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Abstract

This paper describes a new approach, based on linear programming, for computing nonneg-
ative matrix factorizations (NMFs). The key idea is a data-driven model for the factorization
where the most salient features in the data are used to express the remaining features. More
precisely, given a data matrix X, the algorithm identifies a matrix C that satisfies X ≈ CX
and some linear constraints. The constraints are chosen to ensure that the matrix C selects
features; these features can then be used to find a low-rank NMF of X. A theoretical analysis
demonstrates that this approach has guarantees similar to those of the recent NMF algorithm
of Arora et al. (2012). In contrast with this earlier work, the proposed method extends to more
general noise models and leads to efficient, scalable algorithms. Experiments with synthetic and
real datasets provide evidence that the new approach is also superior in practice. An optimized
C++ implementation can factor a multigigabyte matrix in a matter of minutes.

Keywords. Nonnegative Matrix Factorization, Linear Programming, Stochastic gradient de-
scent, Machine learning, Parallel computing, Multicore.

1 Introduction

Nonnegative matrix factorization (NMF) is a popular approach for selecting features in data [15–
17, 22]. Many machine-learning and data-mining software packages (including Matlab [3], R [11],
and Oracle Data Mining [1]) now include heuristic computational methods for NMF. Nevertheless,
we still have limited theoretical understanding of when these heuristics are correct.

The difficulty in developing rigorous methods for NMF stems from the fact that the problem
is computationally challenging. Indeed, Vavasis has shown that NMF is NP-Hard [26]; see [4] for
further worst-case hardness results. As a consequence, we must instate additional assumptions on
the data if we hope to compute nonnegative matrix factorizations in practice.

In this spirit, Arora, Ge, Kannan, and Moitra (AGKM) have exhibited a polynomial-time
algorithm for NMF that is provably correct—provided that the data is drawn from an appropriate
model, based on ideas from [7]. The AGKM result describes one circumstance where we can
be sure that NMF algorithms are capable of producing meaningful answers. This work has the
potential to make an impact in machine learning because proper feature selection is an important
preprocessing step for many other techniques. Even so, the actual impact is damped by the fact that
the AGKM algorithm is too computationally expensive for large-scale problems and is not tolerant
to departures from the modeling assumptions. Thus, for NMF, there remains a gap between the
theoretical exercise and the actual practice of machine learning.
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The present work presents a scalable, robust algorithm that can successfully solve the NMF
problem under appropriate hypotheses. Our first contribution is a new formulation of the nonneg-
ative feature selection problem that only requires the solution of a single linear program. Second,
we provide a theoretical analysis of this algorithm. This argument shows that our method suc-
ceeds under the same modeling assumptions as the AGKM algorithm with an additional margin
constraint that is common in machine learning. We prove that if there exists a unique, well-defined
model, then we can recover this model accurately; our error bound improves substantially on the
error bound for the AGKM algorithm in the high SNR regime. One may argue that NMF only
“makes sense” (i.e., is well posed) when a unique solution exists, and so we believe our result has
independent interest. Furthermore, our algorithm can be adapted for a wide class of noise models.

In addition to these theoretical contributions, our work also includes a major algorithmic and
experimental component. Our formulation of NMF allows us to exploit methods from operations
research and database systems to design solvers that scale to extremely large datasets. We develop
an efficient stochastic gradient descent (SGD) algorithm that is (at least) two orders of magnitude
faster than the approach of AGKM when both are implemented in Matlab. We describe a parallel
implementation of our SGD algorithm that can robustly factor matrices with 105 features and 106

examples in a few minutes on a multicore workstation.
Our formulation of NMF uses a data-driven modeling approach to simplify the factorization

problem. More precisely, we search for a small collection of rows from the data matrix that can be
used to express the other rows. This type of approach appears in a number of other factorization
problems, including rank-revealing QR [14], interpolative decomposition [19], subspace clustering [9,
23], dictionary learning [10], and others. Our computational techniques can be adapted to address
large-scale instances of these problems as well.

2 Separable Nonnegative Matrix Factorizations and Hott Topics

Notation. For a matrix M and indices i and j, we write Mi· for the ith row of M and M·j for
the jth column of M . We write Mij for the (i, j) entry.

Let Y be a nonnegative f × n data matrix with columns indexing examples and rows indexing
features. Exact NMF seeks a factorization Y = FW where the feature matrix F is f × r, where
the weight matrix W is r × n, and both factors are nonnegative. Typically, r � min{f, n}.

Unless stated otherwise, we assume that each row of the data matrix Y is normalized so it sums
to one. Under this hypothesis, we may also assume that each row of F and of W also sums to
one [4].

It is notoriously difficult to solve the NMF problem. Vavasis showed that it is NP-complete to
decide whether a matrix admits a rank-r nonnegative factorization [26]. AGKM proved that an
exact NMF algorithm can be used to solve 3-SAT in subexponential time [4].

The literature contains some mathematical analysis of NMF that can be used to motivate algo-
rithmic development. Thomas [24] developed a necessary and sufficient condition for the existence
of a rank-r NMF. More recently, Donoho and Stodden [7] obtained a related sufficient condition for
uniqueness. AGKM exhibited an algorithm that can produce a nonnegative matrix factorization
under a weaker sufficient condition. To state their results, we need a definition.

Definition 2.1 A set of vectors {v1, . . . ,vr} ⊂ Rd is simplicial if no vector vi lies in the convex
hull of {vj : j 6= i}. The set of vectors is α-robust simplicial if, for each i, the `1 distance from vi
to the convex hull of {vj : j 6= i} is at least α. Figure 1 illustrates these concepts.
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Algorithm 1: AGKM: Approximably Separable
Nonnegative Matrix Factorization [4]

1: Initialize R = ∅.
2: Compute the f × f matrix D with Dij =
‖Xi· −Xj·‖1.

3: for k = 1, . . . f do
4: Find the set Nk of rows that are at least

5ε/α+ 2ε away from Xk·.
5: Compute the distance δk of Xk· from

conv({Xj· : j ∈ Nk}).
6: if δk > 2ε, add k to the set R.
7: end for
8: Cluster the rows in R as follows: j and k

are in the same cluster if Djk ≤ 10ε/α+ 6ε.
9: Choose one element from each cluster to

yield W .
10: F = arg minZ∈Rf×r

∥∥X −ZW∥∥
∞,1

2

1

3

2

1

3
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d1
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Figure 1: Numbered circles are hott topics. Their
convex hull (orange) contains the other topics (small
circles), so the data admits a separable NMF. The
arrow d1 marks the `1 distance from hott topic (1)
to the convex hull of the other two hott topics; defi-
nitions of d2 and d3 are similar. The hott topics are
α-robustly simplicial when each di ≥ α.

These ideas support the uniqueness results of Donoho and Stodden and the AGKM algorithm.
Indeed, we can find an NMF of Y efficiently if Y contains a set of r rows that is simplicial and
whose convex hull contains the remaining rows.

Definition 2.2 An NMF Y = FW is called separable if the rows of W are simplicial and there
is a permutation matrix Π such that

ΠF =

[
Ir
M

]
. (1)

To compute a separable factorization of Y , we must first identify a simplicial set of rows from
Y . Afterward, we compute weights that express the remaining rows as convex combinations of this
distinguished set. We call the simplicial rows hott and the corresponding features hott topics.

This model allows us to express all the features for a particular instance if we know the values
of the instance at the simplicial rows. This assumption can be justified in a variety of applications.
For example, in text, knowledge of a few keywords may be sufficient to reconstruct counts of the
other words in a document. In vision, localized features can be used to predict gestures. In audio
data, a few bins of the spectrogram may allow us to reconstruct the remaining bins.

While a nonnegative matrix one encounters in practice might not admit a separable factoriza-
tion, it may be well-approximated by a nonnnegative matrix with separable factorization. AGKM
derived an algorithm for nonnegative matrix factorization of a matrix that is well-approximated by
a separable factorization. To state their result, we introduce a norm on f × n matrices:

∥∥∆∥∥∞,1 := max
1≤i≤f

n∑
j=1

|∆ij | .

Theorem 2.3 (AGKM [4]) Let ε and α be nonnegative constants satisfying ε ≤ α2

20+13α . Let X
be a nonnegative data matrix. Assume X = Y + ∆ where Y is a nonnegative matrix whose rows
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have unit `1 norm, where Y = FW is a rank-r separable factorization in which the rows of W
are α-robust simplicial, and where

∥∥∆∥∥∞,1 ≤ ε. Then Algorithm 1 finds a rank-r nonnegative

factorization F̂ Ŵ that satisfies the error bound
∥∥X − F̂ Ŵ∥∥

∞,1 ≤ 10ε/α+ 7ε.

In particular, the AGKM algorithm computes the factorization exactly when ε = 0. Although
this method is guaranteed to run in polynomial time, it has many undesirable features. First, the
algorithm requires a priori knowledge of the parameters α and ε. It may be possible to calculate
ε, but we can only estimate α if we know which rows are hott. Second, the algorithm computes
all `1 distances between rows at a cost of O(f2n). Third, for every row in the matrix, we must
determine its distance to the convex hull of the rows that lie at a sufficient distance; this step
requires us to solve a linear program for each row of the matrix at a cost of Ω(fn). Finally, this
method is intimately linked to the choice of the error norm

∥∥·∥∥∞,1. It is not obvious how to adapt
the algorithm for other noise models. We present a new approach, based on linear programming,
that overcomes these drawbacks.

3 Main Theoretical Results: NMF by Linear Programming

This paper shows that we can factor an approximately separable nonnegative matrix by solving a
linear program. A major advantage of this formulation is that it scales to very large data sets.

Here is the key observation: Suppose that Y is any f × n nonnegative matrix that admits a
rank-r separable factorization Y = FW . If we pad F with zeros to form an f × f matrix, we have

Y = ΠT

[
Ir 0
M 0

]
ΠY =: CY

We call the matrix C factorization localizing. Note that any factorization localizing matrix C is
an element of the polyhedral set

Φ(Y ) := {C ≥ 0 : CY = Y , Tr(C) = r, Cjj ≤ 1 ∀j, Cij ≤ Cjj ∀i, j}.

Thus, to find an exact NMF of Y , it suffices to find a feasible element of C ∈ Φ(Y ) whose
diagonal is integral. This task can be accomplished by linear programming. Once we have such a
C, we construct W by extracting the rows of X that correspond to the indices i where Cii = 1.
We construct the feature matrix F by extracting the nonzero columns of C. This approach is
summarized in Algorithm 2. In turn, we can prove the following result.

Theorem 3.1 Suppose Y is a nonnegative matrix with a rank-r separable factorization Y = FW .
Then Algorithm 2 constructs a rank-r nonnegative matrix factorization of Y .

As the theorem suggests, we can isolate the rows of Y that yield a simplicial factorization by
solving a single linear program. The factor F can be found by extracting columns of C.

3.1 Robustness to Noise

Suppose we observe a nonnegative matrix X whose rows sum to one. Assume that X = Y + ∆
where Y is a nonnegative matrix whose rows sum to one, which has a rank-r separable factorization
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Algorithm 2 Separable Nonnegative Matrix Factorization by Linear Programming

Require: An f × n nonnegative matrix Y with a rank-r separable NMF.
Ensure: An f × r matrix F and r × n matrix W with F ≥ 0, W ≥ 0, and Y = FW .
1: Find the unique C ∈ Φ(Y ) to minimize pT diag(C) where p is any vector with distinct values.
2: Let I = {i : Cii = 1} and set W = YI· and F = C·I .

Algorithm 3 Approximably Separable Nonnegative Matrix Factorization by Linear Programming

Require: An f × n nonnegative matrix X that satisfies the hypotheses of Theorem 3.2.
Ensure: An f × r matrix F and r× n matrix W with F ≥ 0, W ≥ 0, and

∥∥X − FW∥∥
∞,1 ≤ 2ε.

1: Find C ∈ Φ2ε(X) that minimizes pT diagC where p is any vector with distinct values.
2: Let I = {i : Cii = 1} and set W = XI·.
3: Set F = arg minZ∈Rf×r

∥∥X −ZW∥∥
∞,1

Y = FW such that the rows of W are α-robust simplicial, and where
∥∥∆∥∥∞,1 ≤ ε. Define the

polyhedral set

Φτ (X) :=
{
C ≥ 0 :

∥∥CX −X∥∥∞,1 ≤ τ,Tr(C) = r, Cjj ≤ 1 ∀j, Cij ≤ Cjj ∀i, j
}

The set Φ(X) consists of matrices C that approximately locate a factorization of X. We can prove
the following result.

Theorem 3.2 Suppose that X satisfies the assumptions stated in the previous paragraph. Further-
more, assume that for every row Yj,· that is not hott, we have the margin constraint ‖Yj,·−Yi,·‖ ≥ d0
for all hott rows i. Then we can find a nonnegative factorization satisfying

∥∥X − F̂ Ŵ∥∥
∞,1 ≤ 2ε

provided that ε < min{αd0,α2}
9(r+1) . Furthermore, this factorization correctly identifies the hott topics

appearing in the separable factorization of Y .

Algorithm 3 requires the solution of two linear programs. The first minimizes a cost vector over
Φ2ε(X). This lets us find Ŵ . Afterward, the matrix F̂ can be found by setting

F̂ = arg min
Z≥0

∥∥X −ZŴ∥∥
∞,1 . (2)

Our robustness result requires a margin-type constraint assuming that the original configuration
consists either of duplicate hott topics, or topics that are reasonably far away from the hott topics.
On the other hand, under such a margin constraint, we can construct a considerably better approx-
imation than that guaranteed by the AGKM algorithm. Moreover, unlike AGKM, our algorithm
does not need to know the parameter α.

The proofs of Theorems 3.1 and 3.2 can be found in the appendix. The main idea is to show
that we can only represent a hott topic efficiently using the hott topic itself. Some earlier versions
of this paper contained incomplete arguments, which we have remedied. For a signifcantly stronger
robustness analysis of Algorithm 3, see the recent paper [12].

Having established these theoretical guarantees, it now remains to develop an algorithm to solve
the LP. Off-the-shelf LP solvers may suffice for moderate-size problems, but for large-scale matrix
factorization problems, their running time is prohibitive, as we show in Section 5. In Section 4, we
turn to describe how to solve Algorithm 3 efficiently for large data sets.
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3.2 Related Work

Localizing factorizations via column or row subset selection is a popular alternative to direct fac-
torization methods such as the SVD. Interpolative decomposition such as Rank-Revealing QR [14]
and CUR [19] have favorable efficiency properties as compared to factorizations (such as SVD) that
are not based on exemplars. Factorization localization has been used in subspace clustering and
has been shown to be robust to outliers [9, 23].

In recent work on dictionary learning, Esser et al. and Elhamifar et al. have proposed a factoriza-
tion localization solution to nonnegative matrix factorization using group sparsity techniques [8,10].
Esser et al. prove asymptotic exact recovery in a restricted noise model, but this result requires
preprocessing to remove duplicate or near-duplicate rows. Elhamifar shows exact representative
recovery in the noiseless setting assuming no hott topics are duplicated. Our work here improves
upon this work in several aspects, enabling finite sample error bounds, the elimination of any need
to preprocess the data, and algorithmic implementations that scale to very large data sets.

4 Incremental Gradient Algorithms for NMF

The rudiments of our fast implementation rely on two standard optimization techniques: dual de-
composition and incremental gradient descent. Both techniques are described in depth in Chapters
3.4 and 7.8 of Bertsekas and Tstisklis [5].

We aim to minimize pT diag(C) subject to C ∈ Φτ (X). To proceed, form the Lagrangian

L(C, β,w) = pT diag(C) + β(Tr(C)− r) +

f∑
i=1

wi (‖Xi· − [CX]i·‖1 − τ)

with multipliers β and w ≥ 0. Note that we do not dualize out all of the constraints. The remaining
ones appear in the constraint set Φ0 = {C : C ≥ 0, diag(C) ≤ 1, and Cij ≤ Cjj for all i, j}.

Dual subgradient ascent solves this problem by alternating between minimizing the Lagrangian
over the constraint set Φ0, and then taking a subgradient step with respect to the dual variables

wi ← wi + s (‖Xi· − [C?X]i·‖1 − τ) and β ← β + s(Tr(C?)− r)

where C? is the minimizer of the Lagrangian over Φ0. The update of wi makes very little difference
in the solution quality, so we typically only update β.

We minimize the Lagrangian using projected incremental gradient descent. Note that we can
rewrite the Lagrangian as

L(C, β,w) = −τ1Tw − βr +
n∑
k=1

 ∑
j∈supp(X·k)

wj‖Xjk − [CX]jk‖1 + µj(pj + β)Cjj

 .

Here, supp(x) is the set indexing the entries where x is nonzero, and µj is the number of nonzeros
in row j divided by n. The incremental gradient method chooses one of the n summands at random
and follows its subgradient. We then project the iterate onto the constraint set Φ0. The projection
onto Φ0 can be performed in the time required to sort the individual columns of C plus a linear-time
operation. The full procedure is described in Appendix B. In the case where we expect a unique
solution, we can drop the constraint Cij ≤ Cjj , resulting in a simple clipping procedure: set all
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Algorithm 4 Hottopixx: Approximate Separable NMF by Incremental Gradient Descent

Require: An f × n nonnegative matrix X. Primal and dual stepsizes sp and sd.
Ensure: An f × r matrix F and r× n matrix W with F ≥ 0, W ≥ 0, and

∥∥X − FW∥∥
∞,1 ≤ 2ε.

1: Pick a cost p with distinct entries.
2: Initialize C = 0, β = 0
3: for t = 1, . . . , Nepochs do
4: for i = 1, . . . n do
5: Choose k uniformly at random from [n].
6: C ← C + sp · sign(X·k −CX·k)XT

·k − sp diag(µ ◦ (β1− p)).
7: end for
8: Project C onto Φ0.
9: β ← β + sd(Tr(C)− r)

10: end for
11: Let I = {i : Cii = 1} and set W = XI·.
12: Set F = arg minZ∈Rf×r

∥∥X −ZW∥∥
∞,1

negative items to zero and set any diagonal entry exceeding one to one. In practice, we perform
a tradeoff. Since the constraint Cij ≤ Cjj is used solely for symmetry breaking, we have found
empirically that we only need to project onto Φ0 every n iterations or so.

This incremental iteration is repeated n times in a phase called an epoch. After each epoch,
we update the dual variables and quit after we believe we have identified the large elements of the
diagonal of C. Just as before, once we have identified the hott rows, we can form W by selecting
these rows of X. We can find F just as before, by solving (2). Note that this minimization can
also be computed by incremental subgradient descent. The full procedure, called Hottopixx, is
described in Algorithm 4.

4.1 Sparsity and Computational Enhancements for Large Scale.

For small-scale problems, Hottopixx can be implemented in a few lines of Matlab code. But for the
very large data sets studied in Section 5, we take advantage of natural parallelism and a host of low-
level optimizations that are also enabled by our formulation. As in any numerical program, memory
layout and cache behavior can be critical factors for performance. We use standard techniques:
in-memory clustering to increase prefetching opportunities, padded data structures for better cache
alignment, and compiler directives to allow the Intel compiler to apply vectorization.

Note that the incremental gradient step (step 6 in Algorithm 4) only modifies the entries of C
where X·k is nonzero. Thus, we can parallelize the algorithm with respect to updating either the
rows or the columns of C. We store X in large contiguous blocks of memory to encourage hardware
prefetching. In contrast, we choose a dense representation of our localizing matrix C; this choice
trades space for runtime performance.

Each worker thread is assigned a number of rows of C so that all rows fit in the shared L3
cache. Then, each worker thread repeatedly scans X while marking updates to multiple rows of C.
We repeat this process until all rows of C are scanned, similar to the classical block-nested loop
join in relational databases [21].
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5 Experiments

Except for the speedup curves, all of the experiments were run on an identical configuration: a
dual Xeon X650 (6 cores each) machine with 128GB of RAM. The kernel is Linux 2.6.32-131.

In small-scale, synthetic experiments, we compared Hottopixx to the AGKM algorithm and
the linear programming formulation of Algorithm 3 implemented in Matlab. Both AGKM and
Algorithm 3 were run using CVX [13] coupled to the SDPT3 solver [25]. We ran Hottopixx for
50 epochs with primal stepsize 1e-1 and dual stepsize 1e-2. Once the hott topics were identified,
we fit F using two cleaning epochs of incremental gradient descent for all three algorithms.

To generate our instances, we sampled r hott topics uniformly from the unit simplex in Rn.
These topics were duplicated d times. We generated the remaining f − r(d+ 1) rows to be random
convex combinations of the hott topics, with the combinations selected uniformly at random. We
then added noise with (∞, 1)-norm error bounded by η· α2

20+13α . Recall that AGKM algorithm is only
guaranteed to work for η < 1. We ran with f ∈ {40, 80, 160}, n ∈ {400, 800, 1600}, r ∈ {3, 5, 10},
d ∈ {0, 1, 2}, and η ∈ {0.25, 0.95, 4, 10, 100}. Each experiment was repeated 5 times.

Because we ran over 2000 experiments with 405 different parameter settings, it is convenient to
use the performance profiles to compare the performance of the different algorithms [6]. Let P be
the set of experiments and A denote the set of different algorithms we are comparing. Let Qa(p)
be the value of some performance metric of the experiment p ∈ P for algorithm a ∈ A. Then the
performance profile at τ for a particular algorithm is the fraction of the experiments where the
value of Qa(p) lies within a factor of τ of the minimal value of minb∈AQb(p). That is,

Pa(τ) =
# {p ∈ P : Qa(p) ≤ τ mina′∈AQa′(p)}

#(P)
.

In a performance profile, the higher a curve corresponding to an algorithm, the more often it
outperforms the other algorithms. This gives a convenient way to contrast algorithms visually.

Our performance profiles are shown in Figure 2. The first two figures correspond to experiments
with f = 40 and n = 400. The third figure is for the synthetic experiments with all other values
of f and n. In terms of (∞, 1)-norm error, the linear programming solver typically achieves the
lowest error. However, using SDPT3, it is prohibitively slow to factor larger matrices. On the other
hand, Hottopixx achieves better noise performance than the AGKM algorithm in much less time.
Moreover, the AGKM algorithm must be fed the values of ε and α in order to run. Hottopixx
does not require this information and still achieves about the same error performance.

We also display a graph for running only four epochs (hott (fast)). This algorithm is by far the
fastest algorithm, but does not achieve as optimal a noise performance. For very high levels of noise,
however, it achieves a lower reconstruction error than the AGKM algorithm, whose performance
degrades once η approaches or exceeds 1 (Figure 2(f)). We also provide performance profiles for
the root-mean-square error of the nonnegative matrix factorizations (Figure 2 (d) and (e)). The
performance is qualitatively similar to that for the (∞, 1)-norm.

We also coded Hottopixx in C++, using the design principles described in Section 4.1, and ran
on three large data sets. We generated a large synthetic example (jumbo) as above with r = 100. We
generated a co-occurrence matrix of people and places from the ClueWeb09 Dataset [2], normalized
by TFIDF. We also used Hottopixx to select features from the RCV1 data set to recognize the
class CCAT [18]. The statistics for these data sets can be found in Table 1.

In Figure 3 (left), we plot the speed-up over a serial implementation. In contrast to other parallel
methods that exhibit memory contention [20], we see superlinear speed-ups for up to 20 threads
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Figure 2: Performance profiles for synthetic data. (a) (∞, 1)-norm error for 40×400 sized instances and (b)
all instances. (c) is the performance profile for running time on all instances. RMSE performance profiles
for the (d) small scale and (e) medium scale experiments. (f) (∞, 1)-norm error for the η ≥ 1. In the noisy
examples, even 4 epochs of Hottopixx is sufficient to obtain competitive reconstruction error.

data set features documents nonzeros size (GB) time (s)
jumbo 1600 64000 1.02e8 2.7 338

clueweb 44739 351849 1.94e7 0.27 478
RCV1 47153 781265 5.92e7 1.14 430

Table 1: Description of the large data sets. Time is to find 100 hott topics on the 12 core machines.

due to hardware prefetching and cache effects. All three of our large data sets can be trained in
minutes, showing that we can scale Hottopixx on both synthetic and real data. Our algorithm
is able to correctly identify the hott topics on the jumbo set. For clueweb, we plot the RMSE
Figure 3 (middle). This curve rolls off quickly for the first few hundred topics, demonstrating
that our algorithm may be useful for dimensionality reduction in Natural Language Processing
applications. For RCV1, we trained an SVM on the set of features extracted by Hottopixx and
plot the misclassification error versus the number of topics in Figure 3 (right). With 1500 hott
topics, we achieve 7% misclassification error as compared to 5.5% with the entire set of features.

6 Discussion

This paper provides an algorithmic and theoretical framework for analyzing and deploying any
factorization problem that can be posed as a linear (or convex) factorization localizing program.
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Figure 3: (left) The speedup over a serial implementation for Hottopixx on the jumbo and clueweb data
sets. Note the superlinear speedup for up to 20 threads. (middle) The RMSE for the clueweb data set.
(right) The test error on RCV1 CCAT class versus the number of hott topics. The horizontal line indicates
the test error achieved using all of the features.

Future work should investigate the applicability of Hottopixx to other factorization localizing
algorithms, such as subspace clustering, and should revisit earlier theoretical bounds on such prior
art.
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A Proofs

Let Y be a nonnegative matrix whose rows sum to one. Assume that Y admits an exact separable
factorization of rank r. In other words, we can write Y = FW where the rows of W are α-robust
simplicial and

ΠF =

[
Ir
M

]
for some permutation Π. Let I denote the indices of the rows in Y that correspond with the
identity matrix in the factorization, which we have called the hott rows. Then we can write each
row j that is not hott as a convex combination of the hott rows:

Yj· =
∑
k∈I

MjkYk· for each j /∈ I.

As we have discussed, we may assume that
∑

kMjk = 1 for each j /∈ I because each row of Y sums
to one.

The first lemma offers a stronger bound on the coefficients Mjk in terms of the distance between
row j and the hott rows.

Lemma A.1 For an index `, suppose that the row Y`· has distance greater than δ from a hott topic
Yi· with i ∈ I. Then M`i ≤ 1− δ/2.

Proof We can express the `th row as a convex combination of hott rows: Y`· =
∑

k∈IM`kYk·. For
each i ∈ I, we can bound M`i as follows.

δ ≤ ‖Yi· − Y`·‖1 =

∥∥∥∥∥Yi· −∑
k∈I

M`kYk·

∥∥∥∥∥
1

=

∥∥∥∥∥∥(1−M`i)Yi −
∑

k∈I\{i}

M`kYk·

∥∥∥∥∥∥
1

≤ ‖(1−M`i)Yi‖1 +
∑

k∈I\{i}

M`k ‖Yk·‖1

= 2(1−M`i) .

The inequality is the triangle inequality. To reach the last line, we use the fact that each row of
Y has `1 norm equal to one. Furthermore,

∑
k∈I\{i}M`k = 1 −M`i ≥ 0 because each row of M

consists of nonnegative numbers that sum to one. Rearrange to complete the argument.

The next lemma is the central tool in our proofs. It tells us that any representation of a hott
row has to involve rows that are close in `1 norm to a hott row. To state the result, we define for
each hott row i

Bδ(i) = {j : ‖Yi· − Yj·‖1 ≤ δ}.

In other words, Bδ(i) contains the indices of all rows with `1 distance no greater than δ from the
hott topic Yi·.
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Lemma A.2 Let c ∈ Rf be a nonnegative vector whose entries sum to one. For some hott row
i ∈ I, suppose that ‖cTY − Yi·‖1 ≤ τ . Then∑

j∈Bδ(i)

cj ≥ 1− 2τ

min{αδ, α2}
. (3)

Proof Let us introduce notation for the quantity of interest: wi = wi(c) =
∑

j∈Bδ(Xi·)
cj . We may

assume that wi < 1, or else the result holds trivially. Since the entries of c sum to one, we have

0 < 1− wi =
∑
j

cj −
∑

j∈Bδ(i)

cj =
∑

j /∈Bδ(i)

cj .

Next, we introduce the extra assumption that δ < α. It is clear that wi increases monotonically
with δ, so any lower bound on wi that we establish in this case extends to a bound that holds for
larger δ. Since the hott topics are α-robust simplicial, all the other hott topics are at least δ away
from Yi· in `1 norm. Therefore, the hott row i is the unique hott row listed in Bδ(i).

To establish the result, we may as well assume that wi(c) achieves its minimum possible value
subject to the constraints that the value of cTY is fixed and that c is a nonnegative vector that
sums to one. We claim that this minimum such wi occurs if and only if cj = 0 for all j ∈ Bδ(i)\{i}.
We complete the proof under this additional surmise.

The assertion in the last paragraph follows from an argument by contradiction. Suppose that
wi(c) were minimized at a vector c where cj > 0 for some j ∈ Bδ(i) \ {i}. Then we can construct
another set of coefficients c̃ that satisfies the constraints and leads to a smaller value of wi. We
have the representation Yj· =

∑
k∈IMjkYk·. Set c̃j = 0; set c̃k = ck + cjMjk for each k ∈ I, and

set c̃k = ck for all remaining k /∈ I ∪ {j}. It is easy to verify that c̃TY = cTY and that c̃ is
a nonnegative vector whose entries sum to one. But the value of wi is strictly smaller with the
coefficients c̃:

wi(c̃) =
∑

k∈Bδ(i)

c̃k <
∑

k∈Bδ(i)

ck = wi(c)

In this relation, all the summands cancel, except for the one with index j. But c̃j = 0 < cj . It
follows that the minimum value of wi cannot occur when cj > 0. Compactness of the constraint
set assures us that there is some vector c of coefficients that minimizes wi(c), so we must conclude
that the minimizer c satisfies cj = 0 for j ∈ Bδ(i) \ {i}.

Let us continue. Owing to the assumption that Yi· is no farther than τ from cTY , we have

τ ≥

∥∥∥∥∥∥Yi· −
∑
j

cjYj·

∥∥∥∥∥∥
1

=

∥∥∥∥∥∥(1− wi)Yi· −
∑

j /∈Bδ(i)

cjYj·

∥∥∥∥∥∥
1

= (1− wi)

∥∥∥∥∥∥Yi· − 1

1− wi

∑
j /∈Bδ(i)

∑
k∈I

cjMjkYk·

∥∥∥∥∥∥
1

. (4)

The first line follows when we split the sum over j based on whether or not the components fall in
Bδ(i). Then we apply the property that cj = 0 for j ∈ Bδ(i) \ {i}, and we identify the quantity wi.
In the last line, we factored out 1− wi, and we introduced the separable factorization of Y .
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Next, for each k ∈ I, define

πk :=
1

1− wi

∑
j /∈Bδ(i)

cjMjk ,

and note that πk ≥ 0. Furthermore,∑
k∈I

πk =
1

1− wi

∑
j /∈Bδ(i)

cj
∑
k∈I

Mjk =
1

1− wi

∑
j /∈Bδ(i)

cj = 1

because the rows of M sum to one and because of the definition of wi. Lemma A.1 implies that πi
satisfies the bound

πi =
1

1− wi

∑
j /∈Bδ(i)

cjMji ≤
1− δ/2
1− wi

∑
j /∈Bδ(i)

cj = 1− δ/2. (5)

Indeed, the lemma is valid because Yj· is at least a distance of δ away from Yi· for every j /∈ Bδ(i).
With these observations, we can continue our calculation from (4):

τ ≥ (1− wi)

∥∥∥∥∥Yi· −∑
k∈I

πkYk·

∥∥∥∥∥
1

= (1− wi)(1− πi)

∥∥∥∥∥∥Yi· −
∑

k∈I\{i}

πk
1− πi

Yk·

∥∥∥∥∥∥
1

≥ (1− wi)(1− πi)α
≥ (1− wi)(δ/2)α.

The first identity follows when we combine the ith term in the sum with Yi·. The inequality depends
on the assumption that W is α-robust simplicial; any convex combination of {Yk· : k /∈ I} is at
least α away from Yi· in `1 norm. Afterward, we use the bound (5). Rearrange the final expression
to complete the argument.

A.1 Proof of Theorem 3.1

This result is almost obvious when there are no duplicated rows. Indeed, since the hott topics form
a simplicial set and the matrix Y admits a separable factorization, the only way we can represent
all r hott topics exactly is to have Cii = 1 for every hott row i. This exhausts the trace constraint,
and we see that every other diagonal entry Ckk = 0 for every not hott row k. The only matrices
that are feasible identify the hott rows on the diagonal. They must represent the remaining rows
using linear combinations of the hott topics because of the constraints CY = Y and Cij ≤ Cjj . It
follows that the only feasible matrices are factorization localizing matrices.

When there are duplicated rows, the analysis is slightly more delicate. By the same argument
as above, all the weight on the diagonal must be concentrated on hott rows. But the objective
pT diag(C) ensures that, out of any set of duplicates of a given topic, we always pick the duplicate
row j where pj is smallest; otherwise, we could reduce the objective further. Therefore, the diagonal
of C identifies all r distinct hott topics, and we select each one duplicate of each topic. As before,
the other constraints ensure that the remaining rows are represented with this distinguished choice
of hott topic exemplars. Therefore, the only minimizers are factorization localizing matrices that
identify each hott topic exactly once.
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A.2 Proof of Theorem 3.2

Let X = Y + ∆. The matrix X is the observed data, with rows scaled to have unit sum, and the
perturbation matrix ∆ satisfies

∥∥∆∥∥∞,1 ≤ ε. We assume that Y is a nonnegative matrix whose
rows sum to one, and we posit that it admits a rank-r separable NMF Y = FW where W is
α-robust simplicial. We write I for the set of rows corresponding to hott topics in Y .

Suppose that C0 is a factorization localizing matrix for the underlying matrix Y . That is,
C0Y = Y and each row of C0 sums to one. It follows that∥∥C0∆−∆

∥∥
∞,1 ≤ (

∥∥C0

∥∥
∞,1 +

∥∥I∥∥∞,1)∥∥∆∥∥∞,1 ≤ 2ε.

Using our decomposition X = Y + ∆, we quickly verify that∥∥C0X −X
∥∥
∞,1 ≤

∥∥C0Y − Y
∥∥
∞,1 +

∥∥C0∆−∆
∥∥
∞,1 ≤ 2ε.

The point here is that a factorization localizing matrix for Y serves as an approximate factorization
localizing matrix for X.

Our approach for constructing an approximate factorization of X requires us to minimize a cost
function tT diag(C) over the constraint set

Φ2ε(X) =
{
C ≥ 0 :

∥∥CX −X∥∥∞,1 ≤ 2ε,Tr(C) = r, Cjj ≤ 1 ∀j, Cij ≤ Cjj ∀i, j
}
. (6)

Note that the factorization localizing matrix C0 for Y is a member of this set, so the optimization
problem we solve in Theorem 3.2 is feasible.

Suppose that C ∈ Φ2ε(X) is arbitrary. Let us check that the row sums of C are not much
larger than one. To that end, note that

C1 = CX1 = X1 + (CX −X)1 = 1 + (CX −X)1.

We have twice used the fact that every row of X sums to one. For any row c of the matrix C, this
formula yields cT1 ≤ 1 + 2ε since

∥∥CX −X∥∥∞,1 ≤ 2ε. As a consequence,∥∥C∆−∆
∥∥
∞,1 ≤ (

∥∥C∥∥∞,1 +
∥∥I∥∥∞,1)∥∥∆∥∥∞,1 ≤ (1 + 2ε+ 1)ε = 2ε+ 2ε2.

We may conclude that∥∥CY − Y ∥∥∞,1 ≤ ∥∥CX −X∥∥∞,1 +
∥∥C∆−∆

∥∥
∞,1 ≤ 4ε+ 2ε2.

The margin assumption states that ‖Y`· − Yi·‖ > d0 for every hott topic i ∈ I and every row
` /∈ I. For any i ∈ I, Lemma A.2 ensures that any approximate representation cTY of the ith row
Yi· with error at most 4ε+ 2ε2 satisfies

ci =
∑

j∈Bd0 (i)

cj ≥ 1− 8ε+ 4ε2

min{αd0, α2}
.

In particular, every matrix C in the set Φ2ε(X) has Cii ≥ 1 − (8ε + 4ε2)/min{αd0, α2} for each
hott topic i. To ensure that hott topic i has weight Cii greater than 1 − 1/(r + 1) for each i, we
need

ε <

√
1 +

min{αd0, α2}
4(r + 1)

− 1 <
min{αd0, α2}

9(r + 1)
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Since there are r hott rows, they carry total weight greater than r(1− 1/(r + 1)). Given the trace
constraint, that leaves less than 1 − 1/(r + 1) for the remaining rows. We see that each of the r
hott rows must carry more weight than every row that is not hott, so we can easily identify them.

Once we have identified the set I of hott topics, we simply solve the second linear program

minimize
B

∥∥X − [ I
B

]
XI

∥∥
∞,1 (7)

to find a 2ε-accurate factorization.

B Projection onto Φ0

To project onto the set Φ0, note that we can compute the projection one column at a time.
Moreover, the projection for each individual column amounts to (after permuting the entries of the
column),

{x ∈ Rf : 0 ≤ xi ≤ x1 ∀i , x1 ≤ 1} .

Assume, again without loss of generality, that we want to project a vector z with z2 ≥ z3 ≥ . . . ≥ zn.
Then we need to solve the quadratic program

minimize 1
2‖z − x‖

2

subject to 0 ≤ xi ≤ x1 ∀i , x1 ≤ 1
(8)

The optimal solution can be found as follows. Let kc be the largest k ∈ {2, . . . , f} such that

zkc+1 ≤ Π[0,1]

(
kc∑
k=1

zk

)
=: µ

where Π[0,1] denotes the projection onto the interval [0, 1]. Set

x̂i =

{
µ i ≤ kc
(zi)+ i > kc

.

Then x̂ is the optimal solution. A linear time algorithm for computing x̂ is given by Algorithm 5
To prove that x̂ is optimal, define

yi =

{
zi − µ i ≤ kc
min(zi, 0) i > kc

.

yi is the gradient of 1
2‖x− z‖

2 at x̂. Consider the LP

minimize −yTx
subject to 0 ≤ xi ≤ x1 ∀i , x1 ≤ 1

.

x̂ is an optimal solution for this LP because the cost is negative on the negative entries, 0 on the
nonnegative entries that are larger than kc, positive for 2 ≤ k ≤ kc, and nonpositive for k = 1.
Hence, by the minimum principle, x̂ is also a solution of (8).
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Algorithm 5 Column Squishing

Require: A vector z ∈ Rf with z2 ≥ z3 ≥ . . . ≥ zn.
Ensure: The projection of z onto {x ∈ Rf : 0 ≤ xi ≤ x1 ∀i , x1 ≤ 1}.
1: µ← z1.
2: for k = 2, . . . , f do
3: if zk ≤ Π[0,1](µ), Set kc = k − 1 and break

4: else set µ = k−1
k µ+ 1

kzk.
5: end for
6: x1 ← Π[0,1](µ)
7: for k = 2, . . . , kc set xk = Π[0,1](µ).
8: for k = (kc + 1), . . . , f set xk = (zi)+.
9: return x
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