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ABSTRACT

Periodic non-uniform sampling is a known method to sample sig-
nals whose spectrum is sparsely occupied at rates below Nyquist.
However, this strategy relies on the implicit assumption that the in-
dividual samplers are exposed to the entire frequency range. This
assumption becomes impractical for wideband sparse signals. In this
paper, we propose an alternative sampling stage that does not require
a full-band front end. Instead, we suggest an analog front-end that
consists of a bank of multipliers, and low-pass filters with cut-off
much lower than the Nyquist rate. We then show that the problem of
recovering the reginal signal from the low-rate samples can be stud-
ied within the framework of analog compressed sensing. We derive
a parameter selection under which this system uniquely determines
the analog input and address stability aspects of the corresponding
reconstruction. Numerical experiments demonstrate robust recovery
in the presence of additive noise.

Index Terms— Analog to digital conversion, compressed sens-
ing, infinite measurement vectors (IMV), multi band sampling.

1. INTRODUCTION

Radio-frequency (RF) technology allows to modulate narrow band-
width transmissions over relatively high carrier frequencies. A wide-
band RF signal is said to be sparse if it contains only several such
transmissions so that the total transmission bandwidth occupies a
small portion of the spectrum. Sampling a wideband signal at the
Nyquist rate has long become prohibitive as carrier frequencies pass
the rates of state-of-the-art analog to digital converters (ADCs) by
orders of magnitude. Thus, exploiting the inherent sparsity is neces-
sary to reduce conversion-rate. A multi band signal is a convenient
model which captures the sparsity structure by restricting the fre-
quency support to reside within several continuous intervals (bands)
and vanish elsewhere.

Previous work on multi band signals reduced the sampling rate
by taking point-wise samples of the analog signal on a periodic non-
uniform grid [1]. Multi coset sampling, a specific strategy of this
type, was analyzed in [2] and proved to allow exact recovery when
band locations are known. Blind recovery, namely recovery in the
case band locations are unknown, was studied extensively in [3].
However, the sampling front ends of [1–3] are impractical for wide-
band applications, since standard ADCs require matching their spec-
ified rate to the Nyquist rate of the input signal even when the actual
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sampling rate is lower. Other limitations are detailed in Section 2.2.
A recent work considered a hybrid optic-electronic sampling scheme
which can partially overcome these limitations [4], at the expense of
size and cost.

In this paper, we propose a practical sampling system consist-
ing of two stages: a front-end (non-optical) hardware and standard
low-rate ADCs. Our system design is inspired by the one-channel
random demodulator of [5], which was used for a discrete signal
model. In contrast, our method assumes an analog input signal,
no randomness, and the digital conversion is carried out in several
parallel channels. After reviewing some necessary background ma-
terial, in Section 2, we describe the proposed design in Section 3.
Frequency domain analysis then leads to an infinite measurement
vectors system, which allows to infer the band support from a finite
dimensional program [6]. The latter can be solved within the frame-
work of compressed sensing (CS). We prove that a certain parameter
selection guarantees a unique analog signal matching the samples.
Additional requirements for stable recovery are also detailed. Nu-
merical experiments, provided in Section 4, are used to evaluate the
design and to demonstrate stable recovery in the presence of noise.

2. FORMULATION AND BACKGROUND

2.1. Design Goals for Efficient Sampling

Let x(t) be a real-valued finite-energy signal in the time domain,
and X(f) =

∫∞
−∞ x(t) exp(−j2πft)dt be its Fourier transform

(assumed to exist). In the sequel, we consider a multi band sig-
nal model M such that every x(t) ∈ M is bandlimited to F =
[−fNYQ/2, fNYQ/2] and the support of X(f) consists of 2N fre-
quency intervals, at the most, of widths not greater than B. Fig. 1
depicts a typical communication application that obeys this signal
model.

We wish to design a sampling system for x(t) ∈ M under the
following requirements:

1. Sampling rate should be as low as possible;

2. Blindness, namely no prior knowledge on band locations;

3. Practical implementation with existing devices.

A sampling stage satisfying these requirements is referred to herein
as efficient.

The setM is a union of subspaces corresponding to all possible
signal supports. Every x(t) ∈ M lies in one of these subspaces.
Blindness, is a factor of efficient sampling, since detecting the exact
subspace, prior to sampling, may be impossible or too expensive to
implement.
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Fig. 1: Three RF transmissions are carried over different carriers fi. At
the receiver, the transmissions sum up to a multi band signal (bottom
drawing). In this example N = 3, and the modulation techniques of
the transmitters determine the maximal expected width B.

The lowest (average) sampling rate which allows blind perfect
reconstruction for all signals in M is 4NB samples/sec [3]. This
rate is proportional to the effective bandwidth of x(t) and is typ-
ically far less than the Nyquist rate fNYQ, which accounts for the
maximal possible frequency in x(t). In practice, a sampling rate
above 4NB is required to allow stable recovery, as further discussed
in Section 3.3.

Our previous work describes blind reconstruction of x(t) ∈ M
from multi coset samples taken at the minimal rate [3]. The next
section details the practical limitations of multi coset strategy, which
make it inefficient for wideband signals.

2.2. Practical Limitations of Multi Coset Sampling

Multi coset is a periodic non-uniform sampling of the Nyquist rate
sequence x(nTNYQ), where TNYQ = 1/fNYQ. The ith coset takes the
ith value in every block of L consecutive samples. Retaining only
p < L cosets, indexed by C = {ci}p

i=1, gives p sequences

xci [n] =

{
x(nTNYQ) n = mL + ci, m ∈ Z
0 otherwise, (1)

with an average sampling rate p/(LTNYQ), which is lower than the
Nyquist rate.

To explain the practical limitations of this strategy, observe that
standard ADC device have a specified maximal rate r, and manufac-
tures require a preceding low-pass filter with cutoff r/2. Distortions
occur if the anti-aliasing filter is not used, since the design is tailored
to r/2-bandlimited signals and has an internal parasitic response to
frequencies above r/2. To avoid these distortions, an ADC with r
matching the Nyquist rate of the input signal must be used, even if
the actual sampling rate is below the maximal conversion rate r. In
multi coset each sequence xci [n] corresponds to uniform sampling
at rate 1/(LTNYQ) whereas the input x(t) contains frequencies till
fNYQ/2. Acquiring xci [n] is thus possible only if using an ADC
with r = fNYQ, which is operated L times slower than its maximal
rate. Besides the resource waste, this renders multi coset impracti-
cal in wideband applications, in which fNYQ is higher (typically by
orders of magnitude) than the rate r of available devices.

A recent work pursued a non-conventional ADC design for
wideband applications, which incorporates high-rate optical de-
vices [4]. The hybrid optic-electronic system allows sampling at
rate 1/(LTNYQ) with minimal attenuation to higher frequencies
(till fNYQ/2). Unfortunately, to-date such a result cannot be ac-
complished purely by electronic technology. Thus, for a variety of
wideband applications, which cannot afford the size or expense of
an optical system, multi coset sampling becomes impractical.

y(Λ)
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⋃

i
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Fig. 2: Recovery of the joint support S = supp(x(Λ)).

Another limitation of multi coset sampling, which also exists in
the optical implementation, is maintaining accurate time delays be-
tween the ADCs of different cosets. Any uncertainty in these delays
impacts the recovery from the sampled sequences.

Before describing the way our proposed sampling stage over-
comes these limitations, we briefly review the mechanism underly-
ing the blind reconstruction of [3].

2.3. IMV System

Let A be a given m× n matrix with m < n and consider the para-
metric linear system:

y(λ) = Ax(λ), λ ∈ Λ, (2)

where Λ is some known set (of finite or infinite cardinality). In
(2), the unknowns are the vectors x(λ), which are assumed to be
jointly K-sparse in the following sense. Define the vector support
supp(v) = {i |vi 6= 0}, and the support of the vector set x(Λ) =
{x(λ) |λ ∈ Λ} as supp(x(Λ)) = ∪λ supp(x(λ)). Then, x(Λ) is
jointly K-sparse if the set size | supp(x(Λ))| ≤ K. Put differently,
x(Λ) share a common non-zero location set of cardinality K.

When the support S = supp(x(Λ)) is known, recovering x(Λ)
from the known vector set y(Λ) = {y(λ) |λ ∈ Λ} is possible if the
sub-matrix AS , consisting of the columns of A indicated by S, has
full column rank. In this case,

xS(λ) = (AS)†y(λ) (3a)

xi(λ) = 0, i /∈ S (3b)

where xS(λ) contains only the entries of x which are indicated
by S, AH

S denotes the conjugate transpose of AS and (AS)† =
(AH

S AS)−1AH
S is the Moore-Penrose pseudo-inverse. For un-

known support S, (2) is still invertible if K = |S| is known, and
every 2K columns of A are linearly independent [6, 7]. However,
solving (2) for x(Λ) is now NP-hard, since recovering S requires
a combinatorial search in general. Nonetheless, recent advances
in the CS literature provide sub-optimal polynomial-time recovery
algorithms for x(Λ), when Λ is a single or a finite element set, cor-
responding to a single/multiple measurement vectors (SMV/MMV)
system [7–12].

Recovering x(t) from multi coset samples boils down to recov-
ering a jointly K-sparse solution of a certain infinite measurement
vectors (IMV) system, namely (2) with infinite cardinality Λ. The
infinite dimensions are a direct consequence of the relation to a con-
tinuous signal x(t). Known band locations imply the support set S,
and thus reconstruction is carried out by (3) [1, 2] . In a blind sce-
nario, it was proved in [3, 6] that x(Λ) can be recovered exactly in
two steps. First, construct a frame V for y(Λ) with finitely many
vectors. Computing V translates to simple operations on the sam-
pled sequences, as described in Section 4.2. Then, solve the MMV
system V = AU for the matrix Ū with the minimal number of
rows that are non-identically zero. The MMV is guaranteed to have
a unique sparse solution Ū and S = ∪i supp(Ūi) when the union is
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Fig. 3: Description of a practical sampling stage for multi band signals.

taken over the columns of Ū [6]. Fig. 2 summarizes these recovery
steps.

In the next section, we describe and analyze our candidate sam-
pling system. In contrast to multi coset strategy, our system uses
low-rate standard ADCs. We match the analog input of the ADCs to
their maximal rate. Time offsets between devices are also avoided
in the proposed system. Furthermore, the sampling sequences in our
method are related to x(t) via an IMV system, although they are dif-
ferent from (1). Consequently, the recovery of x(t) can be performed
by using the steps described in Fig. 2 and (3).

3. EFFICIENT SAMPLING

3.1. Description

We now describe the system, as appears in the drawings of Fig. 3.
The exact choice of system parameters is described in the next sec-
tions.

The signal x(t) enters m channels simultaneously. At the ith
channel, x(t) is multiplied by a function pi(t), referred to as a mix-
ing function, and then low-pass filtered and sampled. Each pi(t) is
a Tp-periodic piecewise constant function, which alternates between
±1 for M equal-length time intervals. Formally,

pi(t) = αik, k
Tp

M
≤ t ≤ (k + 1)

Tp

M
, 0 ≤ k ≤ M − 1, (4)

with αik ∈ {+1,−1}, and pi(t + nTp) = pi(t) for every n ∈ Z.
Once multiplied by the ith mixing function, actual conversion

to digital is carried out by a low-pass filter with a cutoff frequency
1/(2Ts) and sampling at rate 1/Ts. The average sampling rate is
therefore m/Ts. Observe the match between the filter cutoff fre-
quency and the ADC sampling rate, and in addition the simultaneous
sampling at all channels, which allows for practical implementation.
Another advantage of our system is that the new samples are pro-
duced at a constant rate, which allows passing them directly to a
digital signal processor operating at the same frequency. In contrast,
multi coset samples are generated non-uniformly in time, requiring
additional hardware to buffer them into digital devices.

3.2. Analysis

To ease exposition we choose an odd M , T = M/fNYQ, and Ts =
Tp = T . These choices are relaxed in [13]. Consider the ith channel.
Since pi(t) is periodic, it has a Fourier expansion

pi(t) =

∞∑
n=−∞

cinej 2π
T

nt, (5)

where the coefficients are given by [13]

cin =
1

2π

(
M−1∑

k=0

αike−jω0nk

)
1− e−jω0n

jn
, (6)

for ω0 = 2π/M and cin = ci,−n. Expressing the Fourier transform
Pi(f) in terms of the Fourier series coefficients cin leads to

Pi(f) =

∫ ∞

−∞
pi(t)e

−j2πftdt =

∞∑
n=−∞

cinδ
(
f − n

T

)
, (7)

with δ(t) denoting the Dirac delta function. The analog multipli-
cation x̃i(t) = x(t)pi(t) translates to convolution in the frequency
domain,

X̃i(f) = X(f) ∗ Pi(f) =

∞∑
n=−∞

cinX
(
f − n

T

)
. (8)

Therefore, X̃i(f) is a linear combination of shifted copies of X(f).
Filtering X̃i(f) by H(f), whose frequency response is an ideal

rect function in the interval F0 = [−1/(2T ), 1/(2T )], results in

Ai(f) = H(f)X̃i(f) =

n0∑
n=−n0

cinX
(
f − n

T

)
, f ∈ F0, (9)

where n0 is the smallest integer satisfying

2n0 + 1 ≥ TfNYQ. (10)



Under the choices above, n0 = (M − 1)/2. The discrete-time
Fourier transform of ai[n] is

Ai(e
j2πfT ) =

∞∑
n=−∞

ai[n]e−j2πfTn (11)

=

n0∑
n=−n0

cinX
(
f − n

T

)
, f ∈ F0. (12)

Substituting (6) in (12) leads to the system

y(f) = (SF)(Dx(f)), f ∈ F0, (13)

where yi(f) = Ai(e
j2πfT ), 1 ≤ i ≤ m, S is an m × M matrix

whose ikth entry Sik = αik. The M×M matrix F is a certain cyclic
columns shift of the discrete Fourier transform matrix of order M .
The M -square diagonal D scales xi(f) = X(f + (i− n0 − 1)/T )
according to the last term in (6). Since D has non-zero diagonal
entries, it can be absorbed into x(f) while keeping supp(x(F0)) =
supp(Dx(F0)). Thus, (13) is an IMV system with SF replacing A
of (2).

3.3. Parameter Selection and Stable Recovery

The following theorem, whose proof appears in [13], suggests a pa-
rameter selection for which the sequences ai[n], 1 ≤ i ≤ m match
a unique x(t) ∈ M. The same selection with only half of the sam-
pling channels can be used for known band locations. Evidently, the
system of Fig. 3 can also replace the multi coset stage of [2].

Theorem 1 (Uniqueness) Let x(t) ∈ M be a multi band signal
and assume the choices T = M/fNYQ for an integer M (not neces-
sarily odd) and Tp = Ts = T . If:

1. M ≤ fNYQ/B,

2. m ≥ 2N for non-blind reconstruction or m ≥ 4N for blind,

3. S = {αik} is such that every 4N columns are linearly inde-
pendent,

then, for every f ∈ F0, the vector x(f) is the unique 2N -sparse
solution of (13).

The parameter selection of Theorem 1 guarantees an average
sampling rate m/T ≥ 4NB. Depending on whether fNYQ/B is
an integer, this selection allows to achieve the minimal rate when
taking the extreme values for m, M . Note that x(f) is 2N -sparse,
while x(F0) is jointly 4N -sparse under the parameter selection of
the theorem. As detailed in [3], this factor requires doubling m in
order to use Fig. 2 and (3). Gaining back this factor at the expense
of a higher recovery complexity is also described in [3].

Selecting a specific sign pattern αik which satisfy the require-
ment of the theorem is difficult, since validating the condition re-
quires checking the rank of every column subset of S of cardinality
4N . Fortunately, the CS literature provides a nice way to overcome
this limitation; drawing αik = ±1 independently with equal proba-
bility is most likely to satisfy the condition of Theorem 1 [8]. In fact,
an even stronger condition, termed the restricted isometry property
(RIP), holds in this setting [8].

To be precise, recall that a matrix A is said to have the RIP of
order K, if there exists 0 ≤ δK < 1 such that

(1− δK) ≤ ‖Ax‖2 ≤ (1 + δK), (14)

for every K-sparse unit-norm x [8]. If A = SF satisfies the RIP
of order 4N , then the left hand side of (14) ensures that every 4N
columns of A are linearly independent. Since F is unitary, it implies
the condition of the theorem for αik. Moreover, under the parameter
selection of the theorem, every x(f) in (13) is 2N -sparse. Thus, the
RIP of order 4N also ensures that both AS , (AS)† are well condi-
tioned for every possible |S| ≤ 4N . This implies stable recovery, in
the sense of bounded reconstruction error for bounded errors in the
samples [13].

In order to quantify the conditions on m, M under which the
RIP of order 4N holds, we quote with the following CS results for
random matrices. The RIP of order K holds with high probability for
a random m × M matrix SF, for S with equal probability entries
Sik = ±1/

√
m, and a deterministic unitary matrix (such as F in

(13)), if m ≥ C log(M/K)K for some C > 0 independent of
m, M, K [14]. The necessity of such a log factor, for an alternative
RIP definition, was proved in [15]. However, the matrix S = {αik}
in our system is not random and is chosen only once. Nonetheless,
baring in mind these results for random matrices, implies a rough
relation of m ≥ C log(M/N)N for stable recovery. In practice,
we follow the line of many CS papers, and suggest to evaluate the
stability of a specific chosen S = {αik} implicitly in simulations,
as performed in the next section.

4. NUMERICAL EVALUATION

To complete the design criteria for our system, we conduct two ex-
periments. First, the influence of different sign patterns αik on the
recovery is examined. Then, recovery in the presence of input noise,
x(t) + n(t), is demonstrated. In the process we explain the practi-
cal computation of the frame V of Fig. 2, from the time sequences
ai[n]. SMV and MMV systems are solved using orthogonal match-
ing pursuit [10, 11].

4.1. Selecting Sign Patterns

Calculating δK of A = SF according to (14) is a combinatorial
time-consuming procedure [8]. Instead, evaluating the stability can
be implicitly performed as follows. Let S = {αik} be the specific
sign pattern under test and F as defined earlier. Prepare an extensive
set of K-sparse vectors, by selecting the non-zeros locations uni-
formly at random and independently drawing the non-zero values
from a normal distribution. If OMP (or any other preferred CS algo-
rithm) succeeds to recover the K-sparse x from y = Ax for most
examples, then A can be assumed to have the RIP. Fig. 4 depicts
results of such an experiment for 12 choices of S according to dif-
ferent strategies. The reported recovery rate is an average over 100
examples for every value of 1 ≤ K ≤ 10. Constructing S by cyclic
shifts of a single random row, is shown to be as stable as using a fully
random S. In contrast, trying to impose inter-row periodicity lead to
a non-stable recovery, since δK = 0 for K ≥ 2 with this selection.
The cyclic-shifts strategy can be used to reduce hardware complex-
ity when implementing the m mixing functions [13]. Point out that
this experiment differs from standard CS setups (e.g., [6, 7, 10]) in
which S is also randomly selected together with every x. Here, the
patterns under test remain fixed for the entire experiment.

4.2. Noisy Setting

To evaluate recovery from noisy input signals, an additive white
Gaussian noise model is assumed at the system input, x(t) + n(t).
Our setup generates 100 multi band signals which are sampled with
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m = 51 channels according to Fig. 3. The flow of Fig. 2 is used
to recover an estimated support set Ŝ from only m̄ ≤ m sequences.
The average recovery rate of Ŝ = S, where S is the true support set,
is reported in Fig. 5, as m̄ varies from 6 to m̄ = m, and for different
signal to noise ratios (SNR), defined by SNR(dB)=10 log(‖x‖/‖n‖)
with L2 norms.

To generate the 100 multi band signals, we choose N = 3, B =
40 MHz and x(t) =

∑N
i=1

√
EiB sinc(Bt)cos(2πfit), where

sinc(x) = sin(πx)/(πx) for x 6= 0 and sinc(x) = 1 other-
wise. The energy coefficients are fixed Ei = {1, 2, 3}, whereas
for every signal the carriers fi are chosen uniformly at random in
[−fNYQ/2, fNYQ/2] for fNYQ = 10 GHz. A dense grid of 4000 eq-
uispaced points in the time interval [−200/fNYQ, 200/fNYQ] is used
to represent continuous signals on a computer. A white Gaussian
noise is added and scaled to the desired SNR.

The parameters of the sampling stage are: M = 51, Ts = Tp =
M/fNYQ. The values αik = ±1 are drawn randomly with equal
probability and remain fixed for the entire experiment. At the ith
channel, the dense samples of x(t) + n(t) are multiplied by pi(t)
and passed to a 50-tap low-pass filter, designed by the MATLAB
command h=fir1(50,1/M). The output is decimated to produce the
low-rate sequences ai[n].

Note that constructing the frame V of Fig. 2 is carried out by first
computing the m-squared values Qik =

∑
n ai[n]ak[n], and then

using the eigenvalue decomposition Q = VVH while discarding
eigenvectors of the noise space [3].

5. CONCLUSIONS

We developed an efficient sampling stage for analog multi band sig-
nals. In the proposed system, analog mixers and standard ADCs
replace impractical non uniform sampling of multi coset strategy.
Analog mixers for wideband applications is an existing RF tech-
nology, though selecting the exact devices requires an expertise in
analog design.

The proposed system has a set of parameters, which determines
the signal, if selected according to the conditions we derived. Ana-
lyzing our system in the frequency domain lead to an IMV system,
which allows to use existing reconstruction stages with only minor
modifications. In addition, based on the IMV system and recent
works in the CS literature, we deduce the rate requirements for sta-
ble blind recovery, which in general is higher than the rate required
to determine the signal from its samples.

A preliminary computer evaluation of our system shows a
promise for stable blind recovery from sub-Nyquist sampling rate,
although further work is required to quantify the optimal working
point in the trade-off between sampling rate, blindness, and practical
implementation.
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