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Abstract— A description of optimal sequences for direct-spread
code division multiple access is a byproduct of recent character-
izations of the sum capacity. This papers restates the sequence
design problem as an inverse singular value problem and shows
that it can be solved with finite-step algorithms from matrix
analysis. Relevant algorithms are reviewed and a new one-sided
construction is proposed that obtains the sequences directly
instead of computing the Gram matrix of the optimal signatures.

I. INTRODUCTION

The problem of sequence sequences to maximize the sum
capacity of symbol-synchronous direct-spread code division
multiple access system (henceforth S-CDMA) has received
significant attention in the information theory community over
the last decade, e.g. [1]–[7]. Despite this work, the algorithms
proposed to find optimal signatures have not exploited the
observation that the signature design problem can be character-
ized as an inverse singular value problem [8]. Thus researchers
have been unable to exploit the wealth of algorithms developed
in the matrix theory community during the past two decades
[9], [10].

In this paper we present the signature design problem from
a new perspective: as the solution to an inverse singular value
problem. In short, optimal sequences are intimately connected
to matrices that satisfy certain conditions on their column
norms and singular spectrum; these constraints are determined
by the user power requirements and the noise covariance. This
matrix analysis point-of-view allows us to leverage existing
algorithms for solving inverse singular value problems to
develop numerically stable, finite algorithms for solving the
sequence design problem. Unlike iterative algorithms, e.g. [4],
[7], [11], convergence is not an issue for finite-step algorithms
since they are guaranteed to solve the stated problem.

The specific contributions of this paper are two-fold. First
we present a summary of relevant finite-step algorithms from
matrix analysis that will be useful for researchers working
in sequence design. We focus on the algorithms by Bendel-
Mickey [9], Chan-Li [10] and Davies-Higham [12]. Second,
we present a new one-sided, finite algorithm that produces
the signature sequences directly instead of computing their
Gram matrix. This method has very modest time and space
requirements in comparison with the other techniques we dis-
cuss. Throughout we focus on the case of complex signatures
exclusively because it subsumes the real case without any
additional difficulty of argument.

II. BACKGROUND

A. Synchronous DS-CDMA

Consider the uplink of an S-CDMA system with N users
and a processing gain of d. Assume that N > d, since the anal-
ysis of the other case is straightforward. Define a d×N matrix
whose columns are the signatures: S

def=
[
s1 s2 . . . sN

]
.

Let S∗ to denote the (conjugate) transpose of S . Note that
(S∗S)nn = 1 for each n = 1, . . . , N . Assume that user n has
an average power wn and collect them in the diagonal matrix
W

def= diag (w1, w2, . . . , wN ). It is often more convenient to
absorb the power constraints into the signatures, so we also
define the weighted signature matrix X

def= SW 1/2. Denote the
n-th column of X as xn. For each n, one has the relationship

(X ∗X )nn = ‖xn‖2
2 = wn. (1)

Finally, let Σ denote the covariance matrix of the noise.
Viswanath and Anantharam have proven in [5] that, for

real signatures, the sum capacity of the S-CDMA channel per
degree of freedom is given by the expression (in the complex
case, the sum capacity differs by a constant factor)

Csum =
1
2d

max
S

log det(Id + Σ−1SWS∗). (2)

The basic sequence design problem is to produce a signature
matrix S that solves the optimization problem (2). Various
specializations have been considered with equal user powers,
white noise, unequal user powers, and colored noise. We will
show how each of these cases results in an inverse singular
value problem.

B. A Sum Capacity Bound

In [1], Rupf and Massey produced an upper bound on the
sum capacity under white noise with variance σ2:

Csum ≤ 1
2 log

(
1 +

Tr W

σ2 d

)
(3)

where Tr (·) indicates the trace operator. They also established
a necessary and sufficient condition on the signatures for
equality to be attained in the bound (3):

XX ∗ = SWS∗ =
Tr W

d
Id. (4)

A matrix X that satisfies (4) is known as a tight frame [13]
or a general Welch-Bound-Equality sequence (gWBE) [2]. A



condition equivalent to (4) is that

X ∗X =
Tr W

d
P (5)

where the matrix P represents an orthogonal projector from
C

N onto a subspace of dimension d. Recall that an orthogonal
projector is an idempotent, Hermitian matrix. That is, P2 = P
and P = P∗. An orthogonal projector is also characterized as
a Hermitian matrix whose nonzero eigenvalues are identically
equal to one. In light of equation (1), the problem of con-
structing optimal signature sequences in the present setting is
closely related to the problem of constructing an orthogonal
projector with a specified diagonal.

C. White Noise, Equal Powers

Consider the case where the power constraints are equal,
viz. W = w IN for some positive number w. Then condition
(4) for equality to hold in (3) becomes

w−1 XX ∗ = SS∗ =
N

d
Id. (6)

A matrix S which satisfies (6) is known as a unit-norm
tight frame (UNTF) [13] or a Welch-Bound-Equality sequence
(WBE) [1]. In fact, there always exist signature matrices that
satisfy condition (6), and so the upper bound on the sum capac-
ity can always be attained when the users’ power constraints
are equal [1]. The equation (6) can also be interpreted as a
restriction on the singular values of the signature matrix. Under
the assumptions of white noise and equal power constraints,
a matrix S yields optimal signatures if and only if

1) each column of S has unit-norm and
2) the d nonzero singular values of S are identically equal

to
√

N/d.

Therefore, this sequence design problem falls into the cate-
gory of structured inverse singular value problems. Note that
condition 1) must hold irrespective of the type of noise.

D. Majorization

The bound (3) cannot be met for an arbitrary set of power
constraints. The explanation requires some background in
majorization [14]. Essentially, majorization defines a partial
ordering that allows two vectors of equal norm to be compared.
A vector w majorizes λ (written w � λ ) if all the partial
sums of the entries of w are greater than or equal to the partial
sums of λ. It turns out that majorization defines the precise
relationship between the diagonal entries of a Hermitian matrix
and its spectrum (see [14], [15] for details).

Theorem 1 (Schur-Horn [15]): The diagonal entries of a
Hermitian matrix majorize its eigenvalues. Conversely, if w �
λ, there exists a Hermitian matrix with diagonal elements
listed by w and eigenvalues listed by λ.

E. White Noise, Unequal Powers

The Schur-Horn Theorem forbids the construction of an
orthogonal projector with arbitrary diagonal entries. For this
reason, (5) cannot always hold, and the upper bound (3) cannot
always be attained.

The key result of [2] is a complete characterization of
the sum capacity of the S-CDMA channel under white
noise. Viswanath and Anantharam demonstrate that oversized
users—those whose power constraints are too large relative
to the others for the majorization condition to hold—must
receive their own orthogonal channels to maximize the sum
capacity of the system, and they provide a simple method of
determining which users are oversized. The other users share
the remaining dimensions equitably.

Suppose that there are m < d oversized users, whose
signatures form the columns of S0. Let the columns of S1

list the signatures of the (N −m) remaining users, and let the
diagonal matrix W1 list their power constraints. The conditions
for achieving sum capacity follow.

1) The m oversized users receive orthogonal signatures:
S∗

0 S0 = Im.
2) The remaining (N − m) signatures are also orthogonal

to the oversized users’ signatures: S∗
0 S1 = 0.

3) The remaining users signatures satisfy

S1W1S
∗
1 =

Tr W1

d − m
Id−m.

Repeat the foregoing arguments to see that the sequence
design problem still amounts to constructing a matrix with
given column norms and singular spectrum. It is therefore an
inverse singular value problem.

F. Colored Noise, Unequal Powers

When the noise is colored, the situation is somewhat more
complicated. Nevertheless, optimal sequence design still boils
down to constructing a matrix with given column norms and
singular spectrum. Viswanath and Anantharam show that the
following procedure will solve the problem [5].

1) Compute an eigenvalue decomposition of the noise
covariance matrix, Σ = QDQ∗, where D = diag σ for
some non-negative vector σ.

2) Use Algorithm A of [5] to determine µ, the Schur-
minimal element of the set of possible eigenvalues of
SWS∗ + Σ .

3) Form the vector λ
def= µ − σ.

4) Compute an auxiliary signature matrix T with unit-norm
columns so that TWT ∗ = diag λ.

5) The optimal signature matrix is S
def= QT .

The computation in step (4) is equivalent to producing a
d × N matrix X

def= TW 1/2. The columns of X must have
squared norms listed by the diagonal of W . The vector λ
must list the d nonzero squared singular values of X . This is
another inverse singular value problem.

III. CONSTRUCTING CORRELATION MATRICES

A positive semi-definite Hermitian matrix with a unit diag-
onal is known as a correlation matrix [12]. The Gram matrix
A

def= S∗S of an optimal signature matrix S is always a
correlation matrix. Every correlation matrix with the appro-
priate spectrum can be factored to produce optimal signature
matrices [12]. Therefore, we begin with a technique for
constructing correlation matrices with a preassigned spectrum.



A. The Bendel-Mickey Algorithm

In 1978, Bendel and Mickey presented an algorithm that
uses a finite sequence of rotations to convert an arbitrary
N × N Hermitian matrix with trace N into a unit-diagonal
matrix that has the same spectrum [9]. We follow the superb
exposition of Davies and Higham [12]. Brief discussions
appear on page 76 of Horn and Johnson [15] and in Problems
8.4.1 and 8.4.2 of Golub and van Loan [16].

Suppose that A ∈ MN is a Hermitian matrix with Tr A =
N . (Let MN denote the set of complex N × N matrices and
Md,N to denote the set of complex d × N matrices.) If A
does not have a unit diagonal, one can locate two diagonal
elements so that ajj < 1 < akk; otherwise, the trace condition
would be violated. It is then possible to construct a real
plane rotation Q in the jk-plane so that (Q∗AQ)jj = 1. The
transformation A �→ Q∗AQ preserves the conjugate symmetry
and the spectrum of A but reduces the number of non-unit
diagonal entries by at least one. Thus, at most (N−1) rotations
are required before the resulting matrix has a unit diagonal.

The appropriate form of the rotation is easy to discover,
but the following derivation is essential to ensure numerical
stability. Recall that a two-dimensional plane rotation is an
orthogonal matrix of the form

Q =
[

c s
−s c

]
where c2 + s2 = 1 [16]. The corresponding plane rotation
in the jk-plane is the N -dimensional identity matrix with its
jj, jk, kj and kk entries replaced by the entries of the two-
dimensional rotation. Let j < k be indices so that

ajj < 1 < akk or akk < 1 < ajj .

The desired plane rotation yields the matrix equation[
c s
−s c

]∗ [
ajj ajk

a∗
jk akk

] [
c s
−s c

]
=

[
1 ãjk

ã∗
jk ãkk

]
where c2 + s2 = 1. The equality of the upper-left entries can
be stated as

c2ajj − 2scRe ajk + s2akk = 1.

This equation is quadratic in t = s/c:

(akk − 1) t2 − 2t Re ajk + (ajj − 1) = 0

whence

t =
Re ajk ± √

(Re ajk)2 − (ajj − 1)(akk − 1)
akk − 1

. (7)

Notice that the choice of j and k guarantees a positive
discriminant. As is standard in numerical analysis, the ± sign
in (7) must be taken to avoid cancelations. If necessary, one
can extract the other root using the fact that the product of the
roots equals (ajj − 1)/(akk − 1). Finally,

c =
1√

1 + t2
and s = ct. (8)

Floating-point arithmetic is inexact, so the rotation may not
yield ajj = 1. A better implementation sets ajj = 1 explicitly.
Davies and Higham prove that the Bendel-Mickey algorithm
is backward stable, so long as it is implemented the way we
have described [12]. We restate the algorithm.

Algorithm 1 (Bendel-Mickey): Given Hermitian A ∈ MN

with Tr A = N , this algorithm yields a correlation matrix
whose eigenvalues are identical with those of A.

1) While some diagonal entry ajj �= 1, repeat Steps 2–4.
2) Find an index k (without loss of generality j < k) for

which ajj < 1 < akk or akk < 1 < ajj .
3) Determine a plane rotation Q in the jk-plane using

equations (7) and (8).
4) Replace A by Q∗AQ . Set ajj = 1.

Since the loop executes no more than (N−1) times, the total
cost of the algorithm is no more 12N2 real floating-point op-
erations, to highest order, if conjugate symmetry is exploited.
The plane rotations never need to be generated explicitly,
and all the intermediate matrices are Hermitian. Therefore,
the algorithm must store only N(N + 1)/2 complex floating-
point numbers. MATLAB 6 contains a version of Algorithm 1
that starts with a random matrix of specified spectrum. The
command is gallery(’randcorr’, ...).

It should be clear that a similar algorithm can be applied
to any Hermitian matrix A to produce another Hermitian
matrix with the same spectrum but whose diagonal entries
are identically equal to Tr A/N .

The columns of S∗ must form an orthogonal basis for the
column space of A

def= S∗S according to (6). Therefore, one
can use a rank-revealing QR factorization to extract a signature
sequence S from the output A of Algorithm 1 [16].

B. The Davies-Higham Algorithm

The methods of the last section can be modified to com-
pute the signature sequence directly without recourse to an
additional QR factorization. Any correlation matrix A ∈ MN

can be expressed as the product S∗S where S ∈ Mr,N has
columns of unit norm and dimension r ≥ rankA. With
this factorization, the two-sided transformation A �→ Q∗AQ
is equivalent to a one-sided transformation S �→ SQ. In
consequence, the machinery of the Bendel-Mickey algorithm
requires little adjustment to produce these factors. We refer
to the one-sided version as the Davies-Higham algorithm in
view of [12]. We have observed that it can also be used to
find the factors of an N -dimensional correlation matrix with
rank r < N , in which case S may take dimensions d×N for
any d ≥ r.

Algorithm 2 (Davies-Higham): Given S ∈ Md,N for which
Tr S∗S = N , this procedure yields a d × N matrix with the
same singular values as S but with unit-norm columns.

1) Calculate and store the column norms of S .
2) While some column has norm ‖sj‖2

2 �= 1, repeat Steps
3–7.

3) Find indices j < k for which

‖sj‖2
2 < 1 < ‖sk‖2

2 or ‖sk‖2
2 < 1 < ‖sj‖2

2 .



4) Form the quantities

ajj = ‖sj‖2
2 , ajk = 〈sk, sj〉 and akk = ‖sk‖2

2 .

5) Determine a rotation Q in the jk-plane using equations
(7) and (8).

6) Replace S by SQ.
7) Update the two column norms that have changed.

Step (1) requires 4dN real floating-point operations, and the
remaining steps require 12dN real floating-point operations
to highest order. The algorithm requires the storage of dN
complex floating-point numbers and N real numbers for the
current column norms. Davies and Higham remark that the
algorithm is numerically stable [12].

IV. CHAN-LI AND ITS VARIANTS

Now we discuss a simple technique for constructing a
limited selection of Hermitian matrices with prescribed diag-
onal and spectrum. This is the core problem for the unequal
power case with white or colored noise because every optimal
weighted signature sequence has a Gram matrix A

def= X ∗X
with fixed diagonal and spectrum (and conversely). The algo-
rithm begins with a diagonal matrix of eigenvalues and applies
a sequence of rotations to impose the power constraints.
A similar technique can be used to build optimal weighted
signature sequences X directly.

A. The Chan-Li Algorithm

Chan and Li present a beautiful, constructive proof of
converse part of the Schur-Horn Theorem [10]. Suppose that
w and λ are N -dimensional, real vectors for which w � λ.
Using induction on the dimension, we show how to construct
a Hermitian matrix with diagonal w and spectrum λ. In the
sequel, assume without loss of generality that the entries of
w and λ have been sorted in ascending order. Therefore,
w(k) = wk and λ(k) = λk for each k.

Suppose that N = 2. The majorization relation implies λ1 ≤
w1 ≤ w2 ≤ λ2. Let A

def= diag λ. We can explicitly construct
a plane rotation Q so that the diagonal of Q∗AQ equals w:

Q
def=

1√
λ2 − λ1

[ √
λ2 − w1

√
w1 − λ1

−√
w1 − λ1

√
λ2 − w1

]
. (9)

Since Q is orthogonal, Q∗AQ retains spectrum λ but gains
diagonal entries w.

Suppose that, whenever w � λ for vectors of length N −
1, we can construct an orthogonal transformation Q so that
Q∗(diag λ)Q has diagonal entries w.

Consider N -dimensional vectors for which w � λ. Let A
def=

diag λ. The majorization condition implies that λ1 ≤ w1 ≤
wN ≤ λN , so it is always possible to select a least integer
j > 1 so that λj−1 ≤ w1 ≤ λj . Let P1 be a permutation
matrix for which

P∗
1AP1 = diag (λ1, λj , λ2, . . . , λj−1, λj+1, . . . , λN ).

Observe that λ1 ≤ w1 ≤ λj and λ1 ≤ λ1 + λj − w1 ≤
λj . Thus we may use equation (9), replacing λ2 with λj ,

to construct a plane rotation Q2 that sets the first entry of
Q∗

2 (diag (λ1, λj))Q2 to w1. If we define the rotation

P2
def=

[
Q2 0∗

0 IN−2

]
then

P∗
2P∗

1AP1P2 =
[
w1 v∗

v AN−1

]
where v is an appropriate vector and AN−1 =
diag (λ1 + λj − w1, λ2, . . . , λj−1, λj+1, . . . , λN ).

To apply the induction hypothesis, it remains to check that
the vector (w2, w3, . . . , wN ) majorizes the diagonal of AN−1.
We accomplish this in three steps. First, recall that λk ≤ w1

for k = 2, . . . , j − 1. Therefore,
m∑

k=2

wk ≥ (m − 1) w1 ≥
m∑

k=2

λk

for each m = 2, . . . , j − 1. The sum on the right-hand side
obviously exceeds the sum of the smallest (m− 1) entries of
diag AN−1, so the first (j − 2) majorization inequalities are
in force. Second, use the fact that w � λ to calculate that

m∑
k=2

wk =
m∑

k=1

wk − w1 ≥
m∑

k=1

λk − w1

= (λ1 + λj − w1) +
j−1∑
k=2

λk +
m∑

k=j+1

λk

for m = j, . . . , N . Once again, observe that the sum on the
right-hand side exceeds the sum of the smallest (m−1) entries
of diag AN−1, so the remaining majorization inequalities
are in force. Finally, rearranging the relation

∑N
k=1 wk =∑N

k=1 λk yields
∑N

k=2 wk = Tr AN−1.
In consequence, the induction furnishes a rotation QN−1

which sets the diagonal entries of AN−1 equal to the numbers
(w2, . . . , wN ). Define

P3
def=

[
1 0∗

0 QN−1

]
.

Conjugating A by the orthogonal matrix P = P1P2P3 trans-
forms the diagonal entries of A to w while retaining the
spectrum λ. The proof yields the following algorithm.

Algorithm 3 (Chan-Li): Let w and λ be vectors with as-
cending entries and such that w � λ. The following procedure
computes a real, symmetric matrix with diagonal entries w and
eigenvalues λ.

1) Initialize A = diag λ, and put n = 1.
2) Find the least j > n so that aj−1,j−1 ≤ wn ≤ ajj .
3) Use a symmetric permutation to set an+1,n+1 equal to

ajj while shifting diagonal entries n + 1, . . . , j − 1 one
place down the diagonal.

4) Define a rotation Q in the (n, n + 1)-plane with

c =

√
an+1,n+1 − wn

an+1,n+1 − ann
, s =

√
wn − ann

an+1,n+1 − ann
.

5) Replace A by Q∗AQ .



6) Use a symmetric permutation to re-sort the diagonal
entries of A in ascending order.

7) Increment n, and repeat Steps 2–7 while n < N .

This algorithm requires about 6N2 real floating-point op-
erations. It requires the storage of about N(N + 1)/2 real
floating-point numbers, including the vector w. It is concep-
tually simpler to perform the permutations described in the
algorithm, but it can be implemented without them.

We have observed that the algorithm given by Viswanath
and Anantharam [2] for constructing gWBEs is similar to the
Chan-Li algorithm. Nevertheless, we feel that the simplicity
of Chan and Li’s presentation merits repetition.

B. One-Sided Chan-Li

The Chan-Li algorithm only produces a Gram matrix, which
must be factored to obtain the weighted signature matrix.
Referring back to the ideas of Davies and Higham, we propose
a one-sided version of the Chan-Li algorithm. The benefits are
several. It requires less storage and less computation than the
Chan-Li algorithm. At the same time, it constructs the factors
explicitly. This algorithm has not been published before.

Algorithm 4 (One-Sided Chan-Li): Suppose that w and λ
are non-negative vectors of length N with ascending entries.
Assume, moreover, that the first (N − d) components of λ
are zero and that w � λ. The following algorithm produces
a d × N matrix X whose column norms are listed by w and
whose squared singular values are listed by λ.

1) Initialize n = 1, and set

X =

 0

∣∣∣∣∣∣∣
√

λN−d+1

. . . √
λN

 .

2) Find the least j > n so that ‖xj−1‖2
2 ≤ wn ≤ ‖xj‖2

2.
3) Move the j-th column of X to the (n + 1)-st column,

shifting the displaced columns to the right.
4) Define a rotation Q in the (n, n + 1)-plane with

c =

√
‖xn+1‖2

2 − wn

‖xn+1‖2
2 − ‖xn‖2

2

, s =

√
wn − ‖xn‖2

2

‖xn+1‖2
2 − ‖xn‖2

2

.

5) Replace X by XQ .
6) Sort columns (n+1), . . . , N in order of increasing norm.
7) Increment n, and repeat Steps 2–7 while n < N .

The algorithm requires 3dN real floating-point operations
and storage of N(d+2) real floating-point numbersm includ-
ing the desired column norms and the current column norms.
The procedure can be implemented without permutations.

V. DISCUSION

We have discussed a group of four algorithms that can be
used to produce sum-capacity-optimal S-CDMA sequences in
a wide variety of circumstances. The first algorithm, Bendel-
Mickey, constructs a Hermitian matrix with a constant diago-
nal and a prescribed spectrum. This matrix can be factored to
yield an optimal signature sequence for the case of equal user

powers, i.e. a unit-norm tight frame. Alternately, the Davies-
Higham algorithm can be used to produce the factors directly.
The third algorithm, Chan-Li, constructs a Hermitian matrix
with an arbitrary diagonal and prescribed spectrum, subject
to the majorization condition. The resulting matrix can be
factored to obtain an optimal signature sequence for the case
of unequal received powers, i.e. a tight frame. We have also
introduced a new variant, the one-sided Chan-Li algorithm,
that can calculate the factors directly.

The Bendel-Mickey and Davies-Higham algorithms can
potentially calculate every correlation matrix and its factors.
If they are initialized with random matrices, one may interpret
the output as a random correlation matrix. The factors can be
interpreted as random unit-norm signature sequences.

On the other hand, the output of the Chan-Li and one-sided
Chan-Li algorithms is not encyclopedic. They can construct
only a few matrices for each pair (w,λ). These matrices are
also likely to have many zero entries, which is undesirable for
some applications. In addition, these algorithms only build real
matrices, whereas complex matrices are often of more interest.
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