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I. Introduction and Background

Recently, there has been an explosion of interest in op-
timal signature sequences for the synchronous code-division
multiple-access (S-CDMA) channel in the presence of white
noise. Proposed algorithms (e.g. [1]) exploit the relationship
between minimizing the total squared correlation and maxi-
mizing the capacity of the channel [2]. In this abstract, we
show how matrix-theoretic ideas can be mustered to solve
these problems. It turns out that many types of sequence
design fall into the category of structured inverse eigenvalue
problems, which questions have been studied extensively [3].
We shall outline one technique for building optimal signatures
in a particularly simple setting, with the understanding that
our methods can be extended to more elaborate problems.

Specifically, we shall construct signature sequences that
maximize the sum capacity of the S-CDMA channel with
white noise and uniform received powers. Let {sn}N

n=1 ⊂ Cd

be unit-norm signatures, and form these column vectors into
a d × N matrix S . A signature matrix achieves the channel
capacity if and only if d SS∗ = N Id [2]. Therefore, we must
build S whose d singular values equal

p
N/d and whose N

column norms equal one. Such matrices are known as Welch-
Bound-Equality sequences or unit-norm tight frames.

II. The Algorithm and Its Behavior

One method for constructing matrices which satisfy several
properties is to enforce those properties alternately in hope
that the sequence will converge to a distinguished matrix. Let
S be the collection of d × N full-rank matrices with unit
columns, and let Y be the collection of d ×N matrices with
orthonormal rows and non-zero columns. Then we may define

two operators P : S −→ Y and Q : Y −→ S by P (S)
def
=

(SS∗)−1/2 S and Q(Y )
def
= YC−1, where C is a diagonal matrix

that lists the column norms of Y .

Algorithm 1 Let S0 ∈ S . For each j, define Yj
def
= P (Sj)

and Sj+1
def
= Q(Yj). Repeat until the iterates have converged

within a numerical tolerance.

It can be shown that each operator minimizes the Frobenius
distance between its argument and the other constraint set, so
this algorithm provides an example of alternating minimiza-
tion. After verifying some technical conditions, we may appeal
to a theorem of Meyer [4] to prove convergence. We conclude
that the sequence of iterates is asymptotically regular, i.e.
‖Sj+1 − Sj‖F −→ 0, which implies that it either converges in
norm or that it has a continuum of accumulation points. Ev-
ery accumulation point is a fixed point of the algorithm, and
these are easily characterized.
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Theorem 1 The fixed points of Algorithm 1 are precisely
those matrices S whose columns are all eigenvectors of SS∗.
Equivalently, each stationary point is a union of mutually or-
thogonal Welch-Bound-Equality sequences. Moreover, the only
stable fixed points are global maxima of the sum capacity.

We recommend initializing the algorithm with a random
signature set since they converge almost surely to WBEs as
the number of signatures increases. Experiments indicate that
our algorithm converges much more rapidly than the method
of Ulukus and Yates [1] for problems of realistic size. Never-
theless, the local convergence of an alternating minimization
is linear at best. In the neighborhood of a stationary point,
it would probably be more efficient to use a different type of
iteration such as a projected gradient method.

III. Extensions and Further Work
The intuition underlying our procedure suggests other av-

enues of research. First, we have shown that an obvious mod-
ification of Algorithm 1 can construct optimal signature se-
quences when the received powers of the users are not uniform.
We have also developed methods for constructing signature se-
quences with additional properties. For example, by alternat-
ing between a spectral constraint and a unimodular constraint
on the sequence components, we have succeeded in building
unimodular signature sequences. We are also studying re-
lated techniques for more difficult sequence design problems
such as the construction of Maximum Welch-Bound-Equality
sequences. Finally, it is known that optimal sequences for the
S-CDMA channel with colored noise also satisfy certain spec-
tral properties [2]. It should be possible to develop alternating
algorithms to construct sequences optimal for colored noise.
In [5], we discuss some of these ideas at more length.
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