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ABSTRACT

The well-knownshrinkagetechnique is still relevant for con-
temporary signal processing problems over redundant dictio-
naries. We present theoretical and empirical analyses for two
iterative algorithms for sparse approximation that use shrink-
age. The GENERAL IT algorithm amounts to a Landweber
iteration with nonlinear shrinkage at each iteration step. The
BLOCK IT algorithm arises in morphological components anal-
ysis. A sufficient condition for which General IT exactly re-
covers a sparse signal is presented, in which the cumulative
coherence function naturally arises. This analysis extends
previous results concerning the Orthogonal Matching Pursuit
(OMP) and Basis Pursuit (BP) algorithms to IT algorithms.

1. INTRODUCTION

Sparse approximation problems have been studied for nearly
a century, and they arise in many arenas, from compression
and analysis of audio, image, and video signals, to machine
learning, denoising, and regularization. In each of these ap-
plications, a target signal is approximated by a linear com-
bination of elementary signals, drawn from a (fixed) large
and linearly dependent collection of signals called adictio-
nary. The crucial element in sparse approximation is that we
seek a good approximation using as few elementary signals as
possible—asparseapproximation. Much recent attention has
been devoted to proving algorithms compute optimal sparse
approximations, despite the fact that the general sparse ap-
proximation problem is NP-hard for an arbitrary redundant
dictionary. The geometry of the overcomplete dictionary un-
der consideration plays an important role in the success of the
algorithm.

In 1994, Donoho and Johnstone introduced a denoising
technique known asshrinkage, which is optimal for estimat-
ing signals that are sparse with respect to an orthonormal basis
and contaminated with Gaussian white noise. Although the
assumption that the dictionary be unitary is crucial to the op-
timality of shrinkage, it has been employed quite succesfully
in practice in the case where the dictionary is redundant [2].

We define two iterative thresholding algorithms (GENERAL

IT and BLOCK IT) which incorporate coefficient shrinkage or

thresholding at each iteration. GENERAL IT is a Landweber
iteration with nonlinear shrinkage at each step and is moti-
vated by the analysis of [1]. BLOCK IT is used when our
redundant dictionary is a union of orthonormal bases (e.g.,
morphological components [3]). The BLOCK IT algorithm
thresholds in each basis sequentially and, as such, is the more
practical algorithm. Each substep of a full iteration involves a
single unitary transform (possibly with a fast implementation)
and we need only work with residual and coefficient vectors,
which are equal in length to the original signal. GENERAL

IT requires that we manipulate a larger coefficient vector and
perform two matrix–vector multiplications much larger than
the single unitary transforms. This algorithm does, however,
take into account the interactions among the vectors in the
dictionary.

We provide a sufficient condition for which guarantees
that GENERAL IT recovers exactly sparse signals. This suf-
ficient condition matches the sufficient geometric conditions
for the Orthogonal Matching Pursuit (OMP) and Basis Pur-
suit (BP) algorithms. We also provide analysis of the fixed
points of the BLOCK IT algorithm. In the following section
we make rigorous the concepts that arise in sparse approxi-
mation problems and define two iterative thresholding algo-
rithms. We then provide the theoretical analysis of these al-
gorithms, followed by a discussion of the main result of the
article: a sufficient condition guaranteeing the recovery of ex-
actly sparse signals. The paper concludes with a study of the
empirical performance of each algorithm.

2. PRELIMINARIES

We work in the complex inner-product spaceCd, which is
called thesignal space. The objective is to find an efficient
representation of the signal by selecting atoms, or column
vectors, from a dictionary. Adictionary D in Cd is a finite
collection of unit-norm (column) vectors{φω}, called atoms,
that span the signal space. We writeD = {φω|ω ∈ Ω} and
we form thed × N dictionary matrixΦ whose columns are
the atoms ofD . Usually, the number of atoms,N , in the dic-
tionary is much larger thand. We use the symbol∗ for the
complex, conjugate transpose of vectors and matrices.

A fundamental metric associated with a dictionary is the



coherenceµ of the dictionary. It is an indicator of how corre-
lated two atoms from the dictionary are to each other and is
calculated by

µ = max
j 6=k
|〈φωj , φωk

〉| = max
j 6=k
| (Φ∗Φ)jk |

A less pessimistic measure of the correlation between atoms,
and a generalization of the coherence is thecumulative coher-
ence. The cumulative coherence functionµ1(m) is defined
for positive integersm by

µ1(m) = max
|Λ|=m

max
Ψ

∑
λ∈Λ

|〈ψ, φλ〉|,

where the vectorψ ranges over the atoms indexed byΩ \ Λ.
A representationof a signals in Φ is a column vector (or

coefficient vector)c such thats = Φc. SinceN > d, the
atoms ofΦ are linearly dependent, and so the hope is we can
find a sparse representation, i.e., a representation with few
nonzero coefficients. We calculate the sparsity of the coeffi-
cient vector via thel0 quasi-norm‖ · ‖0 as

‖c‖0 = |{ω ∈ Ω | cω 6= 0}|

2.1. Spare approximation problems

The SPARSEproblem is to construct the best approximation
of a signal with a linear combination ofm atoms or fewer
from the dictionary.

min
c∈CΩ

‖s− Φc‖2 subject to ‖c‖0 ≤ m (SPARSE)

This problem is primarily studied in applications where one
has a generative model of the input signal or in resource-
constrained settings where one has limited storage. The EXACT-
SPARSEproblem is to recover an exact superposition

s = Φα =
m∑

k=1

αkφk (EXACT-SPARSE)

of m atoms from a redundant dictionary, whereα ∈ CΩ.
Though natural signals rarely happen to be linear com-

binations of atoms, the EXACT-SPARSE problem may lend
some insight into some of the more challenging sparse ap-
proximation problems, such as SPARSE.

2.2. Iterative thresholding (IT) algorithms

Let us first define the (nonlinear) hard and soft thresholding
operators,Hθ andSθ.

Hθ(x) =

 x |x| ≥ θ
2

0 |x| < θ
2

Sθ(x) =


x+ θ

2 x ≤ −θ
2

0 |x| < θ
2

x− θ
2 x ≥ θ

2

If x ∈ C, then we use a complex thresholding operator, which
is defined asHθ

(
reiω

)
= Hθ(r)eiω, and similarly forSθ. Let

us continue with a formal description of the algorithms.

Algorithm 1 (G ENERAL IT)

1. Initialize the coefficient vectorc0 = 0, the
approximation vectora0 = Φc0 = 0, and the iteration
countert = 1.

2. Update the coefficient vector as

ct ←− Hθ

(
ct−1 + Φ∗ (

s− Φct−1
) )

3. Calculate the new approximation vector asat = Φct.

4. When the stopping criterion is met, output the vector
of coefficientscT , the approximation vectoraT , and
the residualrT = s− aT .

In the case whereΦ = [Φ1,Φ2, . . . ,ΦJ ] is a union ofJ or-
thonormal dictionaries, a second algorithm, which we will re-
fer to as BLOCK IT, has been proposed in [2, 3]. This al-
gorithm is similar to GENERAL IT, except that we analyze
the residual of the signal in the first basis, threshold the re-
sult, compute the new residual, and repeat in each of the other
bases. We describe the algorithm forJ = 2, but the definition
may easily be extended forJ > 2.

Algorithm 2 (B LOCK IT)

1. Initialize the coefficient vectorc = [c1, c2] = 0, and
the residualr0 = s, and the iteration countert = 1.

2. Update the coefficient vector as

(1) ct1 = Hθ

(
Φ∗

1r
t−1

)
(2) rt− 1

2 = s− Φ1c
t
1

(3) ct2 = Hθ

(
Φ∗

2r
t− 1

2
)

(4) rt = s− Φ2c
t
2

3. Calculate the new approximation vector asat = Φct.

4. When the stopping criterion is met, output the vector
of coefficientsc = [c1, c2].

3. MAIN RESULTS

We will develop a condition which guarantees that GENERAL

IT recovers them-term representation of exactly sparse signals—
resembling the condition in [4]—when the coefficient vector
α contains only ones and zeros. The results in [4] demon-
strate that the critical problem in sparse approximation is to
find the support set of the coefficients—not to find the values
of the coefficients themselves. For this reason, we focus on



this type of coefficient vector. Denote the set of atoms par-
ticipating ins asΛ. From the dictionary synthesis matrix, we
form thed×mmatrixΦΛ whose columns are the atoms listed
in Λ. We also define a second matrixΨΛ whose columns are
the(N −m) atoms indexed byΩ \ Λ.

Theorem 3.1. Let s = ΦΛ1, where|Λ| = m. ThenGEN-
ERAL IT (hard) recovers them-term representation ofs up
to any prescribed error tolerance if

µ1(m− 1) + µ1(m) < 1

Proof. Notice that after rearranging terms,

Φ∗s =

 Φ∗
ΛΦΛ1

Ψ∗
ΛΦΛ1

 .
The upper entries in the vector of coefficients capture the co-
herence of the vectors in theΛ among themselves and the
lower entries capture the coherence of these vectors with the
rest of the dictionary. We can bound the coherence of the
vectors inΛ among themselves as∣∣∣∣∣ ∑

j 6=i

〈φωi
, φωj
〉

∣∣∣∣∣ ≤∑
j 6=i

|〈φωi
, φωj
〉| ≤ µ1(m− 1)

for ωi, ωj ∈ Λ. Similary, we can bound the expression∣∣∣∣∣ ∑
ωk∈Λ
ωl /∈Λ

〈φωk
, φωl
〉

∣∣∣∣∣ ≤ ∑
ωk∈Λ
ωl /∈Λ

|〈φωk
, φωl
〉| ≤ µ1(m).

These two bounds provide upper and lower estimates for each
entry inΦ∗s. Each entryvi in Φ∗

ΛΦΛ1 satisfies

1− µ1(m− 1) ≤ vi ≤ 1 + µ1(m− 1)

and each entryv′i in Ψ∗
ΛΦΛ1 satisfies

−µ1(m) ≤ v′i ≤ µ1(m).

Because we thresholdΦ∗s to obtain the first coefficient vector
c1 = Hθ(Φ∗s), we would like to retain those coefficients
indexed byΛ. This is where our bound onm is enforced.
Sinceµ1(m) < 1 − µ1(m − 1) by hypothesis, if we choose
θ ∈

(
µ1(m), 1− µ1(m− 1)

)
, when we threshold,

c1 =

 Φ∗
ΛΦΛ1

0


GENERAL IT has thus recovered the index set,Λ, in one

iteration. In general, we find that at thenth step in the iter-
ation, those coefficientsvi indexed byΛ are bounded below
and above by1 − (µ1(m − 1))n and1 + (µ1(m − 1))n, re-
spectively, while those coefficients not inΛ are zero. Because
µ1(m − 1) < 1, we can recover both the index set and the
coefficients up to any prescribed tolerance.

The next result gives us necessary and sufficient condi-
tions on a signal and a vector of coefficients for that vector of
coefficients to be a fixed point of the BLOCK IT algorithm.

Theorem 3.2. Let s be an arbitrary signal of lengthd. Let
Φ = [Φ1 |Φ2] be a union of two orthonormal bases. A neces-
sary and sufficient condition for the vectorc = [c1, c2] to be
a fixed point ofBLOCK IT (hard) is

||Φ∗(s− Φc)||∞ <
θ

2
(1)

supp(εi) ∩ supp(ci) = ∅ (2)

cmin >
θ

2
(3)

whereεi = Φ∗
i (s− Φc).

Proof. First, assumec = [c1, c2] is a fixed point. Then

c1 = Hθ [Φ∗
1s− (Φ∗

1Φ2)c2] , c2 = Hθ [Φ∗
2s− (Φ∗

2Φ1)c1]

We can write

c1 = Φ∗
1s− (Φ∗

1Φ2)c2 − ε1 (4)

c2 = Φ∗
2s− (Φ∗

2Φ1)c1 − ε2 (5)

where we must have||εi||∞ < θ
2 for i = 1, 2. Substituting

Equation (4) into Equation (5), and vice versa, we arrive at
Φ1ε1 = Φ2ε2, ands− Φ1c1 = Φ2c2 + Φ1ε1. So we have

s− Φc = s− Φ1c1 − Φ2c2 = Φ1ε1 = Φ2ε2

Thus we arrive at

Φ∗
1(s− Φc) = ε1 and Φ∗

2(s− Φc) = ε2

Together these give rise to condition (1).
Now suppose the conditions hold. SinceΦ∗

1(s−Φc) = ε1
andΦ∗

2(s−Φc) = ε2, we see thatΦ1ε1 = Φ2ε2, and||εi|| < θ
2

for i = 1, 2. Therefore

s− Φ1c1 = Φ2c2 + Φ1ε1 (6)

By multiplying Equation (6) through byΦ∗
2 and thresholding,

and, similarly, multiplying through byΦ∗
1 and thresholding,

we obtain the result.

Observe that ifs = Φα is an exactly-sparse signal, thenα
is a fixed point of BLOCK IT. This result does not, however,
guarantee that the algorithm converges, upon inputs, to the
coefficient vectorα.

4. EXPERIMENTAL RESULTS

To evaluate the performance of these algorithms, we have
tested them with exactly sparse input signals,

s = Φα =
m∑

k=1

αkφk
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Fig. 1. GENERAL IT (hard) vs. BLOCK IT (hard),αk = 1

where the coefficientsαk are chosen from iid normal distri-
butions orαk = 1. We experimented with the Dirac–Fourier
dictionary, which is the collection ofd complex exponen-
tials andd impulses. We setd = 128. That isφω[t] =
(1/
√
d)e2πitω/d for ω = 1, . . . , d, andφλ[t] = δλ[t] for λ =

1, . . . , d. Note that this dictionary has coherenceµ = 1√
d
,

so the most pessimistic estimate for the maximum number of
terms in an exactly sparse signal we can recover ism = 6. In
our first experiment, we generated sparse signals of the type
in Theorem 3.1 with coefficients identically zero or one and
ran50 independent trials for eachm-term representation. We
checked to see whether the GENERAL IT algorithm recovered
the signal within15 iterations by examining all possible val-
ues ofθ (in increments of 1

100 ) from 0 to 2. Our empirical
evidence suggests that GENERAL IT performs better than the
theoretical expectations; the algorithm has no problem recov-
eringm-term representations up tom ≈ 30. See Figure 1.

In another experiment, theαk were drawn from a nor-
mal distributionN(0, 1), and we found, on average over fifty
trials, that GENERAL IT (soft) recovered the vectors inΛ bet-
ter than GENERAL IT (hard). When the coefficients are un-
restricted, perhaps soft thresholding is the better choice for
unions of othornormal bases; see Figure 2. Figures 1 and 3
show the relative performance of GENERAL IT and BLOCK

IT.

5. CONCLUSION

In this paper, we provide a sufficient condition under which
the GENERAL IT algorithm recovers exactly sparse signals
when the coefficient vectorαk = 1. The definition of cumu-
lative coherence is a natural consequence of the proof of this
condition and bolsters our evidence that the cumulative coher-
ence is a critical geometric property of redundant dictionaries
for sparse approximation. We also present a necessary and
sufficient condition for fixed points of the BLOCK IT algo-
rithm. Our experimental results suggest that BLOCK IT is
the better algorithm for unions of orthonormal bases although
both algorithms perform equivalently when recovering the in-
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Fig. 2. GENERAL IT (hard) vs. GENERAL IT (soft),
αk ∼ N(0, 1)
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Fig. 3. GENERAL IT (soft) vs. BLOCK IT (soft),
αk ∼ N(0, 1)

dex set alone. Little of this analysis suggests how to set the
thresholdθ. Preliminary theoretical results suggest a relation-
ship which involves the coherenceµ of the dictionary and the
minimum and maximum values of the coefficients.
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