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Abstract— Several algorithms have been proposed to
construct optimal signature sequences that maximize the
sum capacity of the uplink in a direct-spread synchronous
code division multiple access (CDMA) system. These al-
gorithms produce signatures with real-valued or complex-
valued entries that generally have a large peak-to-average
power ratio (PAR). This paper presents an alternating
projection algorithm that can design optimal signature
sequences that satisfy PAR side constraints. This algorithm
converges to a fixed point, and these fixed points are
partially characterized.

I. I NTRODUCTION

Signature sequences that maximize the sum capac-
ity in the uplink of direct-spread synchronous code
division multiple access (CDMA) systems have been
characterized in [1], [2], [3]. Except in special cases,
these signatures are generally real- or complex-valued.
Consequently, these signatures can possess practically
undesirable properties such as a large peak-to-average-
power ratio (PAR).

The PAR of a signal measures how the largest value of
the signal compares with the average power. Signals with
large PAR require higher dynamic range on the analog-
to-digital converters and the digital-to-analog converters.
They may also require more linear (and thus higher cost)
power amplifiers. In DS-CDMA systems, the PAR is
normally of concern only in the downlink (see e.g. [4]),
where linear combinations of signatures can conspire to
have very large PAR values. The problem of PAR on the
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uplink is fundamentally different because it only involves
individual signatures. Conventionally, the PAR on the
uplink has not received attention because uplink typically
employs binary spreading sequences, which have unit
PAR. If sum-capacity optimal sequences are to be used
in real systems, however, PAR side constraints should be
included in the design problem.

Several algorithms have been developed for construc-
tion of optimal sequences. Viswanath and Anantharam
[2] offer a finite-step algorithm that can construct a lim-
ited selection of optimal CDMA sequences. A number
of iterative algorithms, including [5], [6], [7], have been
developed that can construct many more sequences than
the finite-step algorithm. Unfortunately, these methods
cannot accept additional constraints on the signatures,
and thus are not suitable in general for finding sequences
with low PAR.

In this paper, we give a new algorithm for finding
optimal signature sequences with constraints on the PAR.
Our algorithm is enabled by the observation that the class
of optimal signatures is so large that we can impose
additional constraints without losing the optimality. We
build on our recently proposed iterative algorithm for
constructing CDMA signature sequences [8]. These al-
gorithms are related to a method used by Chu for solving
an inverse eigenvalue problem [9]. We argue that our
algorithm converges to a fixed point, and we claim that
the class of fixed points contains the desired sequences.
Proofs of these results will appear elsewhere [10].

II. PROBLEM FORMULATION

Consider a direct-spread synchronous CDMA system
with N users and a processing gain ofd, operating in the
presence of white noise. Suppose that the average input
power of then-th user is denoted bywn. We assume



that no user isoversized[2], since the extension to this
case is straightforward. A mathematical statement of this
hypothesis is

wn ≤
1
d

N∑
j=1

wj for n = 1, . . . , N.

A signature sequenceis a collection{sn} of N unit-
norm vectors inCd. Define the weighted signatures
xn

def=
√

wn sn, and form ad×N matrix X whosen-th
column isxn. For purposes of design, we consider the
discrete-time peak-to-average ratio based on the sampled
discrete-time system, which approximates the PAR of the
continuous-time system. The PAR of ad-dimensional
signaturev is defined as

PAR (v) def=
max` |v`|2

d−1
∑

` |v`|2
.

We useρ to denote the desired upper bound on the PAR
of the signatures. Note that1 ≤ PAR (v) ≤ d. The lower
extreme corresponds to a signature whose entries have
identical modulus, while the upper bound is attained only
by (scaled) canonical basis vectors.

Viswanath and Anantharam have shown that a signa-
ture sequence achieves the sum capacity of the present
system model if and only if thed positive singular values
of X are identical. A matrix with this property is called
a tight frame. Our goal, then, is to construct a weighted
signature matrixX with the following properties.

i. The matrix is a tight frame:XX ∗ = α Id.
ii. Each column has the correct norm:‖xn‖2

2 = wn.
iii. Each column has low PAR:PAR (xn) ≤ ρ.

In this paper we present an algorithm that calculates such
sequences. In the sequel, we summarize the method and
its theoretical behavior.

III. STATEMENT OF ALGORITHM

Our technique is based on an alternating projection
between Property (i) and Properties (ii)–(iii). The algo-
rithm attempts to compute a nearby matrix (in terms of
the Frobenius norm) that satisfies Properties (i)–(iii).

Algorithm 1 (Alternating Projection):
INPUT:

• An arbitrary matrixS0

• The number of iterationsJ

OUTPUT:

• A pair of matrices(SJ ,XJ)
PROCEDURE:

1) Let j = 1.

S

X

Fig. 1. Intuition behind the alternating projection between setS

andX .

2) Find Xj , the matrix nearest toSj−1 in Frobenius
norm that has Property (i).

3) Find Sj , the nearest matrix toXj in Frobenius
norm that has Properties (ii) and (iii).

4) Incrementj. Repeat Steps 2–4 untilj > J .

The intuition behind the operation of the alternating
projection method is illustrated in Figure 1. Notice in
particular that the constraint sets are both closed but both
are not necessarily convex.

The machinery of point-to-set maps is required to
understand the convergence of this algorithm, so we
must refer the reader to [10] for details. For reference,
we shall state the convergence result. A few definitions
are necessary. LetS be the collection of matrices that
satisfy the structural properties (ii) and (iii). LetX
be the collection of tight frames—matrices that satisfy
property (i). Recall that the distance between a pointM
and a setY is

dist(M,Y ) = inf
Y∈Y

‖Y −M‖F .

Theorem 2 (TDHS [10]):Suppose that alternating
projection generates a sequence of iterates{(Sj ,Xj)}.
This sequence has at least one accumulation point, i.e.
limit of a convergent subsequence.

• Every accumulation point lies inS ×X .
• Every accumulation point(S ,X ) satisfies∥∥S − X

∥∥
F

= lim
j→∞

‖Sj − Xj‖F .

• Every accumulation point is ageneralized fixed
point, viz.∥∥S − X

∥∥
F

= dist(S ,X ) = dist(X ,S ).
We have been able to provide a partial characterization

of the fixed points of this algorithm. It turns out the set
of fixed points includes every collection ofN vectors
that can be partitioned into tight frames for mutually
orthogonal subspaces ofCd. In particular, every matrix



Constraint set
for one column

z

Fig. 2. The shaded region contains the vectors with squared norm
c that have PAR less thanρ. It equals the intersection of the sphere
of radius

√
c and the cube with sides

√
c ρ/d. The input vector to

the nearness problem isz.

that satisfies Properties (i)–(iii) is a fixed point. The other
fixed points are spurious solutions that rarely arise in
practice.

Proposition 3 (TDHS [10]):Suppose thatS lies in
S and that SS∗S = SΛ, where Λ is positive and
diagonal. ThenS is a (classical) fixed point of Algorithm
1. More precisely, invoking Algorithm 1 with the initial
matrix S will yield Sj = S for every j.

The proof of this proposition appears in [10].

IV. I MPLEMENTATION

To implement this algorithm, we must solve two
matrix nearness problems. Step 2 is a standard problem
from linear algebra, whose solution can be expressed
in terms of a singular value decomposition [11]. If we
factor Sj−1 = UΣV ∗, then Xj = (Tr Σ/d) UV ∗ is a
nearest tight frame toSj−1. Here, Tr (·) indicates the
trace operator.

The nearest matrix toXj that satisfies the norm
and peak-to-average-power criteria cannot be written in
closed form. Fortunately, we can apply the following
simple algorithm to each columnxn of the input matrix
to obtain sn, the corresponding column of the output
matrix Sj . See Figure 2 for a diagram of the constraint
on each column.

Algorithm 4 (Nearest Vector with Low PAR):
INPUT:
• An input vectorz from Cd

• A positive numberc, the squared norm of the
solution vector

• A numberρ from [1, d], which equals the maximum
permissible PAR

OUTPUT:
• A vector s from Cd that solves

min
s
‖s− z‖2 s.t. PAR (s) ≤ ρ and ‖s‖2

2 = c.

PROCEDURE:

1) Scalez to have unit norm; defineδ =
√

c ρ/d;
and initializek = 0.

2) LetM index (d− k) components ofz with least
magnitude. If this set is not uniquely determined,
incrementk and repeat Step 2.

3) If zm = 0 for eachm in M , a solution vector is

s =

{ √
c−k δ2

d−k for m ∈M , and

δ ei arg zm for m /∈M .

4) Otherwise, let

γ =

√
c− k δ2∑
m∈M |zm|2

.

5) If γ zm > δ for any m in M , incrementk and
return to Step 2.

6) The unique solution vector is

s =
{

γ zm for m ∈M , and
δ ei arg zm for m /∈M .

When ρ = 1, the output of the algorithm is a
unimodular vector whose entries have the same phase
as the corresponding entries ofz. On the other hand,
when ρ = d, the output vector equalsz. Let us prove
that the algorithm is correct.

Proof. We must solve the optimization problem

min
s
‖s− z‖2

2 subject to PAR (s) ≤ ρ and ‖s‖2
2 = c.

Let us begin with some major simplifications. First,
rewrite the PAR constraint by enforcing the norm re-
quirement and rearranging to obtain the equivalent con-
dition

max
m

|sm| ≤
√

c ρ/d.

In the rest of the argument, the symbolδ will abbrevi-
ate the quantity

√
c ρ/d. The PAR constraint becomes

|sm| ≤ δ for eachm = 1, . . . , d.
Now expand the objective function and enforce the

norm constraint again to obtain

min
s

[
c− 2 Re 〈s,z〉+ ‖z‖2

2

]
.

Observe that it is necessary and sufficient to minimize
the second term. It follows that the optimizer does not
depend on the scale of the input vectorz. So take‖z‖2 =
1 without loss of generality.

Next observe that the PAR constraint and the norm
constraint do not depend on the phases of the compo-
nents ins. Therefore, the components of an optimals
must have the same phases as the components of the



input vectorz. In consequence, we may assume that both
s andz are non-negative real vectors.

We have reached a much more straightforward opti-
mization problem. Given a vectorz with unit norm and
non-negative entries, we must solve

max
s

〈s,z〉 subject to 〈s, s〉 = c and0 ≤ sm ≤ δ.

Observe that every point of the feasible set is a regular
point. Therefore, Karush-Kuhn-Tucker theory will fur-
nish necessary conditions on an optimizer [12].

We form the Lagrangian function

L(s, λ,µ,ν) = −〈s,z〉+ 1
2 λ (〈s, s〉 − c)

− 〈s,µ〉+ 〈s− δ 1,ν〉 .

The Lagrange multipliersµ and ν are non-negative
because they correspond to the lower and upper bounds
ons. Meanwhile, the multiplierλ is unrestricted because
it is associated with the equality constraint.

The first-order KKT necessary condition on a regular
local maximums? is that

0 = (∇s L)(s?, λ?,µ?,ν?)

= −z + λ? s? − µ? + ν?,
(1)

whereµ?
m > 0 only if s?

m = 0 andν?
m > 0 only if s?

m =
δ. Notice that one ofµ?

m or ν?
m must be zero because

they correspond to mutually exclusive constraints. The
second-order KKT necessary condition on a regular local
maximum is that

0 ≤ yT (∇2
s L)(s?, λ?,µ?,ν?) y

= λ? yT y

for every vectory in the subspace of first-order feasible
variations. This subspace is non-trivial, soλ? ≥ 0.

Solve Equation (1) to obtain

λ?s? = z + µ? − ν?.

Wheneverµ?
m > 0, both s?

m = 0 and ν?
m = 0. This

combination is impossible becausezm ≥ 0. Therefore,
we may eliminateµ? to reach

λ? s? = z − ν?.

The casesλ? = 0 andλ? > 0 require separate consider-
ation.

If λ? = 0, it is clear thatν? = z. Sinceν?
m > 0 only

if s?
m = δ, we must haves?

m = δ wheneverzm > 0.
Suppose thatk components ofs? equalδ. The remaining
(d − k) components are not uniquely determined by

the optimization problem. From the many solutions, we
choose one such that

s?
m =

√
c− k δ2

d− k
for m wherezm = 0.

This formula ensures thats? has the correct norm and
that none of its entries exceedsδ.

Whenλ? > 0, the solution has the form

s? = [γ z]δ,

whereγ is positive and the operator[·]δ truncates toδ
components of its argument that exceedδ. It is clear that
the largest components ofz are all truncated at the same
time. We only need to determinewhichcomponents these
are.

To that end, observe thatγ 7→ ‖[γ z]δ‖2 is a strictly
increasing function on[0, δ/zmin], where zmin is the
least positive component ofz. For at most one value
of γ, therefore, does the vector[γ z]δ have norm

√
c. If

this norm value were not attained, thenλ? would equal
zero. Letk be the number of entries ofs? that equal
δ, and suppose thatM indexes the remaining(d − k)
components. Then

c = ‖s?‖2
2 = k δ2 + γ2

∑
m∈M

|zm|2.

Recall thatγ is positive. Therefore, is impossible that
k δ2 > c. Whenk δ2 = c, it follows thatzm = 0 for each
m in M . Otherwise,zm must be non-zero for somem
in M . Then the value ofγ must be

γ =

√
c− k δ2∑
m∈M |zm|2

.

�

V. NUMERICAL EXPERIMENTS

Let us demonstrate that alternating projection can in-
deed produce tight frames whose columns have specified
PAR and specified norm. The experiments all begin with
the initial 3× 6 matrix

 .0748 + .3609i .0392 + .4558i .5648 + .3635i
.5861− .0570i −.2029 + .8024i −.5240 + .4759i
−.7112 + .1076i −.2622− .1921i −.1662 + .1416i

−.2567 + .4463i .7064 + .6193i .1586 + .6825i
−.1806− .1015i −.1946− .1889i .5080 + .0226i

.0202 + .8316i .0393− .2060i .2819 + .4135i

.

The respective PAR values of its columns are 1.5521,
2.0551, 1.5034, 2.0760, 2.6475 and 1.4730.



Unimodular tight frames are probably the most inter-
esting example of frames with low PAR. Every entry
of a unimodular frame has an identical modulus, and
so the PAR of each column equals one. Let us apply
the algorithm to calculate a unit-norm, unimodular tight
frame.

 .1345 + .5615i .1672 + .5526i .4439 + .3692i
.5410− .2017i −.0303 + .5766i −.5115 + .2679i
−.5768 + .0252i −.2777− .5062i −.2303 + .5294i

−.3358 + .4696i .4737 + .3300i .0944 + .5696i
−.5432− .1956i −.3689− .4442i .5747 + .0554i

.1258 + .5635i −.0088− .5773i .4132 + .4033i

.

Indeed, each of the columns has unit PAR, and the
singular values of the matrix are identical to eight
decimal places. The calculation required 78 iterations
lasting 0.1902 seconds.

Alternating projection can also compute tight frames
whose columns have unit PAR but do not have unit norm.
For example, if we request the column norms 0.75, 0.75,
1, 1, 1.25 and 1.25, the algorithm yields

 .3054 + .3070i .1445 + .4082i .3583 + .4527i
.4295− .0549i .1235 + .4150i −.5597 + .1418i
−.4228− .0936i −.0484− .4303i .0200 + .5770i

−.4264 + .3893i .4252 + .5831i .3622 + .6242i
−.5393− .2060i −.4425− .5701i .7165− .0863i

.2585 + .5162i −.2894− .6611i .1291 + .7101i

.

One can check that the column norms, PAR and singular
values all satisfy the design requirements to eight or
more decimal places. The computation took 84 iterations
over 0.1973 seconds.

Less stringent constraints on the PAR pose even less
trouble. For example, we might like to construct a tight
frame whose PAR is bounded by two and whose columns
have norms 0.75, 0.75, 1, 1, 1.25 and 1.25. Here it is.

 .0617 + .1320i .0184 + .2764i .4299 + .3593i
.4256− .1031i −.0558 + .5938i −.5920 + .4974i
−.5912 + .0025i −.1304− .3363i −.0807 + .2857i

−.1382 + .2511i .6847 + .7436i .2933 + .6939i
−.4306− .2650i −.2095− .3072i .7317 + .0928i

.0852 + .8093i −.3504− .5289i .2918 + .6048i

.

The computer worked for 0.0886 seconds, during which
it performed 49 iterations. As usual, the singular values
match to eight decimal places. It is interesting to observe
that the frame exceeds the design specifications. The
respective PAR values of its columns are 1.8640, 1.8971,
1.7939, 1.9867, 1.9618 and 1.0897.

VI. CONCLUSIONS ANDFURTHER WORK

We have proposed a method for constructing optimal
CDMA signature sequences that satisfy a constraint on
the peak-to-average power ratio. The algorithm is based
on an alternating projection between a spectral constraint
and the PAR constraint.

The flexibility of the alternating projection approach
suggests that it may be able to address other constraints.
This is indeed the case. For example, a straightforward
modification of this algorithm can construct sequences
whose Fourier transform is nearly unimodular, which
is the frequency-domain analog of low peak-to-average
power ratio. For some other applications, see the paper
[10].

In further work, it would be interesting to develop a
method for finding signatures for synchronous CDMA
systems operating in the presence of colored noise.
Extensions to asynchronous systems, and systems with
multipath interference, also merit further investigation.
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