 2m− 2(s− 1)
2m− (s− 1)

≤
∏s−1

j=0

(
1− j

2m

)
≈ exp

{
−
∑s−1

j=0

j

2m

}
≈ e−s

2/4m.

Therefore, when s = Ω(
√
m), sampling almost always

produces a submatrix with at least one duplicated
column. A duplicated column means that the norm
of the submatrix is

√
2, which equals the norm of the

full matrix, so no reduction takes place.
Nevertheless, a randomly chosen set of columns

from a standardized matrix typically contains a large
set of columns that has small norm. We will see that
the desired subset is exposed by factoring the random
submatrix. This factorization, which was invented by
Pietsch, is regarded as a basic instrument in modern
functional analysis.

2.2 The (∞, 2) operator norm. Although sam-
pling does not necessarily reduce the spectral norm,
it often reduces other matrix norms. Define the nat-
ural norm on linear operators from `∞ to `2 via the
expression

‖B‖∞→2 = max{‖Bx‖2 : ‖x‖∞ = 1}.

An immediate consequence is that ‖B‖∞→2 ≤√
s ‖B‖ for each matrix B with s columns. Equality

can obtain in this bound.
The exact calculation of the (∞, 2) opera-

tor norm is computationally difficult. Results of
Rohn [Roh00] imply that there is a class of positive
semidefinite matrices for which it is NP-hard to esti-
mate ‖·‖∞→2 within an absolute tolerance. Neverthe-
less, we will see that the norm can be approximated
in polynomial time up to a small relative error. (See
Remark 3.1.)

As we have intimated, the (∞, 2) norm can often
be reduced by random selection. The following the-
orem requires some heavy lifting, which we delegate
to the technical report [Tro08].

Theorem 2.1. Suppose A is a standardized matrix
with n columns. Choose

s ≤ d2 st. rank(A)e,

and draw a uniformly random subset σ with cardinal-
ity s from {1, 2, . . . , n}. Then

E ‖Aσ‖∞→2 ≤ 7
√
s.

In particular, ‖Aσ‖∞→2 ≤ 8
√
s with probability at

least 1/8.

2.3 Pietsch factorization. We cannot exploit
the bound in Theorem 2.1 unless we have a way to
connect the (∞, 2) norm with the spectral norm. To
that end, let us recall one of the landmark theorems
of functional analysis.

Theorem 2.2. (Pietsch Factorization) Each
matrix B can be factorized as B = TD where

• D is a nonnegative, diagonal matrix with
trace(D2) = 1, and

• ‖B‖∞→2 ≤ ‖T ‖ ≤ KP ‖B‖∞→2.

This result follows from the little Grothendieck
theorem [Pis86, Sec. 5b] and the Pietsch factoriza-
tion theorem [Pis86, Cor. 1.8]. The standard proof
produces the factorization using an abstract separa-
tion argument that offers no algorithmic insight. The
value of the constant is available.

• When the scalar field is real, we have KP(R) =√
π/2 ≈ 1.25.

• When the scalar field is complex, we have
KP(C) =

√
4/π ≈ 1.13.

A major application of Pietsch factorization is to
identify a submatrix with controlled spectral norm.
The following proposition describes the procedure.

Proposition 2.1. Suppose B is a matrix with s
columns. Then there is a set τ of column indices
for which

|τ | ≥ s

2
and ‖Bτ‖ ≤ KP

√
2
s
‖B‖∞→2 .

Proof. Consider a Pietsch factorization B = TD,
and define

τ = {j : d2
jj ≤ 2/s}.

Since
∑
d2
jj = 1, Markov’s inequality implies that

|τ | ≥ s/2. We may calculate that

‖Bτ‖ = ‖TDτ‖ ≤ ‖T ‖ · ‖Dτ‖ ≤ KP ‖B‖∞→2

√
2/s.

This completes the proof.

2.4 Proof of Kashin–Tzafriri. With these re-
sults at hand, we easily complete the proof of the
Kashin–Tzafriri theorem. Suppose A is a stan-
dardized matrix with n columns. We assume that
st. rank(A) ≤ n/2. Otherwise, the spectral norm
‖A‖ ≤

√
2, so we may select τ = {1, 2, . . . , n}.
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According to Theorem 2.1, there is a subset σ of
column indices for which

|σ| ≥ 2 st. rank(A) and ‖Aσ‖∞→2 ≤ 8
√
|σ|.

Apply Proposition 2.1 to the matrix B = Aσ to
obtain a subset τ inside σ for which

|τ | ≥ |σ|
2

and ‖Bτ‖ ≤ KP

√
2
|σ|
‖B‖∞→2 .

Since Bτ = Aτ and KP ≤
√
π/2, these bounds reveal

the advertised conclusion:

|τ | ≥ st. rank(A) and ‖Aτ‖ < 15.

At this point, we take a step back and notice
that this proof is nearly algorithmic. It is straight-
forward to perform the random selection described in
Theorem 2.1. Provided that we know a Pietsch fac-
torization of the matrix B, we can easily carry out
the column selection of Proposition 2.1. Therefore,
we need only develop an algorithm for computing the
Pietsch factorization to reach an effective version of
the Kashin–Tzafriri theorem.

3 Pietsch Factorization via Convex
Optimization.

The main novelty is to demonstrate that we can pro-
duce a Pietsch factorization by solving a convex pro-
gramming problem. Remarkably, the resulting opti-
mization is the dual of the famous maxcut semidef-
inite program [GW95], for which many polynomial-
time algorithms are available.

3.1 Pietsch and eigenvalues. The next theorem,
which serves as the basis for our computational
method, demonstrates that Pietsch factorizations
have an intimate relationship with the eigenvalues
of a related matrix. In the sequel, we reserve
the letter D for a nonnegative, diagonal matrix
with trace(D2) = 1, and we write λmax for the
algebraically maximal eigenvalue of an Hermitian
matrix.

Theorem 3.1. The factorization B = TD satisfies
‖T ‖ ≤ α if and only if D satisfies

λmax(B∗B − α2D2) ≤ 0.

In particular, if no D verifies this bound, then no
factorization B = TD admits ‖T ‖ ≤ α.

Proof. Assume B has a factorization B = TD with

‖T ‖ ≤ α. We have the chain of implications

B = TD =⇒ ‖Bx‖22 = ‖TDx‖22 ∀x

=⇒ ‖Bx‖22 ≤ α
2 ‖Dx‖22 ∀x

=⇒ x∗B∗Bx ≤ α2x∗D2x ∀x
=⇒ x∗(B∗B − α2D2)x ≤ 0 ∀x
=⇒ B∗B − α2D2 4 0,

where 4 denotes the semidefinite, or Löwner, order-
ing on Hermitian matrices.

Conversely, assume we are provided the inequal-
ity

(3.1) B∗B − α2D2 4 0.

First, we claim that any zero entry in D corresponds
with a zero column of B. To check this point, suppose
that djj = 0 for an index j. The relation (3.1)
requires that

0 ≥ (B∗B − α2D2)jj = b∗jbj .

This inequality is impossible unless bj = 0. To
continue, set T = BD†, and observe that B = TD
because the zero entries of D correspond with zero
columns of B. Therefore, we may factor the diagonal
matrix out from (3.1) to reach

D∗(T ∗T − α2I)D 4 0.

Sylvester’s theorem on inertia [HJ85, Thm. 4.5.8]
ensures that T ∗T − α2I 4 0. We conclude that
‖T ‖ ≤ α.

3.2 Factorization via optimization. Recall
that the maximum eigenvalue is a convex function
on the space of Hermitian matrices, so it can be
minimized in polynomial time [LO96]. We are led to
consider the convex program

(3.2) min λmax(B∗B − α2F ) subject to
trace(F ) = 1, F diagonal, and F ≥ 0.

Owing to Theorem 3.1, there exists a factorization
B = TD with ‖T ‖ ≤ α if and only if the value of
(3.2) is nonpositive.

Now, if F is a feasible point of (3.2) with a
nonpositive objective value, we can factorize

B = TD with

D = F 1/2, T = BD†, and ‖T ‖ ≤ α.

In fact, it is not necessary to solve (3.2) to optimality.
Suppose B has s columns, and assume we have iden-
tified a feasible point F with a (positive) objective
value η. That is,

λmax(B∗B − α2F ) ≤ η.
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Rearranging this relation, we reach

λmax

[
B∗B − (α2 + ηs)F̃

]
≤ 0 where

F̃ =
1

α2 + ηs
(α2F + ηI).

Since F̃ is positive and diagonal with trace(F̃ ) = 1,
we obtain the factorization

B = TD with D = F̃ 1/2,

T = BD−1, and ‖T ‖ ≤
√
α2 + ηs.

To select a target value for the parameter α, we
look to the proof of the Kashin–Tzafriri theorem. If
B has s columns, then α = 8KP

√
s is an appropriate

choice. Furthermore, since the argument only uses
the bound ‖T ‖ = O(

√
s), it suffices to solve (3.2)

with precision η = O(1).

3.3 Other formulations. In a general setting, a
target value for α is not likely to be available. Let us
exhibit an alternative formulation of (3.2) that avoids
this inconvenience:

(3.3) min λmax(B∗B −E) + trace(E)
subject to E diagonal, E ≥ 0.

Suppose α? is the minimal value of ‖T ‖ achievable
in any Pietsch factorization B = TD. It can be
shown that α2

? is the value of (3.3) and that each
optimizer E? satisfies trace(E?) = α2

?. As such, we
can construct an optimal Pietsch factorization from
a minimizer:

B = TD with D = (E?/ trace(E?))1/2,

T = BD†, and ‖T ‖ = α?.

The dual of (3.3) is the semidefinite program

(3.4) max 〈B∗B, Z〉
subject to diag(Z) = I and Z < 0.

This is the famous maxcut semidefinite pro-
gram [GW95]. We find an unexpected connection
between Pietsch factorization and the problem of par-
titioning nodes of a graph.

Given a dual optimum, we can easily construct
a primal optimum by means of the complementary
slackness condition [Ali95, Thm. 2.10]. Indeed, each
feasible optimal pair (E?,Z?) satisfies Z?(B∗B −
E?) = 0. Examining the diagonal elements of this
matrix equation, we find that

E? = diag(E?) = diag(ZE?) = diag(Z?B
∗B)

owing to the constraint diag(Z?) = I. Obtaining
a dual optimum from a primal optimum, however,
requires more ingenuity.

Remark 3.1. According to Theorem 2.2 and the dis-
cussion here, the optimal value of (3.3) overestimates
‖B‖2∞→2 by a multiplicative factor no greater than
KP

2. As a result, the optimization problem (3.3)
can be used to design an approximation algorithm for
(∞, 2) norms.

3.4 Algorithmic aspects. The purpose of this
paper is not to rehash methods for solving a stan-
dard optimization problem, so we keep this discus-
sion brief. It is easy to see that (3.2) can be framed
as a (nonsmooth) convex optimization over the prob-
ability simplex. The technical report [Tro08] outlines
an elegant technique, called Entropic Mirror Descent
[BT03], designed specifically for this class of prob-
lems. Although the EMD algorithm is (theoretically)
not the most efficient approach to (3.2), preliminary
experiments suggest that its empirical performance
rivals more sophisticated techniques.

For a concrete time bound, we refer to Alizadeh’s
work on primal–dual potential reduction methods
for semidefinite programming [Ali95]. When B has
dimension m× s, the cost of forming B∗B is at most
O(s2m). Then the cost of solving (3.4) is no more
than Õ(s3.5), where the tilde indicates that log-like
factors are suppressed.

4 An Algorithm for Kashin–Tzafriri.

At this point, we have amassed the matériel neces-
sary to deploy an algorithm that constructs the set τ
promised by the Kashin–Tzafriri theorem. The pro-
cedure appears as Algorithm 1. The following result
describes its performance.

Theorem 4.1. Suppose A is an m× n standardized
matrix. With probability at least 4/5, Algorithm 1
produces a set τ = τ? of column indices for which

|τ | ≥ st. rank(A) and ‖Aτ‖ ≤ 15.

The computational cost is bounded by Õ(|τ |2m +
|τ |3.5).

Remarkably, Algorithm 1 is sublinear in the
size of the matrix when st. rank(A) = o(n1/3.5).
Better methods for solving (3.2) would strengthen
this bound.

Proof. According to Section 2, the procedure Norm-
Reduce has failure probability less than 7/8 when
s ≤ 2 st. rank(A). The probability the inner loop
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fails to produce an acceptable set τ? of size s/2 is at
most (7/8)8 log2(s). So the probability the algorithm
fails before s > 2 st. rank(A) is at most

∑∞

j=2
(7/8)8j =

(7/8)16

1− (7/8)8
< 0.2.

With constant probability, we obtain a set τ? with
cardinality at least st. rank(A).

The cost of the procedure Norm-Reduce is
dominated by the cost of the Pietsch factorization,
which is Õ(s2m+ s3.5) for a fixed s. Summing over s
and k, we find that the total cost of all the invocations
of Norm-Reduce is dominated (up to logarithmic
factors) by the cost of the final invocation, during
which the parameter s ≤ 2 |τ?|.

An estimate of the spectral norm of Aτ can be
obtained as a by-product of solving (3.2). Indeed,
Proposition 2.1 and the discussion in Section 3.2 show
that we can bound the spectral norm in terms of the
parameter α and the objective value obtained in (3.2).

Algorithm 1: Constructive version of Kashin–
Tzafriri theorem

KT(A)
Input: Standardized matrix A with n columns
Output: A subset τ? of {1, 2, . . . , n}
Description: Produces τ? such that |τ?| ≥
st. rank(A) and ‖Aτ‖ ≤ 15 w.p. 4/5

1 τ? = {1}
2 for s = 4, 8, 16, . . . , n
3 for k = 1, 2, 3, . . . , 8 log2 s
4 τ = Norm-Reduce(A, s)
5 if ‖Aτ‖ ≤ 15 then τ? = τ and

break
6 if |τ?| < s then exit

Norm-Reduce(A, s)
Input: Standardized matrix A with n columns,
a positive integer s
Output: A subset τ of {1, 2, . . . , n}

1 Draw a uniformly random set σ with cardi-
nality s from {1, 2, . . . , n}

2 Solve (3.2) with B = Aσ and α = 8KP
√
s

to obtain a factorization B = TD
3 Return τ = {j ∈ σ : d2

jj ≤ 2/s}

5 The Bourgain–Tzafriri Theorem.

Our proof of the Bourgain–Tzafriri theorem is almost
identical in structure with the proof of the Kashin–
Tzafriri theorem. This streamlined argument ap-

pears to be simpler than all previously published ap-
proaches, but it contains no significant conceptual in-
novations. Our discussion culminates in an algorithm
remarkably similar to Algorithm 1.

5.1 Preliminary results. Suppose A is a stan-
dardized matrix with n columns. We will work in-
stead with a related matrix H = A∗A − I, which
is called the hollow Gram matrix. The advantage of
considering the hollow Gram matrix is that we can
perform column selection on A simply by reducing
the norm of H.

Proposition 5.1. Suppose A is a standardized ma-
trix with hollow Gram matrix H. If τ is a set
of column indices for which ‖Hτ×τ‖ ≤ 0.5, then
κ(Aτ ) ≤

√
3.

Proof. The hypothesis ‖Hτ×τ‖ ≤ 0.5 implies that
the eigenvalues of Hτ×τ lie in the range [−0.5, 0.5].
Since Hτ×τ = A∗τAτ − I, the eigenvalues of A∗τAτ

fall in the interval [0.5, 1.5]. An equivalent condition
is that 0.5 ≤ ‖Aτx‖22 ≤ 1.5 whenever ‖x‖2 = 1. We
conclude that

κ(Aτ ) = max
{
‖Aτx‖2
‖Aτy‖2

: ‖x‖2 = ‖y‖2 = 1
}

≤
√

1.5
0.5

=
√

3.

Thus, a norm bound for Hτ×τ yields a condition
number bound for Aτ .

As we mentioned before, random selection may
reduce other norms even if it does not reduce the
spectral norm. Define the natural norm on linear
maps from `∞ to `1 by the formula

‖G‖∞→1 = max{‖Gx‖1 : ‖x‖∞ = 1}.

This norm is closely related to the cut norm, which
plays a starring role in graph theory [AN04]. For a
general s × s matrix G, the best inequality between
the (∞, 1) norm and the spectral norm is ‖G‖∞→1 ≤
s ‖G‖. Rohn [Roh00] has established that there is
a class of positive semidefinite, integer matrices for
which it is NP-hard to determine the (∞, 1) norm
within an absolute tolerance of 1/2. Nevertheless, it
can be approximated within a small relative factor in
polynomial time [AN04].

The (∞, 1) norm decreases when we randomly
sample a principal submatrix. The following result,
established in [Tro08] is a direct consequence of
Rudelson and Vershynin’s work on the cut norm of
random submatrices [RV07, Thm. 1.5].
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Theorem 5.1. Suppose A is an n-column standard-
ized matrix with hollow Gram matrix H. Choose

s ≤ dc · st. rank(A)e,

and draw a uniformly random subset σ with cardinal-
ity s from {1, 2, . . . , n}. Then

E ‖Hσ×σ‖∞→1 ≤
s

9
.

In particular, ‖Hσ×σ‖∞→1 ≤ s/8 with probability at
least 1/9.

To connect the (∞, 1) norm with the spectral
norm, we call on the celebrated factorization of
Grothendieck [Pis86, p. 56].

Theorem 5.2. (Grothendieck Factorization)
Each matrix G can be factorized as G = D1TD2

where

1. Di is a nonnegative, diagonal matrix with
trace(D2

i ) = 1 for i = 1, 2, and

2. ‖G‖∞→1 ≤ ‖T ‖ ≤ KG ‖G‖∞→1.

When G is Hermitian, we may take D1 = D2.

The precise value of the Grothendieck constant
KG remains an outstanding open question, but it is
known to depend on the scalar field [Pis86, Sec. 5e].

• When the scalar field is real, 1.57 ≤ π/2 ≤
KG(R) ≤ π/(2 log(1 +

√
2)) ≤ 1.79.

• When the scalar field is complex, 1.33 ≤
KG(C) ≤ 1.41.

For positive semidefinite G, the real (resp., com-
plex) Grothendieck constant equals the square of
the real (resp., complex) Pietsch constant because
‖B∗B‖∞→1 = ‖B‖2∞→2.

The following proposition describes the role of
the Grothendieck factorization in the selection of
submatrices with controlled spectral norm.

Proposition 5.2. Suppose G is an s× s Hermitian
matrix. There is a set τ of column indices for which

|τ | ≥ s

2
and ‖Gτ×τ‖ ≤

2KG

s
‖G‖∞→1 .

Proof. Consider a Grothendieck factorization G =
DTD, and identify τ = {j : d2

jj ≤ s/2}. The
remaining details echo the proof of Proposition 2.1.

5.2 Proof of Bourgain–Tzafriri. Suppose A is
a standardized matrix with n columns, and consider
its hollow Gram matrix H. Theorem 5.1 provides a
set σ for which

|σ| ≥ c · st. rank(A) and ‖Hσ×σ‖∞→1 ≤
s

8
.

Apply Proposition 5.2 to the s×s matrix G = Hσ×σ
to obtain a further subset τ inside σ with

|τ | ≥ s

2
and ‖Gτ×τ‖ ≤

2KG

s
‖G‖∞→1 .

Since 2KG < 4 and Hτ×τ = Gτ×τ , we determine
that

|τ | ≥ c
2
· st. rank(A) and ‖Hτ×τ‖ ≤ 0.5.

In view of Proposition 5.1, we conclude κ(Aτ ) ≤
√

3.
Now, take another step back and notice that

this argument is nearly algorithmic. The random
selection of σ can easily be implemented in practice,
even though the proof does not specify the value of
c. Given a Grothendieck factorization G = DTD,
it is straightforward to identify the subset τ . The
challenge, as before, is to produce the factorization.

5.3 Grothendieck factorization via convex
optimization. As with the Pietsch factorization,
the Grothendieck factorization can be identified from
the solution to a convex program.

Theorem 5.3. Suppose G is Hermitian. The fac-
torization G = DTD satisfies ‖T ‖ ≤ α if and only
if D satisfies

(5.5) λmax

[
−αD2 G

G −αD2

]
≤ 0.

In particular, if no D verifies this bound, then no
factorization G = DTD admits ‖T ‖ ≤ α.

Proof. To check the forward implication, we essen-
tially repeat the argument we used in Theorem 3.1
for the Pietsch case. This reasoning yields the pair of
relations

G− αD2 4 0 and −G− αD2 4 0.

Together, these two relations are equivalent with (5.5)
because[
−αD2 G

G −αD2

]
=

1
2

[
I I
−I I

]∗ [
G− αD2

−G− αD2

] [
I I
−I I

]
.
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To prove the reverse implication, we assume
that (5.5) holds. First, we must check that djj = 0
implies that gj = 0. To verify this claim, observe
that

0 ≥
[
α
gj

]∗ [ 0 g∗j
gj −αD2

] [
α
gj

]
= α

(
2 ‖gj‖22 − g∗jD

2gj

)
≥ α ‖gj‖22

because trace(D2) = 1. Therefore, we may construct
a Grothendieck factorization G = DTD with ‖T ‖ ≤
α by setting T = D†GD†.

This discussion leads us to frame the eigenvalue
minimization problem

(5.6) min λmax

[
−αF G

G −αF

]
subject to

trace(F ) = 1, F diagonal, F ≥ 0.

Owing to Theorem 5.3, there is a factorization G =
DTD with ‖T ‖ ≤ α if and only if the value of (5.6)
is nonpositive.

As in Section 3.2, we can easily construct
Grothendieck factorizations from (imprecise) solu-
tions to the problem (5.6). The proof of Bourgain–
Tzafriri suggests that an appropriate value for the
parameter α = s/4. Furthermore, we do not need to
solve (5.6) to optimality to obtain the required infor-
mation. Indeed, it suffices to produce a feasible point
with an objective value of O(1).

To solve (5.6) in practice, we again propose
the Entropic Mirror Descent algorithm [BT03]. To
provide a concrete bound on the computational cost,
we remark that, when Aτ has dimension m × s,
forming G = A∗τAτ − I costs at most O(s2m),
and Alizadeh’s interior-point method [Ali95] requires
Õ(s3.5) time.

Remark 5.1. For symmetric G, Theorem 5.2 shows
that the norm ‖G‖∞→1 is approximated within a fac-
tor KG by the least α for which (5.6) has a nonpositive
value. A natural reformulation of (5.6) can iden-
tify this value of α automatically (cf. Section 3.3).
For nonsymmetric G, similar optimization problems
arise. These ideas yield approximation algorithms for
the (∞, 1) norm.

5.4 An algorithm for Bourgain–Tzafriri. We
are prepared to state our algorithm for producing
the set τ described by the Bourgain–Tzafriri theo-
rem. The procedure appears as Algorithm 2. Note
the striking similarity with Algorithm 1. The fol-
lowing result describes the performance of the algo-
rithm. We omit the proof, which parallels that of
Theorem 4.1.

Theorem 5.4. Suppose A is an m× n standardized
matrix. With probability at least 3/4, Algorithm 2
produces a set τ = τ? of column indices for which

|τ | ≥ c · st. rank(A) and κ(Aτ ) ≤
√

3.

The computational cost is bounded by Õ(|τ |2m +
|τ |3.5).

Algorithm 2: Constructive version of
Bourgain–Tzafriri Theorem

BT(A)
Input: Standardized matrix A with n columns
Output: A subset τ? of {1, 2, . . . , n}
Description: Produces τ? such that |τ?| ≥
st. rank(A)/2 and κ(Aτ ) ≤

√
3 w.p. 3/4

1 τ? = {1}
2 for s = 4, 8, 16, . . . , n
3 for k = 1, 2, 3, . . . , 8 log2 s
4 τ = Cond-Reduce(A, s)
5 if κ(Aτ ) ≤

√
3 then τ? = τ and

break
6 if |τ?| < s then exit

Cond-Reduce(A, s)
Input: Standardized matrix A with n columns,
a parameter s
Output: A subset τ of {1, 2, . . . , n}

1 Draw a uniformly random set σ with cardi-
nality s from {1, 2, . . . , n}

2 Solve (5.6) with G = A∗σAσ−I and α = s/4
to obtain factorization G = DTD

3 Return τ = {j ∈ σ : d2
jj ≤ 2/s}

6 Future Directions.

After the initial work [BT87], additional research has
clarified the role of the stable rank. We highlight a
positive result of Vershynin [Ver01, Cor. 7.1] and a
negative result of Szarek [Sza90, Thm. 1.2] which to-
gether imply that the stable rank describes precisely
how large a well-conditioned column submatrix can in
general exist. See [Ver01, Sec. 5] for a more detailed
discussion.

Theorem 6.1. (Vershynin 2001) Fix ε > 0. For
each matrix A, there is a set τ of column indices for
which

|τ | ≥ (1− ε) · st. rank(A) and κ(Aτ ) ≤ C(ε).

Theorem 6.2. (Szarek) There is a sequence
{A(n)} of matrices of increasing dimension for
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which

|τ | = st. rank(A) =⇒ κ(Aτ ) = ω(1).

Vershynin’s proof constructs the set τ in Theo-
rem 6.1 with a complicated iteration that interleaves
the Kashin–Tzafriri theorem and the Bourgain–
Tzafriri theorem. We believe that the argument can
be simplified substantially and developed into a col-
umn selection algorithm. This achievement might
lead to a new method for performing rank-revealing
factorizations, which could have a significant impact
on the practice of numerical linear algebra.
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