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ABSTRACT

This paper discusses a new greedy algorithm for solving the
sparse approximation problem over quasi-incoherent dictio-
naries. These dictionaries consist of waveforms that are un-
correlated “on average,” and they provide a natural general-
ization of incoherent dictionaries. The algorithm provides
strong guarantees on the quality of the approximations it
produces, unlike most other methods for sparse approxima-
tion. Moreover, very efficient implementations are possible
via approximate nearest-neighbor data structures.

1. INTRODUCTION

Sparse approximation is the problem of finding a concise
representation of a given signal as a linear combination of a
few elementary signals chosen from a rich collection. It has
shown empirical promise in image processing tasks such as
feature extraction, because the approximation cannot suc-
ceed unless it discovers structure latent in the image. For
example, Starck, Donoho and Candès have used sparse ap-
proximation to extract features from noisy astronomical pho-
tographs and volumetric data [1]. Nevertheless, it has been
difficult to establish that proposed algorithms actually solve
the sparse approximation problem. This paper makes an-
other step in that direction by describing a greedy algorithm
that computes solutions with provable quality guarantees.

A dictionaryD for the signal spaceRd is a collection of
vectors that spans the entire space. The vectors are called
atoms, and we write them asϕλ. The indexλ may parame-
terize the time/scale or time/frequency localization of each
atom, or it may be a label without any additional meaning.
The number of atoms is often much larger than the signal
dimension.

Thesparse approximation problemwith respect toD is
to compute a good representation of each input signal as
a short linear combination of atoms. Specifically, for an
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arbitrary signalx, we search for anm-term superposition

aopt =
∑
Λopt

bλ ϕλ

which minimizes‖x− aopt‖2. We must determine both the
optimal vectors,m atoms whose indices are listed byΛopt,
as well as the optimal coefficientsbλ.

If D is an orthonormal basis, it is computationally easy
to findaopt. For the indicesΛopt, simply takem atoms with
the largest inner products|〈x,ϕλ〉| and form

aopt =
∑
Λopt

〈x,ϕλ〉 ϕλ.

Unfortunately, it can be difficult or impossible to choose
an appropriate orthonormal basis for a given situation. For
example, if the signals contain both harmonic and impulsive
components, a single orthonormal basis will not represent
them both efficiently. We have much more freedom with a
redundant dictionary, since it may include a rich collection
of waveforms which can provide concise representations of
many different structures.

The price that we pay for additional flexibility is an
increased cost to determine these concise representations.
For general redundant dictionaries, it is computationally in-
feasible to search all possiblem-term representations. In
fact, if D is an arbitrary dictionary, finding the bestm-
term representation of an arbitrary signal is NP-hard [2].
There are algorithms with provable approximation guaran-
tees for specific dictionaries, e.g. Villemoes’ algorithm for
Haar wavelet packets [3]. There are also some well-known
heuristics, such as Matching Pursuit (MP) [4], Orthogo-
nal Matching Pursuit (OMP) [5] andm-fold Matching Pur-
suit [6]. Several other methods rely on the Basis Pursuit
paradigm, which advocates minimizing the`1 norm of the
coefficients in the representation instead of minimizing the
sparsity directly [7].

Some theoretical progress has already been made for
dictionaries with lowcoherence. The coherence parame-
ter µ equals the maximal inner product between two dis-
tinct atoms. For example, the union of spikes and sines is
a dictionary withµ =

√
2/d. The authors in [6] have pre-

sented an efficient two-stage algorithm for the approximate
representation of any signal over a sufficiently incoherent
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dictionary. This is the first known algorithm which prov-
ably approximates the solution to the sparse problem for any
class of general dictionaries. In addition, this algorithm is
highly efficient. For a suitably incoherent dictionary, it is
also known that Basis Pursuit can resolve the subclass of
signals which have anexactsparse representation [8].

This article offers a number of improvements to [6].
Specifically, we present a modified version of the algorithm
in [6], which calculates significantly more accurate sparse
representations for incoherent dictionaries and also applies
to a much larger class of redundant dictionaries. Unlike an
incoherent dictionary where all the inner products are small,
the dictionaries we consider only need to have small inner
products “on average.” In addition, our analysis is simpler.
Of course, the new algorithm can be implemented just as
efficiently as the ones in [6].

2. ALGORITHM AND ANALYSIS

2.1. Overall results

For an incoherent dictionary, we have

Theorem 1 Fix a dictionaryD with coherenceµ. We seek
an m-term representation of an arbitrary signalx, where
m < 1

2µ−1. There is an algorithm that produces anm-term
representationam for x with error

‖x− am‖2 ≤

√
1 +

2µm2

(1− 2µm)2
‖x− aopt‖2 .

In comparison, the algorithm of [6] requires thatm <
1
32µ−1 and produces approximations with error

‖x− am‖2 ≤
√

1 + 2064µm2 ‖x− aopt‖2 .

Whenm ≤ µ−1/2, the resulting constant of approximation
is about46. Meanwhile, the algorithm described here pro-
duces approximations with error

‖x− am‖2 ≤ 3 ‖x− aopt‖2

so long as4 ≤ m ≤ µ−1/2.
Theorem 1 is a special case of a result for general dic-

tionaries. To state the full theorem, we need to borrow a
definition from [9]. LetΦ be a matrix whose columns are
the atoms ofD . Then the Gram matrixG

def= Φ∗Φ contains
all the inner products between atoms1. Let |G | denote its en-
trywise absolute value. Now, we define theBabel function
µ1(m) of the dictionary to be the maximum sum of anym
(nondiagonal) elements from a single row of|G |. In other
words, the Babel function quantifies the maximum total co-
herence between a fixed atom and a collection ofm other

1Here and elsewhere,∗ denotes the conjugate transpose.

atoms2. The Babel function is a more subtle way of de-
scribing the dictionary than the coherence, since coherence
only reflects the largest inner product. Clearly,

µ1(m) ≤ µm. (1)

That is, the cumulative coherence always dominates the Ba-
bel function. When the Babel function grows slowly, we say
informally that the dictionary isquasi-incoherent.

Theorem 2 So long asµ1(m) < 1
2 , our algorithm pro-

duces anm-term approximationam which satisfies

‖x− am‖2 ≤

√
1 +

2m µ1(m)
(1− 2µ1(m))2

‖x− aopt‖2 ,

whereaopt is the optimalm-term approximation.

Obviously, Theorem 1 follows directly from Theorem 2
by application of the bound (1).

We can easily construct a dictionary for which we need
the more general theorem. Let each atom be a linear com-
bination of two impulses:

ϕk =
√

35
6 δk + 1

6 δk+1 for k = 1, . . . , d.

Then the coherenceµ =
√

35
36 , which means that Theorem 1

applies only whenm ≤ 3. Meanwhile, the Babel function
µ1(m) =

√
35

18 < 1
3 for everym ≥ 2. Therefore, the general

theorem shows that approximation succeeds for anym, and
the error bound is

‖x− am‖2 ≤
√

1 + 6m ‖x− aopt‖2 .

Another consequence of Theorem 2 is that the algorithm
can recover any signal which has an exactm-term represen-
tation, so long asµ1(m) < 1

2 . In fact, the analysis of [9]
shows that Orthogonal Matching Pursuit alone can accom-
plish this task. Donoho and Elad have proven that Basis
Pursuit can recover exactly sparse signals under an identical
condition [10]. But they have not offered an approximation
guarantee for general signals, and the algorithms associated
with the Basis Pursuit paradigm are typically very slow. The
algorithm described here is significantly faster.

2.2. A Structural Lemma

An important ingredient in the analysis is our generalization
of Parseval’s Theorem to an arbitrary dictionary. A similar
lemma appears implicitly in the analysis of [6].

2The subscript in the notation serves to distinguish the Babel function
from the coherence parameter and to remind us that it represents the`1
norm, i.e. an absolute sum.



Lemma 3 (Approximate Parseval) Let Λ be a collection
of m atoms. LetPΛ be the orthogonal projector onto the
span of the atoms listed byΛ. For every signalx, we have∑

Λ |〈x,ϕλ〉|2

1 + µ1(m)
≤ ‖PΛx‖2

2 ≤
∑

Λ |〈x,ϕλ〉|2

1− µ1(m)
.

Proof. Define the matrixΦΛ whose columns are them
atoms listed inΛ. Then the orthogonal projector onto the
span of the atoms inΛ can be written as

PΛ = (Φ∗ΛΦΛ)−1/2Φ∗Λ.

Denote the smallest and largest singular values ofΦΛ by
σmin and σmax. It follows that the smallest and largest
eigenvalues of(Φ∗ΛΦΛ)−1/2 are respectively equal to1/σmax

and1/σmin. Therefore,

‖Φ∗Λx‖2
2

σ2
max

≤ ‖PΛx‖2
2 ≤

‖Φ∗Λx‖2
2

σ2
min

.

Since the squared singular values ofΦΛ are equal to the
eigenvalues ofGΛ

def= Φ∗ΛΦΛ, we can estimateσmin and
σmax by examining this Gram matrix. The Geršgorin Disc
Theorem [11] states that every eigenvalue of a square matrix
A lies in one of them discs

∆k =
{

z : |Akk − z| ≤
∑
j 6=k

|Ajk|
}

.

SinceGΛ is a principal submatrix of the dictionary Gram
matrixG , we can use the Babel function to bound the sum:∑

j 6=k

|(GΛ)jk| ≤ µ1(m).

All atoms have unit norm, so the diagonal ofGΛ is identi-
cally one. We may conclude that

σ2
min ≥ 1− µ1(m) and

σ2
max ≤ 1 + µ1(m).

Finish by writing‖Φ∗Λx‖2
2 =

∑
Λ |〈x,ϕλ〉|2. �

The Babel function of an orthonormal basis is zero. In
this case, Lemma 3 reduces to Parseval’s Theorem.

2.3. Analysis of two-phase greedy pursuit

The overall algorithm is a two-phase greedy pursuit. First,
we initializea0 = 0 and perform Orthogonal Matching Pur-
suit until we reach aK-term representationaK with a rea-
sonable error guarantee. (The optimal error is necessary to
determineK. For now, assume an oracle provides it. Sec-
tion 2.4 discusses how to avoid the trip to Delphi.) In the
second stage, we use(m−K)-fold Matching Pursuit to ac-
quire the remaining atoms. The algorithm returns the best

approximation to the signal over them chosen atoms. This
procedure is different from the one given in [6], where the
algorithm returns the sum of the best approximation of the
signal over the firstK atoms and the best approximation of
theK-term residual over the last(m−K) atoms.

Now, we sketch the analysis. We require the following.

Theorem 4 [9] For any signal x, Orthogonal Matching
Pursuit can calculate an approximantaK that consists of
0 ≤ K ≤ m atoms from the optimalm-term approximant
aopt and that satisfies the error bound

‖x− aK‖2
2 ≤

[
1 +

m (1− µ1(m))
(1− 2µ1(m))2

]
‖x− aopt‖2

2 . (2)

After the first phase is complete, we have selectedK op-
timal atoms,ΛK , and theK-term approximant satisfies the
error bound (2). The second phase choosesK̂

def= (m−K)
atoms that have the largest inner products with the residual.
More precisely, we find̂K indices,Λ bK , to maximize∑

ΛcK
|〈x− aK ,ϕλ〉| .

We may assume that the atoms chosen in the second phase
are distinct from those chosen in the first phase because the
residual(x − aK) is orthogonal to each atom that partic-
ipates in the approximantaK . Them atoms we have se-
lected are indexed byΛm

def= ΛK ∪ Λ bK , and∑
Λm

|〈x− aK ,ϕλ〉|2 ≥
∑
Λopt

|〈x− aK ,ϕλ〉|2.

Finally, the algorithm returnsam, which is the best approx-
imation to the signal using the atoms inΛm.

Theorem 5 The m-term approximation produced by this
two-phase algorithm satisfies

‖x− am‖2
2 ≤

[
1 +

2m µ1(m)
(1− 2µ1(m))2

]
‖x− aopt‖2

2 .

Proof. The difference between the actual error and the opti-
mal error is

‖x− am‖2
2 − ‖x− aopt‖2

2

= ‖aopt − aK‖2
2 − ‖am − aK‖2

2

= ‖Popt(x− aK)‖2
2 − ‖Pm(x− aK)‖2

2 ,

wherePopt is the orthogonal projector onto the span of the
optimal atoms andPm is the orthogonal projector onto the
span of them chosen atoms. Applying Lemma 3,

‖x− am‖2
2 − ‖x− aopt‖2

2

≤
∑

Λopt
|〈x− aK ,ϕλ〉|2

1− µ1(m)
−

∑
Λm

|〈x− aK ,ϕλ〉|2

1 + µ1(m)

≤
∑

Λopt
|〈x− aK ,ϕλ〉|2

1− µ1(m)
−

∑
Λopt

|〈x− aK ,ϕλ〉|2

1 + µ1(m)
,



since the atoms inΛopt carry less energy than those inΛm.
Applying Lemma 3 again,

‖x− am‖2
2 − ‖x− aopt‖2

2

≤
[
1 + µ1(m)
1− µ1(m)

− 1
]
‖Popt(x− aK)‖2

2

=
2µ1(m)

1− µ1(m)
‖aopt − aK‖2

2

=
2µ1(m)

1− µ1(m)

[
‖x− aK‖2

2 − ‖x− aopt‖2
2

]
.

The first theorem provides a bound on‖x− aK‖2
2 in terms

of ‖x− aopt‖2
2. Combining the two estimates and rearrang-

ing, we reach the stated result. �

2.4. Implementation

Implementing the algorithm which we have described re-
quires foreknowledge of the optimal error. There are two
ways to escape the need for omniscience. For the first op-
tion, simply execute the algorithm(m+1) times, switching
from the first phase to the second at eachK = 0, . . . ,m.
Then select the best of the representations. A second option
is to guess the optimal error. This can be accomplished by
running the algorithm with guesses taken from a geometric
progression ranging fromε, the machine precision, to‖x‖2.
This requires onlylog2 ‖x‖2 /ε attempts, and we may use
the best of the representations. Both techniques are embar-
rassingly parallel, although efficient serial versions are also
possible.

Both phases of the algorithm require the determination
of maximum inner products. At each step, the Orthogonal
Matching Pursuit phase chooses an atom with maximal in-
ner product against the residual. The second phase can be
implemented by selecting a maximal inner product, remov-
ing that atom from the dictionary and iterating. Therefore,
in both stages, we use a data structure that preprocesses
the dictionary and supports two queries: return an atom
whose absolute inner product with the residual is maximal
and delete an atom. An identity for unit vectors states that

〈u,v〉 = 1− 1
2 ‖u− v‖2

2 .

To find the maximum absolute inner product between a sig-
nal x and the dictionary, we can normalize the signal asx̃
and solve

min
λ

‖ϕλ ± x̃‖2
2 .

This minimization can be performed approximately using
a nearest-neighbor data structure for vectors under the Eu-
clidean metric [12]. Building the data structure requires
time and spacepoly(|D | /η), whereη is the precision re-
quired in the approximation. But each query costs only

d+polylog(|D | /η) units of time3. This query does not nec-
essarily return a vector with the largest inner product, but it
always returns a vector that is nearly as good. The anal-
ysis of our algorithm changes slightly if we use a nearest-
neighbor data structure to estimate maximum inner prod-
ucts. The details are somewhat technical, so we will relegate
them to a longer version of this article.
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