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ABSTRACT

Recent work on sparse approximation has focused on the theoretical performance of algorithms for random
inputs. This average-case behavior is typically far better than the behavior of the algorithm for the worst inputs.
Moreover, an average-case analysis fits naturally with the type of signals that arise in certain applications, such
as wireless communications. This paper describes what is currently known about the performance of greedy
pursuit algorithms with random inputs. In particular, it gives a new result for the performance of Orthogonal
Matching Pursuit (OMP) for sparse signals contaminated with random noise, and it explains recent work on
recovering sparse signals from random measurements via OMP. The paper also provides a list of open problems
to stimulate further research.
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1. INTRODUCTION

A sparse approximation problems requests an approximation of some signal (or function) as a short linear combi-
nation of elementary signals (i.e., basis functions). It is valuable to solve this problem because the approximation
can identify complex structures that are latent in the signal. Another perspective is that the approximation pro-
vides a compressed version of the signal. Sparse approximation also has significant technological applications.

To solve sparse approximation problems, researchers have proposed many different algorithms, most of which
fall into two basic categories: greedy pursuit1 and ℓ1 minimization.2 The ℓ1 methods are more powerful than
greedy methods. Nevertheless, engineers tend to prefer greedy algorithms because they are faster and easier to
implement.

The last year has witnessed an enormous amount of progress on the theoretical behavior of ℓ1 minimization
algorithms. Whereas earlier results for these methods had concentrated on how the algorithms perform for the
worst inputs, the new results focused on the performance of algorithms for random inputs. In many cases, the
average-case behavior outstrips the worst-case behavior by a large margin. By now, there is a long sequence of
papers on this subject.3–11

Numerical experiments indicate that greedy pursuit methods also exhibit average-case behavior far superior
to the worst case behavior. At present, there is little theoretical explanation for this success. The first goal of
this article is to provide a few rigorous results on the average-case performance of greedy algorithms. The second
goal is to present some open questions that would lead toward a more complete understanding of greedy pursuit.

The next section continues with a more formal statement of the sparse approximation problems that we are
considering, and it motivates the idea of average-case analysis by reference to some applications. Afterward, we
present a formal statement of a specific greedy pursuit algorithm, Orthogonal Matching Pursuit. The remaining
three sections discuss the average-case analysis of three different sparse approximation problems.
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2. SPARSE APPROXIMATION

We will be studying a specific type of sparse approximation problem called sparse signal recovery or sparse signal
identification. Suppose that we measure a signal s of the form

s = Φcopt + ν (1)

where Φ is a known matrix, copt is an unknown sparse coefficient vector, and ν is an unknown noise vector.

Given the signal s, our goal is to find a sparse coefficient vector ĉ that approximates copt. In particu-
lar, we hope that ĉ correctly identifies the nonzero entries of copt since they determine which columns
of Φ participate in the signal.

We implicitly assume that the matrix Φ is fat (more columns than rows), which implies that Φ has a nontrivial
null space. Elementary linear algebra seems to preclude a solution to the signal recovery problem. Nevertheless,
in certain cases, the sparsity requirement regularizes the problem enough that we can approximate the ideal
coefficients well.

The signal model (1) contains three different pieces: the matrix, the coefficients, and the noise. In applications,
it may be natural to view one or more of these components as random. As examples:

1. (Random noise). Suppose that Φ is fixed, copt is an sparse coefficient vector, and ν is a random vector.
Then the model describes an ideal sparse signal that is contaminated with additive noise. In this case, the
goal of the signal recovery problem is to identify the ideal signal from the noisy observation.12

2. (Random coefficients). Suppose that Φ is fixed, copt is a sparse vector whose nonzero entries are random,
and that the noise vector ν is zero. Now the model describes the problem of identifying a sparse linear
combination with random coefficients. This challenge can arise in wireless communications, where a sparse
signal is transmitted and the coefficients are corrupted by multiplicative white noise.

3. (Random matrix). Suppose that Φ is random, copt is a fixed sparse vector, and the noise vector ν is zero.
Then our goal is to identify a sparse signal from random measurements. This problem has recently received
a significant amount of attention.3, 7, 13

For signal identification problems, many algorithms perform well on random instances with high probability, even
though the algorithms may fail completely for the worst instances. Studying the probabilistic performance of
an algorithm with respect to a random signal model can be viewed as an average-case analysis of the algorithm.
The applications we have described provide an impetus for attempting such an average-case analysis.

2.1. Notation and Terminology

We provide a very brief introduction to the notation and terminology of sparse approximation. For a more
detailed explanation, see other recent papers of the author.12

The symbol 〈·, ·〉 indicates the usual bilinear inner product, and ‖·‖2 refers to the associated norm. The ℓ∞
norm ‖x‖∞ = maxk |xk|. The ℓ0 quasi-norm is ‖x‖0 = #{xk : xk 6= 0}. For 0 < p < 1, the ℓp quasi-norm is
calculated as

‖x‖p =
∑

k
|xk|p .

The symbol Φ will denote a d × N matrix, called the dictionary. Its columns are sometimes called atoms,
and they are denoted by ϕω, where ω is drawn from the index set Ω = {1, 2, . . . , N}. The support of a vector
c ∈ R

Ω is the set of indices of its nonzero entries:

supp(c) = {ω : cω 6= 0}.



We will employ the symbol Λ to indicate a subset of Ω. The coherence µ of the matrix Φ is the absolute inner
product between distinct columns:

µ = maxλ6=ω |〈ϕλ, ϕω〉| .

Finally, we write normal(0,Σ) to denote the normal probability distribution with zero mean and positive-
definite covariance matrix Σ. In R

d, this distribution has density function

f(x) =
det(Σ)1/2

(2π)d/2
exp{− 1

2

〈
Σ−1x, x

〉
}.

3. GREEDY PURSUIT

This paper concentrates on greedy algorithms for sparse approximation. Greedy methods are popular in the
engineering community because they are reasonably fast, powerful, and implementable. Unfortunately, their
theoretical properties are not well understood in many régimes of interest. This section describes the generic
structure of a greedy pursuit, and it presents a specific greedy algorithm that we will analyze in more detail.

3.1. Overview

A greedy pursuit method for sparse approximation is an iterative algorithm that consists of two basic steps and
a criterion for halting.

The first step of the iteration is called the greedy selection. The reason for the unflattering sobriquet “greedy”
is that the algorithm picks the atom that will provide the biggest improvement in the current iteration. The
hope is that these locally optimal choices will lead to a globally optimal (or near-optimal) sparse approximation.

The second step of the iteration is called the greedy update. Here, the algorithm uses the new atom and
the current approximation to determine a new approximation to the input signal. The simplest method simply
adds a scalar multiple of the new atom to the current approximation, while more sophisticated techniques may
recalculate all the coefficients in the current approximation.

After each iteration, the algorithm decides whether or not to proceed. It may just stop after a fixed number
of iterations, or it may use current information more subtly to determine whether another iteration would be
beneficial.

3.2. Orthogonal Matching Pursuit

We focus on a particular greedy algorithm called Orthogonal Matching Pursuit (OMP). This algorithm was
developed by the statistics community during the 1950s, where it was called stagewise regression.14 In the
1990s, it reappeared in the signal processing literature (as OMP) and in the literature on approximation theory
as the Orthogonal Greedy Algorithm.15

Algorithm 1 (Orthogonal Matching Pursuit).
Input:

• A d × N matrix Φ

• A d-dimensional input signal s

• A stopping criterion

Output:

• The total number T of iterations

• A d-dimensional approximation ŝ of the input signal

• A d-dimensional residual r = s − ŝ



• An N -dimensional T -sparse coefficient vector ĉ such that ŝ = Φĉ

Procedure:

1. Initialize the residual r0 = s, the index set Λ0 = ∅, and the iteration counter t = 0.

2. Increment the counter t.

3. Find the index λt that solves the easy optimization problem

λt = arg maxω∈Ω |〈rt−1, ϕω〉| .

If the maximum occurs for multiple indices, break the tie deterministically. Set Λt = Λt−1 ∪ {λt}.

4. Calculate the new approximation and residual:

at = Pt s

rt = s − at

where Pt is the orthogonal projector onto span {ϕλ : λ ∈ Λt}.

5. Return to Step 2 unless the stopping criterion is met.

6. The approximation ŝ = at. The coefficient vector ĉ has nonzero entries at the indices listed in Λt; its
values in these components appear in the series expansion

ŝ =
∑

λ∈Λt

ĉλ ϕλ.

It is important to note that, at each iteration, the residual is orthogonal to the atoms that have already been
chosen. Therefore, the algorithm selects a new atom in every iteration, so the index set Λt always contains t
distinct indices.

The most significant time cost in the algorithm is the calculation of the inner products in Step 3. In general,
this step requires O(dN) time per iteration, but it can be reduced when the dictionary admits a fast transform.1

It may also be possible to use approximate nearest-neighbor data structures to reduce the cost farther,16 although
this approach has not been implemented.

The calculation of the orthogonal projection in Step 4 can be accomplished quickly using standard methods
of numerical linear algebra. The marginal cost in iteration t is O(td), so the overall cost is O(T 2d), where T is
the total number of iterations.

3.3. Stopping Criteria

There are several natural methods for deciding when to halt the iteration.

1. Halt the algorithm after a fixed number of iterations.

2. Halt the algorithm when ‖rt‖2, the norm of the residual, declines below a specific tolerance.

3. Halt the algorithm when ‖Φ∗rt‖∞, the maximum correlation between the residual and the dictionary,
drops below some threshold.

Naturally, the appropriate criterion depends on the application domain. In the sequel, we will indicate which
criterion is appropriate for the problem we are discussing.



3.4. Why is Average-Case Analysis Hard?

The major challenge in producing an average-case analysis of Orthogonal Matching Pursuit is that the residuals
are not stochastically independent of each other or the input signal. So far, successful proofs of average-case
results for OMP have skirted this issue. To answer the open questions stated in this paper, it may be necessary
to deal with the correlations directly.

4. RANDOM NOISE

In this section, we present a result on the performance of OMP for sparse signals contaminated with noise. In
short, the algorithm can tolerate random noise much more easily than deterministic noise. The intuition behind
this result is that deterministic noise can be aligned with one of the nonoptimal atoms, while it is very probable
that the random noise is almost orthogonal to all the nonoptimal atoms (provided that there are not too many).

Let us pose a concrete signal model.

The matrix: Φ Dimensions d × N , unit-norm columns, coherence µ

The coefficients: copt Sparsity level m = ‖copt‖0 where mµ ≤ 1
3

The noise: ν Distributed as normal(0, σ2 I)

We consider the following sparse approximation problem.

Observed Signal: s = Φcopt + ν

Goal: Given s and Φ, find the support of copt

Now, let us describe how to adapt Orthogonal Matching Pursuit to solve the problem. Naturally, we cannot
expect to recover entries of the coefficient vector that are very small because the noise may drown them out. So
we must develop a stopping criterion that depends on the size of the smallest coefficient. Define cmin to be the
absolute value of the smallest nonzero entry of copt. That is,

cmin = minλ∈supp(copt) |copt(λ)| .

Choose a threshold τ that satisfies τ < cmin/3. We halt OMP when the correlation between the residual and the
dictionary becomes sufficiently small.

Stopping Criterion: ‖Φ∗rt‖∞ ≤ 2τ

In this setting, we have the following new result. This theorem is a consequence of a general result on
OMP17 combined with some probability estimates developed for an ℓ1 minimization algorithm.12 A sketch of
the argument appears later in this section.

Theorem 1 (Random Noise). Execute OMP on the observed signal s to obtain a coefficient vector ĉ. Then
the support of ĉ equals the support of copt with probability (over the noise) exceeding

[
1 − exp{− 1

2τ2/σ2}
]N−m [

1 − exp{− 1
3 (cmin − 3τ)2/σ2}

]m
.

The success probability involves a delicate interplay between the noise level σ2, the size cmin of the smallest
coefficient, and the threshold τ that we use to halt the algorithm. Note that we may vary the threshold τ between
zero and cmin/3 to maximize the probability of success. If we choose τ to equate the two terms in the probability
bound, we reach a cleaner result.



Corollary 2. Select τ = 0.236 cmin. Then the lower bound on the success probability in Theorem 1 exceeds

[
1 − exp{−(0.167 cmin/σ)2}

]N
.

In particular, to obtain a failure probability of δ, it suffices that

σ <
0.167

ln1/2(N/δ)
cmin.

In contrast, suppose that we have no statistical model for the noise vector ν but only a bound on its norm:
‖ν‖2 ≤ ε. To ensure that we recover the entire support of copt, it suffices that ε ≤ cmin/3. Moreover, one can
probably contrive examples where the algorithm fails to tolerate noise above this level. These claims follow from
Theorem 3 of the sequel and its proof.

Let us develop a concrete numerical example based on calculations in the literature.12 Suppose that the
dimension d = 1024 and the size of the dictionary is N = 4096. If the dictionary has coherence µ = 1/32, our
signal model permits a 10-sparse signal. Suppose that we wish to recover this signal with 99% probability of
success over the noise. In this case, we can tolerate noise with σ = 0.0491 cmin, which means that the total noise
power is E ‖ν‖2

2 = 2.21 c2
min. If the ten nonzero coefficients in the ideal signal all have absolute value one, the

signal-to-noise ratio (SNR) is no greater than 7.81 dB. In contrast, if the noise is deterministic, we must require

that ‖ν‖2
2 ≤ 0.111 c2

min, which is twenty times smaller than the power in the random noise.

For comparison, here is a slightly larger example. Let d = 4096 and N = 16384. If the coherence is µ = 1/64,
we can allow 21-sparse signals. To achieve at least 99% success, we may set σ = 0.0441 cmin. If the ideal
coefficients have constant absolute value, the SNR does not exceed 5.45 dB. In summary, quadrupling the length
of the signal doubles the number of atoms, while the noise variance decreases just slightly and the SNR goes
down by 2.36 dB, which is a factor of 1.72.

4.1. Open Questions

It is unlikely that Theorem 1 can be strengthened substantially. But it can certainly be refined to give a sharper
reflection of several factors:

• Other types of distributions for the noise ν.

• The relative magnitude of the nonzero entries in copt.

• The cumulative coherence µ1 of the matrix.18

These extensions could be important for understanding the performance of OMP in applications.

4.2. Proof

Theorem 1 follows from a general theorem on the performance of Orthogonal Matching Pursuit,17 combined with
some estimates on the probability that the hypotheses of this theorem hold.12

Theorem 3 (Tropp–Gilbert–Strauss). Suppose that Λ lists m atoms, where mµ ≤ 1
3 . Let s be an

arbitrary input signal, aΛ its best approximation over the atoms listed in Λ, and cΛ the coefficient vector that
synthesizes aΛ. Finally, assume we have the bound

‖Φ∗(s − aΛ)‖∞ ≤ τ.

After iteration t of Orthogonal Matching Pursuit, halt the algorithm if

‖Φ∗rt‖∞ ≤ 2 τ.

It follows that



• the algorithm has chosen t indices from Λ, and

• the algorithm has chosen every index λ from Λ for which |cΛ(λ)| > 3τ .

In particular, if |cΛ(λ)| > 3τ for each index λ in Λ, then the algorithm identifies Λ and recovers the best
approximation of the signal over Λ. That is, ŝ = aΛ and ĉ = cΛ.

We wish to apply this theorem to the random signal model described in the last subsection. To that end,
suppose that copt is the ideal coefficient vector, and let Λ = supp(copt). Suppose that we draw a random signal
s according to the model. Denote by aΛ the best approximation of s over the atoms listed in Λ, and let cΛ be
the coefficients that synthesize s. Note that cΛ does not equal copt because of the influence of the noise.

To determine the probability that we may invoke the theorem, we must bound the probability over the noise
that ‖Φ∗(s − aΛ)‖∞ ≤ τ . To ensure that the algorithm identifies Λ, the entire support of copt, we must also
bound the probability that |cΛ(λ)| > 3τ for each λ in Λ. These calculations can be extracted from Appendix
IV-A of a recent paper.12

Lemma 4 (Tropp). Suppose that the hypotheses of the last subsection are in force. Write Λ = supp(copt).
Let aΛ be the best approximation of s over the atoms in Λ, and suppose that cΛ is the coefficient vector that
synthesizes aΛ. We have

Prob {‖Φ∗(s − aΛ)‖∞ ≤ τ} ≥
[
1 − exp{− 1

2τ2/σ2}
]N−m

.

and also
Prob{|cΛ(λ)| > 3τ for all λ ∈ Λ} ≥

[
1 − exp{− 1

3 (cmin − 3τ)2/σ2}
]m

Moreover, these two events are stochastically independent.

We obtain Theorem 1 by applying the Lemma to estimate the probability that Theorem 3 yields the desired
conclusions.

5. RANDOM COEFFICIENTS

Let us turn to the problem of perfectly recovering a sparse signal whose nonzero coefficients are random. For
simplicity, we assume that this signal is not contaminated with additive noise. There are applications (such as
wireless communications) in which sparse signals with random coefficients arise. Understanding the noiseless
case is an important step toward understanding the general case.

This signal model is intriguing because experiments show that OMP can identify these signals much more
easily than arbitrary sparse signals. In fact, numerical results indicate that we can reliably recover random
superpositions of O(d) atoms, whereas the algorithm can fail for the worst superposition of O(

√
d) atoms.

Unfortunately, we have no theoretical explanation for this behavior. This section describes these observations in
more detail, which leads to a collection of important open problems.

We consider a simple signal model.

The matrix: Φ Dimensions d × N , unit-norm columns, coherence µ

The coefficients: copt Sparsity level m = ‖copt‖0

Each nonzero entry of copt is iid normal(0, 1)

And we attempt to solve the following sparse approximation problem.

Observed Signal: s = Φcopt

Goal: Given s and Φ, determine copt



To solve this problem, we halt OMP after it has chosen m atoms.

Stopping Criterion: t = m

If we do not take into account the statistical distribution of the coefficients, a worst case analysis18 leads to
a strong condition on the sparsity level, m < 1

2 (µ−1 + 1), to ensure that we recover the ideal coefficients. For

most dictionaries, the coherence µ is at least d−1/2. Therefore, the worst-case analysis suggests that we cannot
recover signals unless the sparsity level m = O(

√
d).

On the other hand, consider the following experiment documented by Tropp et al.17 Let the dictionary
Φ = [I F ], the concatenation of the 128 × 128 identity matrix and the 128 × 128 (unitary) discrete Fourier
transform matrix. This matrix has coherence µ = 1/

√
128. At each sparsity level m, we generate 1000 signals

with random coefficients, and we execute OMP. For each sparsity level, we calculate the average percentage of
the optimal support that the algorithm determines correctly. The worst-case analysis suggests that we should
only be able to recover about 0.5 (

√
128 + 1) ≈ 6 atoms. And yet the algorithm reliably recovers the entire

support for sparsity levels up to m = 64. See Figure 1 for a plot of the data. We have no rigorous explanation
for this phenomenon.

5.1. Open Questions

The experimental evidence makes it clear that OMP performs far better for sparse signals with random coefficients
than the worst-case analysis indicates.

Open Question 1. Fix a matrix Φ. Suppose that copt is an m-sparse vector whose nonzero entries are chosen
at random. What is the probability that OMP will correctly determine copt given the input signal s = Φcopt?
What properties of the matrix Φ determine this success probability?

We feel that the latter problem represents one of the most important challenges in the theory of greedy pursuit
algorithms. A second (more difficult) question concerns the performance of OMP for random sparse signals that
have been contaminated with noise. Here is one reasonable formulation.

Open Question 2. Fix a matrix Φ. Suppose that copt is an m-sparse vector whose nonzero entries are chosen
at random, and let ν be a random noise vector. If we execute OMP with the input signal s = Φcopt + ν, what
is the probability that it returns a coefficient vector ĉ that satisfies ‖ĉ − copt‖2 ≤ ε? What is the probability that
the supports of ĉ and copt match?

It is also possible to extend these types of questions to coefficient vectors that are well approximated by sparse
vectors.

Open Question 3. Fix a matrix Φ. Suppose that copt is chosen randomly from the ℓp unit ball, where 0 < p < 1.
Let cm be the best m-sparse approximation of copt. Suppose that we execute OMP with the input signal s = Φcopt.
What is the probability that it returns an m-sparse coefficient vector ĉ that satisfies ‖ĉ − cm‖2 ≤ ε?

This last problem can also be extended to the case of noisy observations, but we omit a rigorous statement of
this question.

6. RANDOM DICTIONARIES

This section discusses the problem of recovering a sparse signal from random measurements. This setup leads
to a signal model where the coefficient vector is fixed and the dictionary is a random matrix. The literature
contains fairly comprehensive results on the performance of ℓ1 minimization in this context,3, 7 but there is
limited information about the behavior of OMP.13 We describe the work that has been done on this problem,
and we list a series of open questions.

To develop a theoretical result, we place the following assumptions on the signal model.

The matrix: Φ Dimensions d × N , entries iid normal(0, 1)

The coefficients: copt Sparsity level m = ‖copt‖0
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Figure 1. At each sparsity level, OMP is invoked 1000 times with random coefficients. The sparsity level is marked on

the horizontal axis. The vertical axis shows what percentage of the support the algorithm fails to identify on average.

The error bars mark one standard deviation in each direction. We have omitted the part of the curve for m < 60 because

it coincides with the horizontal axis. This figure is reproduced from the paper.17



Here is the statement of the sparse approximation problem.

Observed Signal: s = Φcopt

Goal: Given s and Φ, determine copt

To solve this problem, we halt OMP after choosing m atoms.

Stopping Criterion: t = m

In this setting, we have the following result, which can be extracted from the work of Tropp and Gilbert.13

Theorem 5 (Tropp–Gilbert). Execute OMP on the observed signal s to obtain a coefficient vector ĉ.
Then ĉ = copt with probability (over the matrix) exceeding

sup
ε∈[0,

√
d/m−1]

[
1 − exp{− 1

2 (
√

d/m − 1 − ε)2}
]m(N−m) [

1 − exp{− 1
2mε2}

]
.

A corollary of this result gives an explicit bound on the size of m that suffices to obtain a good success probability.

Corollary 6 (Tropp–Gilbert). Fix a positive number p. In the preceding theorem, to obtain a success
probability exceeding (1 − 2N−p), it suffices that the sparsity level

m ≤ d

8 (p + 1) lnN
.

We see that the algorithm succeeds at sparsity levels far beyond m = O(
√

d).

6.1. Open Questions

The major shortcoming in Theorem 5 is that it only applies to signals that are exactly sparse. It is important
to extend this result to signals that have a good sparse approximation.

Open Question 4. Suppose that copt is an arbitrary signal in the ℓp unit ball for 0 < p < 1. Suppose that Φ

is a random matrix. If we execute OMP with the input signal s = Φcopt, what is the probability that it returns
a coefficient vector ĉ for which ‖ĉ − copt‖2 ≤ ε? For a given number m, how many rows must Φ have to ensure
that the success probability is close to one?

It is also natural to ask about the performance of OMP when the matrix is random and the signal is also
corrupted with random noise, i.e., the measurements are imperfect.

Open Question 5. Suppose that copt is an arbitrary m-sparse vector. Suppose that Φ is a random matrix and
ν is random noise. If we execute OMP with the input signal s = Φcopt +ν, what is the probability that it returns
a coefficient vector ĉ for which ‖ĉ − copt‖2 ≤ ε?

Another valuable direction would be to understand the performance of the algorithm for other types of random
matrices. The case of subgaussian (including ±1) random matrices has already been developed in unpublished
work.19 But numerical evidence suggests that orthogonalizing the rows of Φ leads to a significant improvement
in the behavior of the algorithm.

Open Question 6. Suppose that Φ is a matrix whose rows form an orthonormal basis for a random subspace.
For N -dimensional coefficient vectors with a given sparsity level m, how many rows d must the matrix Φ have
to ensure that OMP succeeds with probability close to one?

Answers to these questions could have a significant technological impact.
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