
CONVEX RECOVERY OF A STRUCTURED SIGNAL
FROM INDEPENDENT RANDOM LINEAR MEASUREMENTS

JOEL A. TROPP

ABSTRACT. This chapter develops a theoretical analysis of the convex programming method for recovering a
structured signal from independent random linear measurements. This technique delivers bounds for the sampling
complexity that are similar with recent results for standard Gaussian measurements, but the argument applies to a
much wider class of measurement ensembles. To demonstrate the power of this approach, the paper presents a short
analysis of phase retrieval by trace-norm minimization. The key technical tool is a framework, due to Mendelson
and coauthors, for bounding a nonnegative empirical process.

1. MOTIVATION

Signal reconstruction from random measurements is a central preoccupation in contemporary signal
processing. In this problem, we acquire linear measurements of an unknown, structured signal through a
random sampling process. Given these random measurements, a standard method for recovering the unknown
signal is to solve a convex optimization problem that enforces our prior knowledge about the structure. The
basic question is how many measurements suffice to resolve a particular type of structure.

Recent research has led to a comprehensive answer when the measurement operator follows the standard
Gaussian distribution [MPTJ07, RV08, Sto09, OH10, CRPW12, ALMT14, FM14, OH13, OTH13, TOH14].
The literature also contains satisfying answers for subgaussian measurements [MPTJ07] and subexponential
measurements [Men10]. Other types of measurement systems are quite common, but we are not aware of a
simple approach that allows us to analyze general measurements in a unified way.

This chapter describes an approach that addresses a wide class of convex signal reconstruction problems
involving random sampling. To understand these questions, the core challenge is to produce a lower
bound on a nonnegative empirical process. For this purpose, we rely on a powerful framework, called
the Small Ball Method, that was developed by Shahar Mendelson and coauthors in a sequence of papers,
including [KM13, Men13, Men14a, LM14, Men14b].

To complete the estimates required by Mendelson’s Small Ball Method, we propose a technique based on
conic duality. One advantage of this approach is that we can exploit the same insights and calculations that
have served so well in the Gaussian setting. We refer to this little argument as the bowling scheme in honor of
David Gross’s golfing scheme [Gro11]. We anticipate that it will offer researchers an effective way to analyze
many signal recovery problems with random measurements.

1.1. Roadmap. The first half of the chapter summarizes the established analysis of convex signal reconstruc-
tion with a Gaussian sampling model. In Section 2, we introduce a convex optimization framework for solving
structured signal recovery problems with linear measurements, and we present a geometric formulation of the
optimality conditions. Section 3 specializes to the case where the measurements come from a Gaussian model,
and we explain how classical results for Gaussian processes lead to a sharp bound for the number of Gaussian
measurements that suffice. These results are framed in terms of a geometric parameter, the conic Gaussian
width, associated with the convex optimization problem. Section 4 explains how to use duality to obtain a
numerically sharp bound for the conic Gaussian width, and it develops two important examples in detail.

In the second half of the chapter, we consider more general sampling models. Section 5 introduces
Mendelson’s Small Ball Method and the technical arguments that support it. As a first application, in
Section 6, we use this strategy to analyze signal reconstruction from subgaussian measurements. Section 7
presents the bowling scheme, which merges the conic duality estimates with Mendelson’s Small Ball Method.
This technique allows us to study more general types of random measurements. Finally, in Section 8, we
demonstrate the vigor of these ideas by applying them to the phase retrieval problem.
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2. SIGNAL RECONSTRUCTION FROM LINEAR MEASUREMENTS

We begin with a framework that describes many convex optimization methods for recovering a structured
signal from linear measurements. Examples include the `1 minimization approach for identifying a sparse
vector and the Schatten 1-norm minimization approach for identifying a low-rank matrix. We develop a
simple error bound for convex signal reconstruction by exploiting the geometric formulation of the optimality
conditions. This analysis leads us to study the minimum conic singular value of a matrix.

2.1. Linear acquisition of data. Let x\ ∈Rd be an unknown but “structured” signal. Suppose that we observe
a vector y in Rm that consists of m linear measurements of the unknown:

y =Φx\+e. (2.1)

We assume that Φ is a known m ×d sampling matrix, and e ∈ Rm is a vector of unknown errors. The
expression (2.1) offers a model for data acquisition that describes a wide range of problems in signal
processing, statistics, and machine learning. Our goal is to compute an approximation of the unknown x\ by
exploiting our prior knowledge about its structure.

2.2. Reconstruction via convex optimization. Convex optimization is a popular approach for recovering
a structured vector from linear measurements. Let f :Rd →R be a proper convex function1 that reflects the
“complexity” of a signal. Then we can frame the convex program

minimize
x∈Rd

f (x) subject to ‖Φx − y‖ ≤ η (2.2)

where ‖·‖ denotes the Euclidean norm and η is a specified bound on the norm of the error e. In words, the
optimization problem (2.2) searches for the most structured signal x that is consistent with the observed
data y . In practice, it is common to consider the Lagrangian formulation of (2.2) or to consider a problem
where the objective and constraint are interchanged. We can often solve (2.2) and its variants efficiently
using standard algorithms.

Remark 2.1 (Alternative programs). The optimization problem (2.2) is not the only type of convex method
for signal reconstruction. Suppose that f :Rd →R is a gauge, i.e., a function that is nonnegative, positively
homogeneous, and convex. Then we may consider the convex program

minimize
x∈Rd

f (x) subject to f ◦(Φt(Φx − y)
)≤ η,

where f ◦ denotes the polar of the gauge [Roc70, Chap. 15] and t denotes transposition. This reconstruction
method submits to an analysis similar with the approach in this note. For example, see [CLR14, Thm. 1].

2.3. Examples. Before we continue, let us mention a few structures that arise in applications and the
complexity measures that are typically associated with these structures.

Example 2.2 (Sparse vectors). A vector x\ ∈Rd is sparse when many or most of its entries are equal to zero.
We can promote sparsity by minimizing the `1 norm ‖·‖`1 . This heuristic leads to a problem of the form

minimize
x∈Rd

‖x‖`1 subject to ‖Φx − y‖ ≤ η. (2.3)

Sparsity has become a dominant modeling tool in statistics, machine learning, and signal processing.

Example 2.3 (Low-rank matrices). We say that a matrix X \ ∈ Rd1×d2 has low rank when its rank is small
compared with minimum of d1 and d2. Suppose that we have acquired noisy measurements

y =Φ(X \)+e, (2.4)

where Φ is a linear operator that maps a matrix in Rd1×d2 to a vector in Rm . To reconstruct the unknown
low-rank matrix X \, we can minimize the Schatten 1-norm ‖·‖S1 , which returns the sum of the singular values
of a matrix. This heuristic suggests that we consider an optimization problem of the form

minimize
X∈Rd1×d2

‖X ‖S1 subject to ‖Φ(X )− y‖ ≤ η. (2.5)

In recent years, this approach to fitting low-rank matrices has become common.

It is possible to consider many other types of structure. For instance, see [CRPW12, FM14].

1The extended real numbers R :=R∪ {±∞}. A proper convex function takes at least one finite value but never the value −∞.
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‖Φu‖ ≤ 2η

null(Φ)

{u : f (x\+u) ≤ f (x\)}

0

D( f , x\)

FIGURE 2.1: [Geometry of convex recovery] This diagram illustrates the geometry of the optimization
problem (2.6). The cone D( f , x\) contains the directions u in which f is decreasing at x\. Assuming that ‖e‖ ≤ η,
the diagonal tube contains every point u that satisfies the bound constraint ‖Φu +e‖ ≤ η. Each optimal point û
for (2.6) lies in the intersection of the tube and the cone.

2.4. A deterministic error bound for convex recovery. We can obtain a deterministic error bound for the
convex reconstruction method (2.2) using a standard geometric analysis. Recall that a cone is a set K ⊂Rd

that is positively homogeneous: K = τK for all τ> 0. A convex cone is a cone that is also a convex set. Let us
introduce the cone of descent directions of a convex function.

Definition 2.4 (Descent cone). Let f : Rd →R be a proper convex function. The descent cone D( f , x) of the
function f at a point x ∈Rd is defined as

D( f , x) := ⋃
τ>0

{
u ∈Rd : f (x +τu) ≤ f (x)

}
.

The descent cone of a convex function is always a convex cone, but it may not be closed.

We are interested in the behavior of the measurement matrix Φ when it is restricted to a descent cone.

Definition 2.5 (Minimum conic singular value). Let Φ be an m ×d matrix, and let K be a cone in Rd . The
minimum singular value of Φ with respect to the cone K is defined as

λmin(Φ;K ) := inf
{‖Φu‖ : u ∈ K ∩Sd−1}

where Sd−1 is the Euclidean unit sphere in Rd .

The terminology originates in the fact that λmin(Φ;Rd ) coincides with the usual minimum singular value.
With these definitions at hand, we reach the following basic result.

Proposition 2.6 (A deterministic error bound for convex recovery). Let x\ be a signal in Rd , let Φ be an m ×d
measurement matrix, and let y =Φx\+e be a vector of measurements in Rm . Assume that ‖e‖ ≤ η, and let x̂η be
any solution to the optimization problem (2.2). Then∥∥x̂η−x\

∥∥ ≤ 2η

λmin
(
Φ; D( f , x\)

) .

This statement is adapted from [CRPW12]. For completeness, we include the short proof.

Proof. It is natural to write the decision variable x in the convex program (2.2) relative to the true unknown:
u := x −x\. Using the expression (2.1) for the measurement vector y , we obtain the equivalent problem

minimize
u∈Rd

f (x\+u) subject to ‖Φu −e‖ ≤ η. (2.6)
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Owing to the bound ‖e‖ ≤ η, the point u = 0 is feasible for (2.6). Therefore, each optimal point û verifies
f (x\+ û) ≤ f (x\). In summary, any optimal point of (2.6) satisfies two conditions:

û ∈D( f , x\) and ‖Φû −e‖ ≤ η.

As a consequence, we simply need to determine how far we can travel in a descent direction before we violate
the bound constraint. See Figure 2.1 for an illustration of the geometry.

To complete the argument, assume that u is a nonzero point in D( f , x\) that is feasible for (2.6). Then

λmin
(
Φ; D( f , x\)

)≤ ‖Φu‖
‖u‖ ≤ ‖Φu −e‖+‖e‖

‖u‖ ≤ 2η

‖u‖ .

The first inequality follows from Definition 2.5 of the conic singular value. The second relation is the triangle
inequality. The last bound holds because u satisfies the constraint in (2.6), and we have assumed that ‖e‖ ≤ η.
Finally, rearrange the display, and rewrite u in terms of the original decision variable x. �

Although Proposition 2.6 is elegant, it can be difficult to apply because we must calculate the minimum
conic singular value of a matrix Φ with respect to a descent cone. This challenge becomes less severe, however,
when the matrix Φ is drawn at random.

3. A UNIVERSAL ERROR BOUND FOR GAUSSIAN MEASUREMENTS

We will study the prospects for convex recovery when the sampling matrix Φ is chosen at random. This
modeling assumption arises in signal processing applications where the matrix describes a data-acquisition
system that can extract random measurements. This kind of model also appears in statistics and machine
learning when each row of the matrix tabulates measured variables for an individual subject in an experiment.

3.1. Standard Gaussian measurements. In this section, we treat one of the simplest mathematical models
for the m×d random measurement matrix Φ. We assume that each of the m rows of Φ is drawn independently
from the standard Gaussian distribution NORMAL(0,Id ), where the covariance Id is the d-dimensional identity
matrix. For this special case, we can obtain a sharp estimate for the minimum conic singular value λmin(Φ;K )
for any convex cone K .

3.2. The conic Gaussian width. The analysis of Gaussian sampling depends on a geometric summary
parameter for cones.

Definition 3.1 (Conic Gaussian width). Let K ⊂ Rd be a cone, not necessarily convex. The conic Gaussian
width w(K ) is defined as

w(K ) := E supu∈K∩Sd−1 〈g , u〉
where g ∼ NORMAL(0,Id ) is a standard Gaussian vector in Rd .

The Gaussian width plays a central role in asymptotic convex geometry [MS86, Pis89, LT91]. Most of the
classical techniques for bounding widths are only accurate up to constant factors (or worse). In contrast,
ideas from the contemporary signal processing literature frequently allow us to produce numerically sharp
estimates for the Gaussian width of a cone. These techniques were developed in the papers [Sto09, OH10,
CRPW12, ALMT14, FM14]. We will outline one of the methods in Section 4.

Remark 3.2 (Statistical dimension). The conic Gaussian width w(K ) is a convenient functional because it
arises from the probabilistic tools that we use. The theory of conic integral geometry, however, delivers a
better summary parameter [ALMT14]. The statistical dimension δ(K ) of a convex cone K can be defined as

δ(K ) := E[(
supu∈K∩Bd 〈g , u〉)2],

where Bd is the Euclidean unit ball in Rd and g ∼ NORMAL(0,Id ). The statistical dimension canonically extends
the dimension of a subspace to the class of convex cones, and it satisfies many elegant identities [ALMT14,
Prop. 3.1]. For some purposes, the two parameters are interchangeable because of the following compari-
son [ALMT14, Prop. 10.2]:

w2(K ) ≤ δ(K ) ≤ w2(K )+1.

As a consequence, we can interpret w2(K ) as a rough measure of the “dimension” of a cone.
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3.3. Conic singular values and conic Gaussian widths. As it turns out, the conic Gaussian width w(K )
controls the minimum conic singular value λmin(Φ;K ) when Φ follows the standard normal distribution.

Proposition 3.3 (Minimum conic singular value of a Gaussian matrix). Let K ⊂Rd be a cone, not necessarily
convex, and let Φ be an m ×d matrix whose rows are independent vectors drawn from the standard Gaussian
distribution NORMAL(0,Id ). Then

λmin(Φ;K ) ≥p
m −1−w(K )− t

with probability at least 1−e−t 2/2.

In essence, this result dates to the work of Gordon [Gor85, Gor88]. We have drawn the proof from the
survey [DS01, Sec. 3.2] of Davidson & Szarek; see also [MPTJ07, RV08, Sto09, CRPW12]. Note that the
argument relies on special results for Gaussian processes that do not extend to other distributions.

Proof sketch. We can express the minimum conic singular value as

λmin(Φ;K ) = inf
u∈K∩Sd−1

sup
v∈Sm−1

〈v , Φu〉

It is a consequence of Gordon’s comparison inequality [Gor85, Thm. 1.4] that

E inf
u∈K∩Sd−1

sup
v∈Sm−1

〈v , Φu〉 ≥ E sup
v∈Sm−1

〈g ′, v〉−E sup
u∈K∩Sd−1

〈g , u〉 = E ‖g ′‖−w(K ),

where g ′ ∼ NORMAL(0,Im) and g ∼ NORMAL(0,Id ). It is well known that E ‖g ′‖ ≥p
m −1, and therefore

Eλmin(Φ;K ) ≥p
m −1−w(K ). (3.1)

To complete the argument, note that the map

λmin(·;K ) : A 7→ inf
u∈K∩Sd−1

‖Au‖

is 1-Lipschitz with respect to the Frobenius norm. The usual Gaussian concentration inequality [BLM13,
Sec. 5.4] implies that

P
{
λmin(Φ;K ) ≤ Eλmin(Φ;K )− t

}≤ e−t 2/2. (3.2)

Introduce the lower bound (3.1) for the expectation of the minimum conic singular value into (3.2) to reach
the advertised result. �

Remark 3.4 (Sharpness for convex cones). It is a remarkable fact that the bound in Proposition 3.3 is
essentially sharp. For any cone K , we can reinterpret the statement as saying that

λmin(Φ;K ) > 0 with high probability when m ≥ w2(K )+C w(K ).

(The letter C always denotes a positive absolute constant, but its value may change from place to place.)
Conversely, for a convex cone K , it holds that

λmin(Φ;K ) = 0 with high probability when m ≤ w2(K )−C w(K ). (3.3)

The result (3.3) follows from research of Amelunxen et al. [ALMT14, Thm. I and Prop. 10.2]. This claim can
also be derived by supplementing the proof of Proposition 3.3 with a short polarity argument. It is productive
to interpret the pair of estimates in this remark as a phase transition for convex signal recovery; see [ALMT14]
for more information.

3.4. An error bound for Gaussian measurements. Combining Proposition 2.6 and Proposition 3.3, we
obtain a general error bound for convex recovery from Gaussian measurements.

Corollary 3.5 (Signal recovery from Gaussian measurements). Let x\ be a signal in Rd . Let Φ be an m ×d
matrix whose rows are independent random vectors drawn from the standard Gaussian distribution NORMAL(0,Id ),
and let y =Φx\+e be a vector of measurements in Rm . With probability at least 1−e−t 2/2, the following statement
holds. Assume that ‖e‖ ≤ η, and let x̂η be any solution to the optimization problem (2.2). Then∥∥x̂η−x\

∥∥ ≤ 2η[p
m −1−w

(
D( f , x\)

)− t
]
+

.

The operation [a]+ := max{a,0} returns the positive part of a number.
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The overall argument that leads to this result was proposed by Rudelson & Vershynin [RV08, Sec. 4]; the
statement here is adapted from [CRPW12].

Corollary 3.5 provides for stable recovery of the unknown x\ when the number m of measurements satisfies

m ≥ w2(D( f , x\)
)+C w

(
D( f , x\)

)
.

In view of Remark 3.4, Corollary 3.5 provides a refined estimate for the amount of information that suffices to
identify a structured vector from Gaussian measurements via convex optimization.

Remark 3.6 (The normal error model). It is possible to improve the error bound in Corollary 3.5 if we instate
a Gaussian model for the error vector e. See the papers [OH13, OTH13, TOH14] for an analysis of this case.

4. CONTROLLING THE WIDTH OF A DESCENT CONE VIA POLARITY

As soon as we know the conic Gaussian width of the descent cone, Corollary 6.4 yields error bounds for
convex recovery of a structured signal from Gaussian measurements. To make use of this result, we need
technology for calculating these widths. This section describes a mechanism, based on polarity, that leads to
extremely accurate estimates. We can trace this method to the papers [Sto09, OH10], where it is couched in
the language of duality for cone programs. The subsequent papers [CRPW12, ALMT14] rephrase these ideas
in a more geometric fashion. It can be shown that the approach in this section gives sharp results for many
natural examples; see [ALMT14, Thm. 4.3] or [FM14, Prop. 1]. Although polar bounds for widths are classic
in asymptotic convex geometry [MS86, Pis89, LT91], the refined arguments here are just a few years old.

4.1. Polarity and weak duality for cones. We begin with some classical facts about conic geometry.

Fact 4.1 (Polarity). Let K be a general cone in Rd . The polar cone K ◦ is the closed convex cone

K ◦ := {
v ∈Rd : 〈v , x〉 ≤ 0 for all x ∈ K

}
.

It is easy to verify that K ⊂ (K ◦)◦.

Recall that the distance from a point x ∈Rd to a set E ⊂Rd is defined by the relation

dist(x ,E) := inf
u∈E

‖x −u‖ .

With these definitions, we reach the following weak duality result.

Proposition 4.2 (Weak duality for cones). Let K be a general cone in Rd . For x ∈Rd ,

sup
u∈K∩Sd−1

〈x , u〉 ≤ dist(x ,K ◦).

Proof. The argument is based on a simple duality trick. First, write

dist(x ,K ◦) = inf
v∈K ◦ ‖x −v‖ = inf

v∈K ◦ sup
u∈Sd−1

〈x −v , u〉 .

Apply the inf–sup inequality:

dist(x ,K ◦) ≥ sup
u∈Sd−1

inf
v∈K ◦ 〈x −v , u〉 = sup

u∈Sd−1

[
〈x , u〉− sup

v∈K ◦
〈v , u〉

]
.

By definition of polarity, the inner supremum takes the value +∞ unless u ∈ (K ◦)◦. We determine that

dist(x ,K ◦) ≥ sup
u∈(K ◦)◦∩Sd−1

〈x , u〉 ≥ sup
u∈K∩Sd−1

〈x , u〉 .

The last inequality holds because K ⊂ (K ◦)◦. �

Remark 4.3 (Strong duality for cones). If K is a convex cone and we replace the sphere with a ball, then we
have strong duality instead:

sup
u∈K∩Bd

〈x , u〉 = dist(x ,K ◦).

The proof uses Sion’s minimax theorem [Sio58] and the bipolar theorem [Roc70, Thm. 14.1].
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4.2. The conic Gaussian width of a descent cone. We can use Proposition 4.2 to obtain an effective bound
for the width of a descent cone. This approach is based on a classical polarity correspondence [Roc70,
Thm. 23.7].

Fact 4.4 (Polarity for descent cones). The subdifferential of a proper convex function f : Rd → R at a point
x ∈Rd is the closed convex set

∂ f (x) := {
v ∈Rd : f (y) ≥ f (x)+〈v , y −x〉 for all y ∈Rd }

.

Assume that the subdifferential ∂ f (x) is nonempty and does not contain the origin. Then

D( f , x)◦ = cone(∂ f (x)) := closure

(⋃
τ≥0

τ ·∂ f (x)

)
. (4.1)

Combining Proposition 4.2 and Fact 4.4, we reach a bound for the conic Gaussian width of a descent cone.

Proposition 4.5 (The width of a descent cone). Let f : Rd → R be a proper convex function, and fix a point
x ∈Rd . Assume that the subdifferential ∂ f (x) is nonempty and does not contain the origin. Then

w2(D( f , x)
)≤ E inf

τ≥0
dist2 (

g , τ ·∂ f (x)
)

Several specific instances of Proposition 4.5 appear in [CRPW12, App. C], while the general statement here is
adapted from [ALMT14, Sec. 4.1]. Sections 4.3 and 4.4 exhibit how Proposition 4.5 works.

Proof. Proposition 4.2 implies that

w
(
D( f , x)

)= E sup
u∈D( f ,x)∩Sd−1

〈g , u〉 ≤ E dist
(
g , D( f , x)◦

)
.

The expression (4.1) for the polar of a descent cone implies that

w
(
D( f , x)

)≤ E dist

(
g , closure

(⋃
τ≥0

τ ·∂ f (x)

))
= E inf

τ≥0
dist

(
g , τ ·∂ f (x)

)
.

Indeed, the distance to a set is the same as the distance to its closure, and the distance to a union is the
infimal distance to one of its members. Square the latter display, and apply Jensen’s inequality to complete
the argument. �

4.3. Example: Sparse vectors. Suppose that x\ is a vector in Rd with s nonzero entries. Let Φ be an m ×d
matrix whose rows are independent random vectors distributed as NORMAL(0,Id ), and suppose that we acquire
a vector y =Φx\+e consisting of m noisy measurements. We can solve the `1-minimization problem (2.3) in
an attempt to reconstruct x\.

How many measurements are sufficient to ensure that this approach succeeds? We will demonstrate that

w2(D(‖·‖`1 , x\)
)≤ 2s log(d/s)+2s. (4.2)

Therefore, Corollary 3.5 implies that m& 2s log(d/s) measurements are enough for us to recover x\ approxi-
mately. When s ¿ d , the first term in (4.2) is numerically sharp because of [FM14, Prop. 1].

4.3.1. The width calculation. Let us establish the width bound (4.2). This analysis is adapted from [CRPW12,
App. C] and [ALMT14, App. D.2]; see also [FM14, App. B]. The result [ALMT14, Prop. 4.5] contains a more
complicated formula for the width that is sharp for all choices of the sparsity s.

When estimating widths, a useful strategy is to change coordinates so that the calculations are more
transparent. The `1 norm is invariant under signed permutation, so

D(‖·‖`1 , x\) = P D(‖·‖`1 ,P x\) where P is a signed permutation.

The distribution of a standard Gaussian random variable is invariant under signed permutation, so the conic
Gaussian width has the same invariance. Therefore,

w
(
D(‖·‖`1 , x\)

)= w
(
P D(‖·‖`1 ,P x\)

)= w
(
D(‖·‖`1 ,P x\)

)
.

We will use this type of transformation several times without detailed justification.
As a consequence of the argument in the last paragraph, we may assume that x\ takes the form

x\ = (x1, . . . , xs ,0, . . . ,0)t ∈Rd where x1 ≥ ·· · ≥ xs > 0.
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Proposition 4.5 ensures that

w2(D(‖·‖`1 , x\)
)≤ E dist2 (

g , τ ·∂‖x\‖`1

)
for each τ≥ 0 (4.3)

where g ∼ NORMAL(0,Id ). The subdifferential of the `1 norm at x\ satisfies

∂‖x\‖`1 =
{[

1s

y

]
∈Rd : ‖y‖`∞ ≤ 1

}
where 1s := (1, . . . ,1)t ∈Rs .

Therefore,

E dist2(g , τ ·∂‖x\‖`1 ) =
s∑

j=1
E
(
g j −τ

)2 +
d∑

j=s+1
E
[ |g j |−τ

]2
+. (4.4)

As usual, [a]+ := max{a,0}. For 1 ≤ j ≤ s, a direct calculation gives

E
(
g j −τ

)2 = 1+τ2. (4.5)

For s < j ≤ d , we apply a familiar tail bound for the standard normal variable to obtain

E
[ |g j |−τ

]2
+ =

∫ ∞

τ
(a −τ)2P

{ |g j | ≥ a
}

da ≤
∫ ∞

τ
a2

(√
2

π
a−1 e−a2/2

)
da < e−τ

2/2. (4.6)

Combine (4.3), (4.4), (4.5), and (4.6) to obtain

w2(D(‖·‖`1 , x\)
)≤ E dist2(g , τ ·∂‖x\‖1) = s · (1+τ2)+ (d − s) ·e−τ

2/2.

Choose τ2 = 2log(d/s) and simplify to reach (4.2).

4.4. Example: Low-rank matrices. Let X \ be a matrix in Rd1×d2 with rank r . Let Φ : Rd1×d2 → Rm be a
linear operator whose matrix has independent standard Gaussian entries. Suppose we acquire m noisy
measurements of the form y =Φ(X \)+e. We can solve the S1-minimization problem (2.5) to reconstruct X \.

How many measurements are enough to guarantee that this approach works? We will prove that

w2(D(‖·‖S1 , X \)
)≤ 3r · (d1 +d2 − r ). (4.7)

As a consequence, Corollary 3.5 implies that m & 3r · (d1 +d2 − r ) measurements allow us to identify X \

approximately.

4.4.1. The width calculation. Let us establish the width bound (4.7). This analysis is adapted from [CRPW12,
App. C] and [ALMT14, App. D.3]; see also [FM14, App. E]. The result [ALMT14, Prop. 4.6] contains a
more complicated formula for the width that is sharp whenever the rank r is proportional to the dimension
min{d1,d2}.

The Schatten 1-norm is unitarily invariant, so we may also select a coordinate system where

X \ =
[
Σ 0
0 0

]
where Σ= diag(σ1, . . . ,σr ) and σ j > 0 for j = 1, . . . ,r .

Let G be a d1 ×d2 matrix with independent standard normal entries, partitioned as

G =
[

G11 G12

G21 G22

]
where G11 is r × r and G22 is (d1 − r )× (d2 − r ).

Define a random parameter τ= ‖G22‖, where ‖·‖ denotes the spectral norm. Proposition 4.5 ensures that

w2(D(‖·‖S1 , X \)
)≤ E dist2

F

(
G , τ ·∂‖X \‖S1

)
. (4.8)

Note that we must calculate distance with respect to the Frobenius norm ‖·‖F. According to [Wat92, Ex. 2],
the subdifferential of the Schatten 1-norm takes the form

∂‖X \‖S1 =
{[

Ir 0
0 Y

]
∈Rd1×d2 : ‖Y ‖ ≤ 1

}
where Ir is the r × r identity matrix.

We may calculate that

E dist2
F

(
G , τ · ‖X \‖S1

)= E ‖G11 −τ · Ir ‖2
F +E ‖G12‖2

F +E ‖G21‖2
F +E inf

‖Y ‖≤1
‖G22 −τ ·Y ‖2

F . (4.9)

Our selection of τ ensures that the last term on the right-hand side of (4.9) vanishes. By direct calculation,

E ‖G12‖2
F +E ‖G21‖2

F = r · (d1 +d2 −2r ). (4.10)
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To bound the first term on right-hand side of (4.9), observe that

E ‖G11 −τ · Ir ‖2
F = r 2 + r ·Eτ2 (4.11)

because the random variable τ is independent from G11. We need to compute Eτ2 = E ‖G22‖2
F. A short

argument [DS01, Sec. 2.3] based on the Slepian comparison inequality shows that

E ‖G22‖ ≤
√

d1 − r +
√

d2 − r ≤
√

2(d1 +d2 −2r ).

The spectral norm is 1-Lipschitz, so the Gaussian Poincaré inequality [BLM13, Thm. 3.20] implies

E ‖G22‖2 − (
E‖G22‖

)2 = Var
(‖G22‖

)≤ 1.

Combining the last two displays,

Eτ2 = E ‖G22‖2 ≤ (
E ‖G22‖

)2 +1 ≤ 2(d1 +d2 −2r )+1. (4.12)

Finally, we incorporate (4.9), (4.11), (4.10), and (4.12) into the width bound (4.8) to reach

w2(D(‖·‖S1 , X \)
)≤ 3r · (d1 +d2 −2r )+ r 2 + r.

Simplify this expression to obtain the result (4.7).

5. MENDELSON’S SMALL BALL METHOD

In Sections 2–4, we analyzed a convex programming method for recovering structured signals from
standard Gaussian measurements. The main result, Corollary 3.5, is appealing because it applies to any
convex complexity measure f . Proposition 4.5 allows us to instantiate this result because it provides a
mechanism for controlling the Gaussian width of a descent cone. On the other hand, this approach only works
when the sampling matrix Φ follows the standard Gaussian distribution.

For other sampling models, researchers use a variety of ad hoc techniques to study the recovery problem.
It is common to see a separate and intricate argument for each new complexity measure f and each new
distribution for Φ. It is natural to wonder whether there is a single approach that can address a broad class of
complexity measures and sampling matrices.

The primary goal of this chapter is to analyze convex signal reconstruction with more general random
measurements. Our argument is based on Mendelson’s Small Ball Method, a powerful strategy for establishing
a lower bound on a nonnegative empirical process [KM13, Men13, Men14a, LM14, Men14b]. This section
contains an overview of Mendelson’s Small Ball Method. Section 6 uses this technique to study subgaussian
measurement models. In Section 7, we extend these ideas to a larger class of sampling distributions. In
Section 8, we conclude with an application to the problem of phase retrieval.

5.1. The minimum conic singular value as a nonnegative empirical process. Suppose that ϕ is a random
vector on Rd , and draw independent copies ϕ1, . . . ,ϕm of the random vector ϕ. Form an m×d sampling matrix
Φ whose rows are these random vectors:

Φ=

 ϕt
1

...
ϕt

m

 . (5.1)

Fix a cone K ∈Rd , not necessarily convex, and define the set E := K ∩Sd−1. Then we can express the minimum
conic singular value λmin(Φ;K ) of the sampling matrix as a nonnegative empirical process:

λmin(Φ;K ) = inf
u∈E

(
m∑

i=1
|〈ϕi , u〉|2

)1/2

. (5.2)

When the sampling matrix is Gaussian, we can use Gordon’s theorem [Gor85, Thm. 1.4] to obtain a lower
bound for the expression (5.2), as in Proposition 3.3. The challenge is to find an alternative method for
producing a lower bound in a more general setting.
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5.2. A lower bound for nonnegative empirical processes. The main technical component in Mendelson’s
Small Ball Method is a remarkable estimate that was developed in the paper [Men14a]. This result delivers
an effective lower bound for a nonnegative empirical process.

Proposition 5.1 (Lower bound for a nonnegative empirical process [Men14a, Thm. 5.4]). Fix a set E ⊂Rd .
Let ϕ be a random vector on Rd , and let ϕ1, . . . ,ϕm be independent copies of ϕ. Define the m ×d matrix Φ as
in (5.1). Introduce the marginal tail function

Qξ(E ;ϕ) := inf
u∈E

P
{ |〈ϕ, u〉| ≥ ξ} where ξ≥ 0.

Let ε1, . . . ,εm be independent Rademacher random variables,2 independent from everything else, and define the
mean empirical width of the set:

Wm(E ;ϕ) := E sup
u∈E

〈h, u〉 where h := 1p
m

m∑
i=1

εiϕi . (5.3)

Then, for any ξ> 0 and t > 0,

inf
u∈E

(
m∑

i=1
|〈ϕi , u〉|2

)1/2

≥ ξpm Q2ξ(E ;ϕ)−2Wm(E ;ϕ)−ξt

with probability at least 1−e−t 2/2.

The proof appears below in Section 5.5. In the sequel, we usually lighten our notation for Qξ and Wm by
suppressing the dependence on ϕ.

Before we continue, it may be helpful to remark on this result. The marginal tail function Qξ(E) reflects
the probability that the random variable |〈ϕ, u〉| is close to zero for any fixed vector u ∈ E . When Qξ(E) is
bounded away from zero for some ξ, the nonnegative empirical process is likely to be large. Koltchinskii &
Mendelson [KM13] point out that the marginal tail function reflects the absolute continuity of the distribution
of ϕ, so Qξ may be quite small when ϕ is “spiky.”

The mean empirical width Wm(E) is a distribution-dependent measure of the size of the set E . When ϕ
follows a standard Gaussian distribution, Wm(E) reduces to the usual Gaussian width W (E) := E supu∈E 〈g , u〉.
As the number m tends to infinity, the distribution of the random vector h converges in distribution to
a centered Gaussian variable with covariance E[ϕϕ∗]. Therefore, Wm(E) → W (E) when ϕ is centered and
isotropic.

5.3. Mendelson’s Small Ball Method. Proposition 5.1 shows that we can obtain a lower bound for (5.2) by
performing two simpler estimates. To achieve this goal, Mendelson has developed a general strategy, which
consists of three steps:

MENDELSON’S SMALL BALL METHOD

(1) Apply Proposition 5.1 to bound the minimum conic singular value λmin
(
Φ; K

)
below in

terms of the marginal tail function Q2ξ(E ;ϕ) and the mean empirical width Wm(E ;ϕ). The
index set E := K ∩Sd−1.

(2) Bound the marginal tail function Q2ξ(E ;ϕ) below using a Paley–Zygmund inequality.

(3) Bound the mean empirical width Wm(E ;ϕ) above by imitating techniques for controlling
the Gaussian width of E .

This presentation is distilled from the corpus [KM13, Men13, Men14a, LM14, Men14b]. A more sophisticated
variant of this method appears in [Men14a, Thm. 5.3]. Later in this chapter, we will encounter several
concrete applications of this strategy.

2A Rademacher random variable takes the two values ±1 with equal probability.
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5.4. Expected Scope. Mendelson’s Small Ball Method provides lower bounds for (5.2) in many situations,
but it does not offer a universal prescription. Let us try to delineate the circumstances where this approach is
likely to be useful for signal recovery problems.

• Mendelson’s Small Ball Method assumes that the sampling matrix Φ has independent, identically
distributed rows. Although this model describes many of the sampling strategies in the literature,
there are some examples, such as random filtering [TWD+06], that do not conform to this assumption.

• A major advantage of Mendelson’s Small Ball Method is that it applies to sampling distributions
with heavy tails. On the other hand, the random vector ϕ cannot be too “spiky,” or else it may not
be possible to produce a good lower bound for the marginal tail function Q2ξ(E). This requirement
indicates that the approach may require significant improvements before it applies to problems like
matrix completion.

There are a number of possible extensions of Mendelson’s Small Ball Method that could expand its bailiwick.
For example, it is easy to extend Proposition 5.1 to address the case where the random vector ϕ is complex-
valued. A more difficult, but very useful, modification would allow us to block the measurements into groups.
This revision could reduce the difficulties associated with spiky distributions, but it seems to demand some
additional ideas.

5.5. Proof of Proposition 5.1. Let us establish the Mendelson bound for a nonnegative empirical process.
First, we introduce a directional version of the marginal tail function:

Qξ(u) :=P{ |〈ϕ, u〉| ≥ ξ} for u ∈ E and ξ> 0.

Lyapunov’s inequality and Markov’s inequality give the numerical bounds

(
1

m

m∑
i=1

|〈ϕi , u〉|2
)1/2

≥ 1

m

m∑
i=1

|〈ϕi , u〉| ≥ ξ

m

m∑
i=1

1
{ |〈ϕi , u〉| ≥ ξ}.

We write 1A for the 0–1 random variable that indicates whether the event A takes place. Add and subtract
Q2ξ(u) inside the sum, and then take the infimum over u ∈ E to reach the inequality

inf
u∈E

(
1

m

m∑
i=1

|〈ϕi , u〉|2
)1/2

≥ ξ inf
u∈E

Q2ξ(u)− ξ

m
sup
u∈E

m∑
i=1

[
Q2ξ(u)− 1{ |〈ϕi , u〉| ≥ ξ}]. (5.4)

To control the supremum in probability, we can invoke the bounded difference inequality [BLM13, Sec. 6.1].
Observe that each summand is independent and bounded in magnitude by one. Therefore,

sup
u∈E

m∑
i=1

[
Q2ξ(u)− 1{ |〈ϕi , u〉| ≥ ξ}]≤ E sup

u∈E

m∑
i=1

[
Q2ξ(u)− 1{ |〈ϕi , x〉| ≥ ξ}]+ t

p
m (5.5)

with probability at least 1−e−t 2/2.
Next, we simplify the expected supremum. Introduce a soft indicator function:

ψξ :R→ [0,1] where ψξ(s) :=


0, |s| ≤ ξ
(|s|−ξ)/ξ, ξ< |s| ≤ 2ξ

1, 2ξ< |s| .

We need two properties of the soft indicator. First, the soft indicator is bracketed by two hard indicators:
1{|s| ≥ 2ξ} ≤ψξ(s) ≤ 1{|s| ≥ ξ} for all s ∈ R. Second, ξψξ is a contraction, i.e., a 1-Lipschitz function on R that
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fixes the origin. Therefore, we can make the following calculation:

E sup
u∈E

m∑
i=1

[
Q2ξ(u)− 1{ |〈ϕi , u〉| ≥ ξ}]= E sup

u∈E

m∑
i=1

[
E1

{ |〈ϕ, u〉| ≥ 2ξ
}− 1{ |〈ϕi , u〉| ≥ ξ}]

≤ E sup
u∈E

m∑
i=1

[
Eψξ(〈ϕ, u〉)−ψξ(〈ϕi , u〉)]

≤ 2E sup
u∈E

m∑
i=1

εiψξ(〈ϕi , u〉)

≤ 2

ξ
E sup

u∈E

m∑
i=1

εi 〈ϕi , u〉 . (5.6)

In the first line, we write the marginal tail function as an expectation, and then we bound the two indicators
using the soft indicator function. The next inequality is the Giné–Zinn symmetrization [vdVW96, Lem. 2.3.1].
The last line follows from the Rademacher comparison principle [LT91, Eqn. (4.20)] because ξψξ is a
contraction.

Combine the inequalities (5.4), (5.5), and (5.6) to reach

inf
u∈E

(
1

m

m∑
i=1

|〈ϕi , u〉|2
)1/2

≥ ξ inf
u∈E

Q2ξ(u)− ξ

m

[
2

ξ
E sup

u∈E

m∑
i=1

εi 〈ϕi , u〉+ t
p

m

]
.

Define h := m−1/2 ∑m
i=1 εiϕi , and clear the factor

p
m to conclude that

inf
u∈E

(
m∑

i=1
|〈ϕi , u〉|2

)1/2

≥ ξpm inf
u∈E

Q2ξ(u)−2E sup
u∈E

〈h, u〉−ξt .

with probability at least 1−e−t 2/2. Identify the marginal tail function Q2ξ(E) and the empirical width Wm(E)
to establish Proposition 5.1.

6. A UNIVERSAL ERROR BOUND FOR SUBGAUSSIAN MEASUREMENTS

In this section, we invoke Mendelson’s Small Ball Method to study convex signal recovery from independent
subgaussian measurements. This class of examples provides a wide generalization of standard Gaussian
measurements. We will establish a variant of the Gaussian recovery result, Corollary 3.5, in this setting.

6.1. Subgaussian measurements. Let us set out the conditions we require for the sampling matrix. Suppose
that ϕ is a random vector in Rd that has the following properties.

• [Centering] The vector has zero mean: Eϕ= 0.

• [Nondegeneracy] There is a positive constant α for which

α≤ E |〈ϕ, u〉| for each u ∈ Sd−1.

• [Subgaussian marginals] There is a positive constant σ for which

P
{ |〈ϕ, u〉| ≥ t

}≤ 2e−t 2/(2σ2) for each u ∈ Sd−1.

• [Low eccentricity] The eccentricity ρ :=σ/α of the distribution should be small.
Finally, we construct a random m ×d sampling matrix Φ whose rows are independent copies of ϕt, as in the
expression (5.1).

A few examples of subgaussian distributions may be helpful.

Example 6.1 (Nonstandard Gaussian matrices). Suppose that ϕ ∈Rd follows the NORMAL(0,Σ) distribution
where the covariance Σ satisfies π

2α
2 ≤ utΣu ≤ σ2 for each vector u ∈ Sd−1. Then the required conditions

follow from basic facts about a normal distribution.

Example 6.2 (Independent bounded entries). Let X be a symmetric random variable whose magnitude is
bounded by σ. Suppose that each entry of ϕ is an independent copy of X .

The vector ϕ inherits centering from X . Next, ϕ is nondegenerate with α ≥ 2−1/2E |X | because of the
Khintchine inequality [LO94] and a convexity argument. Finally, ϕ has subgaussian marginals with the
parameter σ because of Hoeffding’s inequality [BLM13, Sec. 2.6].
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6.2. The minimum conic singular value of a subgaussian matrix. The main result of this section gives a
lower bound for the minimum conic singular value of a matrix Φ that satisfies the conditions in Section 6.1.

Theorem 6.3 (Minimum conic singular value of a subgaussian matrix). Suppose Φ is an m×d random matrix
that satisfies the conditions in Section 6.1. Let K ⊂Rd be a cone, not necessarily convex. Then

λmin(Φ;K ) ≥ cαρ−2 ·pm −Cσ ·w(K )−αt

with probability at least 1−e−ct 2
. The quantities c and C are positive absolute constants.

Observe that, when the eccentricity ρ has constant order, the bound in Theorem 6.3 matches the result for
Gaussian matrices in Proposition 3.3. A similar result appears in the paper [MPTJ07], so we do not claim any
novelty. We establish Theorem 6.3 below in Section 6.2.

6.3. An error bound for subgaussian measurements. Combining Proposition 2.6 and Theorem 6.3, we
reach an immediate consequence for signal recovery from subgaussian measurements.

Corollary 6.4 (Signal recovery from subgaussian measurements). Let x\ be a signal in Rd . Let Φ be an m ×d
random matrix that satisfies the conditions in Section 6.1, and let y =Φx\+e be a vector of measurements in Rm .
With probability at least 1−e−ct 2

, the following statement holds. Assume that ‖e‖ ≤ η, and let x̂η be any solution
to the optimization problem (2.2). Then∥∥x̂η−x\

∥∥ ≤ 2η[
cαρ−2 ·pm −Cσ ·w

(
D( f , x\)

)−αt
]
+

.

The quantities c and C are positive absolute constants. The operation [a]+ := max{a,0} returns the positive part of
a number.

Corollary 6.4 provides for stable recovery of x\ as soon as the number m of subgaussian measurements
satisfies

m ≥C ′ρ6 ·w2(D( f , x\)
)
.

How accurate is this result? Note that standard Gaussian measurements satisfy the assumptions of the
corollary with ρ constant, and we need at least w2

(
D( f , x\)

)
standard normal measurements to recover the

structured signal x\ with the complexity measure f . Therefore, the bound is correct up to the constant factor
C ′ and the precise dependence on the eccentricity ρ.

6.4. Proof of Theorem 6.3: Setup and Step 1. To establish Theorem 6.3, we rely on Mendelson’s Small
Ball Method. The argument also depends on some deep ideas from the theory of generic chaining [Tal05],
but we only use these results in a naïve way.

Fix a cone K in Rd , and define the set E := K ∩Sd−1. Suppose that ϕ is a random vector in Rd that satisfies
the conditions set out in Section 6.1, and construct an m ×d random matrix Φ whose rows are independent
copies of ϕ. Proposition 5.1 implies that

λmin(Φ;K ) ≥ ξpm Q2ξ(E)−2Wm(E)−ξt with probability ≥ 1−e−t 2/2. (6.1)

This result holds for all ξ> 0 and t > 0. To establish Theorem 6.3, we must develop a constant lower bound
for the marginal tail function Q2ξ(E), and we also need to compare the mean empirical width Wm(E) with the
conic Gaussian width w(K ).

6.5. Step 2: The marginal tail function. We begin with the lower bound for the marginal tail function
Q2ξ. This result is an easy consequence of the second moment method, also known as the Paley–Zygmund
inequality. Let u be any vector in E . One version of the second moment method states that

P
{ |〈ϕ, u〉| ≥ 2ξ

}≥ [
E |〈ϕ, u〉|−2ξ

]2
+

E |〈ϕ, u〉|2 . (6.2)

To control the denominator on the right-hand side of (6.2), we use the subgaussian marginal condition to
estimate that

E |〈ϕ, u〉|2 =
∫ ∞

0
2s ·P{ |〈ϕ, u〉| ≥ s

}
ds ≤ 4σ2.
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To bound the numerator on the right-hand side of (6.2), we use the nondegeneracy assumption: E |〈ϕ, u〉| ≥α.
Combining these results and taking the infimum over u ∈ E , we reach

Q2ξ(E) = inf
u∈E

P
{ |〈ϕ, u〉| ≥ 2ξ

}≥ (α−2ξ)2

4σ2 (6.3)

for any ξ that satisfies 2ξ<α.

6.6. Step 3: The mean empirical width. Next, we demonstrate that the empirical width Wm(E) is controlled
by the conic Gaussian width w(K ). This argument requires sophisticated results from the theory of generic
chaining [Tal05]. First, observe that the vector h = m−1/2 ∑m

i=1 εiϕi inherits subgaussian marginals from the
centered subgaussian distribution ϕ. Indeed,

P
{ |〈h, u〉| ≥ t

}≤C1e−c1t 2/σ2
for each u ∈ Sd−1.

See [Ver12, Sec. 5.2.3] for an introduction to subgaussian random variables. In particular, we have the bound

P
{ |〈h, u −v〉| ≥ t

}≤C1e−c1t 2/(σ2‖u−v‖2) for all u, v ∈Rd .

Under the latter condition, the generic chaining theorem [Tal05, Thm. 1.2.6] asserts that

Wm(E) = E sup
u∈E

〈h, u〉 ≤C2σ ·γ2(E ,`2)

where γ2 is a geometric functional. The precise definition of γ2 is not important for our purposes because the
majorizing measure theorem [Tal05, Thm. 2.1.1] states that

γ2(E ,`2) ≤C3 ·E sup
u∈E

〈g , u〉

where g ∼ NORMAL(0,Id ). It follows that

Wm(E) ≤C4σ ·E sup
u∈E

〈g , u〉 =C4σ ·w(K ). (6.4)

We have recalled that E = K ∩Sd−1 to identify the conic Gaussian width w(K ).

6.7. Combining the bounds. Combine the bounds (6.1), (6.3), and (6.4) to discover that

λmin(Φ;K ) ≥ ξpm · (α−2ξ)2

4σ2 −2C4σw(K )−ξt with probability ≥ 1−e−t 2/2,

provided that 2ξ<α. Select ξ=α/6 to see that

λmin(Φ;K ) ≥ 1

54
· α

3

σ2

p
m −C5σw(K )− α

6
t with probability ≥ 1−e−t 2/2. (6.5)

Using the eccentricity ρ = σ/α, we simplify the expression (6.5) to reach a bound for the minimum conic
singular value of a subgaussian random matrix Φ that satisfies the conditions set out in Section 6.1. This
completes the proof of Theorem 6.3.

7. THE BOWLING SCHEME

As we have seen in Theorem 6.3, subgaussian sampling models exhibit behavior similar with the standard
Gaussian measurement model. Yet there are many interesting problems where the random sampling matrix
does not conform to the subgaussian assumption. In this section, we explain how to adapt Mendelson’s Small
Ball Method to a range of other sampling ensembles. The key idea is to use the conic duality arguments from
Section 4 to complete the estimate for the mean empirical width.
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7.1. The mean empirical width of a descent cone. Let us state a simple duality result for the mean
empirical width of a descent cone. This bound is based on the same principles as Proposition 4.5.

Proposition 7.1 (The mean empirical width of a descent cone). Let f : Rd → R be a proper convex function,
and fix a point x ∈Rd . Assume that the subdifferential ∂ f (x) is nonempty and does not contain the origin. For
any random vector ϕ ∈Rd ,

Wm
(
D( f , x)∩Sd−1;ϕ

)≤ E inf
τ≥0

dist2 (
h, τ ·∂ f (x)

)
where h := 1p

m

m∑
i=1

εiϕi .

The mean empirical width Wm is defined in (5.3). The random vectors ϕ1, . . . ,ϕm are independent copies of ϕ,
and ε1, . . . ,εm are independent Rademacher random variables.

Proof. The argument is identical with the proof of Proposition 4.5 once we replace the Gaussian vector g with
the random vector h. �

7.2. The bowling scheme. We are now prepared to describe a general approach for convex signal recovery
from independent random measurements.

The setup is similar with previous sections. Consider an unknown structured signal x\ ∈Rd and a complexity
measure f :Rd →R that is proper and convex. Let Φ be a known m ×d sampling matrix, and suppose that we
acquire m noisy linear measurements of the form y =Φx\+e. We wish to analyze the performance of the
convex recovery method (2.2). Proposition 2.6 shows that we can accomplish this goal by finding a lower
bound for the minimum conic singular value of the descent cone:

λmin
(
Φ; D( f , x\)

)≥ ??? . (7.1)

We want to produce a bound of the form (7.1) when the rows of the measurement matrixΦ are independent
copies of a random vector ϕ. This problem falls within the scope of Mendelson’s Small Ball Method. Introduce
the index set E :=D( f , x\)∩Sd−1. In light of (5.2),

λmin
(
Φ; D( f , x\)

)= inf
u∈E

(
m∑

i=1

∣∣〈ϕi , u
〉∣∣2

)1/2

.

We follow Mendelson’s general strategy to control the minimum conic singular value, but we propose a
specific technique for bounding the mean empirical width that exploits the structure of the index set E .

THE BOWLING SCHEME

(1) Apply Proposition 5.1 to bound the minimum conic singular value λmin
(
Φ; D( f , x\

)
below

in terms of the marginal tail function Q2ξ(E ;ϕ) and the mean empirical width Wm(E ;ϕ).
The index set E :=D( f ; x\)∩Sd−1.

(2) Bound the marginal tail function Q2ξ(E ;ϕ) below using a Paley–Zygmund inequality.

(3′) Apply Proposition 7.1 to control the mean empirical width Wm(E ;ϕ).

In other words, Step (3) of Mendelson’s framework has been specialized to Step (3′).
We refer to this instance of Mendelson’s Small Ball Method as the bowling scheme. The name is chosen as a

salute to David Gross’s golfing scheme. Whereas the golfing scheme is based on dual optimality conditions for
the signal recovery problem (2.2), the bowling scheme is based on the primal optimality condition through
Proposition 2.6. In the bowling scheme, duality enters only when we are ready to estimate the mean empirical
width.

In our experience, this idea has been successful whenever we understand how to bound the conic Gaussian
width of the descent cone. The main distinction is that the random vector ϕ may not share the rotational
invariance of the standard Gaussian distribution.
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8. EXAMPLE: PHASE RETRIEVAL

To demonstrate how the bowling scheme works, we consider the question of phase retrieval. In this
problem, we collect linear samples of an unknown signal, but we are only able to observe their magnitudes.
To reconstruct the original signal, we must resolve the uncertainty about the phases (or signs) of the
measurements. There is a natural convex program that can achieve this goal, and the bowling scheme offers
an easy way to analyze the number of measurements that are required.

8.1. Phase retrieval by convex optimization. In the phase retrieval problem, we wish to recover a signal
x\ ∈Rd from a family of measurements of the form

yi = |〈ψi , x\〉|2 for i = 1,2,3, . . . ,m. (8.1)

The sampling ensemble ψ1, . . . ,ψm consists of known vectors in Rd . For clarity of presentation, we do not
consider the case where the samples are noisy or complex-valued.

Although the samples do not initially appear linear, we can apply a lifting method proposed by Balan et
al. [BBCE09]. Observe that

|〈ψ, x〉|2 =ψtx · xtψ= trace
(
x xt ·ψψt).

In view of this expression, it is appropriate to introduce the rank-one positive-semidefinite matrices

X \ = (x\)(x\)t ∈Rd×d and Ψi =ψiψ
t
i ∈Rd×d for i = 1,2,3, . . . ,m. (8.2)

Then we can express the samples yi as linear functions of the matrix X \:

yi = trace
(

X \ ·Ψi
)

for i = 1,2,3, . . . ,m. (8.3)

The expression (8.3) coincides with the measurement model (2.1) we have been considering.
We can use convex optimization to reconstruct the unknown matrix X \. It is natural to minimize the Schat-

ten 1-norm to promote low rank, but we also want to enforce the fact that X \ is positive semidefinite [Faz02].
To that end, we consider the convex program

minimize
X∈Rd×d

trace(X ) subject to X < 0 and yi = trace
(

XΨi
)

for each i = 1,2,3, . . . ,m. (8.4)

This formulation involves the lifted variables (8.2). We say that the optimization problem (8.4) recovers
x\ if the matrix X \ is the unique minimizer. Indeed, in this case, we can reconstruct the original signal by
factorizing the solution to the optimization problem.

Remark 8.1 (Citation for convex phase retrieval). The formulation (8.4) was developed by a working group
at the meeting “Frames for the finite world: Sampling, coding and quantization,” which took place at the
American Institute of Mathematics in Palo Alto in August 2008. Most of the recent literature attributes this
idea incorrectly.

8.2. Phase retrieval from Gaussian measurements. Recently, researchers have started to consider phase
retrieval problems with random data; see [CSV13] for example. In the simplest instance, we choose each
sampling vector ψi independently from the standard normal distribution on Rd :

ψi ∼ NORMAL(0,Id ).

Then each sampling matrix Ψi =ψiψ
t
i follows a Wishart distribution. These random matrices do not have

subgaussian marginals, so we cannot apply Corollary 6.4 to study the performance of the optimization
problem (8.4). Nevertheless, we can make short work of the analysis by using the bowling scheme.

Theorem 8.2 (Phase retrieval from Gaussian measurements). Let x\ be a signal in Rd . Let ψi ∼ NORMAL(0,Id )
be independent standard Gaussian vectors, and consider random measurements yi = |〈ψi , x\〉|2 for i = 1,2,3, . . . ,m.
Assuming that m ≥C d , the convex phase retrieval problem (8.4) recovers x\ with probability at least 1−e−cm .
The numbers c and C are positive absolute constants.

The sampling complexity m ≥C d established in Theorem 8.2 is qualitatively optimal. Indeed, a dimension-
counting argument shows that we need at least m ≥ d nonadaptive linear measurements to reconstruct a
general vector in x\ ∈Rd .
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Remark 8.3 (Extensions). There are a number of obvious improvements to Theorem 8.2 that follow with a
little more effort. For example, it is clear that the convex phase retrieval method is stable. The exceedingly
high success probability also allows us to establish uniform results for all d-dimensional vectors by means
of net arguments and union bounds. Furthermore, the Gaussian assumption is inessential; it is possible to
establish similar theorems for other sampling distributions. We leave these refinements for the avid reader.

8.3. Proof of Theorem 8.2: Setup. Let us rewrite the optimization problem (8.4) in a form that is more
conducive to our methods of analysis. First, introduce the inner product space Rd×d

sym of d ×d symmetric
matrices, equipped with the trace inner product 〈A, B〉 := trace(AB ) and the Frobenius norm ‖·‖F. Define the
linear operator

Φ :Rd×d
sym →Rm where [Φ(X )]i = 〈Ψi , X 〉 for i = 1,2,3, . . . ,m.

Collect the measurements into a vector y = (y1, . . . , ym)t ∈ Rm , and observe that y = Φ(X \) because of the
expression (8.3). Next, define the convex indicator function of the positive-semidefinite cone:

ι :Rd×d
sym →R where ι(X ) =

{
0, X is positive semidefinite
+∞, otherwise.

Introduce the convex regularizer

f :Rd×d
sym →R where f (X ) = trace(X )+ ι(X ).

With this notation, we can write (8.4) in the form

minimize
X∈Rd×d

sym

f (X ) subject to y =Φ(X ). (8.5)

The formulation (8.5) matches our core problem (2.2) with the error vector e = 0 and error tolerance η= 0.
Proposition 2.6 demonstrates that X \ is the unique solution of (8.5) whenever

λmin
(
Φ; D( f , X \)

)> 0.

We must determine how many measurements m suffice for this event to hold with high probability.

8.4. Step 1: The nonnegative empirical process bound. Define the set

E := {
U ∈D( f , X \) : ‖U‖F = 1

}⊂Rd×d
sym .

Proposition 5.1 demonstrates that

λmin
(
Φ; D( f , X \)

)= inf
U∈E

(
m∑

i=1
|〈Ψi , U 〉|2

)1/2

≥ ξpm Q2ξ(E)−2Wm(E)−ξt (8.6)

with probability at least 1−e−t 2/2. In this setting, the marginal tail function is defined as

Q2ξ(E) := inf
U∈E

P
{ |〈Ψ1, U 〉| ≥ 2ξ

}
.

The mean empirical width is defined as

Wm(E) := E sup
U∈E

〈H , U 〉 where H := 1p
m

m∑
i=1

εiΨi .

Here, {εi } is an independent family of Rademacher random variables, independent from everything else.

8.5. Step 2: The marginal tail function. We can use the Paley–Zygmund inequality to show that

Q1(E) = inf
U∈E

P
{ |〈Ψ1, U 〉| ≥ 1

}≥ c0. (8.7)

We have implicitly chosen ξ= 1
2 , and c0 is a positive absolute constant.



18 J. A. TROPP

8.5.1. The tail bound. To perform this estimate, we apply the Paley–Zygmund inequality in the form

P
{
|〈Ψ1, U 〉|2 ≥ 1

2

(
E |〈Ψ1, U 〉|2)}≥ 1

4
·
(
E |〈Ψ1, U 〉|2)2

E |〈Ψ1, U 〉|4 .

The easiest way to treat the expectation in the denominator is to invoke Gaussian hypercontractivity [LT91,
Sec. 3.2]. Indeed, (

E |〈Ψ1, U 〉|4 )1/4 ≤C0
(
E |〈Ψ1, U 〉|2)1/2

because 〈Ψ1, U 〉 is a second-order polynomial in the entries of ψ1. Combine the last two displays to obtain

P
{
|〈Ψ1, U 〉|2 ≥ 1

2

(
E |〈Ψ1, U 〉|2)}≥ 1

4 ·C 4
0

= c0.

We can bound the remaining expectation by means of an explicit calculation. Assuming that U ∈ E ,

E |〈Ψ1, U 〉|2 = 3
m∑

i=1
|ui i |2 +2

m∑
i , j=1

|ui j |2 +
∣∣∣∣∣ m∑
i=1

ui i

∣∣∣∣∣
2

≥ 2.

We have used the fact that U is a symmetric matrix with unit Frobenius norm. In conclusion,

P
{|〈Ψ1, U 〉|2 ≥ 1

}≥ c0 for each U ∈ E .

This inequality implies (8.7).

8.6. Step 3′: The mean empirical width of the descent cone. We can apply Proposition 7.1 to demonstrate
that the mean empirical width satisfies

Wm(E) ≤C1

p
d for m ≥C2d . (8.8)

The numbers C1 and C2 are positive, absolute constants.

8.6.1. The width bound. The bound holds trivially when X \ = 0, so we may assume that the unknown matrix
is nonzero. Select a coordinate system where

X \ =
[

a 0t

0 0

]
∈Rd×d

sym where a > 0.

Recall that the matrix H = m−1/2 ∑m
i=1 εiΨi , where Ψi =ψiψ

t
i and ψi ∼ NORMAL(0,Id ). Partition H conformally

with X \:

H =
[

h11 ht
21

h21 H22

]
.

Define the random parameter τ=λmax(H22), where λmax denotes the maximum eigenvalue of a symmetric
matrix. Proposition 7.1 delivers the width bound

Wm(E) = E sup
U∈E

〈H , U 〉 ≤
(
E dist2

F

(
H , τ ·∂ f (X \)

))1/2
. (8.9)

Using standard calculus rules for subdifferentials [Roc70, Chap. 23], we determine that

∂ f (X \) =
{[

1 0t

0 Y

]
∈Rd×d

sym :λmax(Y ) ≤ 1

}
.

Next,

E dist2
F

(
H , ∂ f (X \)

)= E (h11 −τ)2 +2 E ‖h21‖2 +E inf
λmax(S)≤1

‖H22 −τ ·Y ‖2
F . (8.10)

By construction, the third term on the right-hand side of (8.10) is zero. By direct calculation, the second term
on the right-hand side of (8.10) satisfies

E ‖h21‖2 = d −1. (8.11)
Finally, we turn to the first term on the right-hand side of (8.10). Relatively crude bounds suffice here. By
interlacing of eigenvalues,

τ=λmax(H22) ≤λmax(H) = 1p
m
λmax

(
m∑

i=1
εiψiψ

t
i

)
.
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Standard net arguments, such as those in [Ver12, Sec. 5.4.1], demonstrate that

P
{
λmax(H) ≥C3

p
d

}≤ e−c1d , provided that m ≥C2d .

Together, the last two displays imply that Eτ2 ≤C4d . Therefore,

E (h11 −τ)2 ≤C5d . (8.12)

Introducing (8.10), (8.11), and (8.12) into (8.9), we arrive at the required bound (8.8).

Remark 8.4 (Other sampling distributions). The only challenging part of the calculation is the bound on
λmax(H). For more general sampling distributions, we can easily obtain the required estimate from the matrix
moment inequality [CGT12, Thm. A.1].

8.7. Combining the bounds. Assume that m ≥C2d . Combine the estimates (8.6), (8.7), and (8.8) to reach

λmin
(
Φ; D( f , X \)

)≥ c2
p

m −C6

p
d − 1

2 t

with probability at least 1−e−t 2/2. Choosing t = c3
p

m, we find that the minimum conic singular value is
positive with probability at least 1−e−c4m . In this event, Proposition 2.6 implies that X \ is the unique solution
to the phase retrieval problem (8.4). This observation completes the proof of Theorem 8.2.
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