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Abstract. An infinitesimal is a number whose magnitude ex-
ceeds zero but somehow fails to exceed any finite, positive num-
ber. Although logically problematic, infinitesimals are extremely
appealing for investigating continuous phenomena. They were used
extensively by mathematicians until the late 19th century, at which
point they were purged because they lacked a rigorous founda-
tion. In 1960, the logician Abraham Robinson revived them by
constructing a number system, the hyperreals, which contains in-
finitesimals and infinitely large quantities.

This thesis introduces Nonstandard Analysis (NSA), the set
of techniques which Robinson invented. It contains a rigorous de-
velopment of the hyperreals and shows how they can be used to
prove the fundamental theorems of real analysis in a direct, natural
way. (Incredibly, a great deal of the presentation echoes the work
of Leibniz, which was performed in the 17th century.) NSA has
also extended mathematics in directions which exceed the scope of
this thesis. These investigations may eventually result in fruitful
discoveries.
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Traditionally, an infinitesimal quantity is one which,
while not necessarily coinciding with zero,

is in some sense smaller than any finite quantity.

—J.L. Bell [2, p. 2]

Infinitesimals . . . must be regarded as
unnecessary, erroneous and self-contradictory.

—Bertrand Russell [13, p. 345]



Introduction: Why Infinitesimals?

What is the slope of the curve y = x2 at a given point? Any calculus

student can tell you the answer. But few of them understand why that

answer is correct or how it can be deduced from first principles. Why

not? Perhaps because classical analysis has convoluted the intuitive

procedure of calculating slopes.

One calculus book [16, Ch. 3.1] explains the standard method for

solving the slope problem as follows.

Let P be a fixed point on a curve and let Q be a

nearby movable point on that curve. Consider the line

through P and Q, called a secant line. The tangent

line at P is the limiting position (if it exists) of the

secant line as Q moves toward P along the curve (see

Figure 0.1).

Suppose that the curve is the graph of the equa-

tion y = f(x). Then P has coordinates (c, f(c)), a

nearby point Q has coordinates (c + h, f(c + h)), and

the secant line through P and Q has slope msec given

by (see Figure 0.2)

msec =
f(c + h) − f(c)

h
.

Consequently, the tangent line to the curve y =

f(x) at the point P (c, f(c))—if not vertical—is that
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Figure 0.1. The tangent line is the limiting position of
the secant line.

Figure 0.2. mtan = limh→0 msec

line through P with slope mtan satisfying

mtan = lim
h→0

msec = lim
h→0

f(c + h) − f(c)

h
.

Ignoring any flaws in the presentation, let us concentrate on the es-

sential idea: “The tangent line is the limiting position . . . of the secant
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line as Q moves toward P .” This statement raises some serious ques-

tions. What does a “limit” have to do with the slope of the tangent

line? Why can’t we calculate the slope without recourse to this migra-

tory point Q? Rigor. When calculus was formalized, mathematicians

did not see a better way.

There is a more intuitive way, but it could not be presented rigor-

ously at the end of the 19th century. Leibniz used it when he developed

calculus in the 17th century. Recent advances in mathematical logic

have made it plausible again. It is called infinitesimal calculus.

An infinitesimal is a number whose magnitude exceeds zero but

somehow fails to exceed any finite, positive number; it is infinitely

small. (The logical difficulties already begin to surface.) But infinitesi-

mals are extremely appealing for investigating continuous phenomena,

since a lot can happen in a finite interval. On the other hand, very little

can happen to a continuously changing variable within an infinitesimal

interval. This fact alone explains their potential value.

Here is how Leibniz would have solved the problem heading this

introduction. Assume the existence of an infinitesimal quantity, ε. We

are seeking the slope of the curve y = x2 at the point x = c. We will

approximate it by finding the slope through x = c and x = c + ε, a

point infinitely nearby (since ε is infinitesimal). To calculate slope, we

divide the change in y by the change in x. The change in y is given by

y(c + ε) − y(c) = (c + ε)2 − c2; the change in x is (c + ε) − c = ε. So

we form the quotient and simplify:

(c + ε)2 − c2

ε
=

c2 + 2cε + ε2 − c2

ε

=
2cε + ε2

ε

= 2c + ε.
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Since ε is infinitely small in comparison with 2c, we can disregard it.

We see that the slope of y = x2 at the point c is given by 2c. This is

the correct answer, obtained in a natural, algebraic way without any

type of limiting procedure.

We can apply the infinitesimal method to many other problems.

For instance, we can calculate the rate of change (i.e. slope) of a sine

curve at a given point c. We let y = sin x and proceed as before. The

quotient becomes

sin(c + ε) − sin c

ε
=

sin c · cos ε + sin ε · cos c − sin c

ε

by using the rule for the sine of a sum. For any infinitesimal ε, it can be

shown geometrically or algebraically that cos ε = 1 and that sin ε = ε.

So we have

sin c · cos ε + sin ε · cos c − sin c

ε
=

sin c + ε cos c − sin c

ε

=
ε cos c

ε

= cos c.

Again, the correct answer.

This method even provides more general results. Leibniz deter-

mined the rate of change of a product of functions like this. Let x

and y be functions of another variable t. First, we need to find the

infinitesimal difference between two “successive” values of the function

xy, which is called its differential and denoted d(xy). Leibniz reasoned

that

d(xy) = (x + dx)(y + dy) − xy,

where dx and dy represent infinitesimal increments in the values of x

and y. Simplifying,

d(xy) = xy + x dy + y dx + dx dy − xy

= x dy + y dx + dx dy.
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Since (dx dy) is infinitesimal in comparison with the other two terms,

Leibniz concluded that

d(xy) = x dy + y dx.

The rate of change in xy with respect to t is given by d(xy)/dt. There-

fore, we determine that

d(xy)

dt
= x

dy

dt
+ y

dx

dt
,

which is the correct relationship.

At this point, some questions present themselves. If infinitesimals

are so useful, why did they die off? Is there a way to resuscitate them?

And how do they fit into modern mathematics? These questions I

propose to answer.



CHAPTER 1

Historical Background

Definition 1.1. An infinitesimal is a number whose magnitude

exceeds zero yet remains smaller than every finite, positive number.

1.1. Overview

Infinitesimals have enjoyed an extensive and scandalous history. Al-

most as soon as the Pythagoreans suggested the concept 2500 years ago,

Zeno proceeded to drown it in paradox. Nevertheless, many mathema-

ticians continued to use infinitesimals until the end of the 19th century

because of their intuitive appeal in understanding continuity. When the

foundations of calculus were formalized by Weierstrass, et al. around

1872, they were banished from mathematics.

As the 20th century began, the mathematical community officially

regarded infinitesimals as numerical chimeras, but engineers and physi-

cists continued to use them as heuristic aids in their calculations. In

1960, the logician Abraham Robinson discovered a way to develop a

rigorous theory of infinitesimals. His techniques are now referred to as

Nonstandard Analysis, which is a small but growing field in mathema-

tics. Practioners have found many intuitive, direct proofs of classical

results. They have also extended mathematics in new directions, which

may eventually result in fruitful discoveries.

1.2. Origins

The first deductive mathematician, Pythagoras (569?–500? b.c.),

taught that all is Number. E.T. Bell describes his fervor:
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He . . . preached like an inspired prophet that all na-

ture, the entire universe in fact, physical, metaphysi-

cal, mental, moral, mathematical—everything—is built

on the discrete pattern of the integers, 1, 2, 3, . . . [1,

p. 21].

Unfortunately, this grand philosophy collapsed when one of his students

discovered that the length of the diagonal of a square cannot be written

as the ratio of two whole numbers.

The argument was simple. If a square has sides of unit length,

then its diagonal has a length of
√

2, according to the theorem which

bears Pythagoras’ name. Assume then that
√

2 = p/q, where p and

q are integers which do not share a factor greater than one. This is

a reasonable assumption, since any common factor could be canceled

immediately from the equation. An equivalent form of this equation is

p2 = 2q2.

We know immediately that p cannot be odd, since 2q2 is even. We

must accept the alternative that p is even, so we write p = 2r for some

whole number r. In this case, 4r2 = 2q2, or 2r2 = q2. So we see that

q is also even. But we assumed that p and q have no common factors,

which yields a contradiction. Therefore, we reject our assumption and

conclude that
√

2 cannot be written as a ratio of integers; it is an

irrational number [1, p. 21].

According to some stories, this proof upset Pythagoras so much that

he hanged its precocious young author. Equally apocryphal reports

indicate that the student perished in a shipwreck. These tales should

demonstrate how badly this concept unsettled the Greeks [3, p. 20].

Of course, the Pythagoreans could not undiscover the proof. They had

to decide how to cope with these inconvenient, non-rational numbers.
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The solution they proposed was a crazy concept called a monad.

To explain the genesis of this idea, Carl Boyer presents the question:

If there is no finite line segment so small that the di-

agonal and the side may both be expressed in terms of

it, may there not be a monad or unit of such a nature

that an indefinite number of them will be required for

the diagonal and for the side of the square [3, p. 21]?

The details were sketchy, but the concept had a certain appeal, since

it enabled the Pythagoreans to construct the rational and irrational

numbers from a single unit. The monad was the first infinitesimal.

Zeno of Elea (495–435 b.c.) was widely renowned for his ability to

topple the most well-laid arguments. The monad was an easy target.

He presented the obvious objections: if the monad had any length, then

an infinite number should have infinite length, whereas if the monad

had no length, no number would have any length. He is also credited

with the following slander against infinitesimals:

That which, being added to another does not make it

greater, and being taken away from another does not

make it less, is nothing [3, p. 23].

The Greeks were unable to measure the validity of Zeno’s arguments. In

truth, ancient uncertainty about infinitesimals stemmed from a greater

confusion about the nature of a continuum, a closely related question

which still engages debate [1, pp. 22–24].

1.3. Continuity

Zeno propounded four famous paradoxes which demonstrate the

subtleties of continuity. Here are the two most effective.

The Achilles. Achilles running to overtake a crawling

tortoise ahead of him can never overtake it, because
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he must first reach the place from which the tortoise

started; when Achilles reaches that place, the tortoise

has departed and so is still ahead. Repeating the ar-

gument, we see that the tortoise will always be ahead.

The Arrow. A moving arrow at any instant is

either at rest or not at rest, that is, moving. If the

instant is indivisible, the arrow cannot move, for if it

did the instant would immediately be divided. But

time is made up of instants. As the arrow cannot

move in any one instant, it cannot move in any time.

Hence it always remains at rest.

The Achilles argues that the line cannot support infinite division. In

this case, the continuum must be composed of finite atomic units.

Meanwhile, the Arrow suggests the opposite position that the line must

be infinitely divisible. On this second view, the continuum cannot be

seen as a set of discrete points; perhaps infinitesimal monads result

from the indefinite subdivision.

Taken together, Zeno’s arguments make the problem look insoluble;

either way you slice it, the continuum seems to contradict itself [1,

p. 24]. Modern mathematical analysis, which did not get formalized

until about 1872, is necessary to resolve these paradoxes [3, pp. 24–25].

Yet, some mathematicians—notably L.E.J. Brouwer (1881–1966)

and Errett Bishop (1928–1983)—have challenged the premises under-

lying modern analysis. Brouwer, the founder of Intuitionism, regarded

mathematics “as the formulation of mental constructions that are gov-

erned by self-evident laws” [4]. One corollary is that mathematics must

develop from and correspond with physical insights.

Now, an intuitive definition of a continuum is “the domain over

which a continuously varying magnitude actually varies” [2, p. 1]. The
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phrase “continuously varying” presumably means that no jumps or

breaks occur. As a consequence, it seems as if a third point must lie

between any two points of a continuum. From this premise, Brouwer

concluded that a continuum can “never be thought of as a mere col-

lection of units [i.e. points]” [2, p. 2]. Brouwer might have imagined

that the discrete points of a continuum cohere due to some sort of

infinitesimal “glue.”

Some philosophers would extend Brouwer’s argument even farther.

The logician Charles S. Peirce (1839–1914) wrote that

[the] continuum does not consist of indivisibles, or

points, or instants, and does not contain any except

insofar as its continuity is ruptured [2, p. 4].

Peirce bases his complaint on the fact that it is impossible to single

out a point from a continuum, since none of the points are distinct.1

On this view, a line is entirely composed of a series of indistinguishable

overlapping infinitesimal units which flow from one into the next [2,

Introduction].

Intuitionist notions of the continuum resurface in modern theories

of infinitesimals.

1.4. Eudoxus and Archimedes

In ancient Greece, there were some attempts to skirt the logical

difficulties of infinitesimals. Eudoxus (408–355 b.c.) recognized that

he need not assume the existence of an infinitely small monad; it was

sufficient to attain a magnitude as small as desired by repeated subdi-

vision of a given unit. Eudoxus employed this concept in his method of

1More precisely, all points of a continuum are topologically identical, although
some have algebraic properties. For instance, a small neighborhood of zero is in-
distinguishable from a small neighborhood about another point, even though zero
is the unique additive identity of the field R.
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exhaustion which is used to calculate areas and volumes by filling the

entire figure with an increasingly large number of tiny partitions [1,

pp. 26–27].

As an example, the Greeks knew that the area of a circle is given by

A = 1
2
rC, where r is the radius and C is the circumference.2 They prob-

ably developed this formula by imagining that the circle was composed

of a large number of isosceles triangles (see Figure 1.1). It is important

to recognize that the method of exhaustion is strictly geometrical, not

arithmetical. Furthermore, the Greeks did not compute the limit of a

sequence of polygons, as a modern geometer would. Rather, they used

an indirect reductio ad absurdem technique which showed that any re-

sult other than A = 1
2
rC would lead to a contradiction if the number

of triangles were increased sufficiently [7, p. 4].

Figure 1.1. Dividing a circle into isosceles triangles to
approximate its area.

Archimedes (287–212 b.c.), the greatest mathematician of antiq-

uity, used another procedure to determine areas and volumes. To

measure an unknown figure, he imagined that it was balanced on a

2The more familiar formula A = πr2 results from the fact that π is defined by
the relation C = 2πr.
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lever against a known figure. To find the area or volume of the for-

mer in terms of the latter, he determined where the fulcrum must

be placed to keep the lever even. In performing his calculations, he

imagined that the figures were comprised of an indefinite number of

laminae—very thin strips or plates. It is unclear whether Archimedes

actually regarded the laminae as having infinitesimal width or breadth.

In any case, his results certainly attest to the power of his method: he

discovered mensuration formulae for an entire menagerie of geomet-

rical beasts, many of which are devilish to find, even with modern

techniques. Archimedes recognized that his method did not prove his

results. Once he had applied the mechanical technique to obtain a

preliminary guess, he supplemented it with a rigorous proof by exhaus-

tion [3, pp. 50–51].

1.5. Apply when Necessary

All the fuss about the validity of infinitesimals did not prevent

mathematicians from working with them throughout antiquity, the

Middle Ages, the Renaissance and the Enlightenment. Although some

people regarded them as logically problematic, infinitesimals were an

effective tool for researching continuous phenomena. They crept into

studies of slopes and areas, which eventually grew into the differential

and integral calculi. In fact, Newton and Leibniz, who independently

discovered the Fundamental Theorem of Calculus near the end of the

17th century, were among the most inspired users of infinitesimals [3].

Sir Isaac Newton (1642–1727) is widely regarded as the greatest

genius ever produced by the human race. His curriculum vitae easily

supports this claim; his discoveries range from the law of universal grav-

itation to the method of fluxions (i.e. calculus), which was developed

using infinitely small quantities [1, Ch. 6].
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Newton began by considering a variable which changes continuously

with time, which he called a fluent. Each fluent x has an associated rate

of change or “generation,” called its fluxion and written ẋ. Moreover,

any fluent x may be viewed as the fluxion of another fluent, denoted
|
x.

In modern terminology, ẋ is the derivative of x, and
|
x is the indefinite

integral of x.3 The problem which interested Newton was, given a

fluent, to find its derivative and indefinite integral with respect to time.

Newton’s original approach involved the use of an infinitesimal

quantity o, an infinitely small increment of time. Newton recognized

that the concept of an infinitesimal was troublesome, so he began to

focus his attention on their ratio, which is often finite. Given this ratio,

it is easy enough to find two finite quantities with an identical quotient.

This realization led Newton to view a fluxion as the “ultimate ratio” of

finite quantities, rather than a quotient of infinitesimals. Eventually,

he disinherited infinitesimals: “I have sought to demonstrate that in

the method of fluxions, it is not necessary to introduce into geometry

infinitely small figures.” Yet in complicated calculations, o sometimes

resurfaced [3, Ch. V].

The use of infinitesimals is even more evident in the work of Gott-

fried Wilhelm Leibniz (1646–1716). He founded his development of

calculus on the concept of a differential, an infinitely small increment

in the value of a continuously changing variable. To calculate the rate

of change of y = f(x) with respect to the rate of change of x, Leibniz

formed the quotient of their differentials, dy/dx, in analogy to the for-

mula for computing a slope, ∆y/∆x (see Figure 1.2). To find the area

under the curve f(x), he imagined summing an indefinite number of

3Newton’s disused notation seems like madness, but there is method to it. The
fluxion ẋ is a “pricked letter,” indicating the rate of change at a point. The inverse

fluent
|
x suggests the fact that it is calculated by summing thin rectangular strips

(see Figure 1.3).
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rectangles with height f(x) and infinitesimal width dx (see Figure 1.3).

He expressed this sum with an elongated s, writing
∫

f(x) dx. Leibniz’s

notation remains in use today, since it clearly expresses the essential

ideas involved in calculating slopes and areas [3, Ch. V].

Figure 1.2. Using differentials to calculate the rate of
change of a function. The slope of the curve at the point
c is the ratio dy/dx.

Figure 1.3. Using differentials to calculate the area un-
der a curve. The total area is the sum of the small rect-
angles whose areas are given by the products f(x) dx.

Although Leibniz began working with finite differences, his suc-

cess with infinitesimal methods eventually converted him, despite on-

going doubts about their logical basis. When asked for justification, he
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tended to hedge: an infinitesimal was merely a quantity which may

be taken “as small as one wishes” [3, Ch. V]. Elsewhere he wrote

that it is safe to calculate with infinitesimals, since “the whole matter

can be always referred back to assignable quantities” [7, p. 6]. Leib-

niz did not explain how one may alternate between “assignable” and

“inassignable” quantities, a serious gloss. But it serves to emphasize

the confusion and ambivalence with which Leibniz regarded infinitesi-

mals [3, Ch. V].

As a final example of infinitesimals in history, consider Leonhard

Euler (1707–1783), the world’s most prolific mathematician. He un-

abashedly used the infinitely large and the infinitely small to prove

many striking results, including the beautiful relation known as Eu-

ler’s Equation:

eiθ = cos θ + i sin θ,

where i =
√
−1. From a modern perspective, his derivations are

bizarre. For instance, he claims that if N is infinitely large, then the

quotient N−1
N

= 1. This formula may seem awkward, yet Euler used it

to obtain correct results [7, pp. 8–9].

1.6. Banished

As the 19th century dawned, there was a strong tension between

the logical inconsistencies of infinitesimals and the fact that they of-

ten yielded the right answer. Objectors essentially reiterated Zeno’s

complaints, while proponents offered metaphysical speculations. As

the century progressed, a nascent trend toward formalism accelerated.

Analysts began to prove all theorems rigorously, with each step requir-

ing justification. Infinitesimals could not pass muster.

The first casualty was Leibniz’s view of the derivative as the quo-

tient of differentials. Bernhard Bolzano (1781–1848) realized that the
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derivative is a single quantity, rather than a ratio. He defined the de-

rivative of a continuous function f(x) at a point c as the number f ′(c)

which the quotient

f(c + h) − f(c)

h

approaches with arbitrary precision as h becomes small. Limits are

evident in Bolzano’s work, although he did not define them explicitly.

Augustin-Louis Cauchy (1789–1857) took the next step by develop-

ing an arithmetic formulation of the limit concept which did not appeal

to geometry. Interestingly, he used this notion to define an infinitesi-

mal as any sequence of numbers which has zero as its limit. His theory

lacked precision, which prevented it from gaining acceptance.

Cauchy also defined the integral in terms of limits; he imagined it as

the ultimate sum of the rectangles beneath a curve as the rectangles be-

come smaller and smaller [3, Ch. VII]. Bernhard Riemann (1826–1866)

polished this definition to its current form, which avoids all infinitesi-

mal considerations [16, Ch. 5], [12, Ch. 6].

In 1872, the limit finally received a complete, formal treatment

from Karl Weierstrass (1815–1897). The idea is that a function f(x)

will take on values arbitrarily close to its limit at the point c when-

ever its argument x is sufficiently close to c.4 This definition rendered

infinitesimals unnecessary [3, 287].

The killing blow also fell in 1872. Richard Dedekind (1831–1916)

and Georg Cantor (1845-1918) both published constructions of the real

numbers. Before their work, it was not clear that the real numbers ac-

tually existed. Dedekind and Cantor were the first to exhibit sets which

4More formally, L = f(c) is the limit of f(x) as x aproaches c if and only if
the following statement holds. For any ε > 0, there must exist a δ > 0 for which
|c − x| < δ implies that |L − f(x)| < ε.



Historical Background 12

satisfied all the properties desired of the reals.5 These models left no

space for infinitesimals, which were quickly forgotten by mathemati-

cians [3, Ch. VII].

1.7. Regained

In comparision with mathematicians, engineers and physicists are

typically less concerned with rigor and more concerned with results.

Since their studies revolve around dynamical systems and continuous

phenomena, they continued to regard infinitesimals as useful heuris-

tic aids in their calculations. A little care ensured correct answers,

so they had few qualms about infinitely small quantities. Meanwhile,

the formalists, led by David Hilbert (1862-1943), reigned over math-

ematics. No theorem was valid without a rigorous, deductive proof.

Infinitesimals were scorned since they lacked sound definition.

In autumn 1960, a revolutionary, new idea was put forward by

Abraham Robinson (1918–1974). He realized that recent advances in

symbolic logic could lead to a new model of mathematical analysis.

Using these concepts, Robinson introduced an extension of the real

numbers, which he called the hyperreals. The hyperreals, denoted ∗R,

contain all the real numbers and obey the familiar laws of arithmetic.

But ∗R also contains infinitely small and infinitely large numbers.

With the hyperreals, it became possible to prove the basic theorems

of calculus in an intuitive and direct manner, just as Leibniz had done in

the 17th century. A great advantage of Robinson’s system is that many

properties of R still hold for ∗R and that classical methods of proof

apply with little revision [6, pp. 281–287]. Robinson’s landmark book,

5Never mind the fact that their constructions were ultimately based on the
natural numbers, which did not receive a satisfactory definition until Frege’s 1884
book Grundlagen der Arithmetik [14].
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Non-standard Analysis was published in 1966. Finally, the mysterious

infinitesimals were placed on a firm foundation [7, pp. 10–11].

In the 1970s, a second model of infinitesimal analysis appeared,

based on considerations in category theory, another branch of math-

ematical logic. This method develops the nil-square infinitesimal, a

quantity ε which is not necessarily equal to zero, yet has the property

that ε2 = 0. Like hyperreals, nil-square infinitesimals may be used to

develop calculus in a natural way. But this system of analysis possesses

serious drawbacks. It is no longer possible to assert that either x = y

or x 6= y. Points are “fuzzy”; sometimes x and y are indistinguishable

even though they are not identical. This is Peirce’s continuum: a se-

ries of overlapping infinitesimal segments [2, Introduction]. Although

intuitionists believe that this type of model is the proper way to view a

continuum, many standard mathematical tools can no longer be used.6

For this reason, the category-theoretical approach to infinitesimals is

unlikely to gain wide acceptance.

1.8. The Future

The hyperreals satisfy a rule called the transfer principle:

Any appropriately formulated statement is true of ∗R

if and only if it is true of R.

As a result, any proof using nonstandard methods may be recast in

terms of standard methods. Critics argue, therefore, that Nonstandard

Analysis (NSA) is a trifle. Proponents, on the other hand, claim that

infinitesimals and infinitely large numbers facilitate proofs and permit

a more intuitive development of theorems [7, p. 11].

6The specific casualties are the Law of Excluded Middle and the Axiom of
Choice. This fact prevents proof by contradiction and destroys many important
results, including Tychonoff’s Theorem and the Hahn-Banach Extension Theorem.
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New mathematical objects have been constructed with NSA, and

it has been very effective in attacking certain types of problems. A

primary advantage is that it provides a more natural view of standard

mathematics. For example, the space of distributions, D ′(R), may be

viewed as a set of nonstandard functions.7 A second benefit is that NSA

allows mathematicians to apply discrete methods to continuous prob-

lems. Brownian motion, for instance, is essentially a random walk with

infinitesimal steps. Finally, NSA shrinks the infinite to a manageable

size. Infinite combinatorial problems may be solved with techniques

from finite combinatorics [10, Preface].

So, infinitesimals are back, and they can no longer be dismissed

as logically unsound. At this point, it is still difficult to project their

future. Nonstandard Analysis, the dominant area of research using

infinitesimal methods, is not yet a part of mainstream mathematics.

But its intuitive appeal has gained it some formidable allies. Kurt

Gödel (1906–1978), one of the most important mathematicians of the

20th century, made this prediction: “There are good reasons to believe

that nonstandard analysis, in some version or other, will be the analysis

of the future” [7, p. v].

7Incredibly, D ′(R) may even be viewed as a set of infinitely differentiable non-
standard functions.



CHAPTER 2

Rigorous Infinitesimals

There are now several formal theories of infinitesimals, the most

common of which is Robinson’s Nonstandard Analysis (NSA). I believe

that NSA provides the most satisfying view of infinitesimals. Further-

more, its toolbox is easy to use. Advanced applications require some

practice, but the fundamentals quickly become arithmetic.

2.1. Developing Nonstandard Analysis

Different authors present NSA in radically different ways. Although

the three major versions are essentially equivalent, they have distinct

advantages and disadvantages.

2.1.1. A Nonstandard Extension of R. Robinson originally

constructed a proper nonstandard extension of the real numbers, which

he called the set of hyperreals, ∗R [6, 281–287]. One approach to NSA

begins by defining the nonstandard extension ∗X of a general set X.

This extension consists of a non-unique mapping ∗ from the subsets of

X to the subsets of ∗X which preserves many set-theoretic properties

(see Appendix A). Define the power set of X to be the collection of all

its subsets, i.e. P(X) = {A : A ⊆ X}. Then, ∗ : P(X) → P(∗X). It

can be shown that any nonempty set has a proper nonstandard exten-

sion, i.e. X $ ∗X. The extension of R to ∗R is just one example. Since

R is already complete, it follows that ∗R must contain infinitely small

and infinitely large numbers. Infinitesimals are born [8].
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I find this definition very unsatisfying, since it yields no information

about what a hyperreal is. Before doing anything, it is also necessary

to prove a spate of technical lemmata. The primary advantage of this

method is that the extension can be applied to any set-theoretic object

to obtain a corresponding nonstandard object.1 A minor benefit is that

this system is not tied to a specific nonstandard construction, e.g. ∗R.

It specifies instead the properties which the nonstandard object should

preserve. An unfortunate corollary is that the presentation is extremely

abstract [8].

2.1.2. Nelson’s Axioms. Nonstandard extensions are involved

(at best). Ed Nelson has made NSA friendlier by axiomatizing it. The

rules are given a priori (see Appendix B), so there is no need for com-

plicated constructions. Nelson’s approach is called Internal Set Theory

(IST). It has been shown that IST is consistent with standard set the-

ory,2 which is to say that it does not create any (new) mathematical

contradictions [11].

Several details make IST awkward to use. To eliminate ∗R from the

picture, IST adds heretofore unknown elements to the reals. In fact,

every infinite set of real numbers contains these nonstandard mem-

bers. But IST provides no intuition about the nature of these new

elements. How big are they? How many are there? How do they relate

to the standard elements? Alain Robert answers, “These nonstandard

integers have a certain charm that prevents us from really grasping

1This version of NSA strictly follows the Zermelo-Fraenkel axiomatic in re-
garding every mathematical object as a set. For example, an ordered pair (a, b) is
written as {a, {a, b}}, and a function f is identified with its graph, f = {(x, f(x)) :
x ∈ Dom f}. In my opinion, it is unnecessarily complicated to expand every object
to its primitive form.

2Standard set theory presumes the Zermelo-Fraenkel axioms and the Axiom of
Choice.
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them!” [11]. I see no charm.3 Another major complaint is that IST

intermingles the properties of R and ∗R, which serves to limit compre-

hension of both. It seems more transparent to regard the reals and the

hyperreals as distinct systems.

2.2. Direct Ultrapower Construction of ∗R

In my opinion, a direct construction of the hyperreals provides the

most lucid approach to NSA. Although it is not as general as a non-

standard extension, it repays the loss with rich intuition about the

hyperreals. Arithmetic develops quickly, and it is based largely on

simple algebra and analysis.

Since the construction of the hyperreals from the reals is analogous

to Cantor’s construction of the real numbers from the rationals, we

begin with Cantor. I follow Goldblatt throughout this portion of the

development [7].

2.2.1. Cantor’s Construction of R. Until the end of the 1800s,

the rationals were the only “real” numbers in the sense that R was

purely hypothetical. Mathematicians recognized that R should be an

ordered field with the least-upper-bound property, but no one had

demonstrated the existence of such an object. In 1872, both Richard

Dedekind and Georg Cantor published solutions to this problem [3,

Ch. VII]. Here is Cantor’s approach.

Since the rationals are well-defined, they are the logical starting

point. The basic idea is to identify each real number r with those

sequences of rationals which want to converge to r.

3In Nelson’s defense, it must be said that the reason the nonstandard numbers
are so slippery is that all sets under IST are internal sets (see Section 2.3.2), which
are fundamental to NSA. Only the standard elements of an internal set are arbitrary,
and these dictate the nonstandard elements.
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Definition 2.1 (Sequence). A sequence is a function defined on

the set of positive integers. It is denoted by

a = {aj}∞j=1 = {aj}.

We will indicate the entire sequence by a boldface letter or by a single

term enclosed in braces, with or without limits. The terms are written

with a subscript index, and they are usually denoted by the same letter

as the sequence.

Definition 2.2 (Cauchy Sequence). A sequence {rj}∞j=1 = {rj} is

Cauchy if it converges within itself. That is, limj,k→∞ |rj − rk| = 0.

Consider the set of Cauchy sequences of rational numbers, and de-

note them by S. Let r = {rj} and s = {sj} be elements of S. Define

addition and multiplication termwise:

r ⊕ s = {rj + sj}, and

r � s = {rj · sj}.

It is easy to check that these operations preserve the Cauchy property.

Furthermore, ⊕ and � are commutative and associative, and ⊕ dis-

tributes over �. Hence, (S,⊕,�) is a commutative ring which has zero

0 = {0, 0, 0, . . .} and unity 1 = {1, 1, 1, . . .}.

Next, we will say that r, s ∈ S are equivalent to each other if and

only if they share the same limit. More precisely,

r ≡ s if and only if lim
j→∞

|rj − sj| = 0.

It is straightforward to check that ≡ is an equivalence relation by using

the triangle inequality, and we denote its equivalence classes by [·].
Moreover, ≡ is a congruence on the ring S, which means r ≡ r′ and

s ≡ s′ imply that r ⊕ s ≡ r′ ⊕ s′ and r � s ≡ r′ � s′.

Now, let R be the quotient ring given by S modulo the equivalence.

R = {[r] : r ∈ S}.
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Define arithmetic operations in the obvious way, viz.

[r] + [s] = [r⊕ s] = [{rj + sj}] , and

[r] · [s] = [r � s] = [{rj · sj}] .

The fact that ≡ is a congruence on S shows that these operations are

independent of particular equivalence class members; they are well-

defined.

Finally, define an ordering: [r] < [s] if and only if there exists a

rational ε > 0 and an integer J ∈ N such that rj + ε < sj for each

j > J .4 We must check the well-definition of this relation. Let [r] < [s],

which dictates constants ε and J . Choose r′ ≡ r and s′ ≡ s. There

exists an N > J such that j > N implies |rj−r′j| < 1
4
ε and |s′j−sj| < 1

4
ε.

Then,

|rj − r′j| + |s′j − sj| < 1
2
ε,

which shows that

|(rj − sj) + (s′j − r′j)| < 1
2
ε, or

− 1
2
ε < (rj − sj) + (s′j − r′j) < 1

2
ε, which gives

(sj − rj) − 1
2
ε < (s′j − r′j)

for any j > N . Since [r] < [s] and N > J , ε < (sj − rj) for all j > N .

Then,

0 < ε − 1
2
ε < (s′j − r′j), or

r′j + 1
2
ε < s′j

for each j > N , which demonstrates that [r′] < [s′] by our definition.

It can be shown that (R, +, ·, <) is a complete, ordered field. Since

all complete, ordered fields are isomorphic, we may as well identify this

object as the set of real numbers. Notice that the rational numbers Q

4The sequences r and s do not necessarily converge to rational numbers, which
means that we cannot do arithmetic with their limits. In the current context, the
more obvious definition “[r] < [s] iff limj→∞ rj < limj→∞ sj” is meaningless.
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are embedded in R via the mapping q 7→ [{q, q, q, . . .}]. At this point,

the construction becomes incidental. We hide the details by labeling

the equivalence classes with more meaningful symbols, such as 2 or
√

2

or π.

2.2.2. Cauchy’s Infinitesimals. The question at hand is how to

define infinitesimals in a consistent manner so that we may calculate

with them. Cauchy’s arithmetic definition of an infinitesimal provides

a good starting point.

Cauchy suggested that any sequence which converges to zero may

be regarded as infinitesimal.5 In analogy, we may also regard divergent

sequences as infinitely large numbers. This concept suggests that rates

of convergence and divergence may be used to measure the magnitude

of a sequence.

Unfortunately, when we try to implement this notion, problems

appear quickly. We might say that

{2, 4, 6, 8, . . .} is greater than {1, 2, 3, 4, . . .}

since it diverges faster. But how does

{1, 2, 3, 4, . . .} compare with {2, 3, 4, 5, . . .}?

They diverge at exactly the same rate, yet the second seems like it

should be a little greater. What about sequences like

{−1, 2,−3, 4,−5, 6, . . .}?

How do we even determine its rate of divergence?

Clearly, a more stringent criterion is necessary. To say that two se-

quences are equivalent, we will require that they be “almost identical.”

5Given such an infinitesimal, ε = {εj}, Cauchy also defined η = {ηj} to be
an infinitesimal of order n with respect to ε if ηj ∈ O (εj

n) and εj
n ∈ O (ηj) as

j → ∞ [3, Ch. VII].
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2.2.3. The Ring of Real-Valued Sequences. We must formal-

ize these ideas. As in Cantor’s construction, we will be working with

sequences. This time, the elements will be real numbers with no con-

vergence condition specified.

Let r = {rj} and s = {sj} be elements of RN, the set of real-valued

sequences. First, define

r ⊕ s = {rj + sj}, and

r � s = {rj · sj}.

(RN,⊕,�) is another commutative ring6 with zero 0 = {0, 0, 0, . . .} and

unity 1 = {1, 1, 1, . . .}.

2.2.4. When Are Two Sequences Equivalent? The next step

is to develop an equivalence relation on RN. We would like r ≡ s when

r and s are “almost identical”—if their agreement set

Ers = {j ∈ N : rj = sj}

is “large.” A nice idea, but there seems to be an undefined term. What

is a large set? What properties should it have?

• Equivalence relations are reflexive, which means that any se-

quence must be equivalent to itself. Hence Err = {1, 2, 3, . . .} =

N must be a large set.

• Equivalence is also transitive, which means that Ers and Est

large must imply Ert large. In general, the only nontrivial

statement we can make about the agreement sets is that Ers∩
Est ⊆ Ert. Thus, the intersection of large sets ought to be

large.

6Note that RN is not a field, since it contains nonzero elements which have a
�-product of 0, such as {1, 0, 1, 0, 1, . . .} and {0, 1, 0, 1, 0, . . .} .
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• The empty set, ∅, should not be large, or else every subset of

N would be large by the foregoing. In that case all sequences

would be equivalent, which is less than useful.

• A set of integers A is called cofinite if N \ A is a finite set.

Declaring any cofinite set to be large would satisfy the first

three properties. But consider the sequences

o = {1, 0, 1, 0, 1, . . .} and e = {0, 1, 0, 1, 0, . . .}.

They agree nowhere, so they determine two distinct equiva-

lence classes. We would like the hyperreals to be totally or-

dered, so one of e and o must exceed the other. Let us say

that r < s if and only if Lrs = {j ∈ N : rj < sj} is a large

set. Neither Loe = {j : j is even} nor Leo = {j : j is odd} is

cofinite, so e 6< o and e 6> o. To obtain a total ordering using

this potential definition, we need another stipulation: for any

A ⊆ N, exactly one of A and N \ A must be large.

These requirements may seem rather stringent. But they are satis-

fied naturally by any nonprincipal ultrafilter F on N. (See Appendix C

for more details about filters.) The existence of such an object is not

trivial. Its complexity probably kept Cauchy and others from develop-

ing the hyperreals long ago. We are more interested in the applications

of ∗R than the minutiae of its construction. Therefore, we will not

delve into the gory, logical details. Here, suffice it to say that there

exists a nonprincipal ultrafilter on N.

Definition 2.3 (Large Set). A set A ⊆ N is large with respect to

the nonprincipal ultrafilter F ∈ P(N) if and only if A ∈ F .

Notation ({{r R s}}). In the foregoing, Ers denoted the set of

places at which r = {rj} and s = {sj} are equal. We need a more

general notation for the set of terms at which two sequences satisfy
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some relation. Write

{{r = s}} = {j ∈ N : rj = sj},

{{r < s}} = {j ∈ N : rj = sj}, or in general

{{r R s}} = {j ∈ N : rj R sj}.

Sometimes, it will be convenient to use a similar notation for the set

of places at which a sequence satisfies some predicate P :

{{P (r)}} = {j ∈ N : P (rj)}.

Now, we are prepared to define an equivalence relation on RN. Let

{rj} ≡ {sj} iff {{r = s}} ∈ F .

The properties of large sets guarantee that ≡ is reflexive, symmetric

and transitive. Write the equivalence classes as [·]. And notice that ≡
is a congruence on the ring RN.

Definition 2.4 (The Almost-All Criterion). When r ≡ s, we also

say that they agree on a large set or agree at almost all n. In general,

if P is a predicate and r is a sequence, we say that P holds almost

everywhere on r if {{P (r)}} is a large set.

2.2.5. The Field of Hyperreals. Next, we develop arithmetic

operations for the quotient ring ∗R which equals RN modulo the equiv-

alence:

∗R = {[r] : r ∈ RN}.
Addition and multiplication are defined by

[r] + [s] = [r⊕ s] = [{rj + sj}] , and

[r] · [s] = [r � s] = [{rj · sj}] .

Well-definition follows from the fact that ≡ is a congruence. Finally,

define the ordering by

[r] < [s] iff {{r < s}} ∈ F iff {j ∈ N : rj < sj} ∈ F .
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This ordering is likewise well-defined.

With these definitions, it can be shown that (∗R, +, ·, <) is an or-

dered field. (See Goldblatt for a proof sketch [7, Ch. 3.6].)

This presentation is called an ultrapower construction of the hyper-

reals.7 Since our development depends quite explicitly on the choice of

a nonprincipal ultrafilter F , we might ask whether the field of hyper-

reals is unique.8 For our purposes, the issue is tangential. It does not

affect any calculations or proofs, so we will ignore it.

2.2.6. R Is Embedded in ∗R. Identify any real number r ∈ R

with the constant sequence r = {r, r, r, . . .}. Now, define a map ∗ :

R → ∗R by

∗r = [r] = [{r, r, r, . . .}] .

It is easy to see that for r, s ∈ R,

∗(r + s) = ∗r + ∗s,

∗(r · s) = ∗r · ∗s,
∗r = ∗s iff r = s, and

∗r < ∗s iff r < s.

In addition, ∗0 = [0] = [{0, 0, 0, . . .}] is the zero of ∗R, and ∗1 = [1] =

[{1, 1, 1, . . .}] is the unit.

Theorem 2.5. The map ∗ : R → ∗R is an order-preserving field

isomorphism. �

7The term ultrapower means that ∗R is the quotient of a direct power (RN)
modulo a congruence (≡) given by an ultrafilter (F ).

8Unfortunately, the answer depends on which set-theoretic axioms we assume.
The continuum hypothesis (CH) implies that we will obtain the same field (to
the point of isomorphism) for any choice of F . Denying CH leaves the situation
undetermined [7, 33]. Both CH and not-CH are consistent with standard set theory,
but Schechter’s reference, Handbook of Analysis and Its Foundations, gives no
indication that either axiom has any effect on standard mathematics [15].
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Therefore, the reals are embedded quite naturally in the hyperreals.

As a result, we may identify r with ∗r as convenient.

2.2.7. R Is a Proper Subset of ∗R. Let ε = {1, 1
2
, 1

3
, . . .} = {1

j
}.

It is clear that ε > 0:

{{0 < ε}} = {j ∈ N : 0 < 1
j
} = N ∈ F .

Yet, for any real number r, the set

{{ε < r}} = {j ∈ N : 1
j

< r}

is cofinite. Every cofinite set is large (see Appendix C), so {{ε < r}} ∈ F

which implies that [ε] < ∗r. Therefore, [ε] is a positive infinitesimal!

Analogously, let ω = {1, 2, 3, . . .}. For any r ∈ R, the set

{{r < ω}} = {j ∈ N : r < j}

is cofinite, because the reals are Archimedean. We have proved that

∗r < [ω]. Therefore, [ω] is infinitely large!

Remark 2.6. It is undesirable to discuss “infinitely large” and “in-

finitely small” numbers. These phrases are misleading because they

suggest a connection between nonstandard numbers and the infinities

which appear in other contexts. Hyperreals, however, have nothing to

do with infinite cardinals, infinite sums, or sequences which diverge to

infinity. Therefore, the terms hyperfinite and unlimited are preferable

to “infinitely large.” Likewise, infinitesimal is preferable to “infinitely

small.”

These facts demonstrate that R $ ∗R. Here is an even more direct

proof of this result. For any r ∈ R, {{r = ω}} equals ∅ or {r}. Thus

{{r = ω}} 6∈ F , which shows that ∗r 6= [ω]. Thus, [ω] ∈ ∗R \ R.
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Definition 2.7 (Nonstandard Number). Any element of ∗R \R is

called a nonstandard number. For every r ∈ R, ∗r is standard. In fact,

all standard elements of ∗R take this form.

This discussion also shows that any sequence ε converging to zero

generates an infinitesimal [ε], which vindicates Cauchy’s definition.

Similarly, any sequence ω which diverges to infinity can be identified

with an unlimited number [ω]. Moreover, [ε] · [ω] = [1]. So [ε] and [ω]

are multiplicative inverses.

Mission accomplished.

2.2.8. The ∗ Map. We would like to be able to extend functions

from R to ∗R. As a first step, it is necessary to enlarge the function’s

domain.

Let A ⊆ R. Define the extension or enlargement ∗A of A as follows.

For each r ∈ RN,

[r] ∈ ∗A iff {{r ∈ A}} = {j ∈ N : rj ∈ A} ∈ F .

That is, ∗A contains the equivalence classes of sequences whose terms

are almost all in A. One consequence is that ∗a ∈ ∗A for each a ∈ A.

Now, we prove a crucial theorem about set extensions.

Theorem 2.8. Let A ⊆ R. ∗A has nonstandard members if and

only if A is infinite. Otherwise, ∗A = A.

Proof. If A is infinite, then there is a sequence r, where rj ∈ A

for each j, whose terms are all distinct. The set {{r ∈ A}} = N ∈ F ,

so [r] ∈ ∗A. For any real s ∈ A, let s = {s, s, s . . .}. The agreement

set {{r = s}} is either ∅ or a singleton, neither of which is large. So

∗s = [s] 6= [r]. Thus, [r] is a nonstandard element of ∗A.

On the other hand, assume that A is finite. Choose [r] ∈ ∗A.

By definition, r has a large set of terms in A. For each x ∈ A, let
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Rx = {{r = x}} = {j ∈ N : rj = x}. Now, {Rx}x∈A is a finite collection

of pairwise disjoint sets, and their union is an element of F , i.e. a

large set. The properties of ultrafilters (see Appendix C) dictate that

Rx ∈ F for exactly one x ∈ A, say x0. Therefore, {{r = x0}} ∈ F ,

where x0 = {x0, x0, x0, . . .}. And so [r] = ∗x0.

As every element of A has a corresponding element in ∗A, we con-

clude that ∗A = A whenever A is finite. �

The definition and theorem have several immediate consequences.

∗A will have infinitesimal elements at the accumulation points of A. In

addition, the extension of an unbounded set will have infinitely large

elements.

It should be noted that the ∗ map developed here is a special case

of a nonstandard extension, described in Appendix A. Therefore, it

preserves unions, intersections, set differences and Cartesian products.

Now, we are prepared to define the extension of a function, f : R →
R. For any sequence r ∈ RN, define f(r) = {f(rj)}. Then let

∗f([r]) = [f(r)] .

In general,

{{r = r′}} ⊆ {{f(r) = f(r′)}},

which means

r ≡ r′ implies f(r) ≡ f(r′)).

Thus, ∗f is well-defined. Now, ∗f : ∗R → ∗R.

We can also extend the partial function f : A → R to the partial

function ∗f : ∗A → ∗R. This construction is identical to the last, except

that we avoid elements outside Dom f . For any [r] ∈ ∗A, let

sj =

{

f(rj) if rj ∈ A,
0 otherwise.
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Since [r] ∈ ∗A, rj ∈ A for almost all j, which means that sj = f(rj)

almost everywhere. Finally, we put

∗f([r]) = [s] .

Demonstrating well-definition of the extension of a partial function is

similar to the proof for functions whose domain is R.

It is easy to show that ∗(f(r)) = ∗f(∗r), so ∗f is an extension of f .

Therefore, the ∗ is not really necessary, and it is sometimes omitted.

Definition 2.9 (Hypersequence). Note that this discussion also

applies to sequences, since a sequence is a function a : N → R. The

extension of a sequence is called a hypersequence, and it maps ∗N → ∗R.

The same symbol a is used to denote the hypersequence. Terms with

hyperfinite indices are called extended terms.

Definition 2.10 (Standard Object). Any set of hyperreals, func-

tion on the hyperreals, or sequence of hyperreals which can be defined

via this ∗ mapping is called standard.

2.3. Principles of NSA

Before we can exploit the power of NSA, we need a way to translate

results from the reals to the hyperreals and vice-versa. I continue to

follow Goldblatt’s presentation [7].

2.3.1. The Transfer Principle. The Transfer Principle is the

most important tool in Nonstandard Analysis. First, it allows us to

recast classical theorems for the hyperreals. Second, it permits the use

of hyperreals to prove results about the reals. Roughly, transfer states

that

any appropriately formulated statement is true of ∗R

if and only if it is true of R [7, 11].
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We must define what it means for a statement to be “appropriately

formulated” and how the statement about ∗R differs from the statement

about R.

Any mathematical statement can be written in logical notation us-

ing the following symbols:

Logical Connectives: ∧ (and), ∨ (or), ¬ (not), → (implies),

and ↔ (if and only if).

Quantifiers: ∀ (for all) and ∃ (there exists).

Parentheses: (), [].

Constants: Fixed elements of some fixed set or universe U ,

which are usually denoted by letter symbols.

Variables: A countable collection of letter symbols.

Definition 2.11 (Sentence). A sentence is a mathematical state-

ment written in logical notation and which contains no free variables.

In other words, every variable must be quantified to specify its bound,

the set over which it ranges. For example, the statement (x > 2)

contains a free occurence of the variable x. On the other hand, the

statement (∀y ∈ N)(y > 2) contains only the variable y, bound to N,

which means that it is a sentence. A sentence in which all terms are

defined may be assigned a definite truth value.

Next, we explain how to take the ∗-transform of a sentence ϕ. This

is a further generalization of the ∗ map which was discussed in Sec-

tion 2.2.8.

• Replace each constant τ by ∗τ .

• Replace each relation (or function) R by ∗R.

• Replace the bound A of each quantifier by its enlargement ∗A.

Variables do not need to be renamed. Set operations like ∪,∩, \,×,

etc. are preserved under the ∗ map, so they do not need renaming. As
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we saw before, we may identify r with ∗r for any real number, so these

constants do not require a ∗. It is also common to omit the ∗ from

standard relations like =, 6=, <,∈, etc. and from standard functions

like sin, cos, log, exp, etc. The classical definition will dictate the ∗-

transform. As before, A $ ∗A whenever A is infinite. Therefore, all

sets must be replaced by their enlargements.

Be careful, however, when using sets as variables. The bound of a

variable is the set over which it ranges, hence (∀A ⊆ R) must be written

as (∀A ∈ P(R)). Furthermore, the transform of P(R) is ∗P(R) and

neither P(∗R) nor ∗P(∗R). This phenomenon results from the fact

that P is not a function; it is a special notation for a specific set.

It will be helpful to provide some examples of sentences and their

∗-transforms.

(∀x ∈ R)(sin2 x + cos2 x = 1) becomes

(∀x ∈ ∗R)(sin2 x + cos2 x = 1).

(∀x ∈ R)(x ∈ [a, b] ↔ a ≤ x ≤ b) becomes

(∀x ∈ ∗R)(x ∈ ∗[a, b] ↔ a ≤ x ≤ b).

(∃y ∈ [a, b])(π < f(y)) becomes

(∃y ∈ ∗[a, b](π < ∗f(y)).

Now, we can restate the transfer principle more formally. If ϕ is a

sentence and ∗ϕ is its ∗-transform,

∗ϕ is true iff ϕ is true.

The transfer principle is a special case of  Loś’s Theorem, which is

beyond the scope of this thesis.

As a result of transfer, many facts about real numbers are also

true about the hyperreals. Trigonometric functions and logarithms,

for instance, continue to behave the same way for hyperreal arguments.
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Transfer also permits the use of infinitesimals and unlimited numbers

in lieu of limit arguments (see Section 3.1).

One more caution about the transfer principle: although every sen-

tence concerning R has a ∗-transform, there are many sentences con-

cerning ∗R which are not ∗-transforms.

The rules for applying the ∗-transform may seem arcane, but they

quickly become second nature. The proofs in the next chapter will

foster familiarity.

2.3.2. Internal Sets. For any sequence of subsets of R, A =

{Aj}, define a subset [A] ⊆ ∗R by the following rule. For each [r] ∈ ∗R,

[r] ∈ [A] iff {{r ∈ A}} = {j ∈ N : rj ∈ Aj} ∈ F .

Subsets of ∗R formed in this manner are called internal.

As examples, the enlargement ∗A of A ⊆ R is internal, since it is

constructed from the constant sequence {A, A, A, . . .}. Any finite set

of hyperreals is internal, and the hyperreal interval, [a, b] = {x ∈ ∗R :

a ≤ x ≤ b}, is internal for any a, b ∈ ∗R.

Internal sets may also be identified as the elements of ∗P(R). Thus

the transfer principle gives internal sets a special status. For example,

the sentence

(∀A ∈ P(N))[(A 6= ∅) → (∃n ∈ N)(n = min A)] becomes

(∀A ∈ ∗
P(N))[(A 6= ∅) → (∃n ∈ ∗N)(n = min A)].

Therefore, every nonempty internal subset of ∗N has a least member.

Internal sets have many other fascinating properties, which are fun-

damental to NSA. It is also possible to define internal functions as the

equivalence classes of sequences of real-valued functions. These, too,

are crucial to NSA. Unfortunately, an explication of these facts would

take us too far afield.
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2.4. Working with Hyperreals

Having discussed some of the basic principles of NSA, we can begin

to investigate the structure of the hyperreals. Then, we will be able

to ignore the details of the ultrapower construction and use hyperreals

for arithmetic. I am still following Goldblatt [7].

2.4.1. Types of Hyperreals. ∗R contains the hyperreal numbers.

Similarly, ∗Q contains hyperrationals, ∗Z contains hyperintegers and ∗N

contains hypernaturals. The sentence

(∀x ∈ R)[(x ∈ Q) ↔ (∃y, z ∈ Z)(z 6= 0 ∧ x = y/z)]

transfers to

(∀x ∈ ∗R)[(x ∈ ∗Q) ↔ (∃y, z ∈ ∗Z)(z 6= 0 ∧ x = y/z)],

which demonstrates that ∗Q contains quotients of hyperintegers.

Another important set of hyperreals is the set of unlimited natural

numbers, ∗N∞ = ∗N \ N. One of its key properties is that it has no

least member.9

Hyperreal numbers come in several basic sizes. Terminology varies,

but Goldblatt lists the most common definitions. The hyperreal b ∈ ∗R

is

• limited if r < b < s for some r, s ∈ R;

• positive unlimited if b > r for every r ∈ R;

• negative unlimited if b < r for every r ∈ R;

• unlimited or hyperfinite if it is positive or negative unlimited;

• positive infinitesimal if 0 < b < r for every positive r ∈ R;

• negative infinitesimal if r < b < 0 for every negative r ∈ R;

• infinitesimal if it is positive or negative infinitesimal or zero;10

• appreciable if b is limited but not infinitesimal.

9Consequently, ∗N∞ is not internal.
10Zero is the only infinitesimal in R.
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Goldblatt also lists rules for arithmetic with hyperreals, although

they are fairly intuitive. These laws follow from transfer of appropriate

sentences about R. Let ε, δ be infinitesimal, b, c appreciable, and N, M

unlimited.

Sums: ε + δ is infinitesimal;

b + ε is appreciable;

b + c is limited (possibly infinitesimal);

N + ε and N + b are unlimited.

Products: ε · δ and ε · b are infinitesimal;

b · c is appreciable;

b · N and N · M are unlimited.

Reciprocals: 1
ε

is unlimited if ε 6= 0;

1
b

is appreciable;

1
N

is infinitesimal.

Roots: For n ∈ N,

if ε > 0, n
√

ε is infinitesimal;

if b > 0,
n
√

b is appreciable;

if N > 0, n
√

N is unlimited.

Indeterminate Forms: ε
δ
, N

M
, ε · N, N + M .

Other rules follow easily from transfer coupled with common sense.

On an algebraic note, these rules show that the set of limited numbers

L and the set of infinitesimals I both form subrings of ∗R. I forms an

ideal in L, and it can be shown that the quotient L/I = R.

2.4.2. Halos and Galaxies. The rich structure of the hyperreals

suggests several useful new types of relations. The most important

cases are when two hyperreals are infinitely near to each other and

when they are a limited distance apart.
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Definition 2.12 (Infinitely Near). Two hyperreals b and c are

infinitely near when b − c is infinitesimal. We denote this relationship

by b ' c. This defines an equivalence relation on ∗R whose equivalence

classes are written

hal(b) = {c ∈ ∗R : b ' c}.

Definition 2.13 (Limited Distance Apart). Two hyperreals b and

c are at a limited distance when b − c is appreciable. We denote this

relationship by b ∼ c. This also defines an equivalence relation on ∗R

whose equivalence classes are written

gal(b) = {c ∈ ∗R : b ∼ c}.

It is clear then that b is infinitesimal if and only if b ' 0. Likewise,

b is limited if and only if b ∼ 0. Equivalently, I = hal(0) and L =

gal(0). This notation derives from the words “halo” and “galaxy,”

which illustrate the concepts well.

At this point, we can get some idea of how big the set of hyperreals

is. Choose a positive unlimited number N . It is easy to see that gal(N)

is disjoint from gal(2N). In fact, gal(N) does not intersect gal(nN) for

any integer n. Furthermore, gal(N) is disjoint from gal(N/2), gal(N/3),

etc. Moreover, none of these sets intersect gal(N 2) or the galaxy of

any hypernatural power of N . The elements of gal(eN) dwarf these

numbers. Yet the elements of gal(NN ) are still greater.

Since the reciprocal of every unlimited number is an infinitesimal,

we see that there are an infinite number of shells of infinitesimals sur-

rounding zero, each of which has the same cardinality as a galaxy.

Every real number has a halo of infinitesimals around it, and every

galaxy contains a copy of the real line along with the infinitesimal

halos of each element. Fleas on top of fleas.11

11More precisely, |∗R| = |P(R)| = 2c, where c is the cardinality of the real line.
Therefore, the hyperreals have the same power as the set of functions on R.
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2.4.3. Shadows. Finally, we will discuss the shadow map which

takes a limited hyperreal to its nearest real number.

Theorem 2.14 (Unique Shadow). Every limited hyperreal b is in-

finitely close to exactly one real number, which is called its shadow and

written sh (b).

Proof. Let A = {r ∈ R : r < b}.

First, we find a candidate shadow. Since b is limited, A is nonempty

and bounded above. R is complete, so A has a least upper bound c ∈ R.

Next, we show that b ' c. For any positive, real ε, the quantity

c+ ε 6∈ A, since c is the least upper bound of A. Similarly, c− ε < b, or

else c − ε would be a smaller upper bound of A. So c − ε < b ≤ c + ε,

and |b − c| ≤ ε. Since ε is arbitrarily small, we must have b ' c.

Finally, uniqueness. If b ' c′ ∈ R, then c ' c′ by transitivity. The

quantities c and c′ are both real, so c = c′. �

The shadow map preserves all the standard rules of arithmetic.

Theorem 2.15. If b, c are limited and n ∈ N, we have

(1) sh (b ± c) = sh (b) ± sh (c);

(2) sh (b · c) = sh (b) · sh (c);

(3) sh (b/c) = sh (b) / sh (c), provided that sh (c) 6= 0;

(4) sh (bn) = (sh (b))n;

(5) sh (|b|) = | sh (b) |;
(6) sh

(

n
√

b
)

= n
√

sh (b) if b ≥ 0; and

(7) if b ≤ c then sh (b) ≤ sh (c).

Proof. I will prove 1 and 7; the other proofs are similar.

Let ε = b − sh (b) and δ = c − sh (c). The shadows are infinitely

near b and c, so ε and δ are infinitesimal. Then,

b + c = sh (b) + sh (c) + ε + δ ' sh (b) + sh (c) .
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Hence, sh (b + c) = sh (b)+sh (c). The proof for differences is identical.

Assume that b ≤ c. If b ' c, then sh (b) ' c. Thus, sh (b) = sh (c).

Otherwise, b 6' c, so we have c = b + ε for some positive, appreciable

ε. Then, sh (c) = sh (b) + sh (ε), or sh (c) − sh (b) = sh (ε) > 0. We

conclude that sh (b) ≤ sh (c). �

Remark 2.16. The shadow map does not preserve strict inequali-

ties. If b < c and b ' c, then sh (b) = sh (c).



CHAPTER 3

Straightforward Analysis

Finally, we will use the machinery of Nonstandard Analysis to de-

velop some of the basic theorems of real analysis in an intuitive manner.

In this chapter, I have drawn on Goldblatt [7], Rudin [12], Cutland [5]

and Robert [11].

Remark 3.1. Many of the proofs depend on whether a variable is

real or hyperreal. Read carefully!

3.1. Sequences and Their Limits

The limit concept is the foundation of all classical analysis. NSA

replaces limits with reasoning about infinite nearness, which reduces

many complicated arguments to simple hyperreal arithmetic. First, we

review the classical definition of a limit.

Definition 3.2 (Limit of a Sequence). Let a = {aj}∞j=1 be a real-

valued sequence. Say that, for every real ε > 0, there exists J(ε) ∈ N

such that j > J implies |aj − L| < ε. Then L is the limit of the

sequence a. We also say that a converges to L and write aj → L.

This definition is an awkward rephrasing of a simple concept. A

sequence has a limit only if its terms get very close to that limit and

stay there. NSA allows us to apply this idea more directly.

Theorem 3.3. Let a be a real-valued sequence. The following are

equivalent:

(1) a converges to L
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(2) aj ' L for every unlimited j.

Proof. Assume that aj → L, and fix an unlimited N . For any

positive, real ε, there exists J(ε) ∈ N such that

(∀j ∈ N)(j > J → |aj − L| < ε).

By transfer,

(∀j ∈ ∗N)(j > J → |aj − L| < ε).

Since N is unlimited, it exceeds J . Therefore, |aN − L| < ε for any

positive, real ε, which means |aN − L| is infinitesimal, or equivalently

aN ' L.

Conversely, assume aj ' L for every unlimited j, and fix a real

ε > 0. For unlimited N , any j > N is also unlimited. So we have

(∀j ∈ ∗N)(j > N → aj ' L),

which implies

(∀j ∈ ∗N)(j > N → |aj − L| < ε).

Equivalently,

(∃N ∈ ∗N)(∀j ∈ ∗N)(j > N → |aj − L| < ε).

By transfer, this statement is true only if

(∃N ∈ N)(∀j ∈ N)(j > N → |aj − L| < ε)

is true. Since ε was arbitrary, aj → L. �

As a consequence of this theorem and the Unique Shadow theorem,

a convergent sequence can have only one limit.

3.1.1. Bounded Sequences.

Definition 3.4 (Bounded Sequence). A real-valued sequence a is

bounded if there exists an integer n such that aj ∈ [−n, n] for every

index j ∈ N. Otherwise, a is unbounded.
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Theorem 3.5. A sequence is bounded if and only if its extended

terms are limited.

Proof. Let a be bounded. Then, there exists n ∈ N such that

aj ∈ [−n, n] for every j ∈ N. Therefore, when N is unlimited, aN ∈
∗[−n, n] = {x ∈ ∗R : −n ≤ x ≤ n}. Hence aN is limited.

Conversely, let aj be limited for every unlimited j. Fix a hyperfinite

N ∈ ∗N. Clearly, aj ∈ [−N, N ]. So

(∃N ∈ ∗N)(∀j ∈ ∗N)(−N ≤ aj ≤ N).

Then, there must exist n ∈ N such that −n ≤ aj ≤ n for any standard

term aj. Therefore, the sequence is bounded. �

Definition 3.6 (Monotonic Sequence). The sequence a increases

monotonically if aj ≤ aj+1 for each j. If aj ≥ aj+1 for each j, then a

decreases monotonically.

Theorem 3.7. Bounded, monotonic sequences converge.

Proof. Let a be a bounded, monotonically increasing sequence.

Fix an unlimited N . Since a is bounded, aN is limited. Put L =

sh (aN). Now, a is nondecreasing, so j ≤ k implies aj ≤ ak. In partic-

ular, aj ≤ aN ' L for every limited j. Thus, L is an upper bound of

the standard part of a = {aj : j ∈ N}.

In fact, L is the least upper bound of this set. If r is any real upper

bound of the limited terms of a, it is also an upper bound the extended

terms. The relation L ' aN ≤ r implies that L ≤ r.

Therefore, aj ' L for every unlimited j, and aj → L.

The proof for monotonically decreasing sequences is similar. �

Remark 3.8. This result can be used to show that limj→∞ cj = 0

for any real c ∈ [0, 1). First, notice that {cj} is nonincreasing and that
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it is bounded below by 0. Thus, it has a real limit L. For unlimited N ,

L ' cN+1 = c · cN ' c · L.

Both c and L are real, so L = c · L. But c 6= 1, so L = 0.

3.1.2. Cauchy Sequences. Next, we will develop the nonstan-

dard characterization of a Cauchy sequence.

Theorem 3.9. A real-valued sequence is Cauchy if and only if all

its extended terms are infinitely close to each other, i.e. aj ' ak for all

unlimited j, k.

Proof. Assume that the real-valued sequence a is Cauchy:

(∀ε ∈ R+)(∃J ∈ N)(j, k > J → |aj − ak| < ε).

Fix an ε > 0, which dictates J(ε). Then,

(∀j ∈ N)(∀k ∈ N)(j, k > J → |aj − ak| < ε).

By transfer,

(∀j ∈ ∗N)(∀k ∈ ∗N)(j, k > J → |aj − ak| < ε).

All unlimited j, k exceed J , which means that |aj − ak| < ε for any

epsilon. Thus, aj ' ak whenever j and k are unlimited.

Now, assume that aj ' ak for all unlimited j, k, and choose a real

ε > 0. For unlimited N , any j and k exceeding N are also unlimited.

Then,

(∃N ∈ ∗N)(∀j, k ∈ ∗N)(j, k > N → |aj − ak| < ε).

By transfer,

(∃N ∈ N)(∀j, k ∈ N)(j, k > N → |aj − ak| < ε).

Since ε was arbitrary, a is Cauchy. �
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This theorem suggests that a Cauchy sequence should not diverge,

since its extended terms would have to keep growing. In fact, we can

show that every Cauchy sequence of real numbers converges, and con-

versely. This property of the real numbers is called completeness, and it

is equivalent to the least-upper-bound property, which is used to prove

the Unique Shadow theorem. Before proving this theorem, we require

a classical lemma.

Lemma 3.10. Every Cauchy sequence is bounded.

Proof. Let a be Cauchy. Pick a real ε > 0. There exists J(ε)

beyond which |aj − ak| < ε. In particular, for each j ≥ J , aj is

within ε of aJ . Now, the set E = {aj : j ≤ J} is finite, so we can put

m = min E and M = max E. Of course, aJ ∈ [m, M ]. Thus every term

of the sequence must be contained in the open interval (m− ε, M + ε).

As a result, a is bounded. �

Theorem 3.11. A real-valued sequence converges if and only if it

is Cauchy.

Proof. Let aN be an extended term of the Cauchy sequence a. By

the lemma, a is bounded, hence aN is limited. Put L = sh (aN). Since

a is Cauchy, aj ' aN ' L for every unlimited j. By Theorem 3.3,

aj → L.

Next, assume that the real-valued sequence aj → L. For every

unlimited j and k, we have aj ' L ' ak. Therefore, aj ' ak, and a is

Cauchy. �

3.1.3. Accumulation Points. If a real sequence does not con-

verge, there are several other possibilities. The sequence may have

multiple accumulation points; it may diverge to infinity; or it may

have no limit whatsoever.
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Definition 3.12 (Accumulation Point). A real number L is called

an accumulation point or a cluster point of the set E if there are an

infinite number of elements of E within every ε-neighborhood of L,

(L − ε, L + ε), where ε is a real number.

Theorem 3.13. A real number L is an accumulation point of the

sequence a if and only if the sequence has an extended term infinitely

near L. That is, aj ' L for some unlimited j.

Proof. Assume that L is a cluster point of a. The logical equiva-

lent of this statement is

(∀ε ∈ R+)(∀J ∈ N)(∃j ∈ N)(j > J ∧ |aj − L| < ε).

Fix a positive infinitesimal ε and an unlimited J . By transfer, there

exists an (unlimited) j > J for which |aj − L| < ε ' 0. So aj ' L.

Next, let aj ' L for some unlimited j. Take ε ∈ R+ and J ∈ N.

Then j > J and |aj − L| < ε. Thus,

(∃j ∈ ∗N)(j > J ∧ |aj − L| < ε).

Transfer demonstrates that L is a cluster point of a. �

In other words, if aN is a hyperfinite term of a sequence, its shadow

is an accumulation point of the sequence. This result yields a direct

proof of the Bolzano-Weierstrass theorem.

Theorem 3.14 (Bolzano-Weierstrass). Every bounded, infinite set

has an accumulation point.

Proof. Let E be a bounded, infinite set. Since E is infinite, we

can choose a sequence a from E. Since a is bounded, all of its extended

terms are limited, which means that each has a shadow. Each distinct

shadow is a cluster point of the sequence, so a must have at least one

accumulation point, which is simultaneously an accumulation point of

the set E. �
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3.1.4. Divergent Sequences. Unbounded sequences do not need

to have any accumulation points. One example is the sequence which

diverges.

Definition 3.15 (Divergent Sequence). Let a be a real-valued se-

quence. We say the sequence diverges to infinity if, for any n ∈ N,

there exists J(n) such that j > J implies aj > n. If, for any n, there

exists J(n) such that j > J implies aj < −n, then a diverges to minus

infinity.

Theorem 3.16. A real-valued sequence diverges to infinity if and

only if all of its extended terms are positive unlimited. Likewise, it

diverges to minus infinity if and only if each of its extended terms is

negative unlimited.

Proof. Let a be a divergent sequence. Fix an unlimited number

N . For any n ∈ N, there exists a J in N such that

(∀j ∈ N)(j > J → aj > n).

Since N > J , aN > n. The integer n was arbitrary, so aN must be

unlimited.

Now, assume that aj is positive unlimited for every unlimited j,

and choose an unlimited J . We have

(∃J ∈ ∗N)(∀j ∈ ∗N)(j > J → aj > n).

Transfer shows that a diverges to infinity.

The second part is almost identical. �

3.1.5. Superior and Inferior Limits. Finally, we will define su-

perior and inferior limits. Let a be a bounded sequence. Put E =
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{sh (aj) : j ∈ ∗N∞}. We put

lim sup
j→∞

aj = lim
j→∞

aj = sup E, and

lim inf
j→∞

aj = lim
j→∞

aj = inf E.

In other words, lim supj→∞ aj is the supremum of the sequence’s accu-

mulation points, and lim infj→∞ aj is the infimum of the accumulation

points.

For unbounded sequences, there is a complication, since the set E

cannot be defined as before. When a is unbounded, put E = {sh (aj) :

j ∈ ∗N∞ and aj ∈ L}. If a has no upper bound, then lim supj→∞ aj =

+∞. Similarly, if a has no lower bound, then lim infj→∞ aj = −∞.

Otherwise,

lim sup
j→∞

aj = sup E, and

lim inf
j→∞

aj = inf E.

Some sequences, such as {(−2)j} neither converge nor diverge. Yet

every sequence has superior and inferior limits, in this case +∞ and

−∞.

Remark 3.17. Many results about real-valued sequences may be

extended to complex-valued sequences by using transfer.

3.2. Series

Let a = {aj}∞j=1 be a sequence. A series is a sequence S of partial

sums,

Sn =
n

∑

j=1

aj = a1 + a2 + · · · + an.

For n ≥ m, it is common to denote am + am+1 + · · · + an by

n
∑

j=m

aj =

n
∑

j=1

aj −
m−1
∑

j=1

aj = Sn − Sm−1.



Straightforward Analysis 45

It is also common to drop the index from the sum if there is no chance

of confusion.

If the sequence S converges to L, then we say that the series con-

verges to L and write
∞

∑

1

aj = L.

Extending S to a hypersequence yields a hyperseries. In this context,

the summation of an unlimited number of terms of a becomes mean-

ingful. The extended terms of S may be thought of as hyperfinite sums.

A series is just a special type of sequence, hence all the results for

sequences apply. Notably,

Theorem 3.18.
∑∞

1 aj = L if and only if
∑N

1 aj ' L for all

unlimited N . �

Theorem 3.19.
∑∞

1 aj converges if any only if
∑N

M aj ' 0 for all

unlimited M, N with N ≥ M . In particular, the series
∑∞

1 aj converges

only if limj→∞ aj = 0. �

It is crucial to remember that the converse of this last statement is

not true. The fact that limj→∞ aj = 0 does not imply the convergence

of
∑∞

1 aj. For example, the series
∞

∑

1

1

j

diverges. To see this, group the terms as follows:
∞

∑

1

1

j
= 1 + 1

2
+ (1

3
+ 1

4
) + (1

5
+ 1

6
+ 1

7
+ 1

8
) + · · ·

> 1 + 1
2

+ 1
2

+ 1
2

+ · · ·

= +∞.

3.2.1. The Geometric Series. Now, we examine a fundamental

type of series.
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Definition 3.20 (Geometric Series). A sum of the form
n

∑

m

rj = rm + rm+1 + · · · + rn

is called a geometric series.

Theorem 3.21. In general,
n

∑

m

rj = rm 1 − rn−m+1

1 − r
.

Furthermore, if |r| < 1, the geometric series converges, and
∞

∑

1

rj =
r

1 − r
.

Proof. Let m, n be positive integers with n ≥ m. Put

S =

n
∑

m

rj.

Then

rS =

n
∑

m

rj+1 =

n+1
∑

m+1

rj.

Hence,

S − rS = rm − rn+1.

Simplifying, we obtain

S = rm 1 − rn−m+1

1 − r
.

Put m = 1. In this case,
n

∑

1

rj = r
1 − rn

1 − r
.

If we take |r| < 1, rN ' 0 for every unlimited N . Thus

N
∑

1

rj ' r

1 − r
∈ R.

We conclude that
∞

∑

1

rj =
r

1 − r
.

�
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3.2.2. Convergence Tests. There are many tests to determine

whether a given series converges. One of the most commonly used is

the comparison test.

Theorem 3.22 (Nonstandard Comparison Test). Let a,b, c and d

be sequences of nonnegative real terms.

If
∑∞

1 bj converges and aj ≤ bj for all unlimited j, then
∑∞

1 aj

converges.

If, on the other hand,
∑∞

1 dj diverges and cj ≥ dj for all unlimited

j, then
∑∞

1 cj diverges.

Proof. For limited m, n with n ≥ m,

0 ≤
n

∑

m

aj ≤
n

∑

m

bj

if 0 ≤ aj ≤ bj for all m ≤ j ≤ n. Therefore, the same relationship

holds for unlimited m, n when 0 ≤ aj ≤ bj for all unlimited j. Fix

M, N ∈ ∗N∞ with N ≥ M . Since
∑∞

1 bj converges,

0 ≤
N

∑

M

aj ≤
N

∑

M

bj ' 0.

Hence
∑N

M aj ' 0, which implies that
∑∞

1 aj converges.

Similar reasoning yields the second part of the theorem. �

Leibniz discovered a convergence test for alternating series. For

historical interest, here is a nonstandard proof.

Definition 3.23 (Alternating Series). If aj ≤ 0 implies aj+1 ≥ 0

and aj ≥ 0 implies aj+1 ≤ 0 then the series
∑

aj is called an alternating

series.

Theorem 3.24 (Alternating Series Test). Let a be a sequence of

positive terms which decrease monotonically, with limj→∞ aj = 0.
∞

∑

1

(−1)j+1aj = a1 − a2 + a3 − a4 + · · ·
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converges.

Proof. First, we will show that n ≥ m implies

(3.1)

∣

∣

∣

∣

∣

n
∑

m

(−1)j+1aj

∣

∣

∣

∣

∣

≤ |am|.

If m is odd, the first term of
∑n

m(−1)j+1aj is positive. Now, we

have two cases.

Let n be odd. Then,
n

∑

m

(−1)j+1aj = (am − am+1) + (am+2 − am+3) + · · · + (an) ≥ 0,

since each parenthesized group is positive due to the monotonicity of

the sequence a. Similarly,
n

∑

m

(−1)j+1aj = am + (−am+1 + am+2) + · · · + (−an−1 + an) ≤ am,

since each group is negative. Therefore,

0 ≤
n

∑

m

(−1)j+1aj ≤ am

whenever m and n are both odd.

Let n be even. Then,
n

∑

m

(−1)j+1aj = (am − am+1) + (am+2 − am+3) + · · · + (an−1 − an) ≥ 0,

since each group is positive, and
n

∑

m

(−1)j+1aj = am + (−am+1 + am+2) + · · · + (−an) ≤ am,

as each group is negative. Hence,

0 ≤
n

∑

m

(−1)j+1aj ≤ am

whenever m is odd and n is even.

If m is even, identical reasoning shows that

0 ≤ −
n

∑

m

(−1)j+1aj ≤ am.
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Therefore, relation 3.1 holds for any m, n ∈ N with n ≥ m.

Now, if m is unlimited and n ≥ m,

0 ≤
∣

∣

∣

∣

∣

n
∑

m

(−1)j+1aj

∣

∣

∣

∣

∣

≤ |am| ' 0.

We conclude that the alternating series converges. �

There are also nonstandard versions of other convergence tests. The

proofs are not especially enlightening, so I omit these results.

3.3. Continuity

Since infinitesimals were invoked to understand continuous phenom-

ena, it seems as if they should have an intimate connection with the

mathematical concept of continuity. Indeed, they do.

Definition 3.25 (Continuity at a Point). Fix a function f and a

point c at which f is defined. f is continuous at c if and only if, for

every real ε > 0, there exists a real δ(ε) > 0 for which

|c − x| < δ → |f(c) − f(x)| < ε.

In other words, the value of f(x) will be arbitrarily close to f(c) if x is

close enough to c. We also write

lim
x→c

f(x) = f(c)

to indicate the same relationship.

Theorem 3.26. f is continuous at c ∈ R if and only if x ' c

implies f(x) ' f(c). Equivalently,1

f(hal(c)) ⊆ hal(f(c)).

1Notice how closely this condition resembles the standard topological defini-
tion of continuity: f is continuous at c if and only if the inverse image of every
neighborhood of f(c) is contained in some neighborhood of c.
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Proof. Assume that f is continuous at c. Choose a real ε > 0.

There exists a real δ > 0 for which

(∀x ∈ R)(|c − x| < δ → |f(c) − f(x)| < ε).

If x ' c, then |c− x| < δ. Thus, |f(c)− f(x)| < ε. But ε is arbitrarily

small, so we must have f(x) ' f(c).

Conversely, assume that x ' c implies f(x) ' f(c). Fix a positive,

real number ε. For any infinitesimal δ > 0, |c − x| < δ implies that

x ' c. Then, |f(x) − f(c)| < ε. So,

(∃δ ∈ ∗R+)(|c − x| < δ → |f(c) − f(x)| < ε).

By transfer, f is continuous at c. �

3.3.1. Continuous Functions. Continuous functions are another

bedrock of analysis, since they behave quite pleasantly.

Definition 3.27 (Continuous Function). A function is continuous

on its domain if and only if it is continuous at each point in its domain.

Theorem 3.28. A function f is continuous on a set A if and only

if x ' c implies f(x) ' f(c) for every real c ∈ A and every hyperreal

x ∈ ∗A.

Proof. This fact follows immediately from transfer of the defini-

tions. �

Theorem 3.28 shows that we can check continuity algebraically,

rather than concoct a limit argument. (See Example 3.31.)

3.3.2. Uniform Continuity. The emphasis in the statement of

Theorem 3.28 is crucial. If c is allowed to range over the hyperreals,

the condition becomes stronger.
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Definition 3.29 (Uniformly Continuous). A function is uniformly

continuous on a set A if and only if, for each real ε > 0, there exists a

single real δ > 0 such that

|x − y| < δ → |f(x) − f(y)| < ε

for every x, y ∈ A. It is clear that every uniformly continuous function

is also continuous.

Theorem 3.30. f is uniformly continuous if and only if x ' y

implies f(x) ' f(y) for every hyperreal x and y.

Proof. The proof is so similar to the proof of Theorem 3.26 that

it would be tiresome to repeat. �

An example of the difference between continuity and uniform con-

tinuity may be helpful.

Example 3.31. Let f(x) = x2. Fix a real c, and let x = c + ε for

some ε ∈ I.

f(x) − f(c) = (c + ε)2 − c2 = 2cε + ε2 ' 0,

so f(x) ' f(c). Thus f is continuous on R.

But something else happens if c is unlimited. Put x = c + 1
c
' c.

Then,

f(x) − f(c) = (c + 1
c
)2 − c2 = 2c · 1

c
+ (1

c
)2 = 2 + (1

c
)2 ' 2.

Therefore, f(x) 6' f(c), which means that f is not uniformly continuous

on R.

Although continuity and uniform continuity are generally distinct,

they coincide for some sets.

Theorem 3.32. If f is continuous on a closed interval [a, b] ⊆ R,

then f is uniformly continuous on this interval.
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Proof. Pick hyperreals x, y ∈ ∗[a, b] for which x ' y. Now, x is

limited, so we may put c = sh (x) = sh (y). Since a ≤ x ≤ b and c ' x,

we have c ∈ [a, b]. Therefore f is continuous at c, which implies that

f(x) ' f(c) and f(y) ' f(c). By transitivity, f(x) ' f(y), which

means that f is uniformly continuous on the interval. �

3.3.3. More about Continuous Functions. As we mentioned

before, the special properties of continuous functions are fundamental

to analysis. One of the most basic is the intermediate value theorem,

which has a very attractive nonstandard proof.

Theorem 3.33 (Intermediate Value). If f is continuous on the

interval [a, b] and d is a point strictly between f(a) and f(b), then there

exists a point c ∈ [a, b] for which f(c) = d.

To prove the theorem, the interval [a, b] is partitioned into segments

of infinitesimal width. Then, we locate a segment whose endpoints have

f -values on either side of d. The common shadow of these endpoints

will be the desired point c.

Proof. Without loss of generality, assume that f(a) < f(b), so

f(a) < d < f(b). Define

∆n =
b − a

n
.

Now, let P be a sequence of partitions of [a, b], in which Pn contains n

segments of width ∆n:

Pn = {x ∈ [a, b] : x = a + j∆n for j ∈ N with 0 ≤ j ≤ n}.

Define a second sequence, s, where sn is the last point in the partition

Pn whose f -value is strictly less than d:

sn = max{x ∈ Pn : f(x) < d}.

Thus, for any n, we must have

a ≤ sn < b and f(sn) < d ≤ f(sn + ∆n).
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Fix an unlimited N . By transfer, a ≤ sN < b, which implies that

sN is limited. Put c = sh (sN ). The continuity of f shows that f(c) '
f(sN). Now, it is clear that ∆N ' 0, which means that sN ' sN + ∆N .

Therefore, f(sN) ' f(sN + ∆N ). Transfer shows that f(sN) < d ≤
f(sN + ∆N). Hence, we also have d ' f(sN). Both f(c) and d are real,

so f(c) = d. �

The extreme value theorem is another key result. It shows that

a continuous function must have a maximum and a minimum on any

closed interval.

Definition 3.34 (Absolute Maximum). The quantity f(c) is an

absolute maximum of the function f if f(x) < f(c) for every x ∈ R. The

absolute minimum is defined similarly. The maximum and minimum

of a function are called its extrema.

Theorem 3.35 (Extreme Value). If the function f is continuous

on [a, b], then f attains an absolute maximum and minimum on the

interval [a, b].

Proof. This proof is similar to the proof of the intermediate value

theorem, so I will omit the details. We first construct a uniform, finite

partition of [a, b]. Now, there exists a partition point at which the func-

tion’s value is greater than or equal to its value at any other partition

point. (The existence of this point relies on the fact that the interval

is closed. If the interval were open, the function might approach—

but never reach—an extreme value at one of the endpoints.) Transfer

yields a uniform, hyperfinite partition which has points infinitely near

every real number in the interval. Fix a real point x ∈ [a, b]. Then

there exists a partition point p ∈ hal(x). Since the function is con-

tinuous, f(x) ' f(p). But there still exists a partition point P at
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which the function’s value is at least as great as at any other parti-

tion point. Hence, f(x) ' f(p) ≤ f(P ). Taking shadows, we see that

f(x) ≤ sh (f(P )) = f(sh (P )). Therefore, the function takes its maxi-

mum value at the real point sh (P ). The proof for the minimum is the

same. �

3.4. Differentiation

Differentiation involves finding the “instantaneous” rate of change

of a continuous function. This phrasing emphasizes the intimate rela-

tion between infinitesimals and derivative. Leibniz used this connection

to develop his calculus. As we shall see, the nonstandard version of dif-

ferentiation closely resembles Leibniz’s conception.

Definition 3.36 (Derivative). If the limit

f ′(c) = lim
h→0

f(c + h) − f(c)

h

exists, then the function f is said to be differentiable at the point c

with derivative f ′(c).

Theorem 3.37. If f is defined at the point c ∈ R, then f ′(c) = L

if and only if f(x + ε) is defined for each ε ∈ I, and

f(c + ε) − f(c)

ε
' L.

Proof. This theorem follows directly from the characterization of

continuity given in Section 3.3. �

Corollary 3.38. If f is differentiable at c, then f is continuous

at c.

Proof. Fix a nonzero infinitesimal, ε.

f ′(c) ' f(c + ε) − f(c)

ε
.
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Since f ′(c) is limited,

0 ' εf ′(c) ' f(c + ε) − f(c).

Therefore, x ' c implies that f(x) ' f(c). We conclude that f is

continuous at c. �

The next corollary reduces the process of taking derivatives to sim-

ple algebra. It legitimates Leibniz’s method of differentiation, which

we discussed in the Introduction and in Section 1.5.

Corollary 3.39. When f is differentiable at c,

f ′(c) = sh

(

f(c + ε) − f(c)

ε

)

for any nonzero infinitesimal ε. �

3.4.1. Rules for Differentiation. NSA makes it easy to demon-

strate the rules governing the derivative. These principles allow us

to differentiate algebraic combinations of functions, such as sums and

products.

Theorem 3.40. Let f, g be functions which are differentiable at

c ∈ R. Then f + g and fg are also differentiable at c, as is f/g when

g(c) 6= 0. Their derivatives are

(1) (f + g)′(c) = f ′(c) + g′(c),

(2) (fg)′(c) = f ′(c)g(c) + f(c)g′(c) and

(3) (f/g)′(c) = [f ′(c)g(c) + f(c)g′(c)]/[g(c)]2.

Proof. We prove the first two; the third is similar.
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Fix a nonzero infinitesimal ε. Since f and g are differentiable at c,

f(c + ε) and g(c + ε) are both defined.

(f + g)′(c) =
(f + g)(c + ε) − (f + g)(c)

ε

=
f(c + ε) + g(c + ε) − f(c) − g(c)

ε

=
f(c + ε) − f(c)

ε
+

g(c + ε) − g(c)

ε

' f ′(c) + g′(c).

Similarly,

(fg)′(c) =
(fg)(c + ε) − (fg)(c)

ε

=
f(c + ε)g(c + ε) − f(c)g(c)

ε

=
f(c + ε)g(c + ε) − f(c)g(c + ε) + f(c)g(c + ε) − f(c)g(c)

ε

=
f(c + ε) − f(c)

ε
· g(c + ε) + f(c) · g(c + ε) − g(c)

ε

' f ′(c)g(c + ε) + f(c)g′(c)

' f ′(c)g(c) + f(c)g′(c).

�

The chain rule is probably the most important tool for computing

derivatives. It is only slightly more difficult to demonstrate.

Theorem 3.41 (Chain Rule). Fix c ∈ R. If g is differentiable at c,

and f is differentiable at g(c), then (f ◦g)(c) = f(g(c)) is differentiable,

and

(f ◦ g)′(c) = (f ′ ◦ g)(c) · g′(c) = f ′(g(c)) · g′(c).

Proof. Fix a nonzero ε ∈ I. We must show that

(3.2)
f(g(c + ε)) − f(g(c))

ε
' f ′(g(c)) · g′(c).

There are two cases.

If g(c + ε) = g(c) then both sides of relation 3.2 are zero.
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Otherwise, g(c + ε) 6= g(c). Put δ = g(c + ε) − g(c) ' 0. Then,

f(g(c + ε)) − f(g(c))

ε
=

f(g(c) + δ) − f(g(c))

δ
· δ

ε

' f ′(g(c)) · g(c + ε) − g(c)

ε

' f ′(g(c)) · g′(c).

�

3.4.2. Extrema. Derivatives are also useful for detecting at which

points a function takes extreme values.

Definition 3.42 (Local Maximum). The quantity f(c) is a local

maximum of the function f if there exists a real number ε > 0 such

that f(x) ≤ f(c) for every x ∈ (c−ε, c+ε). A local minimum is defined

similarly. Local minima and maxima are called local extrema of f .

Theorem 3.43. The function f has a local maximum at the point

c if and only if x ' c implies that f(x) ≤ f(c). An analogous theorem

is true of local minima.

Proof. Take f(c) to be a local maximum. Then, there exists a

real ε > 0 for which

(∀x ∈ (c − ε, c + ε))(f(x) ≤ f(c)).

If x ' c, then x ∈ (c − ε, c + ε), and f(x) ≤ f(c).

Conversely, assume that x ' c implies f(x) ≤ f(c). When ε ∈ I+,

c − ε < x < c + ε implies that x ' c. Therefore,

(∃ε ∈ ∗R+)(∀x ∈ ∗R)(c − ε < x < c + ε → f(x) ≤ f(c)).

By transfer, f(c) is a local maximum. �

Theorem 3.44 (Critical Point). If f takes a local maximum at c

and f is differentiable at c, then f ′(c) = 0. The same is true for local

minima.
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Proof. Fix a positive infinitesimal, ε. Since f is differentiable at

c, f(c + ε) and f(c − ε) are defined. Now,

f ′(c) ' f(c + ε) − f(c)

ε
≤ 0 ≤ f(c − ε) − f(c)

−ε
' f ′(c).

f ′(c) is real, which forces f ′(c) = 0. �

The mean value theorem now follows from the critical point and

extreme value theorems by standard reasoning.

Theorem 3.45 (Mean Value). If f is differentiable on [a, b], there

exists a point x ∈ (a, b) at which

f ′(x) =
f(b) − f(a)

b − a
.

3.5. Riemann Integration

Since the time of Archimedes, mathematicians have calculated areas

by summing thin rectangular strips. Riemann’s integral retains this ge-

ometrical flavor. The nonstandard approach to integration elaborates

on Riemann sums by giving the rectangles infinitesimal width. This

view recalls Leibniz’s process of summing (
∫

) rectangles with height

f(x) and width dx.

3.5.1. Preliminaries. To develop the integral, we need an exten-

sive amount of terminology. In the following, [a, b] is a closed, real

interval and f : [a, b] → R is a bounded function, i.e. it takes finite

values only.

Definition 3.46 (Partition). A partition of [a, b] is a finite set of

points, P = {x0, x1, . . . , xn} with a = x0 ≤ x1 ≤ · · · ≤ xn−1 ≤ xn = b.

Define for 1 ≤ j ≤ n

Mj = sup f(x) and mj = inf f(x) where x ∈ [xj−1, xj].

We also set ∆xj = xj − xj−1.
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Definition 3.47 (Refinement). Take two partitions, P and P ′, of

the interval [a, b]. P ′ is said to be a refinement of P if and only if

P ⊆ P ′.

Definition 3.48 (Common Refinement). A partition P ′ which re-

fines the partition P1 and which also refines the partition P2 is called

a common refinement of P1 and P2.

Definition 3.49 (Riemann Sum). With reference to a function f ,

an interval [a, b] and a partition P , define the

• upper Riemann sum by U b
a(f, P ) = U(f, P ) =

∑n

1 Mj∆xj,

• lower Riemann sum by Lb
a(f, P ) = L(f, P ) =

∑n

1 mj∆xj and

• ordinary Riemann sum by Sb
a(f, P ) = S(f, P ) =

∑n

1 f(xj−1)∆xj.

The endpoints a and b are omitted from the notation when there is no

chance of error.

Several facts follow immediately from the definitions.

Proposition 3.50. Let M be the supremum of f on [a, b] and m

be the infimum of f on [a, b]. For any partition P ,

(3.3) m(b − a) ≤ L(f, P ) ≤ S(f, P ) ≤ U(f, P ) ≤ M(b − a).

Proof. The first inequality holds since m ≤ mj for each j. The

second holds since mj ≤ f(xj) for each j. The other two inequalities

follow by symmetric reasoning. �

Proposition 3.51. Let P be a partition of [a, b] and P ′ be a re-

finement of P . Then

U(f, P ′) ≤ U(f, P ) and L(f, P ′) ≥ L(f, P ).

Proof. Suppose that P ′ contains exactly one point more than P ,

and let this extra point p fall within the interval [xj, xj+1], where xj
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and xj+1 are consecutive points in P . Put

z1 = sup
[xj ,p]

f(x) and z2 = sup
[p,xj+1]

f(x).

Both z1 ≤ Mj and z2 ≤ Mj, since Mj was the supremum of the function

over the entire subinterval [xj, xj+1]. Now, we calculate

U(f, P ) − U(f, P ′) = Mj(xj+1 − xj) − z1(p − xj) − z2(xj+1 − p)

= (Mj − z1)(p − xj) + (Mj − z2)(xj+1 − p)

≥ 0.

Thus, U(f, P ′) ≤ U(f, P ).

If P ′ has additional points, the result follows by iteration. The proof

of the corresponding inequality for lower Riemann sums is analogous.

�

Proposition 3.52. For any two partitions P1 and P2, L(f, P1) ≤
U(f, P2).

Proof. Let P ′ be a common refinement of P1 and P2.

L(f, P1) ≤ L(f, P ′) ≤ S(f, P ′) ≤ U(f, P ′) ≤ U(f, P2).

�

3.5.2. Infinitesimal Partitions. Now, given a real number ∆x >

0, define P∆x = {x0, x1, . . . , xN} to be the partition of [a, b] into N =

d(b − a)/∆xe equal subintervals of width ∆x. (The last segment may

be smaller). For the sake of simplicity, write U(f, ∆x) in place of

the notation U(f, P∆x). We can now regard U(f, ∆x), L(f, ∆x) and

S(f, ∆x) as functions of the real variable ∆x.

Theorem 3.53. If f is continuous on [a, b] and ∆x is infinitesimal,

L(f, ∆x) ' S(f, ∆x) ' U(f, ∆x).
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Proof. First, define for each ∆x the quantity

µ(∆x) = max{Mj − mj : 1 ≤ j ≤ N},

which represents the maximum oscillation in any subinterval of the

partition P∆x.

Now, fix an infinitesimal ∆x. Since f is continuous and xj ' xj−1

for each j, Mj ' mj. Therefore, the maximum difference µ(∆x) must

be infinitesimal.

Form the difference

U(f, ∆x) − L(f, ∆x) =

N
∑

1

(Mj − mj)∆x

≤ µ(∆x)

n
∑

1

∆x

≤ µ(∆x) · N · ∆x

= µ(∆x)

⌈

b − a

∆x

⌉

∆x

≤ µ(∆x)

(

b − a

∆x
+ 1

)

∆x

= µ(∆x)(b − a) + µ(∆x)∆x

' 0.

By transfer of relation 3.3, the ordinary Riemann sum S(f, ∆x) is

sandwiched between the upper and lower sums, so it is infinitely near

both. �

3.5.3. The Riemann Integral. Finally, we are prepared to de-

fine the integral in the sense of Riemann.

Definition 3.54 (Riemann Integrable). Let ∆x range over R. If

L = lim
∆x→0

L(f, ∆x) and U = lim
∆x→0

U(f, ∆x)
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both exist and L = U , then f is Riemann integrable on [a, b]. We write
∫ b

a

f(x) dx

to denote the common value of the limits.

Theorem 3.55. If f is continuous on [a, b], then f is Riemann

integrable, and
∫ b

a

f(x) dx = sh (S(f, ∆x)) = sh (L(f, ∆x)) = sh (U(f, ∆x))

for every infinitesimal ∆x.

Proof. For any two infinitesimals, ∆x, ∆y > 0,

L(f, ∆x) ≤ U(f, ∆y) ' L(f, ∆y) ≤ U(f, ∆x) ' L(f, ∆x).

Therefore, L(f, ∆x) ' L(f, ∆y) and U(f, ∆x) ' U(f, ∆y) whenever

∆x ' ∆y ' 0. Therefore, L(f, ∆x) and U(f, ∆x) are continuous at

∆x = 0. Theorem 3.53 shows that

lim
∆x→0

L(f, ∆x) = lim
∆x→0

U(f, ∆x).

The result follows immediately. �

3.5.4. Properties of the Integral. The standard properties of

integrals follow easily from the definition of the integral as the shadow

of a Riemann sum, the properties of sums and the properties of the

shadow map.

Theorem 3.56. If f and g are integrable over [a, b] ⊆ R, then

•
∫ b

a
cf(x) dx = c

∫ b

a
f(x) dx;

•
∫ b

a
[f(x) + g(x)] dx =

∫ b

a
f(x) dx +

∫ b

a
g(x) dx;

•
∫ b

a
f(x) dx =

∫ c

a
f(x) dx +

∫ b

c
f(x) dx;

•
∫ b

a
f(x) dx ≤

∫ b

a
g(x) dx if f(x) ≤ g(x) for all x ∈ [a, b];

• m(b − a) ≤
∫ b

a
f(x) dx ≤ M(b − a) where m ≤ f(x) ≤ M for

all x ∈ [a, b].
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3.5.5. The Fundamental Theorem of Calculus. Finally, we

will prove the Fundamental Theorem of Calculus using nonstandard

methods. This theorem bears its impressive name because it demon-

strates the intimate link between the processes of differentiation and

integration—they are inverse operations. Newton and Leibniz are cred-

ited with the discovery of calculus because they were the first to develop

this theorem. Nonstandard Analysis furnishes a beautiful proof.

Theorem 3.57. If f is continuous on [a, b], the area function

F (x) =

∫ x

a

f(t) dt

is differentiable on [a, b] with derivative f .

There is an intuitive reason that this theorem holds: the change in

the area function over an infinitesimal interval [x, x+ε] is approximately

equal to the area of a rectangle with base [x, x+ε] which fits under the

curve (see Figure 3.1).

Figure 3.1. Differentiating the area function.

Algebraically,

F (x + ε) − F (x) ≈ ε · f(x).

Dividing this relation by ε suggests the result. Of course, we must

formalize this reasoning.



Straightforward Analysis 64

Proof. If ε is a positive real number less than b − x,

F (x + ε) − F (x) =

∫ x+ε

x

f(t) dt.

By the extreme value theorem, the continuous function f attains a

maximum at some real point M and a minimum at some real point m,

so

[(x + ε) − x] · f(m) ≤
∫ x+ε

x

f(t) dt ≤ [(x + ε) − x] · f(M), or

ε · f(m) ≤
∫ x+ε

x

f(t) dt ≤ ε · f(M).

Dividing by ε,

(3.4) f(m) ≤ F (x + ε) − F (x)

ε
≤ f(M).

By transfer, if ε ∈ I+, there are hyperreal m, M ∈ ∗[x, x + ε] for which

equation 3.4 holds.

But now, x + ε ' x, so m ' x and M ' x. The continuity of f

shows that

(3.5)
F (x + ε) − F (x)

ε
' f(x).

A similar procedure shows that relation 3.5 holds for any negative in-

finitesimal ε.

Therefore, the area function F is differentiable at x for any x ∈ [a, b]

and its derivative F ′(x) = f(x). �

Corollary 3.58 (Fundamental Theorem of Calculus). If a func-

tion F has a continuous derivative f on [a, b], then
∫ b

a

f(x) dx = F (b) − F (a).

Proof. Let A(x) =
∫ x

a
f(x) dx. For x ∈ [a, b],

(A(x) − F (x))′ = A′(x) − F ′(x) = f(x) − f(x) = 0,
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which implies that (A − F ) is constant on [a, b]. Then

F (b) − F (a) = A(b) − A(a) =

∫ b

a

f(x) dx.

�



Conclusion

In the last chapter, we saw how NSA offers intuitive direct proofs of

many classical theorems. Nonstandard Analysis would be a curiosity if

it only allowed us to reprove theorems of real analysis in a streamlined

fashion. But its application in other areas of mathematics shows it to

be a powerful tool. Here are two examples.

Topology: Topology studies the spatial structure of sets. The

key concepts are proximity and adjacency, which are formal-

ized by defining the open neighborhood of a point. Intuitively,

an open set about p contains all the points near p [7, 113]. In

metric spaces, topology can be arithmetized: the open neigh-

borhoods of p contain those points which are less than a certain

distance from p. The distance between any two points is deter-

mined by a function which returns a positive, real value. With

NSA, the distance function can be extended, so that it returns

positive hyperreals. Then, we can say that two points are near

each other if and only if they are at an infinitesimal distance.

This definition simplies many fundamental ideas in the topol-

ogy of metric spaces. Furthermore, the nonstandard extension

of a topological space can facilitate the proof of general topo-

logical theorems, just as the hyperreals facilitate proofs about

R [9].

Distributions: Distributions are generalized functions which are

extremely useful in electrical engineering and modern physics.
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The space of distributions is somewhat complicated to define

from a traditional perspective, because it contains elements

like the Dirac δ function. Conceptually, this “function” of

the reals is zero everywhere except at the origin, where it is

infinite—but only so infinite that the area beneath it equals

1. NSA allows us to view the δ function as a nonstandard

function which has an unlimited value on an infinitesimal in-

terval [11, 93–95]. It turns out that all distributions can be

seen as internal functions. In fact, using suitable definitions,

the distributions may even be realized as a subset of ∗C∞(R),

the infinitely differentiable internal functions. But that is an-

other theorem for another day.

Other areas of application include differential equations, probabil-

ity, combinatorics and functional analysis [10], [7], [11].

Classical analysis is often confusing and technical. Fiddling with ep-

silons and deltas obscures the conceptual core of a proof. Infinitesimals

and unlimited numbers, however, brightly illuminate many mathemat-

ical concepts. If logic had advanced as quickly as analysis, NSA might

well be the dominant paradigm. And if Gödel is right, it may yet be.
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Nonstandard Extensions

The most general method of developing Nonstandard Analysis be-

gins with the concept of a nonstandard extension. It can be shown that

every nonempty set X has a proper nonstandard extension ∗X which

is a strict superset of X. This is accomplished using an ultrapower

construction, which is similar to that in Section 2.2.

Henson suggests that the properties of a proper nonstandard exten-

sion are best considered from a geometrical standpoint. Since functions

and relations are identified with their graphs, this view is appropriate

for all mathematical objects. The essential idea is that the geomet-

ric nature of an object does not change under a proper nonstandard

extension, although it may be comprised of many more points. For

example, the line segment [0, 1] is still a line segment of unit length un-

der the mapping, yet it contains nonstandard elements. Similarly, the

unit square remains a unit square, with new, nonstandard elements.

Et cetera. This explanation indicates why the nonstandard extension

preserves certain set-theoretic properties like Cartesian products [8].

Definition A.1 (Nonstandard Extension of a Set). Let X be any

nonempty set. A nonstandard extension of X consists of a mapping

that assigns a set ∗A to each A ⊆ Xm for all m ≥ 0, such that ∗X is

nonempty and the following conditions are satisfied for all m, n ≥ 0:

(1) The mapping preserves Boolean operations on subsets of Xm.

If A, B ⊆ Xm then

• ∗A ⊆ (∗X)m;
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• ∗(A ∩ B) = (∗A ∩ ∗B);

• ∗(A ∪ B) = (∗A ∪ ∗B);

• ∗(A \ B) = (∗A) \ (∗B).

(2) The mapping preserves basic diagonals. If ∆ = {(x1, . . . , xm) ∈
Xm : xi = xj, 1 ≤ i < j ≤ m} then ∗∆ = {(x1, . . . , xm) ∈
(∗X)m : xi = xj, 1 ≤ i < j ≤ m}.

(3) The mapping preserves Cartesian products. If A ⊆ Xm and

B ⊆ Xn, then ∗(A × B) = ∗A × ∗B. (We regard A × B as a

subset of Xm+n.)

(4) The mapping preserves projections that omit the final coordi-

nate. Let π denote projection of (n + 1)-tuples on the first n

coordinate. If A ⊆ Xn+1 then ∗(π(A)) = π(∗A).



APPENDIX B

Axioms of Internal Set Theory

Nelson’s Internal Set Theory (IST) adds a new predicate, standard,

to classical set theory. Three primary axioms govern the use of this new

predicate. Note that the term classical refers to any sentence which

does use the term “standard” [11].

Idealization: For any classical, binary relation R, the following

are equivalent:

(1) For any standard and finite set E, there is an x = x(E)

such that x R y holds for each y ∈ E.

(2) There is an x such that x R y holds for all standard y.

Standardization: Let E be a standard set and P be a predi-

cate. Then there is a unique, standard subset A = A(P ) ⊆ E

whose standard elements are precisely the standard elements

x ∈ E for which P (x) is true.

Transfer: Let F be a classical formula with a finite number of

parameters. F (x, c1, c2, . . . , cn) holds for all standard values

of x if and only if F (x, c1, c2, . . . , cn) holds for all values of x,

standard and nonstandard.



APPENDIX C

About Filters

The direct power construction of the hyperreals depends crucially

on the properties of filters and the existence of a nonprincipal ultrafilter

on N. Here are some key definitions, lemmata and theorems about

filters, taken from Goldblatt [7, pp. 18–21]. X will denote a nonempty

set.

Definition C.1 (Power Set). The power set of X is the set of all

subsets of X:

P(X) = {A : A ⊆ X}.

Definition C.2 (Filter). A filter on X is a nonempty collection,

F ⊆ P(X), which satisfies the following axioms:

• If A, B ∈ F , then A ∩ B ∈ F .

• If A ∈ F and A ⊆ B ⊆ X, then B ∈ F .

∅ ∈ F if and only if F = P(X). F is a proper filter if and only if

∅ 6∈ F . Any filter has X ∈ F , and {X} is the smallest filter on X.

Definition C.3 (Ultrafilter). An ultrafilter is a filter which satis-

fies the additional axiom that

• For any A ⊆ X, exactly one of A and X \ A is an element of

F .

Definition C.4 (Principal Ultrafilter). For any x ∈ X,

F
x = {A ⊆ X : x ∈ A}
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is an ultrafilter, called the principal ultrafilter generated by x. If X is

finite, then every ultrafilter is principal. A nonprincipal ultrafilter is

an ultrafilter which is not generated in this fashion.

Definition C.5 (Filter Generated by H ). Given a nonempty col-

lection, H ⊆ P(X), the filter generated by H is the collection

F
H = {A ⊆ X : A ⊆ B1 ∩ · · · ∩ Bk for some k and some Bj ∈ H }.

Definition C.6 (Cofinite Filter). F co = {A ⊆ X : X \A is finite}
is called the cofinite filter on X. It is proper if and only if X is infinite.

F co is not an ultrafilter.

Proposition C.7. An ultrafilter F satisfies

• A ∩ B ∈ F iff A ∈ F and B ∈ F ,

• A ∪ B ∈ F iff A ∈ F or B ∈ F , and

• X \ A ∈ F iff A 6∈ F .

Proposition C.8. If F is an ultrafilter and {A1, A2, . . . , Ak} is a

finite collection of pairwise disjoint sets such that

A1 ∪ A2 ∪ · · · ∪ Ak ∈ F ,

then precisely one of these Aj ∈ F .

Proposition C.9. If an ultrafilter contains a finite set, then it con-

tains a singleton {x}. Then, this ultrafilter equals F x, which means

that it is principal. As a result, a nonprincipal ultrafilter must con-

tain all cofinite sets. This fact is crucial in the construction of the

hyperreals.

Proposition C.10. F is an ultrafilter on X if and only if it is a

maximal proper filter, i.e. a proper filter which cannot be extended to

a larger proper filter.
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Definition C.11 (Finite Intersection Property). We say that the

collection H ⊆ P(X) has the finite intersection property or fip if the

intersection of each nonempty finite subcollection is nonempty. That

is,

B1 ∩ · · · ∩ Bk 6= ∅
for any finite k and subsets Bj ∈ H . Note that a filter F H is proper

if and only if H has the fip.

Proposition C.12. If H has the fip and A ⊆ X, then at least one

of H ∪ {A} and H ∪ {X \ A} has the fip.

Finally, I give Goldblatt’s proof that there exists a nonprincipal

ultrafilter on any infinite set.

Proposition C.13 (Zorn’s Lemma). Let (P,≤) be a set endowed

with a partial ordering, under which every linearly ordered subset (or

“chain”) has an upper bound in P . Then P contains a ≤-maximal

element.

Zorn’s lemma is equivalent to the Axiom of Choice.

Theorem C.14. Any collection of subsets of X that has the finite

intersection property can be extended to an ultrafilter on X.

Proof. If H has the fip, then F H is proper. Let Z be the

collection of all proper filters on X that include F H , partially ordered

by set inclusion, ⊆. Choose any totally ordered subset of Z . The union

of the members of this chain is in Z . Hence every totally ordered subset

of Z has an upper bound in Z . By Zorn’s Lemma, Z has a maximal

element, which will be a maximal proper filter on X and therefore an

ultrafilter. �

Corollary C.15. Any infinite set has a nonprincipal ultrafilter on

it.
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Proof. If X is infinite, then the cofinite filter on X, F co is proper

and has the fip. Therefore, it is contained in some ultrafilter F . For

any x ∈ X, the set X \ {x} ∈ F co ⊆ F . Since {x} ∈ F x, we conclude

that F 6= F x. Thus F in nonprincipal. �

In fact, an infinite set supports a vast number of nonprincipal ultra-

filters. The set of nonprincipal ultrafilters on N has the same cardinality

as P(P(N)) [7, 33].
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